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Abstract–4

A key distinction between species tree inference under the multi-species coalescent model (MSC), and the5

inference of gene trees in sliding windows along a genome, is in the effect of genetic linkage. Whereas the6

MSC explicitly assumes genealogies to be unlinked, i.e., statistically independent, genealogies located close7

together on genomes are spatially auto-correlated. Here we use tree sequence simulations with recombina-8

tion to explore the effects of species tree parameters on spatial patterns of linkage among genealogies. We9

decompose coalescent time units to demonstrate differential effects of generation time and effective popula-10

tion size on spatial coalescent patterns, and we define a new metric, "phylogenetic linkage," for measuring11

the rate of decay of phylogenetic similarity by comparison to distances among unlinked genealogies. Fi-12

nally, we provide a simple example where accounting for phylogenetic linkage in sliding window analyses13

improves local gene tree inference.14

0.1 Introduction–15

The multispecies coalescent (MSC) is a model for inferring a phylogenetic tree from a distribution of sam-16

pled genealogies – or in practice, a distribution of empirical gene trees inferred from multi-locus genetic17

data (Maddison, 1997; Maddison & Knowles, 2006; Degnan & Rosenberg, 2009). By integrating over ge-18

nealogical variation the MSC improves estimation of both tree topologies and divergence times, in addition19

to providing estimates of other demographic parameters of interest, such as population sizes (Edwards &20

Beerli, 2000; Fang et al., 2020). Its influence on phylogenetics has been broad and pervasive, as is evident21

in the many extensions that have been developed for incorporating the MSC into studies of gene dupli-22

cation and loss (Rasmussen & Kellis, 2012), introgression (Yu et al., 2011), and even character evolution23

(Guerrero & Hahn, 2018). As we approach one decade since the publication of the first volume of Estimat-24

ing Species Trees (Knowles & Kubatko, 2011) it is valuable to re-examine the MSC, and its assumptions,25

to ask how we can best approach new challenges and opportunities in the coming era of ubiquitous whole26

genome data sets. One area where we believe the MSC has great potential is in improving the inference of27

local genealogical variation across whole genomes.28

A key distinction between species tree inference under the MSC and the inference of genealogies se-29

quentially distributed across genomes is the effect of genetic linkage. The MSC explicitly assumes that30

genealogies are unlinked, i.e., statistically independent, whereas genealogies distributed across a contigu-31

ous genomic region are not independent, and are expected to be spatially auto-correlated. This correlation32

(linkage disequilibrium) decays over time as recombination causes samples within different genomic re-33

gions to trace back to different sampled ancestors (Hudson & Kaplan, 1988). While this decay function34

has been well studied in the context of single populations (McVean & Cardin, 2005), its effect on the sim-35

ilarity of genealogies constrained by a species tree model is poorly understood, including the influence of36

species tree parameters. Recent algorithmic advances have now made it possible to efficiently simulate en-37

tire chromosomes with recombination to produce correlated tree sequences (Kelleher et al., 2016), which38

presents a powerful new opportunity to investigate the relationship between species tree parameters and39

sequential genealogical patterns across genomes.40

Genome-wide phylogenetic inference is currently approached from two methodological extremes: ei-41

ther (1) a single species tree is inferred as a hierarchical model to describe the expected distribution of un-42

linked genealogies across the genome; or (2) no hierarchical model is assumed, and gene trees are inferred43
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independently in sliding windows of concatenated sequences along the genome (Martin & Belleghem,44

2017). The latter approach is often applied to identify introgressed regions based on their deviation from45

a genome-wide average (Wang et al., 2019). However, the dearth of information contained within small46

genomic windows can cause high gene tree estimation error in this approach, and similarly, increasing47

window size to be too large will cause errors from concatenation of multiple distinct histories. The MSC48

provides a potential path forward. A parameterized species tree inferred from unlinked locus data may be49

able to provide priors on the expected distribution of genealogies both globally across the genome, as well50

as spatially among linked trees.51

In this chapter we explore this concept by using simulations to estimate the effect of species tree pa-52

rameters on the rate of decay of phylogenetic similarity across the spatial extent of a chromosome with a53

uniform recombination rate. We show that a decay function can be estimated to describe the spatial auto-54

correlation of genealogies, and that by incorporating this function into gene tree inference, accuracy can be55

significantly improved compared to existing sliding window methods.56

0.2 Coalescent simulations57

To investigate genealogical variation along chromosomes we simulated genealogies under a range of species58

tree models in Python using the ipcoal package (McKenzie & Eaton, 2020). This takes as input a tree59

topology and demographic parameters (divergence times, effective population sizes, mutation rate, and60

recombination rate) to generate a parameterized simulator for the program msprime (Kelleher et al., 2016).61

Using this model we then simulated coalescent genealogies constrained by a species tree topology. To gen-62

erate linked trees we simulated a 1Mb chromosome and recorded the true genealogy spanning each posi-63

tion of its length, since different genealogies span different intervals along the chromosome between re-64

combination crossover locations. To generate unlinked trees we simulated 1000 independent loci of length65

one and stored the single observed genealogy from each locus. Species trees and genealogies were plotted66

and manipulated using the Python package toytree (Eaton, 2020). Annotated code to reproduce all analy-67

ses in this chapter is organized into jupyter notebooks and available at https://github.com/eaton-lab/sptree-68

chapter.69

The distributions of linked and unlinked genealogies simulated on the same species tree are easy to70

distinguish when visualized: linked genealogies exhibit significant auto-correlation whereas unlinked ge-71

nealogies exhibit greater variation (Fig. 1c-d). We explored a range of parameters to realistically describe72

linked and unlinked genealogical variation in genome-wide phylogenetic data sets. To focus our analyses73

on fewer total parameters we performed all simulations on completely imbalanced tree shapes (but differ-74

ent tree sizes) in which internode lengths and effective population sizes of internal edges are all set to be75

equal. All simulations were performed using a per-site per-generation recombination rate of 1e-9, and in76

the case when sequence data was generated, a per-site per-generation mutation rate of 1e-8 applied under77

the JC69 substitution model. The parameters we investigated for their effect on the distribution of genealo-78

gies include tree size (number of tips), the probability of incongruence (internode edge lengths in coales-79

cent units), and tree height (the number of generations between internodes).80

0.2.1 Units, space, and time81

The effect of time, measured in units of generations, is not typically of interest for studies of the MSC,82

since the probability of incongruence (among unlinked genealogies) can be explained entirely by internode83

lengths measured in coalescent units (tc), which is calculated as tc = tg/2Ne, where tg is time in genera-84

tions and Ne is the effective population size. Because tc is a ratio of time and population size, the absolute85

value of tg has not been of interest, only its relation to Ne (Fig. 1a-b). However, in the context of a sequen-86

tial coalescent process it turns out that tg does matter, since recombination is modeled as a per-generation87

2

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 3, 2020. ; https://doi.org/10.1101/2020.08.02.233395doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.02.233395
http://creativecommons.org/licenses/by/4.0/


Figure 1. The effect of genetic linkage on the spatial distribution of genealogies across a chromosome. (a)
A species tree topology with edge lengths in coalescent units can fully describe the probability of incon-
gruence among unlinked genealogies. (b) Coalescent units (tc) are a composite of time in generations (tg)
and the effective populations size (Ne). The extent of linkage among genealogies is influenced by both tg
and Ne, and thus not fully explained by tc alone. (c-d) Genealogies are plotted with tips in the same order
as the species tree topology to highlight incongruence. Arrows indicate the positions of genealogies on
a chromosome; linked genealogies are close together and unlinked genealogies are far apart. (c) Linked
genealogies are spatially correlated because many samples share the same ancestors until a recombination
event occurs. (d) Unlinked genealogies are independent and exhibit greater variation among a sampled set
than linked genealogies.

process, and so both tg and Ne affect the number of recombination events, and thus the similarity of neigh-88

boring genealogies.89

The effect of time in units of generations is demonstrated in Table 1. Here we simulated linked and un-90

linked genealogies on the same species trees and over a range of parameters. In each data set we measured91

the average Robinson-Foulds (RF) distance between all pairwise unlinked genealogies, and in the case92

of linked trees, between 1000 pairs of genealogies randomly sampled from positions that are spaced 5Kb93

apart. RF distances are reported here using normalized (scaled) values to account for differences in tree94

size, but non-normalized RF distances show the same qualitative results (not shown). In the unlinked data95

sets tg has no effect on the similarity of genealogies – only tc is relevant – as has been traditionally recog-96

nized in the MSC. However, for linked genealogies tg has a large effect. When edge lengths are longer in97

units of generations, and Ne is similarly scaled to retain the same probability of incongruence (tc), the size98

of non-recombined blocks becomes smaller, and the average RF distance between neighboring genealogies99

is greater.100

A notable result of these simulations is the observation that the size of non-recombined genomic blocks101

becomes very small in certain regions of parameter space, particularly when the internode lengths in units102

of generations are very long. This is troubling for the MSC which requires that loci represent a single ge-103

nealogical history as opposed to multiple concatenated genealogies. The impact of recombination within104

loci has been investigated previously, both in the first edition of this book (Castillo-Ramirez et al., 2010),105

as well as in a series of critical examinations of the impact of "concatalescence" (Springer & Gatesy, 2016).106

At issue is whether gene tree estimation error is elevated when concatenating data from multiple genealo-107

gies into a single locus. The results from our simulations suggest there are some regions of parameter108

space where the size of non-recombined blocks becomes quite small, and so this issue may warrant fur-109

ther examination. In this paper, however, rather than examine recombination and its effects as a critique on110
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existing MSC approaches, we aim instead to explore how linkage among recombined genealogical blocks111

of the genome can possibly be a useful source of information when analyzing whole genomes.112

0.2.2 Tree size, tree space, and phylogenetic decay113

The enormous size of phylogenetic tree space is a constant source of computational burden in phyloge-114

netics, but intriguingly, it may actually provide a source of information in the context of the sequential115

coalescent process. This is because as the size of tree space grows in larger data sets so too does the ex-116

pected RF distance between any two random unlinked genealogies. This is particularly true when tc is very117

small, such that all coalescent events occur deeper than the root of the species tree. In this case the topol-118

ogy of unlinked genealogies is hardly constrained by the species tree at all, and almost any genealogy can119

be observed. However, adjacent genealogies on the same chromosome are still expected to share signifi-120

cant similarity, since few recombination events are likely to have occurred between them. Consequently,121

the degree to which linked genealogies are more similar to each other, relative to the similarity among un-122

linked genealogies, is a function of parameters of the species tree, including the tree size.123

This type of relative measurement provides a means to develop a statistic to describe the rate of decay124

of spatial auto-correlation in genealogies across a genome. We propose the term "phylogenetic linkage"125

(PL) to describe the ratio of RF distances among linked genealogies separated by some genetic distance in126

the genome relative to the average RF distance among unlinked genealogies.127

PL(d) = 1− (RF (d)linked/RFunlinked)

In other words, if two genealogies spaced d distance apart on a chromosome are as different from each128

other as two randomly sampled unlinked genealogies are on average, then they are effectively unlinked.129

By measuring phylogenetic linkage at increasing genetic distances between genealogies we can infer a rate130

of decay of phylogenetic linkage across the genome. For each simulated data set we then fit an exponen-131

tial decay function using the scipy package in Python. From the estimated decay rate parameter (λd) we132

estimated a phylogenetic linkage half-life, representing the distance in bp at which two genealogies are133

expected to lose half of their phylogenetic linkage (Table 1; Fig. 2).134

When tg is larger, phylogenetic decay occurs faster, since more recombination events are possible over135

each internal edge of the tree (e.g., compare rows 0 and 7 in Table 1). Similarly, when Ne is greater, re-136

combination events are more likely to cause a change in the topology, and thus phylogenetic linkage de-137

cays faster (e.g., compare rows 0, 3, and 6 in Table 1). Finally, when the total tree size (Ntips) is greater,138

the decay of linkage occurs more slowly, since the average difference between unlinked genealogies is139

greater, and thus it takes longer for sufficient spatial information to decay to approach the unlinked mean140

RF distance (e.g., compare rows 0, 9, and 18 in Table 1).141

0.3 Linked genealogies and gene tree inference142

Unlike in simulations, the true genealogical history for any region of the genome is an unknown and un-143

observable variable. It is something we must infer based on the signal left by the mutational process. So144

how can our understanding of the decay of phylogenetic linkage be useful in the context of gene tree infer-145

ence? One way to approach this problem is to ask what is the expected length over which a site supporting146

a bipartition in one position of the genome continues to be true in neighboring regions of the genome?147

The standard sliding window approach gives equal weight to all sites within an alignment window. An148

alternative approach could be to extend the size of the window to ensure that there is sufficient information149

to infer a resolved gene tree, but to apply variable weights to sites in the alignment such that those near150

the center of the window have greatest weight, and can override alternative signals (Fig. 3a). This has the151

effect that if no local information exists to support the true local genealogy then data from more distant152
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Ntips Tg tc tg Ne block-size RFunlinked RFlinked−5K half-life

0 10 1e5 0.2 1e4 25000 1706 0.40 0.19 6576
1 10 1e6 0.2 1e5 250000 174 0.40 0.40 607
2 10 1e7 0.2 1e6 2500000 18 0.40 0.40 67
3 10 1e5 1.0 1e4 5000 4761 0.22 0.05 16715
4 10 1e6 1.0 1e5 50000 525 0.22 0.15 2359
5 10 1e7 1.0 1e6 500000 56 0.22 0.20 270
6 10 1e5 2.0 1e4 2500 8849 0.08 0.01 22627
7 10 1e6 2.0 1e5 25000 906 0.08 0.05 4659
8 10 1e7 2.0 1e6 250000 93 0.08 0.08 443
9 50 1e5 0.2 2e3 5000 1485 0.47 0.13 15890
10 50 1e6 0.2 2e4 50000 149 0.47 0.39 1838
11 50 1e7 0.2 2e5 500000 15 0.47 0.47 185
12 50 1e5 1.0 2e3 1000 4830 0.24 0.01 84731
13 50 1e6 1.0 2e4 10000 509 0.24 0.09 11884
14 50 1e7 1.0 2e5 100000 51 0.24 0.22 1233
15 50 1e5 2.0 2e3 500 9900 0.09 0.00 124415
16 50 1e6 2.0 2e4 5000 866 0.09 0.02 23019
17 50 1e7 2.0 2e5 50000 87 0.09 0.08 2048
18 100 1e5 0.2 1e3 2500 1345 0.47 0.08 26873
19 100 1e6 0.2 1e4 25000 138 0.47 0.34 3128
20 100 1e7 0.2 1e5 250000 14 0.47 0.47 345
21 100 1e5 1.0 1e3 500 5405 0.24 0.01 178444
22 100 1e6 1.0 1e4 5000 474 0.24 0.05 22688
23 100 1e7 1.0 1e5 50000 51 0.24 0.19 2499
24 100 1e5 2.0 1e3 250 7299 0.09 0.00 218558
25 100 1e6 2.0 1e4 2500 877 0.09 0.01 39616
26 100 1e7 2.0 1e5 25000 85 0.09 0.06 4169

Table 1. Parameter settings used in simulations to examine the distribution of linked versus unlinked ge-
nealogies generated on the same species tree. All simulations were performed on an imbalanced species
tree with uniform internode edge lengths. Three free parameters were explored: the number of tips (Ntips)
on the tree, total tree height in generations (Tg), and internode edge lengths in coalescent units (tc). Two
additional parameters are shown for which values were determined entirely by values of the free pa-
rameters: the internode length in units of generations (tg) is determined by Tg and Ntips, and effective
population size (Ne) is determined by tc and tg. Results are reported as the mean values calculated from
1000 simulated genealogies. The size of non-recombined genomic blocks (block-size) decreases with time
in generations. This affects the RF distance between linked genealogies, but not unlinked genealogies.
RFlinked−5K is the RF distances among linked trees separated by 5Kb on a chromosome. The phylogenetic
half-life was calculated from fitting an exponential curve to the rate of decay of phylogenetic linkage.
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Figure 2. The RF distance between genealogies separated spatially on a chromosome plateaus as link-
age decays by recombination, and approaches the average RF distance between unlinked genealogies (a).
The ratio of RF distances between linked and unlinked genealogies (phylogenetic linkage) measured at
different genetic distances approximates an exponential decay function (b). Results are shown for data
simulated on a 100 tip species tree with total tree height of Tg=1e6 generations, and Ne of 2.5e4, 5e4, or
2.5e3, corresponding to edge lengths in coalescent units (tc) of 0.2, 1.0, and 2.0, respectively.

regions can inform that part of the tree, but with decreasing weight as their probability of representing the153

same genealogy decays with distance.154

We implemented a weighted approach to local gene tree inference by using the "-a" weights file argu-155

ment during maximum likelihood tree estimation in RAxML v.8.2.12 (Stamatakis, 2014). A distribution156

of site weights was generated to give exponentially decreasing weight to sites on either side of a central157

position. For computational efficiency we cut off the window size to the left and right of the center at sites158

where the weight reached 1/10000 of the center given the exponential decay rate parameter estimated for159

that data set.160

Decay-weighted gene tree inference was compared to traditional windows with uniform (no) weights.161

Gene trees were inferred at 50 positions spaced evenly across a 1Mb simulated chromosome. At each po-162

sition the RF distance between the true genealogy and the inferred gene tree was recorded to measure gene163

tree estimation accuracy. We tested uniform windows of lengths 1Kb, 2.5Kb, 10Kb, 25Kb, 100Kb, and164

1Mb, the last of which represents the total concatenated chromosome gene tree. Decay-function weighted165

gene trees were estimated in windows with a size determined by the decay rate, and we additionally tested166

decay rates with 2X, 5X and 10X faster rates to examine sensitivity to rate estimation. We show results for167

simulations performed on data set 10 from Table 1, which was selected for its fast rate of decay and high168

incongruence so that many distinct genealogies would be observed across the chromosome.169

The decay-function weighted windows inferred more accurate gene trees on average than uniform170

windows (Fig. 3b-c). Of the uniform windows, the largest size (representing concatenation of the entire171

chromosome) performed the worst, while the best window size appears to be near 2.5Kb. All four decay-172

function weighted window sizes tested had lower mean RF scores (greater accuracy) than the best scoring173

uniform window. The best estimate was observed for the 5X decay rate window, which had a mean scaled174

RF distance of only 0.18, making it more than twice as accurate as the genome-wide concatenation gene175

tree. In non-scaled RF scores this represents an average of 35 differences from the true genealogy com-176

pared to 43 differences in the 2.5Kb uniform windows, 51 in 10Kb windows, and 80 in the concatenation177

gene tree. The reason a 5X decay rate performed better than the estimated decay rate may be caused by178

the cut off to weighted window sizes that we implemented to improve run times. Additional parameters179

that we did not explore here, such as the mutation rate and recombination rate, are likely to be important180
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Figure 3. The accuracy of gene tree inference in sliding windows along a chromosome. (a) We compared
windows that were of a fixed length and with uniform site weights to windows with lengths and weights
determined by a function of exponentially decaying phylogenetic linkage inferred from simulations under
the species tree parameters. (b) The scaled RF distance between inferred gene trees and the true simulated
genealogy at 50 positions across a genome measured with different window sizes and weightings. (c) Win-
dows with uniform (no) weights inferred less accurate gene trees than those with weights distributed by a
phylogenetic decay-function, as measured by the mean scaled RF distance to the true simulated genealo-
gies.

factors as well, since they affect the information content within each non-recombined genomic block.181

Conclusions182

For over a decade the goal of phylogenomic analyses has primarily focused on inferring a single species183

tree to represent the distribution of genealogical variation across the entire genome. However, as whole184

genome data becomes available there is increasing interest in the spatial distribution of genealogies at spe-185

cific locations across the genome. This type of local ancestry information can be useful for testing evolu-186

tionary questions about patterns of hemiplasy versus convergence (Guerrero & Hahn, 2018), for identify-187

ing introgressed regions (Fang et al., 2020), and testing hypotheses about adaptation (Martin et al., 2019).188

Despite the development of advanced hierarchical models for inferring species trees, such methods have189

yet to be developed for spatially linked gene tree estimation.190

Here we have demonstrated that the probability of incongruence described by the edge lengths of a191

species tree in coalescent units does not capture the expected spatial similarity of genealogies across chro-192

mosomes. Instead, in addition to the ratio of tg to Ne, which describes the probability of incongruence, it193

becomes necessary to consider the magnitudes of these parameters as well. This presents an interesting194

scenario: imagine a balanced tree with two clades where every edge has the same tc edge lengths. In one195

clade these edges are composed of high Ne and tg values, while in the other clade edges have low Ne and196

tg values. Despite having the same probability of incongruence, the two clades would exhibit very differ-197

ent rates of change in their topology per unit length spatially across the genome. Unlike in our simulations,198

the rate of decay would likely not be uniform, and would covary more among some edges than others.199

In theory, this expectation could be built into sliding window analyses based on a parameterized species200

tree inferred from unlinked loci. The simple approach that we implemented here, applying weights to201

alignment windows, is only a first step. A more appropriate direction to focus in the future would be to use202

species tree information to establish tree topology priors in a Bayesian context that could be used to im-203

prove local gene tree estimation by combining both the expected genome-wide distribution of genealogies204

as well as the expected similarity among neighboring genealogies. In contrast to treating recombination as205

a source of error for phylogenetic analyses, this direction of research aims to accommodate recombination206

as a source of historical information. There is no doubt that the MSC will continue to be extended to meet207
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the needs introduced by new types of data, and the many questions that they inspire.208
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