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Abstract 17 

In this study, with the use of the information theory, we have proposed and proved a 18 

mathematical theorem by which we argue the reason for the existence of human diseases. To 19 

introduce our theoretical frame of reference, first, we put forward a modification of 20 

Shannon’s entropy, computed for all available proteomes, as a tool to compare systems 21 

complexity and distinguish between the several levels of biological organizations. We 22 

establish a new approach, namely the wave of life, to differentiate several taxa and 23 

corroborate our findings through the latest tree of life. Furthermore, we found that human 24 

proteins with higher mutual information, derived from our theorem, are more prone to be 25 

involved in human diseases. Our results illuminate the dynamics of protein network stability 26 

and offer probable scenarios for the existence of human diseases and their varying occurrence 27 

rates. The current study presents the fundamentals in understanding human diseases by means 28 

of information theory. In practice, the theorem proposes multiple-protein approach as 29 

therapeutic agents targeting protein networks as a whole, rather than approaching a single 30 

receptor.   31 
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Introduction 32 

The term ‘entropy’ was originally introduced by Rudolf Clausius in thermodynamics more 33 

than one and a half centuries ago (Clausius, 1864). Entropy is predominantly known as a 34 

measure of the disorder and uncertainty in dynamic systems (Ghahramani, 2006; Bailey, 35 

2009). In information theory, entropy, also known as Shannon’s entropy, is defined as the 36 

average minimum rate at which information is produced or predicted in an uncertain 37 

stochastic setting (Shannon, 1948). In recent decades, information theory has been vastly 38 

applied in many fields of science (Andrews et al, 2015). Biology is of no exception, but 39 

compared to other areas, the applications of information theory in biological sciences have 40 

been indeed limited (Battail, 2013). More importantly, medical sciences lack any use of 41 

information theory in daily practice. The applications of information theory in molecular 42 

biology have been mostly focused on genome sequence analysis (Vinga, 2013). To date, no 43 

study has investigated the evolutionary nature of human diseases using information theory. 44 

The backbone of evolution is random genetic mutations being selected according to the 45 

natural environment. So what has been encountered in nature after some 3.5 billion years of 46 

life history is a ‘selected randomness’. This is the reason why we believe information theory 47 

can be a perfect language to understand life – i.e., this selected randomness. In the literature, 48 

single nucleotide polymorphisms (SNPs) accounting for the main portion of this randomness 49 

have been associated with inherited disease susceptibility (Bodmer & Bonilla, 2008; Wang & 50 

Moult, 2001). However, such approaches have only focused on the genome investigation and, 51 

in most part, neglected the human proteome and the protein-protein interactions (PPIs). PPIs 52 

are the leading cause of cellular metabolic processes. They are induced-fit physical contacts 53 

between macromolecules of proteins allowing the cellular function (Changeux & Edelstein, 54 

2011; Keskin et al, 2008; Koshland Jr, 1995). In order to employ information theory in 55 
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medical sciences, it would be necessary to investigate diseases in detail considering their 56 

molecular networks and PPIs. We believe evolutionary evidence interpreted by stochastic 57 

information analysis can provide substantial help in understanding diseases of living 58 

organisms. 59 

In this study, to understand the nature of human diseases, we have focused on human 60 

interactome and available proteomes of living organisms. To avoid confusion, by ‘human 61 

diseases’ we only refer to non-communicable diseases in human with at least one reported 62 

genetic basis.  Also, as the term ‘proteome’ has sometimes referred to all proteins of a cell or 63 

a tissue in the literature, it is to be noted that in this article, the term ‘proteome’ will refer to 64 

the complete set of proteins that can be expressed by an organism. Because proteomes are 65 

functional representatives of the ‘expressed genome’ of organisms, we have used them as the 66 

means of our investigation. We have used Shannon’s entropy as a retrograde approach to 67 

trace ~180 million proteins with more than 61 billion amino acids through the tree of life and 68 

investigated the trends of complexity among organisms. We have shown that this 69 

methodology agrees with the classification of phyla and may be used as a new tool in 70 

taxonomy. Also, using our new mathematical theorem presented in the Materials and 71 

Methods section, we have focused on Homo sapiens’ PPI network and discussed potential 72 

clinical applications in the practice of medicine. We argue why there are only the diseases we 73 

know, and not others, and discuss why some diseases are more prevalent. We also elaborate 74 

on the reasonable links between our mathematical theory, Shannon’s entropy, the evolution 75 

of taxa, and human diseases.  76 
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Results 77 

CAIR comparisons among taxonomic groups 78 

Calculated Average Information per Residue (CAIR) was calculated (see the Materials and 79 

Methods section) for all proteomes available at the UniProt database until April 2020. Nearly 80 

180 million proteins with more than 61 billion amino acids were analysed to classify ~29,000 81 

organisms in 92 phyla. Table 1 shows CAIRs of the most popular proteomes and model 82 

organisms (for all ~29k proteomes, see Dataset EV1). The minimum CAIR of an organism is 83 

that of Zinderia insecticola (0.8247) and the maximum is of Ciona savignyi (0.9449). The 84 

mean ± standard deviation considering all organisms is 0.9210 ± 0.0129 with a median 85 

(interquartile range) of 0.9250 (0.0160). Having performed a literature review of articles 86 

published no later than April 2020, we have drawn the most updated tree of life for UniProt 87 

taxonomic lineage data (Fig 1A). For each bifurcation point on the tree, we tested if two sides 88 

of the bifurcation have developed divergent CAIRs. Fig 1B illustrates how CAIR divergence 89 

is present through the different lineages of taxonomy. On all bifurcation points of Fig 1A, a 90 

number is written whose respective statistical test results are demonstrated in Fig 1B with two 91 

half violin plots for upper and lower sides of the bifurcation and their box-and-whisker plots. 92 

Since the groups were negatively skewed, unbalanced, and heteroscedastic, their difference 93 

was investigated via the two-sided Brunner-Munzel statistical test (Neuhäuser & Ruxton, 94 

2009). It is noteworthy that groups with ten or fewer organisms were excluded from 95 

comparisons, as the Brunner-Munzel test is statistically imprecise even with a permutation. 96 

Among 56 performed tests, 48 tests demonstrated a significant difference at the point of 97 

bifurcation. Interestingly, the bifurcation points of eight insignificant tests are mostly known 98 

to be a matter of controversy in the scientific literature (Spang et al, 2017; Evans et al, 2019). 99 
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Along with the p-value significance, estimated effect sizes (ES) and 95% confidence intervals 100 

(CI) are also reported. For the exact p-values of each test, please see Table 2. 101 

CAIR as a means of understanding the behaviour of natural selection  102 

The extent of natural selection’s capacity to show bias in favour of selecting a spectrum of 103 

organisms is open to question. Since genetic mutations are known to be generally random, the 104 

CAIR density plot of such a random condition without a selection bias shall turn out to have a 105 

uniform distribution. In a simulation of various random protein systems, we obtained a 106 

similar distribution to the actual CAIR density plot taking into account a negative skewness 107 

of -0.90 (Fig EV1). Fig EV1A shows the density plot of life and Fig EV1B depicts that of our 108 

simulation. Fig EV1C, also, shows how these two distributions are similar given a tiny 109 

bandwidth. To test for their similarity of distributions, we also performed two-sample 110 

Kolmogorov-Smirnov tests whose mean p-value was 0.40 on 1000 iterations. It is 111 

noteworthy, not unexpected though, that the natural selection is biased toward the organisms 112 

with higher CAIRs. This might have stemmed from the random mutations over the course of 113 

ages as discussed in the next section. Also, natural selection favours more complex and more 114 

unpredictable protein systems, as they can accommodate superior functionalities. Besides, the 115 

density plot of CAIRs possesses one other interesting property. Since there are significant 116 

differences among taxonomic groups of the second hierarchy as shown in Fig 1B, it can 117 

further be expected that all organisms are noticeable on the density plot. Fig 2 shows how 118 

different taxonomic hierarchies are manifested in the density plot of organism CAIRs. On the 119 

‘wave of life’, members of the succeeding taxonomic ranks are revealed by zooming in on the 120 

preceding taxonomic group. This property of CAIR density suggests an original methodology 121 

to help classifying organisms into various taxa. 122 

Human proteome analysis and the estimation of mutual information for a protein (EMIP) 123 
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According to the theorem presented in the Materials and Methods section and its biological 124 

inferences, EMIP has been calculated for each human protein entry using its PPI network. 125 

Each Swiss-Prot, i.e. reviewed, entry has been categorized into three groups using the 126 

Orphanet database of diseases. In case of a reported disease(s) related to an entry, all disease 127 

point-prevalence/incidences of the entry (from Orphanet database) are summed up to obtain 128 

the total occurrence of the disease, that is to say, the protein’s overall malfunction. Table 3 129 

shows the narrative data of the human disease categories. As seen in the table, the groups are 130 

unbalanced in size and heteroscedastic which makes conventional statistical analyses 131 

unfavourable. Herein, our results demonstrate how well indicators of diseases can be 132 

correlated to the disease occurrence categories. In the Materials and Methods section, we 133 

have explained why such independent variables were candidates of correlation and further 134 

statistical analyses. Fig 3 shows the results of comparisons between disease occurrence 135 

categories in four disease indicators. In each comparison, we have also included gene age 136 

categories to test our hypotheses and biological inferences. The Dunnett-Tukey-Kramer 137 

pairwise multiple comparison test adjusted for unequal variances and unequal sample sizes 138 

(Dunnett, 1980) was performed to test overall comparisons. Results of comparisons show that 139 

disease indicators correlate significantly with disease occurrence categories. Among four 140 

indicators, EMIP is revealed to have the most significant differences between categories, 141 

while CAIR was incongruous. The inconsistency seen in CAIR confirms that the use of 142 

Shannon’s entropy alone is not a good enough indicator of disease occurrence categories. 143 

Additionally, since gene ages are presented as ranked data in the literature (Liebeskind et al, 144 

2016), ranked analysis with an equal number of ranks has been performed to make all five 145 

indicators comparable with one another. Fig 4 shows the Likert plots and rank comparisons. 146 

As illustrated, natural Logarithm of EMIP (LEMIP) is by far better than other indicators in 147 

correlating disease occurrence categories which might be stemmed from its bell-shaped 148 
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histogram. Unlike other indicators, the distribution of LEMIP allows it to be ranked with 149 

mean and standard deviations which have been reported in the Table 4. Please refer to Table 150 

4 for detailed information about the ranks in disease indicators. 151 

As results suggest, EMIP seems to be a superior indicator of human diseases. Calculated 152 

values of disease indicators for all reported diseases (Dataset EV2) and all human proteins 153 

(Dataset EV3) are available in the Expanded View of the article. In a nutshell, we have 154 

presented 16 human proteins with the highest EMIPs in Table 5. It is noteworthy that high-155 

EMIP proteins are more susceptible to have diseased networks and are clinically crucial for 156 

human health. Fig EV2 shows the network topology of the same proteins (for its R code, see 157 

the Data Availability section).  158 
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Discussion 159 

Proteome evolution during ages 160 

As shown in the Materials and Methods section, relative frequencies of residues in a protein 161 

decide on its CAIR. Obviously, biochemical properties of amino acids play a central role in 162 

determining their primary relative frequencies in de novo proteins. Such dissimilarity of 163 

chemical properties would encourage unbalanced primary relative frequencies, thus lesser 164 

CAIRs, as shown in our results for younger proteins in Fig 3D. This finding follows the 165 

theory of de novo gene birth from non-coding DNA (Neme et al, 2017; Wilson et al, 2017). 166 

Nevertheless, during the course of evolution, residues are subjected to random mutation 167 

which equalizes their relative frequencies. This, in turn, increases the CAIR of proteins as 168 

they age which also agrees with the trend of CAIRs in Fig 3D. This can be a corroborating 169 

rationale for the study carried out with a different methodology in which it is shown that 170 

intrinsic disorder of proteins negatively correlates with gene age (Banerjee & Chakraborty, 171 

2017). Random mutations aside, natural selection’s bias in favour of more complex proteins 172 

may have also contributed to increasing the CAIR in older proteins. This is also noticeable 173 

from the results seen in Fig EV1 verifying the identical behaviour of natural selection toward 174 

all living organizations. Accordingly, it is not surprising that the human proteome includes a 175 

negatively-skewed distribution whose lesser CAIRs are mostly associated with proteins 176 

expressed by younger genes. Unfortunately, the literature lacks any thorough investigation on 177 

linguistic complexity of proteins and gene ages. 178 

Moreover, it is evident from Fig 3C that the younger eukaryotic proteins are shorter than their 179 

older counterparts. A significant decline is noticed, however, in the length, interactions, and 180 

mutual information of proteins during the old ages. This refers to the different evolutionary 181 

rates of prokaryotic and eukaryotic genes and is compatible with the findings of previous 182 
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studies (Alba & Castresana, 2005; Wolf et al, 2009). Even for proteins of prokaryotic ages, 183 

the trend of increase in protein length and interactions is observed; nonetheless, the trend line 184 

is discrete from that of eukaryotic proteins. Interestingly, this decline is not seen in Fig 3D, as 185 

the CAIR, in both eukaryotic and prokaryotic settings, is identically affected by directional 186 

selection. The dome shape increase of disease indicators from younger to older proteins 187 

refutes the justification of the study by Elhaik et al claiming that the slower rate of evolution 188 

in older genes is ‘an artefact of increased genetic distance (Elhaik et al, 2006)’. 189 

Furthermore, it is demonstrated in Fig 3B that interactions increase as genes age which agrees 190 

with the literature (Saeed & Deane, 2006). However, the rate of increase seems to be slower 191 

in a prokaryotic setting. That means the rate of interaction turnover in eukaryotic proteomes 192 

may be comparatively higher. This might be due to the denser networks of eukaryotes and the 193 

gene duplication (Wagner, 2003). It is also noteworthy that the rate of interaction turnover 194 

seems to be non-decreasing as eukaryotic genes get older. Lastly, mutual information might 195 

be considered as an assembly of protein information and interactions. So as seen in Fig 3A, 196 

the trend of EMIP is also increasing by time for both eukaryotic and prokaryotic genes. 197 

Dynamics of protein networks 198 

A protein network is considered ‘stable’ when the odds of network malfunction is tiny. 199 

Among various protein networks, particular ones malfunction often, and they generally are 200 

responsible for the networks of non-communicable diseases. According to the theorem 201 

presented in the Materials and Methods section, the number of interactions is negatively 202 

correlated to network stability. This deduction is contrary to what is seen in Fig 3B, 4b, and 203 

the literature (Jonsson & Bates, 2006; Oti et al, 2006; Xu & Li, 2006). According to the 204 

literature, the PPI networks of disease genes are different in topology containing more 205 

interactions, as it has been similarly shown in the mentioned figure panels. Previously, it was 206 
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clarified that the interactions increase with a stationary rate as a gene ages. As a matter of 207 

fact, there are also many genes encoding for proteins of the cellular organisms that have not 208 

established any interactions. Hence, a confounding factor that might be overlooked would be 209 

the primary stability of the protein itself. In other words, proteins that are prone to 210 

malfunction need substantial interactions to compensate for their malfunctions within their 211 

network. That is the reason for increasing interactions along with the disease occurrences. In 212 

the literature, the finding of the increased mutation rate of disease genes may reason their 213 

increasing interactions (Smith & Eyre-Walker, 2003). Natural selection might be the other 214 

reason which would favour interactions merely for faulty networks rejecting in others. 215 

As mentioned previously, an inaccurate estimate of a protein’s stability would be its CAIR. 216 

Fig 3D illustrates that CAIRs of disease proteins are significantly higher than those of non-217 

disease proteins. However, the incongruous decrease of CAIRs in rare disease comparing 218 

with extremely rare diseases had not expected in the inferences of our theorem. This might 219 

be, in part, the influence of abundant younger proteins responsible for rare diseases that have 220 

not developed interactions yet. Proteins with less CAIR are more stable, yet they are 221 

negatively selected as they do not contain sufficient information. Complexity allows a protein 222 

to have the potential capacity to carry more intricate functions (Babu, 2016). Thus, in order to 223 

obtain higher functionalities, proteins grow both in their sizes and CAIRs. Consequently, this 224 

necessitates new interactions to arrive. However, new protein interactors may take millions of 225 

years to appear and reform the instability of the network (Fraser et al, 2002). These cycles 226 

begin all over again as the new proteins come into existence. All these aside, the essentiality 227 

of a protein’s function is an argument that should not be dismissed. Generally, old proteins 228 

are more crucial to forming life than younger ones (Chen et al, 2012). The less crucial roles 229 

of younger proteins render their diseases to be less severe. As human ages, numerous 230 

interactors in various networks are cancelled out causing these networks to malfunction. The 231 
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coincidental rush of diseases at the late ages of human life may be caused by the 232 

accumulative effect of interactors removal and the loss of proteostasis (Kaushik & Cuervo, 233 

2015; Labbadia & Morimoto, 2015). So, even substantial interactions cannot fully guarantee 234 

networks of complex unstable proteins. 235 

Gene age, hubs, and human diseases 236 

Our results presented in Fig 4C illustrates the critical role of proteins encoded by the older 237 

genes to be responsible for a broad spectrum of diseases. This finding is in total agreement 238 

with a previous study in the literature highlighting the importance of ancient genes in human 239 

genetic disorders (Domazet-Lošo & Tautz, 2008). We also discussed that the older genes 240 

might take the leading role in creating the necessary fundamentals of life. A series of papers 241 

by Barabási et al dedicatedly demonstrate the distinction between disease genes and the 242 

essential genes. According to their work, disease genes are in most cases non-essentials being 243 

located at the periphery of the network, rather than being a central hub (Barabási et al, 2011; 244 

Domazet-Lošo & Tautz, 2008; Goh et al, 2007). In Fig 4D, although the trend of the increase 245 

in CAIR is parallel to more odds of disease to occur, the proportion of rare to extremely rare 246 

diseases suggests that more prevalent diseases are not associated with the proteins with the 247 

highest CAIRs. This is also evident from the overall comparison of CAIRs in disease 248 

occurrence categories in Fig 3D. This finding puts forward an argument that the most 249 

complex proteins located at the centre of networks are encoded by the essential old genes that 250 

in case of their malfunction, the condition would be fatal or cause an extremely rare and 251 

severe disease. However, the more prevalent diseases are caused by comparably less complex 252 

proteins that are indeed younger than central hubs. So, the proportion of rare to extremely 253 

rare diseases in Fig 4 is of great importance and should be noticed as they agree with the 254 

scenarios presented by Barabási et al.   255 
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EMIP and human diseases 256 

A disease may occur when the process of network compensation works inaccurately. For any 257 

network, the removal of the nodes would weaken its stability. This fact is evidently derived 258 

from our theorem. As we discussed, it is the reason why many of the unstable networks have 259 

urged to have many interactions. Integrating the effect of interactions with the protein 260 

information is what mutual information tries to demonstrate. In a sense, the mutual 261 

information of a protein is the information that is identical between the protein and its 262 

network. Thus, in the case of a malfunction, it would not result in a disease, as the network 263 

already carries the identical information. Estimation of mutual information, mathematically, 264 

is equivalent to the difference between the information of the network as a whole and the 265 

scalar summation of information that interactors carry when they are not interacting within a 266 

network. This, of course, will show how much capacity the network carries to compensate for 267 

its malfunction. In Fig 3A and Fig 4A the superior relation between EMIP and disease 268 

occurrence categories stems from this fact. 269 

On the existence of diseases 270 

Based on what is discussed above, the scenario of a gene to cause a disease or not is being 271 

summarized as the following (Fig 5). When the evolution was in its initial periods, the 272 

involved proteins for life network was mainly the crucial ones. The metabolic pillars of life 273 

owe the fundamental and critical components to the first formation of these networks. There 274 

are two types of proteins at this stage, i.e. either ‘robust’ or ‘weak’. To define, robust proteins 275 

are those which are structurally not very susceptible to malfunction. These proteins have 276 

evolved without many interactions comparing to others. Hence, during the path of evolution, 277 

and still, we cannot detect as many interactions for them. On the other hand, weak proteins 278 

would have caused vital errors that result in severe diseases. It would be reasonable to assume 279 

that the incidence of such diseases would have been higher at ancient ages. So we may expect 280 
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to observe many interactions of them till now. According to our theorem, it can be reasoned 281 

that these interactions would bypass the hub protein in case it malfunctions. So the incidence 282 

of such diseases would have been drastically lessened by now. As a general point, for an 283 

unstable weak protein that initiates a network, there are two prospects to be considered, i.e. 284 

being able to develop a mature network at the time of the investigation, or still getting 285 

involved in an immature one. By definition, mature networks would be those which have 286 

totally cancelled out the adverse outcomes of the malfunctioning hub protein. Based on the 287 

theorem, maturity is an ideal that no network can satisfy it in a biology setting. 288 

Having mentioned all these about the archaic proteins, it should also be noticed that the 289 

proteins which have come into existence in more chronologically proximal periods would 290 

have by far lower chances of being a vital hub. The functioning network of life, in one piece, 291 

has less to do with a mammalian protein than an archaic cellular respiration protein. So, the 292 

other category of proteins is that of the contemporary period on which the logical assumption 293 

would be that they are either non-hubs or if hubs do not function in places crucial to life. The 294 

contemporary category, i.e. the young proteins, again, is subdivided into robust and weak 295 

proteins. Robust young proteins are those without interactions which are not very much 296 

susceptible to cause diseases, because if otherwise, evolution would bring interactions for 297 

them. It is noteworthy that very young proteins are mainly very stable, simple, and proteins 298 

with minor functional capacities. Stable young proteins may by time change to unstable 299 

complex proteins because of the random mutations and the natural selection’s bias toward 300 

more complex proteins. In the way of transformation, most of the weak young proteins arise 301 

which are primarily responsible for the prevalent metabolic diseases of the current 302 

evolutionary era. Since the average evolutionary rate interaction turnover has not satisfied the 303 

optimum number of network nodes for them, they are apprentices susceptible to malfunction. 304 

It would be easy to infer that these proteins cause less severe diseases comparing to archaic 305 
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proteins, as their functions are still not vital. Nevertheless, they cause diseases with higher 306 

incidences. 307 

Applicability of the method 308 

The methodology we have presented in the next section is not sensitive to the level of 309 

taxonomy, i.e. whether the calculation is for a species, a genus, an order, a kingdom, or the 310 

complete tree of life. The reason for this fact is that calculating the amino acid frequencies is 311 

the same considering a species proteome or any other more extensive proteomic combination 312 

of taxonomic levels. Also, we can calculate the Shannon entropy for a single protein, or a 313 

peptide. This insensitivity to the size of the network in calculation enables a homogenous 314 

analysis through the whole tree of life. 315 

A perspective of future studies 316 

Future studies may focus on each of the non-communicable diseases to elaborate more on the 317 

speculations made in this study. Communicable diseases may also be the focus of further 318 

studies to investigate the CAIRs of organisms and probable relations to their pathogenicity. 319 

Treatments that are targeting networks with high-CAIR interacting protein crowds would be 320 

an option to be explored. Moreover, better estimations for mutual information would be of 321 

great interest. Besides, the notation of the wave of life and CAIR comparisons may bring 322 

further arguments to taxonomists. Lastly, the theorem may be used in various fields of 323 

science which are shaped by networks.  324 
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Materials and Methods 325 

Introducing the Calculated Average Information per Residue (CAIR) and the Protein 326 

Information (PI)  327 

 Proteins, form a mathematical point of view, are once randomly-occurred sequences of 328 

residues that have gone through a process of selection in nature. Considering this fact, a 329 

protein structure can be defined using a random sequence that carries mathematical 330 

information. The information that a protein carries may be defined as to be equivalent to the 331 

amount of uncertainty in predicting its residues. It is to be highlighted that regardless of the 332 

protein conformation, the information of a protein is determined merely by its primary 333 

structure. The average information carried by a residue in a protein is calculated by 334 

Shannon’s entropy (𝐻) equation as below: 335 

 𝐻 = − ∑ 𝑝𝑖  log2 𝑝𝑖

𝑠

𝑖=1

 (1) 

where 𝑝𝑖 is the probability of state 𝑖, and 𝑠 is the total number of possible states. In the 336 

current context, the CAIR notion is introduced to be the same as Shannon’s entropy except 337 

for the logarithm base which is 22 in the former and 2 in the latter. In other words, CAIR is 338 

the 22-ary of Shannon’s entropy and is formulated as: 339 

 CAIR = − ∑ 𝑝𝑟  log22 𝑝𝑟

𝑡

𝑟=1

 (2) 

in which 𝑟 is a numeral given to each residue, 𝑡 is the total number of residues, 𝑝𝑟 is the 340 

relative frequency of 𝑟th
 residue in the protein. More simply, the CAIR could be written as: 341 

 CAIR = 𝑘𝐻 (3) 

in which 𝐻 is Shannon’s entropy in equation (1), and 𝑘 is a constant equivalent to: 342 
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 𝑘 = log22 2 ≅ 0.224243 

As it is evident from equation (3), the patterns in the results obtained in the current article 343 

were independent of the base of the logarithm; however, the scale of entropy would be much 344 

more tangible considering the base of 22, as the ideal proteinogenic alphabet contains 22 345 

letters. Deriving from CAIR, protein information (PI) is the amount of information carried by 346 

all the residues of a protein as of the following equation: 347 

 

PI

= − 𝑙 ∑ 𝑝𝑟  log22 𝑝𝑟

𝑡

𝑟=1

 
(4) 

in which the variables are the same as those in equation (2), and 𝑙 is the length of the protein. 348 

The notations of PI and CAIR are proposed, instead of the conventional H, for the fact that 349 

they are more expressive and pertinent for the field of proteomics. It would also be humbly 350 

proposed – with an analogy to Shannon’s bit – to use ‘pit’, i.e. protein unit, for the unit of 351 

CAIR, PI, and EMIP in order to be readily comprehensible. As an example, one kilo-pit 352 

would be equivalent to the PI of a 1000-lengthed protein whose residues have equal 353 

frequencies. 354 

 355 

Mathematical Theorem 356 

Suppose {𝑋}, {𝑌1}, {𝑌2} … , {𝑌𝑛} are sets of sequences from which {𝑌1}, {𝑌2} … , {𝑌𝑛} are all 357 

dependent to {𝑋}, but are pairwise independent from each other, not necessarily identically 358 

distributed random variables having characteristic functions of  𝜑1, 𝜑2, … , 𝜑𝑛, distribution 359 

functions of 𝑓1, 𝑓2, … , 𝑓𝑛, and entropies of 𝐻1, 𝐻2, … , 𝐻𝑛. Let Φ be the characteristic function 360 

of {𝑋}, 𝐹𝔛 be its distribution function, and 𝐻𝔛 be its entropy. Then: 361 
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lim
𝑛→∞

𝐻(Φ|𝜑1, 𝜑2, … , 𝜑𝑛) = 0 

 362 

Proof. According to the definition of mutual information, we can write the following 363 

relations (Cover & Thomas, 2012): 364 

 𝐼(𝑋; 𝑌𝑖) =  𝐼(𝑌𝑖; 𝑋)  

  𝐼(𝑌𝑖; 𝑋) = 𝐻(𝑋) −  𝐻(𝑋|𝑌𝑖)  

 
∑ 𝐻(𝑋|𝑌𝑖)

∞

𝑖=1

= 𝐻(𝑋) − ∑ 𝐼(𝑋; 𝑌𝑖)

∞

𝑖=1

 (5) 

Corollary. Non-negativity of mutual information(Cover & Thomas, 2012): 365 

 𝐼(𝑋; 𝑌)  ≥  0  

with equality iff 𝑋 and 𝑌 are independent. 366 

Based on the corollary of non-negativity of mutual information, and because 𝑌𝑖 are all 367 

dependent on 𝑋, the mutual information of 𝑋 with respect to all 𝑌𝑖 is always positive: 368 

 𝐼(𝑋; 𝑌𝑖) > 0 (6) 

from which it can be inferred that infinite sum of positive values yields not to infinite, but to 369 

the maximum mutual information possible, i.e., the entropy of 𝑋: 370 

 ∑ 𝐼(𝑋; 𝑌𝑖)

∞

𝑖=1

= 𝐻(𝑋) (7) 

So, substituting equation (7) in equation (5): 371 

 ∑ 𝐻(𝑋|𝑌𝑖)

∞

𝑖=1

= 𝐻(𝑋) − 𝐻(𝑋)  
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∑ 𝐻(𝑋|𝑌𝑖)

∞

𝑖=1

= 0 (8) 

Also, since ∑ 𝐻(𝑋|𝑌𝑖)∞
𝑖=1  is the same as lim

𝑛→∞
𝐻(Φ|𝜑1, 𝜑2, … , 𝜑𝑛), thus: 372 

 lim
𝑛→∞

𝐻(Φ|𝜑1, 𝜑2, … , 𝜑𝑛) = 0 (9) 

Biological inferences and hypotheses 373 

In the above theorem, supposing Φ be a protein with the amino acid sequence of {𝑋}, 374 

interacting with 𝑛 number of other proteins, namely 𝜑1, 𝜑2, … , 𝜑𝑛, with sequences of 375 

{𝑌1}, {𝑌2} … , {𝑌𝑛}: 376 

1) Said interactions are mathematically interpreted as the dependency of 𝐹𝔛 on 377 

𝑓1, 𝑓2, … , 𝑓𝑛. To elucidate, the probability distribution functions of proteins 378 

correspond to their Boltzmann distributions. Because of the induced-fit nature of 379 

biochemical interactions, it might be plausible to consider the distribution 380 

functions to be dependent on one another. For that reason, each interaction is 381 

deduced as the dependency of two distributions in the theorem.  382 

2) As the theorem suggests, 𝐻𝔛 indicates Shannon’s entropy of the protein Φ with an 383 

amino acid sequence of {𝑋}. This might be interpreted as the extent of probable 384 

variations that could lay in the primary structure of a protein affecting its function. 385 

This measure would be an inaccurate estimate of a protein’s malfunction as no 386 

biochemical conditions have been taken into account. Despite its inaccuracy, we 387 

have included the CAIR as an indicator of diseases in our analysis. The intuitive 388 

hypothesis would maintain that the CAIR is significantly more in disease proteins 389 

than non-disease ones for their surplus odds of having potential disadvantageous 390 

variations in the primary structure leading to malfunction and disease. 391 
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3) According to the assumptions of the theorem, the notation of ‘information’ could 392 

also apply to any system containing proteins, i.e. a particular metabolic pathway, 393 

an interactome, diseasome, or the entire living organisms. Measuring the 394 

information is independent of the size of the network. This property allows us to 395 

calculate the information among the different taxonomic hierarchies and to utilize 396 

the results in practice. Also, in a single organism like Homo sapiens, it would 397 

allow us to compare different disease pathways, track hub proteins, and discern 398 

potential disease proteins from non-disease ones. 399 

4) The length of a protein sequence determines the PI, as shown in equation (4). We 400 

have not included the PI itself as an indicator in the study, but have included both 401 

the CAIR and the protein length separately. Proteins with longer sequences carry 402 

more information and are more prone to malfunction as the overall odds of a 403 

faulty residue in their sequence is higher compared to a protein with a shorter 404 

sequence. 405 

5) Considering equation (9), it is understandable that the conditional entropy of Φ 406 

with respect to the knowledge of n number of interactors, i.e. 𝜑1, 𝜑2, … , 𝜑𝑛, would 407 

equal zero when n approaches infinity. The conditional entropy designates the 408 

new information carried by the Φ protein when functioning in its network with 409 

other proteins of 𝜑1 to 𝜑𝑛. So, as a preliminary and naive inference, it could be 410 

easily inferred from the theorem that networks with more interactions are more 411 

stable. Therefore, we have included the number of interactions as an indicator of 412 

human diseases to test our hypothesis.  413 

6) Although equation (9) is a relatively straightforward approach to calculate the 414 

stability of a network, it can be shown that its exact quantitative calculation is not 415 

possible in proteomic analysis. An equivalent measure of network stability would 416 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 4, 2020. ; https://doi.org/10.1101/2020.08.03.233767doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.03.233767
http://creativecommons.org/licenses/by-nc-nd/4.0/


21 
 
 

be to use equation (6) in which mutual information is shown to be always positive. 417 

Unlike the conditional entropy which is negatively correlated to the network 418 

stability, the mutual information is positively correlated. To quantitate mutual 419 

information in the current context, we propose the following estimation, 420 

henceforth referred to as EMIP (𝜇): 421 

𝜇Φ = −[∑ 𝑙𝜑

𝑛

𝜑=1

+ 𝑙Φ] ∑ ∑
𝑝(𝑟,𝜑)𝑙𝜑 + 𝑝(r,Φ)𝑙Φ

𝑙𝜑 + 𝑙Φ
 log22

𝑝(𝑟,𝜑)𝑙𝜑 + 𝑝(r,Φ)𝑙Φ

𝑙𝜑 + 𝑙Φ

𝑡

r=1

𝑛

𝜑=1

 

+ ∑ ∑ 𝑙𝜑 𝑝(𝑟,𝜑) log22 𝑝(𝑟,𝜑)

𝑡

𝑟=1

𝑛

𝜑=1

 
(10) 

in which 𝜇Φ is the mutual information for the Φ protein, 𝑛 is the number of 422 

interactions, 𝑙𝜑 is the length of the 𝜑th
 interactor, 𝑙Φ is the length of protein Φ, 𝑟 is 423 

a numeral given to each residue in proteins, 𝑡 is the total number of residues, 424 

𝑝(𝑟,𝜑) is the relative frequency of 𝑟th
 residue in 𝜑th

 interactor, and 𝑝(𝑟,Φ) is the 425 

relative frequency of 𝑟th
 residue in Φ protein. EMIP has also been included as an 426 

indicator of diseases in our analysis. 427 

7) An essential element in the course of life evolution and human disease analysis is 428 

to consider the gene age of proteins. It is conceivable to hypothesize that the 429 

chronological data of genes can be very much associated with the indicators of 430 

human diseases. One reason is the additive effect of gene ages to introduce new 431 

interactions. The second reason is based on the assumption that natural selection 432 

can show bias towards proteins with a specific range of CAIRs. Also, the third 433 

reason is the possibility that the older proteins can grow to have longer sequences 434 

during evolution. Therefore, we have also included the gene ages as a covariate of 435 

human diseases in our analysis. 436 
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8) According to the theorem, it is also inferred that in an ideal condition with an 437 

infinite number of interactors for a protein, the functionality of such a hub protein 438 

reaches an infallible state, i.e. no disease would ever happen. This could also be 439 

applied to other fields of science to reason why there is an order in complex 440 

systems with innumerable components. The rate of decline in error in our theorem 441 

as shown in equation (9) under random conditions is generally consistent with the 442 

simple statistical rule of √𝑛 as proposed in physicist Schrödinger’s ‘what is life’ 443 

(Schrödinger, 1944). 444 

 445 

Protein database 446 

For taxonomic comparisons, all complete proteomes were extracted from the UniProt 447 

(Consortium, 2019) FTP server, freely available at 448 

ftp://ftp.uniprot.org/pub/databases/uniprot/current_release/knowledgebase/complete/. Both 449 

SwissProt and TrEMBL files were downloaded in FASTA format. We calculated protein 450 

entropies separately for each entry in both files including a total of more 61 billion amino 451 

acids and merged them with every individual organism. Then, we used the calculations for 452 

further statistical analyses. 453 

Besides, for human proteins analyses, the complete list of Homo sapiens proteins was 454 

downloaded directly from the UniProt website in a tab-separated (.tab) format containing the 455 

following columns: ‘Entry’, ‘Length’, ‘Sequence’, ‘Orphanet’, and ‘Involvement in disease’. 456 

Data were updated on 22
nd

 April 2020 with UniProt release 2020_02. 457 

 458 

Protein-protein interactions database 459 
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Protein-protein interactions in human proteome were obtained from Protein InteraCtion 460 

KnowLedgebasE (Gioutlakis et al, 2017) (PICKLE) meta-database, the release of 2.5. 461 

PICKLE is a cross-checked integration of all available human PPIs included in BioGRID, 462 

IntAct, HPRD, MINT, DIP databases. The default filter mode was selected to download 463 

191,113 binary interactions among 16,418 UniProtKB/SwissProt entries. All interactions 464 

were included in our study for further analysis.  465 

 466 

Taxonomy database 467 

Taxonomy data of organisms were also extracted from the UniProt FTP, the release of 468 

2020_02. All organisms were included and matched according to their ‘OX’, i.e. organism 469 

number used by UniProt and other databases. The evolutionary tree was plotted based on a 470 

landmark study (Hug et al, 2016) by Hug et al, published in 2016, with a review of updates 471 

(Cavalier-Smith et al, 2014; Eloe-Fadrosh et al, 2016; Hahnke et al, 2016; Kirkegaard et al, 472 

2016; Munoz et al, 2016; Hamilton et al, 2016; Eme et al, 2017; Momper et al, 2017; 473 

Jungbluth et al, 2017; Jay et al, 2018; Momper et al, 2018; Pavan et al, 2018; Cavalier-Smith 474 

et al, 2018; Carr et al, 2019; Dombrowski et al, 2019; Ward et al, 2019; Carnevali et al, 475 

2019; Martinez et al, 2019; Youssef et al, 2019; Wang et al, 2019; Zhou et al, 2020; Kevbrin 476 

et al, 2020) since then until April 2020. All updates were added to the tree and were matched 477 

with UniProt taxonomy data. 478 

 479 

Diseases database 480 

According to cross-references between UniProt and Orphanet, related epidemiological data 481 

were downloaded and extracted from the Orphanet database (Weinreich et al, 2008) in XML 482 

format. The file was then used in Python code for further analysis. Only diseases with at least 483 

one reported worldwide occurrence were included. Normally, in the Orphanet database, 484 
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occurrences are reported from one or more of the following categories: annual incidence, 485 

cases/families, lifetime prevalence, point prevalence, and prevalence at birth. In the case of 486 

more than one reported occurrence, the priority of selection was for incidence, prevalence at 487 

birth, point prevalence, respectively. Accumulative occurrence data, i.e. cases/families and 488 

lifetime prevalence, were excluded from the analysis. 489 

 490 

Analysis of taxonomic hierarchies 491 

The following steps were carried out to implement the theorem over the taxonomic 492 

hierarchies (Fig 6A): 493 

1) TrEMBL and SwissProt FASTA files of complete proteomes were downloaded from 494 

UniProt KnowledgeBase. A total number of ~180 million protein entries were 495 

included. 496 

2) The frequencies of all amino acid residues were calculated with regards to all protein 497 

entries. 498 

3) All proteins were grouped according to their organisms using organism IDs. 499 

4) Organisms that are not proteomes were excluded. Duplicates are also removed. 500 

5) Viruses are excluded from the study.  501 

6) Shannon’s entropy was calculated according to the residue frequencies for all 502 

included non-virus proteomes. 503 

7) Taxonomic data were downloaded directly from the UniProt website. 504 

8) The most updated tree of life was drawn after a thorough review of the literature until 505 

April 2020. 506 

9) Organisms were grouped with respect to taxonomic hierarchies. 507 

10) Organisms with unknown taxonomic lineage were excluded from the analysis. 508 
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11) Brunner-Munzel test was performed for every bifurcation node through the tree of 509 

life. The level of significance was 0.05. Preparation of data and protein information 510 

calculations were all executed in Python 3.8.0 (Van Rossum & Drake, 2009) using 511 

NumPy (Oliphant, 2006), Pandas (McKinney & others, 2010), and Biopython (Cock 512 

et al, 2009) libraries. Statistical analysis and violin plots were carried out using R-513 

3.6.0 (R Core Team, 2019) with brunnermunzel (Ara, 2020) and Plotly (Sievert, 514 

2018) packages. 515 

 516 

Analysis of human disease proteins 517 

The following steps were carried out to implement EMIP and analyse disease occurrence 518 

categories (Fig 6B): 519 

1) The human proteome was downloaded from the UniProt database with the organism 520 

ID of 9606. 20,350 of reviewed and 54,473 of unreviewed proteins were included in 521 

the study. 522 

2) CAIR was calculated for all human entries using the sequences of residues. 523 

3) Protein-protein interactions were extracted from the PICKLE database as the default 524 

UniProt normalized file with a total number of ~190k interactions. 525 

4) Interactions were altered in order to match the UniProt ‘interactions with’ column. 526 

This was done to keep the homogeneity of the data. 527 

5) EMIP was then calculated for all entries with the help of the PPIs. 528 

6) The unreviewed proteins were excluded after the calculations of disease indicators 529 

because they have not been reported to cause any diseases. 530 

7) Ordinal age categories of genes were merged to the file using the consensus data 531 

article (Liebeskind et al, 2016). 532 
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8) Disease categories are ranked using R into three groups of no diseases, extremely rare 533 

diseases, and rare diseases. 534 

9) Disease indicators were also categorized into eight groups to draw Likert plots. 535 

10) Statistical differences between groups were tested among variables with the DTK test. 536 

Significance levels of the DTK test were added to the comparison graphs with stars. 537 

The highest significance level was set to 0.05. Graphs of comparisons were plotted in 538 

R with DTK (Lau, 2013) and ggpubr (Kassambara, 2019) packages. Likert plots were 539 

plotted with HH (Heiberger, 2019) package. Networks were plotted using igraph 540 

(Csardi & Nepusz, 2006) package.  541 
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Data availability 542 

Data used for analysis is available as the following files. FASTA files of all Swiss-Prot and 543 

TrEMBL entries are publicly available from UniProt’s FTP server at 544 

https://ftp.expasy.org/databases/uniprot/current_release/knowledgebase/complete/. Also, all 545 

non-redundant proteomes could be downloaded from UniProt website: 546 

https://www.uniprot.org/proteomes/?query=redundant:no&format=tab&force=true&columns547 

=id,name,organism-id,lineage&compress=yes. Tab-separated format of human proteome data 548 

used in our analysis is achievable from 549 

https://www.uniprot.org/uniprot/?query=proteome:UP000005640&format=tab&force=true&550 

columns=id,reviewed,genes(PREFERRED),protein%20names,sequence,database(Orphanet),551 

comment(INVOLVEMENT%20IN%20DISEASE),interactor&compress=yes. Additionally, 552 

PICKLE interactions are freely available from 553 

http://www.pickle.gr/Data/2.5/PICKLE2_5_UniProtNormalizedTabular-default.zip. Orphanet 554 

data is also freely available from http://www.orphadata.org/data/xml/en_product9_prev.xml. 555 

Data of gene ages are adopted from the Gene-Ages GitHub repository at 556 

https://github.com/marcottelab/Gene-Ages/raw/master/Main/main_HUMAN.csv. 557 

Supplementary information is available in the online version. 558 

All Python and R codes necessary to reproduce all parts of the analysis and for the illustration 559 

of the figures are available under the MIT license on our GitHub repository at 560 

https://github.com/synaptic-proteolab/CAIR_EMIP, or the Zenodo link at 561 

https://zenodo.org/record/3970210. For executing codes online on cloud servers, Google 562 

Colab links are also available on the GitHub page. Python 563 

(https://www.python.org/downloads/), Jupyter Notebook (https://jupyter.org/install), R 564 
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(https://cran.r-project.org/), and  RStudio (https://rstudio.com/products/rstudio/download/) 565 

are all freely available for the public. 566 

Expanded View for this article is available online. 567 

 568 

Acknowledgments 569 

Authors would like to thank Dr Saeed Sadigh-Eteghad, PhD in neurosciences, Tabriz 570 

University of Medical Sciences, and Dr Pedram Dindari, a PhD candidate in computer 571 

sciences, University of Tabriz, for their assistance during the preparation of the manuscript. 572 

No funding to declare. 573 

 574 

Author contributions 575 

FK proposed the mathematical theorem and its proof. SD gathered and handled the large data 576 

and prepared the data for analysis using Python. FK reviewed the literature to illustrate the 577 

tree of life. FK analysed the data using R. SD and FK prepared the codes for open-source 578 

publishing. FK wrote the manuscript, and SD agreed with all sections. FK designed the 579 

figures and SD prepared the tables of the manuscript. 580 

 581 

Conflict of interest 582 

The authors have no conflict of interest to disclose.  583 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 4, 2020. ; https://doi.org/10.1101/2020.08.03.233767doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.03.233767
http://creativecommons.org/licenses/by-nc-nd/4.0/


29 
 
 

References 584 

Alba MM & Castresana J (2005) Inverse relationship between evolutionary rate and age of 585 

mammalian genes. Mol. Biol. Evol. 22: 598–606 586 

Andrews JG, Dimakis A, Dolecek L, Effros M, Medard M, Milenkovic O, Montanari A, 587 

Vishwanath S, Yeh E & Berry R (2015) A perspective on future research directions in 588 

information theory. arXiv Prepr. arXiv1507.05941 589 

Ara T (2020) brunnermunzel: (Permuted) Brunner-Munzel Test. Available at: https://cran.r-590 

project.org/package=brunnermunzel 591 

Babu MM (2016) The contribution of intrinsically disordered regions to protein function, 592 

cellular complexity, and human disease. Biochem. Soc. Trans. 44: 1185–1200 593 

Bailey KD (2009) Entropy systems theory. Syst. Sci. Cybern. Eolss Publ. Oxford, UK: 152–594 

169 595 

Banerjee S & Chakraborty S (2017) Protein intrinsic disorder negatively associates with gene 596 

age in different eukaryotic lineages. Mol. Biosyst. 13: 2044–2055 597 

Barabási A-L, Gulbahce N & Loscalzo J (2011) Network medicine: a network-based 598 

approach to human disease. Nat. Rev. Genet. 12: 56–68 599 

Battail G (2013) Biology needs information theory. Biosemiotics 6: 77–103 600 

Bodmer W & Bonilla C (2008) Common and rare variants in multifactorial susceptibility to 601 

common diseases. Nat. Genet. 40: 695 602 

Carnevali PBM, Schulz F, Castelle CJ, Kantor RS, Shih PM, Sharon I, Santini JM, Olm MR, 603 

Amano Y, Thomas BC & others (2019) Hydrogen-based metabolism as an ancestral trait 604 

in lineages sibling to the Cyanobacteria. Nat. Commun. 10: 1–15 605 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 4, 2020. ; https://doi.org/10.1101/2020.08.03.233767doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.03.233767
http://creativecommons.org/licenses/by-nc-nd/4.0/


30 
 
 

Carr SA, Jungbluth SP, Eloe-Fadrosh EA, Stepanauskas R, Woyke T, Rappé MS & Orcutt 606 

BN (2019) Carboxydotrophy potential of uncultivated Hydrothermarchaeota from the 607 

subseafloor crustal biosphere. ISME J. 13: 1457–1468 608 

Cavalier-Smith T, Chao EE & Lewis R (2018) Multigene phylogeny and cell evolution of 609 

chromist infrakingdom Rhizaria: contrasting cell organisation of sister phyla Cercozoa 610 

and Retaria. Protoplasma 255: 1517–1574 611 

Cavalier-Smith T, Chao EE, Snell EA, Berney C, Fiore-Donno AM & Lewis R (2014) 612 

Multigene eukaryote phylogeny reveals the likely protozoan ancestors of opisthokonts 613 

(animals, fungi, choanozoans) and Amoebozoa. Mol. Phylogenet. Evol. 81: 71–85 614 

Changeux J-P & Edelstein S (2011) Conformational selection or induced fit? 50 years of 615 

debate resolved. F1000 Biol. Rep. 3: 616 

Chen W-H, Trachana K, Lercher MJ & Bork P (2012) Younger genes are less likely to be 617 

essential than older genes, and duplicates are less likely to be essential than singletons of 618 

the same age. Mol. Biol. Evol. 29: 1703–1706 619 

Clausius R (1864) Abhandlungen über die mechanische Wärmetheorie F. Vieweg 620 

Cock PJA, Antao T, Chang JT, Chapman BA, Cox CJ, Dalke A, Friedberg I, Hamelryck T, 621 

Kauff F, Wilczynski B & others (2009) Biopython: freely available Python tools for 622 

computational molecular biology and bioinformatics. Bioinformatics 25: 1422–1423 623 

Consortium U (2019) UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res. 624 

47: D506–D515 625 

Cover TM & Thomas JA (2012) Elements of information theory John Wiley & Sons 626 

Csardi G & Nepusz T (2006) The igraph software package for complex network research. 627 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 4, 2020. ; https://doi.org/10.1101/2020.08.03.233767doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.03.233767
http://creativecommons.org/licenses/by-nc-nd/4.0/


31 
 
 

InterJournal Complex Sy: 1695 Available at: http://igraph.org 628 

Domazet-Lošo T & Tautz D (2008) An ancient evolutionary origin of genes associated with 629 

human genetic diseases. Mol. Biol. Evol. 25: 2699–2707 630 

Dombrowski N, Lee J-H, Williams TA, Offre P & Spang A (2019) Genomic diversity, 631 

lifestyles and evolutionary origins of DPANN archaea. FEMS Microbiol. Lett. 366: 632 

fnz008 633 

Dunnett CW (1980) Pairwise multiple comparisons in the unequal variance case. J. Am. Stat. 634 

Assoc. 75: 796–800 635 

Elhaik E, Sabath N & Graur D (2006) The ‘inverse relationship between evolutionary rate 636 

and age of mammalian genes’ is an artifact of increased genetic distance with rate of 637 

evolution and time of divergence. Mol. Biol. Evol. 23: 1–3 638 

Eloe-Fadrosh EA, Paez-Espino D, Jarett J, Dunfield PF, Hedlund BP, Dekas AE, Grasby SE, 639 

Brady AL, Dong H & Briggs BR (2016) Global metagenomic survey reveals a new 640 

bacterial candidate phylum in geothermal springs. Nat. Commun. 7: 10476 641 

Eme L, Spang A, Lombard J, Stairs CW & Ettema TJG (2017) Archaea and the origin of 642 

eukaryotes. Nat. Rev. Microbiol. 15: 711 643 

Evans PN, Boyd JA, Leu AO, Woodcroft BJ, Parks DH, Hugenholtz P & Tyson GW (2019) 644 

An evolving view of methane metabolism in the Archaea. Nat. Rev. Microbiol 17: 219–645 

232 646 

Fraser HB, Hirsh AE, Steinmetz LM, Scharfe C & Feldman MW (2002) Evolutionary rate in 647 

the protein interaction network. Science (80-. ). 296: 750–752 648 

Ghahramani Z (2006) Information theory. Encycl. Cogn. Sci. 649 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 4, 2020. ; https://doi.org/10.1101/2020.08.03.233767doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.03.233767
http://creativecommons.org/licenses/by-nc-nd/4.0/


32 
 
 

Gioutlakis A, Klapa MI & Moschonas NK (2017) PICKLE 2.0: A human protein-protein 650 

interaction meta-database employing data integration via genetic information ontology. 651 

PLoS One 12: 652 

Goh K-I, Cusick ME, Valle D, Childs B, Vidal M & Barabási A-L (2007) The human disease 653 

network. Proc. Natl. Acad. Sci. 104: 8685–8690 654 

Hahnke RL, Meier-Kolthoff JP, García-López M, Mukherjee S, Huntemann M, Ivanova NN, 655 

Woyke T, Kyrpides NC, Klenk H-P & Göker M (2016) Genome-based taxonomic 656 

classification of Bacteroidetes. Front. Microbiol. 7: 2003 657 

Hamilton TL, Bovee RJ, Sattin SR, Mohr W, Gilhooly III WP, Lyons TW, Pearson A & 658 

Macalady JL (2016) Carbon and sulfur cycling below the chemocline in a meromictic 659 

lake and the identification of a novel taxonomic lineage in the FCB superphylum, 660 

Candidatus Aegiribacteria. Front. Microbiol. 7: 598 661 

Heiberger RM (2019) HH: Statistical Analysis and Data Display: Heiberger and Holland. 662 

Available at: https://cran.r-project.org/package=HH 663 

Hug LA, Baker BJ, Anantharaman K, Brown CT, Probst AJ, Castelle CJ, Butterfield CN, 664 

Hernsdorf AW, Amano Y & Ise K (2016) A new view of the tree of life. Nat. Microbiol. 665 

1: 16048 666 

Jay ZJ, Beam JP, Dlakić M, Rusch DB, Kozubal MA & Inskeep WP (2018) Marsarchaeota 667 

are an aerobic archaeal lineage abundant in geothermal iron oxide microbial mats. Nat. 668 

Microbiol. 3: 732 669 

Jonsson PF & Bates PA (2006) Global topological features of cancer proteins in the human 670 

interactome. Bioinformatics 22: 2291–2297 671 

Jungbluth SP, Amend JP & Rappé MS (2017) Metagenome sequencing and 98 microbial 672 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 4, 2020. ; https://doi.org/10.1101/2020.08.03.233767doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.03.233767
http://creativecommons.org/licenses/by-nc-nd/4.0/


33 
 
 

genomes from Juan de Fuca Ridge flank subsurface fluids. Sci. data 4: 1–11 673 

Kassambara A (2019) ggpubr: ‘ggplot2’ Based Publication Ready Plots. Available at: 674 

https://cran.r-project.org/package=ggpubr 675 

Kaushik S & Cuervo AM (2015) Proteostasis and aging. Nat. Med. 21: 1406 676 

Keskin O, Gursoy A, Ma B & Nussinov R (2008) Principles of protein− protein interactions: 677 

What are the preferred ways for proteins to interact? Chem. Rev. 108: 1225–1244 678 

Kevbrin V, Boltyanskaya Y, Grouzdev D, Koziaeva V, Park M & Cho J-C (2020) 679 

Natronospirillum operosum gen. nov., sp. nov., a haloalkaliphilic satellite isolated from 680 

decaying biomass of a laboratory culture of cyanobacterium Geitlerinema sp. and 681 

proposal of Natronospirillaceae fam. nov., Saccharospirillaceae fam. nov. and Gynuell. 682 

Int. J. Syst. Evol. Microbiol. 70: 511–521 683 

Kirkegaard RH, Dueholm MS, McIlroy SJ, Nierychlo M, Karst SM, Albertsen M & Nielsen 684 

PH (2016) Genomic insights into members of the candidate phylum Hyd24-12 common 685 

in mesophilic anaerobic digesters. ISME J. 10: 2352 686 

Koshland Jr DE (1995) The key–lock theory and the induced fit theory. Angew. Chemie Int. 687 

Ed. English 33: 2375–2378 688 

Labbadia J & Morimoto RI (2015) The biology of proteostasis in aging and disease. Annu. 689 

Rev. Biochem. 84: 435–464 690 

Lau MK (2013) DTK: Dunnett-Tukey-Kramer Pairwise Multiple Comparison Test Adjusted 691 

for Unequal Variances and Unequal Sample Sizes. Available at: https://cran.r-692 

project.org/package=DTK 693 

Liebeskind BJ, McWhite CD & Marcotte EM (2016) Towards consensus gene ages. Genome 694 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 4, 2020. ; https://doi.org/10.1101/2020.08.03.233767doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.03.233767
http://creativecommons.org/licenses/by-nc-nd/4.0/


34 
 
 

Biol. Evol. 8: 1812–1823 695 

Martinez MA, Woodcroft BJ, Espinoza JCI, Zayed AA, Singleton CM, Boyd JA, Li Y-F, 696 

Purvine S, Maughan H, Hodgkins SB & others (2019) Discovery and ecogenomic 697 

context of a global Caldiserica-related phylum active in thawing permafrost, Candidatus 698 

Cryosericota phylum nov., Ca. Cryosericia class nov., Ca. Cryosericales ord. nov., Ca. 699 

Cryosericaceae fam. nov., comprising the four species C. Syst. Appl. Microbiol. 42: 54–700 

66 701 

McKinney W & others (2010) Data structures for statistical computing in python. In 702 

Proceedings of the 9th Python in Science Conference pp 51–56. 703 

Momper L, Jungbluth SP, Lee MD & Amend JP (2017) Energy and carbon metabolisms in a 704 

deep terrestrial subsurface fluid microbial community. ISME J. 11: 2319–2333 705 

Momper LM, Aronson H & Amend JP (2018) Genomic description of ‘Candidatus 706 

Abyssubacteria,’a novel subsurface lineage within the candidate phylum 707 

Hydrogenedentes. Front. Microbiol. 9: 1993 708 

Munoz R, Rosselló-Móra R & Amann R (2016) Revised phylogeny of Bacteroidetes and 709 

proposal of sixteen new taxa and two new combinations including Rhodothermaeota 710 

phyl. nov. Syst. Appl. Microbiol. 39: 281–296 711 

Neme R, Amador C, Yildirim B, McConnell E & Tautz D (2017) Random sequences are an 712 

abundant source of bioactive RNAs or peptides. Nat. Ecol. Evol. 1: 1–7 713 

Neuhäuser M & Ruxton GD (2009) Distribution-free two-sample comparisons in the case of 714 

heterogeneous variances. Behav. Ecol. Sociobiol. 63: 617–623 715 

Oliphant TE (2006) A guide to NumPy Trelgol Publishing USA 716 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 4, 2020. ; https://doi.org/10.1101/2020.08.03.233767doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.03.233767
http://creativecommons.org/licenses/by-nc-nd/4.0/


35 
 
 

Oti M, Snel B, Huynen MA & Brunner HG (2006) Predicting disease genes using protein–717 

protein interactions. J. Med. Genet. 43: 691–698 718 

Pavan ME, Pavan EE, Glaeser SP, Etchebehere C, Kämpfer P, Pettinari MJ & López NI 719 

(2018) Proposal for a new classification of a deep branching bacterial phylogenetic 720 

lineage: transfer of Coprothermobacter proteolyticus and Coprothermobacter platensis to 721 

Coprothermobacteraceae fam. nov., within Coprothermobacterales ord. nov., 722 

Coprothermobacte. Int. J. Syst. Evol. Microbiol. 68: 1627–1632 723 

R Core Team (2019) R: A Language and Environment for Statistical Computing. Available 724 

at: https://www.r-project.org 725 

Van Rossum G & Drake FL (2009) Python 3 Reference Manual Scotts Valley, CA: 726 

CreateSpace 727 

Saeed R & Deane CM (2006) Protein protein interactions, evolutionary rate, abundance and 728 

age. BMC Bioinformatics 7: 128 729 

Schrödinger E (1944) What is life? The physical aspect of the living cell and mind 730 

Cambridge University Press Cambridge 731 

Shannon CE (1948) A mathematical theory of communication. Bell Syst. Tech. J. 27: 379–732 

423 733 

Sievert C (2018) plotly for R. Available at: https://plotly-r.com 734 

Smith NGC & Eyre-Walker A (2003) Human disease genes: patterns and predictions. Gene 735 

318: 169–175 736 

Spang A, Caceres EF & Ettema TJG (2017) Genomic exploration of the diversity, ecology, 737 

and evolution of the archaeal domain of life. Science (80-. ). 357: 738 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 4, 2020. ; https://doi.org/10.1101/2020.08.03.233767doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.03.233767
http://creativecommons.org/licenses/by-nc-nd/4.0/


36 
 
 

Vinga S (2013) Information theory applications for biological sequence analysis. Brief. 739 

Bioinform. 15: 376–389 740 

Wagner A (2003) How the global structure of protein interaction networks evolves. Proc. R. 741 

Soc. London. Ser. B Biol. Sci. 270: 457–466 742 

Wang Y, Wegener G, Hou J, Wang F & Xiao X (2019) Expanding anaerobic alkane 743 

metabolism in the domain of Archaea. Nat. Microbiol. 4: 595–602 744 

Wang Z & Moult J (2001) SNPs, protein structure, and disease. Hum. Mutat. 17: 263–270 745 

Ward LM, Cardona T & Holland-Moritz H (2019) Evolutionary Implications of Anoxygenic 746 

Phototrophy in the Bacterial Phylum Candidatus Palusbacterota (WPS-2). BioRxiv: 747 

534180 748 

Weinreich SS, Mangon R, Sikkens JJ, Teeuw ME & Cornel MC (2008) Orphanet: a 749 

European database for rare diseases. Ned. Tijdschr. Geneeskd. 152: 518–519 750 

Wilson BA, Foy SG, Neme R & Masel J (2017) Young genes are highly disordered as 751 

predicted by the preadaptation hypothesis of de novo gene birth. Nat. Ecol. Evol. 1: 1–6 752 

Wolf YI, Novichkov PS, Karev GP, Koonin E V & Lipman DJ (2009) The universal 753 

distribution of evolutionary rates of genes and distinct characteristics of eukaryotic 754 

genes of different apparent ages. Proc. Natl. Acad. Sci. 106: 7273–7280 755 

Xu J & Li Y (2006) Discovering disease-genes by topological features in human protein–756 

protein interaction network. Bioinformatics 22: 2800–2805 757 

Youssef NH, Farag IF, Hahn CR, Jarett J, Becraft E, Eloe-Fadrosh E, Lightfoot J, Bourgeois 758 

A, Cole T, Ferrante S & others (2019) Genomic characterization of candidate division 759 

LCP-89 reveals an atypical cell wall structure, microcompartment production, and dual 760 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 4, 2020. ; https://doi.org/10.1101/2020.08.03.233767doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.03.233767
http://creativecommons.org/licenses/by-nc-nd/4.0/


37 
 
 

respiratory and fermentative capacities. Appl. Environ. Microbiol. 85: e00110--19 761 

Zhou Z, Liu Y, Xu W, Pan J, Luo Z-H & Li M (2020) Genome-and Community-Level 762 

Interaction Insights into Carbon Utilization and Element Cycling Functions of 763 

Hydrothermarchaeota in Hydrothermal Sediment. mSystems 5: 764 

765 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 4, 2020. ; https://doi.org/10.1101/2020.08.03.233767doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.03.233767
http://creativecommons.org/licenses/by-nc-nd/4.0/


38 
 
 

Figure legends 766 

Figure 1. CAIR comparisons through the tree of life. 767 

A The most updated tree of life comprising all second hierarchies stemming from 768 

cellular organisms. For bacteria superkingdom, the second hierarchy includes all 56 bacterial 769 

phyla; Candidate Phyla Radiation (CPR) is included as one separate phylum. For Archaea 770 

and Eukaryota superkingdoms, the second hierarchy encompasses 20 archaeal phyla and 16 771 

eukaryote supergroups and divisions. On each bifurcation point of the tree, the arbitrary 772 

number corresponds to the test number and the associated plots (B). The blue and light green 773 

colours indicate the superior and inferior arm of the bifurcation point, respectively, which 774 

correspond to the left and right sides of the violin- and box-and-whisker plots. The red colour 775 

indicates a bifurcation point with both arms from which at least one arm contains less than 776 

ten organisms and thus the Brunner-Munzel test would not be reliable. The numbers in 777 

parentheses designate the total number of available complete proteomes in each group. 778 

B Violin plots of each bifurcation point in the tree of life, except for those in red. The 779 

vertical axes refer to the CAIR in all plots. The box-and-whiskers are overlaid within each 780 

violin plot, and the white dashed line in each box indicates the CAIR mean in the 781 

corresponding group of organisms. None of the outliers were excluded from the analysis. 782 

Asterisks after each test number indicate the significance level of tests. ES; estimated effect 783 

size. CI; 95% confidence interval.   784 
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Figure 2. From the whole life to E. coli as an exemplary organism illustrating the 785 

CAIR density of proteomes in several ranks of taxonomy. 786 

A The ‘wave of life’ denotes the CAIR density of proteomes through the tree of life. As 787 

it is argued, the wave of life is proposed to be a summation of skewed distributions. As a 788 

result, the wave of life holds an interesting property; namely, zooming in on the wave of life 789 

by narrowing the range on the horizontal axis reveals the members in the next rank of 790 

taxonomy. The peaks on the plots (A-G) have been named according to the most abundant 791 

phyla with the closest median to the peak. 792 

B CAIR density of the proteomes in the Proteobacteria phylum. 793 

C Zooming in further on (B) and narrowing the range of horizontal axis to the 794 

distribution of organisms under Gammaproteobacteria class, i.e. CAIRs of 0.900 – 0.936, 795 

reveals the taxonomic orders. 796 

D-G Proceeding further to zoom in on the peaks of the previous plot shows a perfect 797 

agreement with all taxa lineage. Lastly, several strains of E. Coli form a bell-shaped 798 

distribution (G).   799 
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Figure 3. Comparisons of disease indicators in three occurrence groups across gene 800 

age categories. 801 

A EMIP increases significantly as the occurrence of diseases increases. Generally, EMIP 802 

has the highest level of significance among disease indicators. Not surprisingly, the trend of 803 

EMIP is also increasing as the genes age. The decline of EMIP in primordial gene age eras 804 

are due to the eukaryotic branching and the nucleic genetic material. 805 

B The number of interactions is the second-best indicator of the disease occurrence 806 

category. Similarly, as expected, the trend of interactions is increasing as genes grow older. 807 

Evolution brings new interactions and adds new nodes to the network. Similarly, there is a 808 

decline in the number of interactions in the last two gene age eras. 809 

C The bigger the size of a protein, the more likely it is to be involved in a disease. Also, 810 

it is noticeable that the gene ages correlates positively with the protein size in both eukaryotic 811 

and prokaryotic settings. However, the disparity between these two settings is easily 812 

discernible. 813 

D Unlike what is expected, extremely rare diseases account for the proteins with the 814 

highest CAIRs. This observation has been further elucidated in the Discussion section. 815 

Nonetheless, the trend of gene ages agrees with the expectation as the complexity of proteins 816 

increases with age. Error bars illustrate mean ± 95% confidence intervals, and the 817 

significance test is the Dunnett-Tukey-Kramer pairwise multiple comparison test adjusted for 818 

unequal variances and unequal sample sizes.   819 
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Figure 4. Likert plots of disease indicators (all classified into 8 ranks) with regard 820 

to occurrence categories. 821 

A Ranked data of EMIP show a robust relationship with the disease categories. Note that 822 

the occurrence of diseases increases as EMIP increases. Because the log-transformed of 823 

EMIP (LEMIP) forms a bell-shaped curve, the ranking has been done by the mean and three 824 

standard deviations of LEMIP. 825 

B Ranked data of interactions increase with the occurrences, maintaining the order of 826 

ranks. However, the number of interactions is not as well correlated to occurrences as EMIP. 827 

It is noteworthy in (B), (D), and (E) panels, since indicator distributions are inconsistent with 828 

a Gaussian distribution, rankings have been accomplished by median and equal percentile 829 

intervals. 830 

C The link between gene age ranks and disease categories is satisfactory considering the 831 

first and last ranks; however, the overall order of ranks does not match with the order of 832 

occurrence categories. Gene age ranks are the same as the eight age groups presented 833 

previously in the literature (Liebeskind et al, 2016). 834 

D Among Likert plots, CAIR ranks have shown the least correlation with the disease 835 

categories which is in line with Fig 3D. 836 

E The ranks of protein length are associated with disease occurrence categories 837 

maintaining the order of ranks, except for the sixth rank.   838 
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Figure 5. The cone of life and the evolution of diseases. 839 

The cone of life summarizes the probable scenarios for proteins put forward in the discussion 840 

section. It is to be noted that the shape of the cone is schematic and an exemplary instance of 841 

every possible occasion has been schematically illustrated. Also, for the clearness of the 842 

drawing, the dark blue cylinder has been cut in half in order not to block other elements. The 843 

diameter of the cone in any cross section shows the amount of existing protein material in 844 

that given time period. The proteins are born from the circumference of any cone base. As 845 

shown in the figure, a general rule would be that diseases are a result of weak proteins with 846 

immature networks. Details have been depicted in the figure for every protein scenario. It is 847 

to be highlighted that the eukaryotic and prokaryotic proteomes have not been discerned in 848 

the figure. s, size; w/, with.   849 
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Figure 6. Detailed steps needed to carry out the presented methodology. 850 

A Flowchart shows how the proteins were included, grouped according to their 851 

respective organisms, and the exclusion criteria. 852 

B A similar flowchart explaining the steps used to integrate human proteome data, 853 

PICKLE interactions, and Orphanet diseases. Green rectangles, steps; purple rectangles, 854 

executions; red flags, exclusions.   855 
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Tables and their legends 856 

Table 1. Proteome CAIRs of organisms mainly used in biological models and 857 

studies. 858 

Organism CAIR 
# of 

proteins 

 
Organism CAIR 

# of 

proteins 

Arabidopsis thaliana 0.9366 39,364  Mus musculus (Mouse) 0.9376 55,398 

Caenorhabditis elegans 0.9419 26,850  Neurospora crassa [74A] 0.9323 10,257 

Chlamydomonas 

reinhardtii 
0.8887 18,829  Rattus norvegicus (Rat) 0.9378 29,951 

Ciona savignyi 0.9444 20,004  
Saccharomyces cerevisiae 

[S288c] 
0.9336 6,049 

Danio rerio (Zebrafish) 0.9398 46,848  Schizosaccharomyces pombe 0.9347 5,141 

Drosophila 

melanogaster (Fruit 

fly) 

0.9390 21,973  Tetrahymena thermophila 0.9119 26,976 

Escherichia coli [K12] 0.9328 4,391  
Xenopus tropicalis (Western 

clawed frog) 
0.9410 55,258 

Homo sapiens (Human) 0.9392 74,823  Zea mays (Maize) 0.9341 99,254 

Medicago truncatula 

(Barrel medic) 
0.9392 57,065  Zinderia insecticola 0.8247 206 

The table has been sorted in alphabetical order. Where there were different proteomes of a 859 

single organism, the number of proteins refers to that of the most popular proteome used in 860 

the literature. Terms enclosed in parentheses are the common names used colloquially, and 861 

those enclosed in brackets are the strain names of organisms that have different indexed 862 

proteomes for their strains in the UniProt database. Please note that the prevalent model 863 

organisms of humans, like rats, mice, fruit flies, and zebrafish are very similar to us in terms 864 

of CAIR. #; number.  865 
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Table 2. Exact p-values of the two-sided Brunner-Munzel tests. 866 

Test 

no. 
p-value 

 Test 

no. 
p-value 

 Test 

no. 
p-value 

 Test 

no. 
p-value 

T1 5 × 10-137 
 

T18 2.72 × 10-10 
 

T42 0.000965 
 

T66 4.29 × 10-08 

T2 3.42 × 10-17 
 

T19 0.14649 
 

T44 0.35037 
 

T67 0 

T3 6.91 × 10-31 
 

T20 6.98 × 10-07 
 

T46 0 
 

T68 0 

T4 7.42 × 10-131 
 

T21 0.000417 
 

T47 2.88 × 10-28 
 

T69 5.64 × 10-32 

T5 2.92 × 10-76 
 

T26 2.74 × 10-42 
 

T49 2.51 × 10-07 
 

T70 0.008022 

T6 0 
 

T28 1.66 × 10-05 
 

T51 7.23 × 10-205 
 

T73 0.004432 

T7 6.41 × 10-47 
 

T29 0.99445 
 

T54 0.000363 
 

T75 2.71 × 10-263 

T8 0.32303 
 

T32 8.86 × 10-17 
 

T55 5.04 × 10-07 
 

T76 7.62 × 10-08 

T9 0.019045 
 

T33 0.14933 
 

T56 5.13 × 10-05 
 

T77 9.92 × 10-05 

T10 6.98 × 10-08 
 

T36 3.83 × 10-09 
 

T57 8.48 × 10-56 
 

T79 1.30 × 10-08 

T14 7.70 × 10-08 
 

T38 0.012529 
 

T59 0.87909 
 

T80 7.16 × 10-05 

T15 0.001135 
 

T39 0.030999 
 

T60 0.46556 
 

T81 0.000134 

T16 0.010167 
 

T40 5.65 × 10-16 
 

T62 0.55498 
 

T83 6.78 × 10-89 

T17 2.45 × 10-17 
 

T41 2.73 × 10-51 
 

T64 0.002841 
 

T88 1.35 × 10-34 

Test no. refer to the test labels illustrated in Fig 1. Because there was limited space in the 867 

illustration, the exact p-values are reported herein. Please note that no test was performed 868 

when either one or both groups contained less than 10 organisms. The numbers of available 869 

organisms in each phylum are enclosed by parentheses in Fig. 1A. no.; number.  870 
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Table 3. Narrative data of protein groups in three human disease categories. 871 

Disease category Occurrence Group size 
# of interactions 

median (IQR) 

Protein length 

median (IQR) 

Rare diseases > 1:1,000,000 819 16.0 (36.0) 599.0 (668.0) 

Extremely rare diseases ≤1:1,000,000 1,356 11.0 (23.0) 527.0 (487.5) 

No diseases - 16,296 5.0 (15.0) 386.0 (393.0) 

Swiss-Prot entries have been matched with their Orphanet cross-references to obtain the total 872 

occurrences classifying diseases in three categories. Please note that extremely rare diseases 873 

are a vast number of diseases whose names are not even familiar to general practitioners as 874 

they mainly consist of case reports from around the world. Rare diseases are a group of 875 

diseases that have been mainly the focus of attention in scientific literature and medical 876 

books. IQR; interquartile range. #; number.  877 
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Table 4. Eight ranks of disease indicators and their quantitative intervals.  878 

a. Because of the bell-shaped curve distribution, mean and standard deviations have been used to classify ranks. b. Because of the non-normal 879 

distribution, median and percentiles have been used to classify ranks. c. Ranks are based on scientific literature. LEMIP; Loge of Estimation of 880 

Mutual Information of Proteins. CAIR; Calculated Average Information per Residue.  881 

Disease indicator Rank 1 Rank 2 Rank 3 Rank 4 Rank 5 Rank 6 Rank 7 Rank 8 

LEMIP
a 

[-9, 36.45] 
(36.44, 

44.94] 

(44.94, 

53.44] 
(68.38, 61.94] 

(61.94, 

70.44] 
(70.44, 78.93] 

(78.93, 

87.43] 
(87.43, 104.00] 

Number of 

interactions
b [0] [1] (1, 3] (3, 6] (6, 11] (11, 19] (19, 39] (39, 2136] 

Protein length
b 

[2, 161] (161, 250] (250, 328] (328, 415] (415, 518] (518, 671] (671, 968] (968, 34350] 

CAIR
b [0.0217, 

0.8803] 

(0.8803, 

0.8982] 

(0.8982, 

0.9088] 

(0.9088, 

0.9164] 

(0.9164, 

0.9230] 

(0.9230, 

0.9290] 

(0.9290, 

0.9351] 
(0.9351, 0.9567] 

Gene age
c 

Mammalia Vertebrata Eumetazoa Opisthokonta Eukaryota Euk_Archaea Euk+Bac Cellular_organisms 
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Table 5. Proteins with the highest EMIP values.  882 

Entry Gene Protein name Length CAIR # of ints EMIP Disease 

Q8WZ42 TTN Titin (EC 2.7.11.1) (Connectin) 34350 0.9190 119 33839 Yes 

P05067 APP Amyloid-beta precursor protein (APP) 770 0.9309 2136 23441 Yes 

P0CG48 UBC Polyubiquitin-C [Cleaved into: Ubiquitin] 685 0.8785 916 14231 No 

Q8WXI7 MUC16 Mucin-16 (MUC-16) (Ovarian cancer-related tumor marker CA125) 14507 0.8487 3 12440 No 

Q9NRI5 DISC1 Disrupted in schizophrenia 1 protein 854 0.9002 650 11312 Yes 

P04637 TP53 Cellular tumor antigen p53 (Tumor suppressor p53) 393 0.9250 787 10222 Yes 

Q09472 EP300 Histone acetyltransferase p300 (p300 HAT) 2414 0.9145 541 9730 Yes 

P00533 EGFR Epidermal growth factor receptor (EC 2.7.10.1)  1210 0.9439 679 9697 Yes 

P62993 GRB2 Growth factor receptor-bound protein 2 (Adapter protein GRB2) 217 0.9387 615 8704 No 

Q8NF91 SYNE1 Nesprin-1 (Enaptin) 8797 0.9058 31 8583 Yes 

P63104 YWHAZ 14-3-3 protein zeta/delta (Protein kinase C inhibitor protein 1)  245 0.9018 517 8282 No 

P78362 SRPK2 SRSF protein kinase 2 (EC 2.7.11.1) (SFRS protein kinase 2) 688 0.9278 441 8161 No 

Q03001 DST Dystonin (230 kDa bullous pemphigoid antigen) 7570 0.9152 58 7806 Yes 

Q5VST9 OBSCN Obscurin (EC 2.7.11.1) 7968 0.9118 14 7769 Yes 

P38398 BRCA1 Breast cancer type 1 susceptibility protein (EC 2.3.2.27) 1863 0.9160 456 7655 Yes 

Q15149 PLEC Plectin (PCN) (PLTN) 4684 0.8815 138 7611 Yes 
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Entry is the UniProt entry of the protein; Gene is the preferred gene names used in the literature; Length denotes to the length of the protein 883 

sequence; # of ints is the number of interactions adapted from PICKLE database; Disease is represented as a dichotomous variable adapted from 884 

UniProt’s ‘Involvement in disease’ column.  885 
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Expanded View Figure legends 886 

Figure EV1. A simulation of natural selection shows the selection’s bias towards 887 

higher CAIRs. 888 

A CAIR density plot of the organisms considering the interquartile range (IQR) of phyla 889 

sizes through the tree of life after removing the tiny phyla with less than 10 organisms (Q1-Q3 890 

16.5 – 171). From the 27 phyla within the IQR, random sampling was performed with a size 891 

of Q1 ~ 17. IQR inclusion and the subsequent sampling was done to remove the size effects of 892 

populated phyla on the density plot. The mean of phyla skewness is -0.82 in Q0-Q4 and -0.74 893 

in Q1-Q3. 894 

B CAIR simulation of the tree of life with 27 negatively skewed normal distributions. 895 

The means of these simulated random distributions equal to the respective medians of the 27 896 

phyla (marginal rugs) explained in (A). The function was iterated 1000 times to find the 897 

skewness in which the Kolmogorov-Smirnov (KS) test has the maximum p-value. The 898 

simulation revealed a skewness of -0.90. 899 

C Both (A) and (B) are overlaid with a lesser bandwidth to show the details of the 900 

distributions. KS test reveals a p-value of 0.40 not rejecting the null hypothesis that 901 

distributions are identical. Negative skewness of the red wave (depicting phyla data) suggests 902 

that the natural selection is biased in favour of organisms with higher CAIRs. Q; quartile.   903 
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Figure EV2. Protein networks of the proteins with the highest EMIPs. 904 

A-P The illustrated networks represent the proteins in Table 4 as the 16 proteins with the 905 

highest EMIPs in the human proteome. The size of each circle represents the EMIP of the 906 

protein. According to the UniProt database, (C), (D), (I), (K), and (L) are non-disease 907 

networks and the rest are networks involved in at least one disease. The main proteins are 908 

illustrated in colours other than sky blue, and all other interactors are coloured in sky blue. 909 

The figure has been drawn with the interactions data available at the UniProt website up to 910 

the second-degree interactions. It is noteworthy that the illustrated proteins with the highest 911 

EMIP values are markedly present in various disease networks. 912 
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