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ABSTRACT 18 

Climate change has the potential to reduce the abundance and distribution of species and threaten 19 

global biodiversity, but it is typically not listed as a threat in classifying species conservation 20 

status. This likely occurs because demonstrating climate change as a threat requires data-21 

intensive demographic information. Moreover, the threat from climate change is often studied in 22 

specific biomes, such as polar or arid ones. Other biomes, such as coastal ones, have received 23 

little attention, despite being currently exposed to substantial climate change effects. We forecast 24 

the effect of climate change on the demography and population size of a federally endangered 25 

coastal dune plant (Lupinus tidestromii). We use data from a 14-year demographic study across 26 

seven extant populations of this endangered plant. Using model selection, we found that survival 27 

and fertility measures responded negatively to temperature anomalies. We then produced 28 

forecasts based on stochastic individual based population models that account for uncertainty in 29 

demographic outcomes. Despite large uncertainties, we predict that all populations will decline if 30 

temperatures increase by 1° Celsius. Considering the total number of individuals across all seven 31 

populations, the most likely outcome is a population decline of 90%. Moreover, we predict 32 

extinction is certain for one of our seven populations. These results demonstrate that climate 33 

change will profoundly decrease the current and future population growth rates of this plant, and 34 

its chance of persistence. Thus, our study provides the first evidence that climate change is an 35 

extinction threat for a plant species classified as endangered under the USA Endangered Species 36 

Act. 37 
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Keywords: climate change, forecast, integral projection model, individual based model, life 39 

table response experiment, population dynamics. 40 
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INTRODUCTION 42 

 43 

Year to year variation in weather influences demographic processes such as survival, growth and 44 

reproduction, and ultimately population persistence (Sæther et al. 2000). For many natural 45 

populations, climate change will increase the frequency of weather conditions outside the 46 

physiological tolerances of individuals, and is thus expected to reduce the number, size and 47 

distribution of populations (IPCC 2014). As a result, conservation planning (Akçakaya et al., 48 

2014) and projections of biodiversity change (Pereira et al. 2010) will benefit from 49 

understanding how climate change will threaten population viability. 50 

Researchers typically use species distribution models (SDMs) to assess the effects of climate 51 

change on species (Elith and Leathwick 2009). However, species distributions might include 52 

declining populations of the species because of a currently unsuitable climate (Schurr et al. 53 

2012). Subsequently, while SDMs describe current ranges well, their prediction of future ranges 54 

are highly uncertain (Keenan et al. 2011). Hence, forecasting the effect of climate change on 55 

species persistence should be more reliable using process-based models that require long-term 56 

demographic data across the entire life cycle of the organism (Ehrlén and Morris 2015, Paniw et 57 

al. 2019). Despite this, our knowledge on how climate drives demography is relatively limited, 58 

most studies coming from animals in cold and arid biomes. For example, changing temperature 59 

has been linked to reductions in population growth rates of alpine plants (Doak and Morris 2010, 60 

Campbell 2019, Iler et al. 2019) and polar animals (Jenouvrier et al. 2009, Hunter et al. 2010). 61 

Changing precipitation has been linked to changes in population growth rates of organisms in 62 

arid environments (Tews and Jeltsch 2004, Jonzén et al. 2010). However, the effect of climate 63 
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change in other biomes, regardless of their extent or importance to humans, has received less 64 

attention. 65 

Coastal ecosystems are a biome for which the extinction threat from climate change has received 66 

little attention. This occurs despite the importance of species conservation for human well-being 67 

(Díaz et al. 2019), and despite the importance of coastal ecosystems and their susceptibility to 68 

climate change. Coastal ecosystems occupy a small portion of terrestrial surface, but are home to 69 

41% of the human population (Martínez et al. 2007) and to a large portion of the earth’s 70 

economy; for example, 31% of the USA gross domestic product in 1985 (Luger 1991). Coastal 71 

biomes protect inland ecosystems during storms by attenuating or resisting wave action (Barbier 72 

2015). Current and future climate change in coastal ecosystems is altering precipitation patterns, 73 

increasing the frequency of high temperature extremes (USGCRP 2018), and causing habitat loss 74 

and salt water inundation (Feagin et al. 2005). Thus, it is timely to consider the effects of climate 75 

on the demography of coastal species. 76 

Understanding the effect of climatic drivers on future population size requires quantifying how 77 

the link between climate and demography translates into population dynamics. Studies 78 

establishing such link are the foundation to prioritize conservation efforts. For example, the polar 79 

bear was listed as a threatened species under the endangered species act thanks to demographic 80 

studies (USFWS 2015). Demographic analysis linked warming-induced reductions in sea ice 81 

extent to reductions in survival and breeding probabilities, and increased risk of extinction 82 

(Hunter et al. 2010). As a result of this work, the US Fish and Wildlife Service indicated curbing 83 

Arctic warming as the most important conservation action for this species (USFWS 2015). Such 84 

demographic studies are most useful when carried out across multiple populations, in order to 85 

account for the substantial variation in populations sizes and vital rates (Glenn et al. 2010). 86 
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Here, we examine the effect of changing climate on the vital rates and population growth of a 87 

perennial coastal dune plant. We first link the effect of climate on separate vital rates, and we use 88 

an integral projection model to estimate their contribution to population growth rate. Then, we 89 

use an individual based model to forecast the effect of projected climate change on future 90 

population numbers in the next 30 years. These numerical simulations account for the effect of 91 

initial population numbers, year to year stochastic weather, and demographic stochasticity. We 92 

parameterize these models using a 14-year data set that comprehensively sampled 7 of the 15 93 

known remaining populations of this species. The populations we included range from the 94 

smallest to the largest known (17 and 180000 individuals, respectively). Our focal species, 95 

Lupinus tidestromii, is listed as endangered under the USA endangered species act, but to date, 96 

climate change is not considered a threat to this or any plant species. 97 

 98 

MATERIALS AND METHODS 99 

 100 

Study Species and Site 101 

Lupinus tidestromii (Fabaceae) is a perennial, herbaceous plant that is endemic to coastal dunes 102 

in northern California, where it is found in 15 extant populations. These populations are located 103 

in Sonoma, Monterey, and Marin counties, seven of these are contained within Point Reyes 104 

National Seashore (Appendix S1). In this protected area, the population located at Abbotts 105 

Lagoon contains more than 50% of the remaining individuals of the entire species (USFWS 106 

2009). L. tidestromii was listed as federally endangered in 1992 and among its primary threats 107 

are habitat loss, trampling by visitors and cattle, hybridization, direct competition with invasive 108 

plants, and elevated levels of seed predation in the presence of the invasive grass Ammophila 109 
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arenaria (USFWS 2009, Dangremond et al. 2010). Our study was conducted at Point Reyes 110 

National Seashore (latitude: 33.1120, longitude: -122.9579). This site has a Mediterranean 111 

climate, with wet winters and dry summers (Evens 2008). 112 

L. tidestromii is a herbaceous perennial plant that typically lives three years. It produces prostrate 113 

stems, and small, upright inflorescences with a whorl of flowers that produce leguminous fruits 114 

(Baldwin et al. 2012). Seeds are dispersed locally by explosive dehiscence (USFWS 1998). 115 

Seeds have a tough coat that likely allows survival for many years in the seed bank. However, 116 

we assume that if they do not germinate within the first two years, seeds become buried by sand. 117 

This is a reasonable assumption in dunes that are highly stabilized by introduced invasive plants. 118 

Flowers experience occasional insect herbivory, and fruits and seeds experience pre- and post-119 

dispersal seed predation by the native Peromyscus maniculatus (deer mouse). We have never 120 

observed pre-dispersal insect seed predation. 121 

 122 

Monitoring 123 

We began demographic censuses in 2005 at three sites (AL, ATT, NB) in 2005, and expanded 124 

monitoring at an additional four sites (Pop9, DR, BR, and BS) in 2008 (Appendix S1: Fig. S1). 125 

Populations NB, BS, and DR are small enough that we monitored every individual plant in the 126 

population each year. In AL and BR, and ATT and Pop9 starting in 2013 and 2015, we stratified 127 

sampling, censusing plants located in clusters across the extent of the population. We 128 

haphazardly chose plants across a range of sizes and microhabitats. Annually, we also tagged at 129 

least 50 new seedlings across each site. We know total population counts for ATT, Pop9, NB, 130 

BS, and DR for every year. We inferred population counts for NB, BS, and DR, and we counted 131 
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the total number of individuals in the populations after starting stratified sampling in ATT and 132 

Pop9. 133 

 134 

Vital rate data 135 

To quantify the vital rates, in 2005, we started censusing tagged plants in June when fruits on 136 

most plants were dehiscing. These censuses quantified the transition rates from one year (t) to the 137 

next (t+1). To track individuals, we attached numbered aluminum tags to the basal stem of 138 

plants, or staked these tags near plants. We relocated plants each year using a GPS and a metal 139 

detector. For each plant, every year we recorded size, survival, flowering status, and number of 140 

flowering inflorescences. Our way to estimate size changed after 2008. Before 2008 we 141 

quantified size counting the number of branches on a plant. After 2008, we quantified the size of 142 

each individual approximating it using as an ellipse. The major axis of this ellipse was the 143 

longest segment covered by each individual, the minor axis the width perpendicular to the major 144 

axis. For data before 2008, we inferred the area of the ellipse by developing a regression that 145 

used a sample of plants for which we counted branches and measured major and minor axis 146 

length. In total, this regression contained 234 plants (82 measured in 2008, 152 in 2018). We 147 

predicted area as a quadratic function of the number of branches (Appendix S1: Fig. S2). 148 

For reproductive plants, we recorded the total number of inflorescences and of those that were 149 

aborted, consumed, or intact. Flowers on inflorescences can abort or produce fruits; fruits can be 150 

clipped by mice or remain intact, dehisce and disperse seeds. We used the fate of inflorescences 151 

to calculate abortion, and consumption (pre-dispersal seed predation), for each population and 152 

year. 153 
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To calculate abortion, we summed the number of aborted inflorescences and divided by the sum 154 

of the total number of observed inflorescences. To calculate consumption, we summed the 155 

number of clipped inflorescences, and divided by the sum of the number of not aborted 156 

inflorescences. The resulting abortion and consumption are population-level means, because we 157 

performed the sums to calculate these metrics across all the plants in each population. We do not 158 

have observations on abortion and consumption for all populations and all years. We have 159 

abortion rates for all populations in 2010 and 2011, and from 2013 to 2017 (Appendix S2: Fig. 160 

S5) and consumption rates for all years except 2012 (Appendix S2: Fig. S6). In years and 161 

locations for which we did not have an abortion or consumption rate, we used the population-162 

specific mean taken across censuses. 163 

We assumed the number of fruits per inflorescence, and the number of seeds per fruit are 164 

constant across years and populations. We calculated fruits per inflorescence using data from 165 

2011, averaging the number of fruits across all inflorescences for each plant, and then averaging 166 

across plants to produce a population-level value. We quantified the average number of seeds per 167 

fruit by counting seeds in 213 randomly collected fruits from multiple years and populations: 168 

AL: 2005 (23), 2008 (3), 2009 (15), 2010 (39); ATT: 2011 (33); BR: 2010 (23); DR: 2010 (10), 169 

2011 (17); NB: 2010 (16) Pop9: 2010 (15). 170 

We estimated germination rates through a field germination trial and calculated a recruitment 171 

adjustment factor to account for post-dispersal seed predation, and for other sources of 172 

unaccounted seed or seedling mortality. We installed caged seed baskets in 2008 at the AL 173 

population, and recording the proportion of seedlings that germinated in 2009 (g1), 2010 (g2), 174 

and 2011 (g3) (Pardini et al. 2015). Here g2, and g3 represent emergence out of seed bank stages. 175 

We then calculated a recruitment adjustment factor to account for post-dispersal seed predation 176 
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and for other sources of unaccounted seed or seedling mortality. To account for these other 177 

sources of seed and seedling loss, we used our known population counts to estimate a 178 

recruitment adjustment factor, 𝛿𝑝, for each p population (Appendix S3). We modified 179 

germination rates g1, g2, and g3 employed in the IPM using 𝛿𝑝 as 𝑔𝑡 (1 − 𝛿𝑝). We could only 180 

calculate 𝛿𝑝 for the five populations with known population counts (see “monitoring”). For 181 

population BR and ATT, we applied the mean of δp from BS and DR, and from ATT and Pop9, 182 

respectively the closest populations to BR and ATT. 183 

 184 

Modeling of size-dependent vital rates and climate effects 185 

We modeled four vital rates as size dependent processes for each year and site: survival, growth, 186 

the probability of flowering, and the number of inflorescences. We modeled these vital rates 187 

based on generalized mixed linear models. We fit models in R using the lme4 package (Bates et 188 

al. 2015), and we performed a preliminary model selection based on Akaike Information 189 

Criterion (Burnham and Anderson 2002). In this preliminary model selection, we compared 190 

models predicting vital rates using linear, quadratic, and cubic predictors. Our baseline model 191 

structure included a random intercept and slope (the effect of size on the vital rate) for both years 192 

and populations. We modeled survival and probability of flowering data as Bernoulli distributed, 193 

the number of inflorescences as Poisson distributed, and growth data as normally distributed. For 194 

survival, the best model included a linear, squared, and cubic predictor of size. For the remaining 195 

three vital rates, the best model included only a linear predictor (Appendix S4). 196 

We selected which climatic predictor, if any, affected vital rates by performing a leave-one-year-197 

out cross-validation. We selected whether climatic drivers increased the predictive power of our 198 

linear models (Appendix S4) and, if so, what climatic drivers improved predictive power the 199 
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most. The models in this cross-validation simply added the climatic predictor to the vital rate 200 

models (Appendix S4). We considered four climatic predictors: temperature, precipitation, 201 

Oceanic Niño Index (ONI) (CPC n.d.), and the standardized precipitation evapotranspiration 202 

index (SPEI, Vicente-Serrano et al. 2009). We obtained temperature and precipitation data 203 

starting in 1990 from the PRISM dataset (Daly et al. 1994), the ONI data from the internet site of 204 

the Climate Prediction Center of the National Oceanic and Atmospheric Administration (CPC 205 

n.d.), and we derived the SPEI using our precipitation and temperature data using the R package 206 

SPEI (Beguería and Vicente-Serrano 2017). We calculated the yearly climate anomalies for each 207 

one of these four drivers. We computed anomalies using the mean and standard deviation 208 

observed between 1990 and 2018. Here, we define “year” as the time elapsing between 209 

demographic censuses: from June to May of the following year. 210 

For each of the four climatic drivers, we used two yearly anomalies: one referred to the year 211 

leading up to the current census (t), and one to the year leading up to the preceding census (t-1). 212 

For example, for year 2012 (t=2012) we considered the climate anomaly observed between June 213 

2011 and May 2012, and between June 2010 and May 2011 to predict the flowering probability 214 

and number of inflorescences observed in June 2012, and to predict the survival and growth 215 

occurred from June 2012 to June 2013. We thus tested for a lag in the effect of climatic drivers 216 

on plant vital rates (see also Teller et al. 2016; Tenhumberg et al. 2018). 217 

We measured model performance summing the negative log-likelihood of each out-of-sample 218 

prediction, with the best model having the lowest score. We used negative log-likelihood as it is 219 

a proper scoring rule (Gneiting and Raftery 2007) across our generalized linear models. We also 220 

ranked models based on root mean squared error which, despite being not proper, yielded 221 
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qualitatively identical results (Appendix S5: Table S1-2). We fit the final models using the best 222 

climatic predictor (if any). 223 

 224 

Population projections 225 

We quantified the effect of a changing climate on the population dynamics of L. tidestromii 226 

looking at its projected long-term population growth rates and population sizes. We projected 227 

long-term population growth rates using an integral projection model (IPM, Ellner et al. 2016), 228 

and future population sizes using an individual based model (IBM). We used IBMs to add 229 

demographic stochasticity, which is a key component to predict population sizes, particularly for 230 

smaller populations (Lande 1993, Caswell 2001). 231 

We used an IPM because it is a computationally inexpensive way to perform stochastic 232 

population projections of species whose dynamics depend on a continuous state variable: in this 233 

case, the size of individuals. We constructed the IPM using the parameters of the vital rates 234 

models described above. Most of these parameters changed based on year and population 235 

(Appendix S6).  236 

We first used the IPMs to compute how climate affects λs, the long-term stochastic population 237 

growth rate. We calculated λs across the whole range of climate anomalies observed during our 238 

study period (Appendix S6). Our best climatic predictor was always temperatures. Therefore, we 239 

calculated λs from an average annual temperature of about 11° Celsius to an average annual 240 

temperature of 13°. 241 

To quantify the contribution of each vital rate in changing λs under a different climate, we used 242 

the IPM to perform a Life Table Response Experiment (LTRE) and a sensitivity analysis. The 243 
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LTRE quantified the difference in λs observed when only one of the vital rates responded to 244 

deviations from the mean temperature. For example, we calculated λs for an IPM where only 245 

survival experienced the full range of temperature anomalies. In these simulations, all other vital 246 

rates experienced average climate (about 12° Celsius). We then calculated the contribution of 247 

each vital rate to the effect of climate. This contribution is the difference between the λs 248 

computed by these stochastic simulations, and the λs where all vital rates experienced a 12° 249 

Celsius climate. 250 

To further interpret the LTRE results, we calculated vital rate elasticities. The LTRE results by 251 

combination of two factors. First, the effect size of climate on each vital rate, which is provided 252 

by parameter βc in the vital rate models (Appendix S6). Second, the sensitivity of stochastic 253 

population growth rate (λs) to each vital rate. We approximated λs using the asymptotic 254 

population growth rate (λ). We then calculated the elasticity of each vital rate, which is the 255 

proportional response of λ to a proportional increase in vital rate parameter. 256 

 257 

Forecast 258 

We forecasted population numbers through an IBM that incorporates probabilistic events of the 259 

life cycle by projecting the dynamics of each individual. Given our life cycle (Appendix S7), 260 

these probabilistic events were: survival, growth, probability of flowering, production of 261 

inflorescences, the abortion of inflorescences, the consumption of inflorescences, and the 262 

germination of seeds. We simulated each of these processes using the appropriate statistical 263 

distributions (Appendix S7). 264 
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We used this IBM to produce a forecast of population sizes in the next 30 years that included 265 

uncertainty arising from process and demographic stochasticity. We projected each population 266 

for 30 time steps, and we replicated each run 1000 times. Each run included a different sequence 267 

of years, and a different realization of each vital rate process (Appendix S7). We started each 268 

simulation with the number of individuals observed in June 2018, assuming the stable stage 269 

distribution suggested by the population-specific IPM model. We ran two simulations: one 270 

assuming the current mean climate (average annual temperature of 12° Celsius), and one 271 

assuming the largest weather anomaly we observed during our 2005-2018 study period (which 272 

was a year with an average temperature of 13° Celsius). A mean annual temperature of 13° 273 

Celsius is a conservative forecast, because projections suggest that in 2055, temperature will be 274 

on average 2.1 Celsius higher than the 1990-2018 mean (Vose et al. 2017). We used the 1000 275 

simulations for each population and climate scenario to calculate 95% confidence intervals of 276 

population abundances during the 30-year projections. 277 

 278 

RESULTS 279 

 280 

Observed and future climate variation 281 

Across our 14-year study period, we observe variation in weather on par with that across longer 282 

time periods (Appendix S1: Fig. S4), but not within the range of weather projected with climate 283 

change by the middle of the century (Wang et al. 2016, n.d.). For example, mean annual 284 

temperature was 11.5° C across the study period, 12° C from 1990-2018. This temperature is 285 

projected to increase to about 14° C (range: 13.8-14.6° C) by 2055 according to the 286 

Representative Concentration Pathway of 4.5 W/m2 (Wang et al. 2016, n.d., Vose et al. 2017). 287 
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The range of annual temperatures observed from 1990-2018 was 11-13° C, and thus we only 288 

consider conservative scenarios of a 1° C increase in temperature. 289 

Vital rates response to climate 290 

Survival, growth, probability of flowering, number of inflorescences, rates of abortion, and 291 

consumption rates of fruits vary widely across populations and years (Appendix S2: Fig. S5-10). 292 

This variation drives fluctuations in population growth, including a remarkable population crash 293 

between 2014 and 2015 (Appendix S2: Fig. S11). Growth did not respond to climate, but the 294 

remaining three size-dependent vital rates correlated negatively with average annual temperature 295 

(Fig. 1, Appendix S2: Fig. S7, Fig. S9-10). 296 

Population responses to climate 297 

There is a sharp decline in population growth rate with increasing mean annual temperature (Fig. 298 

2A). While the slope of the relationship between population growth rate and annual temperature 299 

is similar for all populations, these vary in their mean vital rates (i.e., their intercepts and slopes, 300 

Appendix S2: Fig. S7-10). If the temperatures remained at the 1990-2018 mean (12° C), three of 301 

the four smallest populations would be expected to decline. At these temperatures, the remaining 302 

four populations, including the three largest, are projected to grow. On the other hand, in a 303 

scenario where mean annual temperature increases by 1° C, all populations are projected to 304 

decline (Fig. 2A). 305 

Perturbation analyses indicate that the decline in population growth rate with increasing 306 

temperature is primarily due to the effects of temperature on plant survival (Fig. 2B). Two 307 

factors explain the high contribution of plant survival on the change in population growth rate. 308 
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First, population growth rate is very sensitive to changes in survival (Appendix S8: Fig. S12), 309 

and second, survival responds dramatically to increasing temperature (Fig. 2A). 310 

Forecast 311 

Population trajectories indicate that if temperature remained at its 1990-2018 average, this 312 

endangered plant species would double its population number in the next 30 years. However, 313 

with a 1° C increase in temperature, there would be a 90% average reduction in individuals (Fig. 314 

3). This scenario is conservative, as more dramatic increases in temperature are projected for this 315 

region in the next 30 years (Wang et al. 2016, n.d., Vose et al. 2017). 316 

 317 

DISCUSSION 318 

 319 

Our results demonstrate that climate change is having profound negative effects on the current 320 

and future population growth rates of L. tidestromii. Within the next 30 years, climate change 321 

will result in high probabilities of extinction for four out of the seven populations we analyzed. 322 

These high extinction probabilities add to the substantial decrease in total population size. As our 323 

analysis considers 7 of the 15 extant populations of the species, including the largest population, 324 

it is clear that climate change will substantially deteriorate the conservation status of L. 325 

tidestromii. 326 

We hypothesize that our results could reflect a general pattern among species evolved in coastal 327 

dune habitats experiencing low variation in annual temperatures. Low variation in climatic 328 

variables, both temporally and spatially (e.g. across topographic gradients), should decrease the 329 
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ability of species to respond to climatic changes. This expectation is justified because climatic 330 

variation in time and space selects for high genetic variability and high phenotypic plasticity 331 

(Nadeau et al. 2017). Dune plants of the pacific coast such as L. tidestromii experience low 332 

variability in annual temperature, and do not occur across large topographic gradients. The 333 

standard deviation in annual temperatures at our study populations is only 0.43° Celsius, which 334 

is below the 5th percentile of those found across the conterminous United States. Low variation 335 

in annual temperatures should be common among Western temperate coasts as a result of 336 

Westerly currents. Moreover, dune plants occur only at sea level, and therefore they are not 337 

adapted to relatively small topographic gradients. Given these considerations, it might be fruitful 338 

to carry out comparative tests on the climatic sensitivity of taxa adapted to dune habitats of mid-339 

latitude Western coasts. 340 

Alternatively, our results for L. tidestromii could reflect an isolated case, because climate change 341 

can threaten species in any biome as long as their physiological tolerances are exceeded. For 342 

example, L. tidestromii could be vulnerable because it thrives only within a narrow range of 343 

temperatures (Jenouvrier, 2013). One of the reasons for a narrow temperature niche is that the 344 

geographic distribution of rare species like L. tidestromii could be much smaller than its potential 345 

(Svenning and Skov 2004). If L. tidestromii did not fill its potential range, its populations could 346 

fall, by sheer luck, at sites whose average climate is close to the upper limits of its thermal 347 

physiological tolerance. An additional hypothesis for such high climate sensitivity is that the 348 

phylogeny of L. tidestromii might make this species prone to physiological stress from heat. The 349 

productivity of legume crops is very sensitive to heat stress (Liu et al. 2019), a trait which might 350 

be shared with wild legumes. 351 
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Our results show three advantages of demographic approaches compared to species distribution 352 

modeling. First the temporally explicit projections of our demographic models provide highly 353 

relevant information to conservation planning and prioritization (Fig. 3). Second, demographic 354 

analysis holds mechanistic insights. In our case, we found that the population growth rate of L. 355 

tidestromii responds to climate mainly through survival. Hence, management actions that 356 

increase average individual survival might ameliorate the risks imposed by climate change. 357 

Finally, it would be hard or impossible to construct an SDM for L. tidestromii. This species 358 

occurs in just three locations which differ in average temperature by just 0.12 degrees Celsius. 359 

Moreover, the minimum number of sites needed to build an SDM free of statistical artifacts is 360 

above 10 (Proosdij et al. 2016). Hence, long-term population or demographic data might be a 361 

preferable way to devise climate change forecasts for species that have a geographically 362 

restricted range. Some authors suggest that establishing a link between demographic rates and 363 

climatic drivers might require 20 to 25 years of data (Teller et al. 2016, Tenhumberg et al. 2018). 364 

Instead, our results show that such long data collection might not be needed when a study period 365 

spans a large range of climate anomalies (Appendix S1: Fig. S4). 366 

To our knowledge, the evidence we present here is the first example suggesting that climate 367 

change should be included as a threat in the status for a species listed under the Endangered 368 

Species Act. To date, climate change has been considered in listing actions for four animal 369 

species occurring in arctic, alpine, or arid biomes. These animals are the polar bear, the 370 

American pika, the American wolverine, and the Gunnison sage-grouse (Blumm and Marienfeld 371 

2013, USFWS 2015). While our results on L. tidestromii could be an isolated case, they suggest 372 

that the extinction threat posed by climate change might be overlooked in temperate biomes. 373 
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Thus, we hope that our study serves as a model for other similar forecasting efforts using long-374 

term monitoring data. 375 
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 514 

Figure 1. The effect of plant size and mean annual temperature (when relevant) on survival (A), 515 

growth (B), the probability of flowering (C), and the production of racemes (D). The dots in the 516 

plots showing survival (A) and probability of flowering (C) represent the average proportion of 517 

individuals surviving and flowering, respectively, within 10 equally spaced intervals of 518 

individual log sizes. Shaded areas show the 95% confidence intervals of the mean model 519 

predictions. For the three climate-dependent vital rates, we show credible intervals of vital rates 520 

responding to the average yearly temperature observed between 1990 and 2018 (12° Celsius, in 521 

blue), and the highest average yearly temperature observed during the same period (13° Celsius, 522 

in orange). 523 
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 524 

Figure 2. Long-term stochastic population growth rate (λs) as a function of mean annual 525 

temperature for each of the seven L. tidestromii populations (A), and the partial effect of each 526 

climate-dependent vital rate on the λs (B). The average yearly temperature observed between 527 

1990 and 2018 was 12° Celsius; the average temperature during the study period was 11.5° 528 

Celsius.  529 
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 530 

Figure 3. Projected population sizes of L. tidestromii assuming historical (12° Celsius) and 531 

future average annual temperatures (13° Celsius). Polygons show the lower 2.5th and upper 97.5th 532 

percentile of 1000 separate projections. The upper left panel shows the population sizes of all 533 

sites at Point Reyes National Seashore; the remaining panels show the population sizes at each 534 

one of the seven sites separately. Each simulation was initiated using the population sizes 535 

observed in 2018. 536 
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APPENDICES 538 
 539 
Appendix S1: Model system figures 540 
 541 

 542 

Figure S1. Map of the seven study populations of L. tidestromii at Point Reyes National 543 
Seashore, Marin County, California, USA. The entire range of this species includes two 544 
additional clusters of populations located in Sonoma and Monterey county. 545 
  546 
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 547 
Figure S2. Relationship between the number of branches counted on L. tidestromii plants, and 548 
their area. The black line represents the mean model prediction of the quadratic linear model that 549 
describes the relationship between area and the number of branches. The grey area represents the 550 
95% confidence interval of the mean model prediction. The color of dots refers to data from six 551 
separate populations. 552 
  553 
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 554 
Figure S3. Life cycle model for L. tidestromii. This life cycle refers to the IPM described in 555 
Appendix S6 (Eq. 7-9). The IPM separates the population in three discrete stages: continuously 556 
sized plants (plants), seeds that germinate after one winter (B1), and seeds that germinate after 557 
two winters (B2). These stages are modeled, respectively, by equation 9, 7, and 8 in Appendix 558 
S6. To minimize the use of space, in this figure 𝜋 corresponds to (1 − 𝑎)(1 − 𝑐)𝜄𝜅(1 − 𝛿) in 559 
Equations 7-9. 560 
  561 
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 562 
Figure S4. Annual climate values of temperature, precipitation, Oceanic Niño Index (ONI), and 563 
standardized aridity index (SPEI) between 1990 and 2018. The dashed lines denote the beginning 564 
of L. tidestromii demographic censuses.  565 
 566 
  567 
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Appendix S2: Vital rates figures 568 
 569 

 570 
Figure S5. Average abortion rate of inflorescences by year and population.  571 
  572 
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 573 
Figure S6. Average consumption rate by year and population. 574 
  575 
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 576 
Figure S7. Survival to time t+1 of individuals of size log(Z) at time t, by transition year 577 
(columns) and population (rows). Red dots show the observed proportion of surviving 578 
individuals in ten equally spaced size log(Z) intervals at time t. Grey lines show the average size-579 
dependent survival probability predicted by the generalized linear mixed model. 580 
  581 
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 582 
Figure S8. Individual log size (Z) at time t+1 as a function of individual log size (Z) at time t, by 583 
transition year (columns) and population (rows). Red dots show individual data points, and grey 584 
lines show the prediction of the linear mixed model. 585 
  586 
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 587 
Figure S9. Flowering probability at time t based on the log size of individuals (Z) at time t, by 588 
year (columns) and population (rows). Red dots show the observed proportion of flowering 589 
individuals in ten equally spaced intervals of log sizes at time t. Grey lines show the average 590 
size-dependent flowering probability predicted by the generalized linear mixed model. 591 
  592 
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 593 
Figure S10. Production of inflorescences by reproductive individuals at time t as a function of 594 
individual log size (Z) at time t, by year (columns) and population (rows). Red dots show 595 
individual data points, and grey lines show the predictions of the generalized linear mixed model. 596 
  597 
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 598 
Figure S11. Asymptotic population growth rates (λ) based on transition year and population. λ 599 
are calculated using year- and population- specific integral projection models. λ values prior to 600 
the 2008-2009 transition are available for two sites only (AL and ATT). 601 
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Appendix S3: Calculation of the germination adjustment factor 603 
 604 
We estimated a germination adjustment factor, δ, by combining information on germination 605 
trials, on seed production, and on the number of new seedlings. We used data from “known 606 
population counts”, which refers to the populations and transition years for which we have 607 
counted the total number of individuals and seedlings. First, we estimated the expected number 608 
of seeds produced at each population, p, and year, t (estimated seedspt). To estimate the number 609 
of seeds, we used year- and population-specific consumption and abortion, and constant values 610 
of fruits per inflorescence and seeds per fruit data. We then used the ratio of observed 611 
seedlingspt+1 to the estimated seedspt to calculate the recruitment adjustment factor 𝛿: 612 
 613 

𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑠𝑒𝑒𝑑𝑙𝑖𝑛𝑔𝑠𝑝𝑡+1

𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑠𝑒𝑒𝑑𝑠𝑝𝑡
= 𝑔1(1 − 𝛿𝑝) 614 

 615 
Rearranging, 616 

𝛿𝑝 =

𝑔1 − (
𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑠𝑒𝑒𝑑𝑙𝑖𝑛𝑔𝑠𝑝𝑡+1

𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑠𝑒𝑒𝑑𝑠𝑝𝑡
) 

𝑔1
 617 

Where g1 is the proportion of seeds germinating in the first year (after one winter) in the 618 
germination experiment. In our population models, we apply 𝛿𝑝 to g2 and g3 because calculating 619 

𝛿𝑝 using g1 provides a conservative estimate of unobserved seed and seedling mortality. Our 𝛿𝑝 620 

is conservative because the observed seedlings at t+1 emerge from dispersed seeds (g1) and from 621 
the seed bank (g2, g3). We modified germination rates g1, g2, and g3 used in the IPM using 𝛿𝑝 as: 622 

𝑔𝑡 (1 − 𝛿𝑝). 623 

We could only calculate 𝛿𝑝 for the five populations with known population counts. For 624 

population BR, we applied the mean of 𝛿𝑝 from BS and DR; for AL, we applied the mean of 𝛿𝑝 625 

from ATT and Pop9. We used these estimates due to the geographic proximity of BR and AL to 626 
these smaller populations for which 𝛿 could be quantified. We could only calculate 𝛿𝑝 for the 627 

five populations with known population counts. For population BR, we applied the mean of 𝛿𝑝 628 

from BS and DR; for AL, we applied the mean of 𝛿𝑝 from ATT and Pop9. We used these 629 

estimates due to the geographic proximity of BR and AL to these smaller populations for which 630 
𝛿 could be quantified. 631 
 632 
  633 
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Appendix S4: Vital rate models 634 

The baseline model structure for our models of size-dependent vital rates was 635 

link(𝜓𝑖𝑡�̂�) = 𝛾𝑡 + 𝛾𝑝 + 𝛽𝑡 𝑙𝑜𝑔(𝑍𝑖) + 𝛽𝑝 𝑙𝑜𝑔(𝑍𝑖),  (1) 636 

where �̂� is the mean prediction of the vital rate model for individual i, in year t, at population p, 637 
Z is the size of individual i, the γ coefficients are normally distributed random intercepts, the β 638 
coefficients are normally distributed random slopes of log size, and link is the link function for 639 
the vital rate being modelled. The link function depends on the type of response variable. The 640 
models on survival (S) and flowering (F) used a logit link, because the response variable is 641 
Bernoulli distributed:  642 

𝑆𝑖𝑡𝑝~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(�̂�𝑖𝑡𝑝),  (2) 643 

𝐹𝑖𝑡𝑝~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(�̂�𝑖𝑡𝑝).  (3) 644 

The best survival model was a cubic function of log(size), so that: 645 

logit(𝑆𝑖𝑡�̂�) = 𝛾𝑡 + 𝛾𝑝 + 𝛽𝑡 𝑙𝑜𝑔(𝑍𝑖) + 𝛽𝑝 𝑙𝑜𝑔(𝑍𝑖) + 𝛽2 𝑙𝑜𝑔(𝑍𝑖)
2 + 𝛽3 𝑙𝑜𝑔(𝑍𝑖)3. (4) 646 

The number of inflorescences (R) used a log link, because this response variable follows a 647 
Poisson distribution: 648 

𝑅𝑖𝑡𝑝~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(�̂�𝑖𝑡𝑝).  (5) 649 

The growth model used an identity link: that is, it did not use a link function: 650 

𝐺𝑖𝑡𝑝~𝑁𝑜𝑟𝑚𝑎𝑙(�̂�𝑖𝑡𝑝, 𝜎).  (6) 651 

Finally, we used these models to select the best climatic predictor through a leave-one-year-out 652 
cross-validation. We tested four climatic predictors: temperature, precipitation, Oceanic Niño 653 
Index (ONI), and the standardized precipitation evapotranspiration index (SPEI, see main text). 654 
In these cross-validations, Equation 1 and 4 included the term 𝛽𝑐𝐶𝑡, where C was one of the 655 
climatic predictors, and βc was its slope. In such model, the linear predictor changes based on the 656 
year t only, because climatic drivers are the same across populations p and individuals i. 657 

 658 
  659 
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Appendix S5: Model selection tables 660 
 661 
Table S1. Cross-validation results based on log-likelihood. The models with higher support 662 
appear first, those with the least support are last. Model “null” does not contain a climatic 663 
predictor. We compare models with four annual climatic anomalies: temperature (tmp), 664 
precipitation (ppt), Oceanic Niño Index (oni), and the standardized precipitation 665 
evapotranspiration index (spei). Moreover, we compare models with climatic predictors referred 666 
to two years: the year of the demographic census (t) and that preceding it (t-1). 667 

Survival Growth Flowering Racemes 

Model log_lik_sum Model log_lik_sum Model log_lik_sum Model log_lik_sum 

tmpt 8320.713 null 9643.271 tmpt 4860.269 tmpt 20538.58 

null 8339.689 pptt-1 9683.304 null 5594.391 null 20863.18 

speit-1 8378.673 speit 9690.057 onit 5794.024 pptt 20886.95 

onit 8382.177 pptt 9696.37 tmpt-1 5804.951 spei_to 21036.85 

tmpt-1 8385.776 speit-1 9697.36 speit-1 5874.919 tmpt-1 21236.65 

pptt 8408.783 onit-1 9697.919 pptt-1 5876.703 onit 21281.96 

onit-1 8439.169 tmpt-1 9700.742 onit-1 5882.694 pptt-1 21292.39 

speit 8442.731 onit 9730.185 speit 5888.286 speit-1 21326.18 

pptt-1 8494.641 tmpt 9808.604 pptt 5890.526 onit-1 21336.45 

 668 
Table S2. Cross-validation results based on root mean squared error. The models tested are the 669 
same as those described in Table S1. 670 

Survival Growth Flowering Racemes 

Model rmse Model rmse Model rmse Model rmse 

tmpt 0.44768 null 0.979553 tmpt 0.354357 tmpt 7.82832 

null 0.448003 pptt-1 0.984409 null 0.374067 null 7.918863 

speit-1 0.449193 speit 0.985296 onit 0.381321 pptt 7.954278 

tmpt-1 0.449645 pptt 0.986036 pptt-1 0.381385 tmpt-1 7.961484 

onit 0.449673 speit-1 0.986127 tmpt-1 0.381954 onit 8.001534 

pptt 0.4504 onit-1 0.986247 speit-1 0.382086 speit 8.014872 

speit 0.451516 tmpt-1 0.986565 speit 0.382173 onit-1 8.052406 

onit-1 0.451523 onit 0.990133 pptt 0.382333 pptt-1 8.230619 

pptt-1 0.453314 tmpt 0.999683 onit-1 0.384076 speit-1 8.258191 

 671 
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Appendix S6: Integral projection model 673 

Our IPM projects the number of z-sized L. tidestromii individuals, represented by vector n(z), to 674 
the number of z-sized individuals next year, represented by vector n(z’). This population is also 675 
composed of seeds that germinate one year after the projection interval, represented by scalar B1, 676 
and two years after, represented by scalar B2. The dynamics of the population are given by 677 

𝐵1,𝑡+1 = (1 − 𝑎)(1 − 𝑐)𝜄𝜅𝑔2(1 − 𝛿) ∫ 𝑝𝑏(𝑧; 𝛽𝑐)𝑏(𝑧; 𝛽𝑐)𝑛(𝑧, 𝑡)𝑑𝑧 + 𝐵2,𝑡
𝑈

𝐿
  (7) 678 

𝐵2,𝑡+1 = (1 − 𝑎)(1 − 𝑐)𝜄𝜅𝑔3(1 − 𝛿) ∫ 𝑝𝑏(𝑧; 𝛽𝑐)𝑏(𝑧; 𝛽𝑐)𝑛(𝑧, 𝑡)𝑑𝑧
𝑈

𝐿
 (8) 679 

𝑛(𝑧′, 𝑡 + 1) = 𝜂(𝑧′)𝐵1,𝑡 + 𝜂(𝑧′)(1 − 𝑎)(1 − 𝑐)𝜄𝜅𝑔1(1 − 𝛿) ∫ 𝑝𝑏(𝑧; 𝛽𝑐)𝑏(𝑧; 𝛽𝑐)𝑛(𝑧, 𝑡)𝑑𝑧
𝑈

𝐿
+680 

∫ 𝑠(𝑧; 𝛽𝑐)𝐺(𝑧′, 𝑧)𝑛(𝑧, 𝑡)𝑑𝑧
𝑈

𝐿
.  (9) 681 

We show a schematic representation that links these equations to the life cycle of L. tidestromii 682 
in Appendix S1, Fig. S3. These equations contain four vital rates that depend directly on the size 683 
of individuals, z, three of which depend on temperature anomaly, βc, while the remaining 684 
demographic rates are size- and climate-independent. Three vital rates are size- and climate-685 
dependent: 𝑝𝑏(z;βc) is the size- and climate-dependent probability of flowering, b(z;βc) is the 686 
size- and climate-dependent production of inflorescences, s(z;βc) is the size- and climate-687 
dependent probability of survival, and G(z’,z) is size-dependent growth. The size- and climate- 688 
independent vital rates mostly refer to the transition from the number of inflorescences to the 689 
number of establishing seedlings. In particular, a is the population- and year-specific abortion 690 
rate, c is the population- and year-specific consumption rate (or pre-dispersal predation), ι is the 691 
average number of fruits produced per inflorescence, κ is the average number of seeds produced 692 
per fruit, 𝛿 is the recruitment adjustment factor (Appendix S3), and g values refer to germination 693 
rates. g0 is the fraction of seeds that germinate before the end of the first transition, g1 is the 694 
fraction of seeds that germinate before the end of the second transition, and g2 is the fraction of 695 
seeds that germinate before the end of the third transition. Finally, η(z’) is the size distribution of 696 
seedlings emerging by the end of the transition. 697 

We used the IPMs to compute how climate affects λs, the long-term stochastic population growth 698 
rate, and how each climate-dependent vital rate contributes to these changes in λs. We computed 699 
the stochastic population growth rate, λs, by projecting the population numbers of each one of 700 
our seven population 50000 times. We started with a population of only one individual, 701 
discarding the first 1000 projections to allow populations to reach a stable size distribution. 702 
These stochastic simulations kept a constant average annual temperature, and randomly varied 703 
the year-specific conditions (parameters γt and βt in equation 1). We calculated λs as: 704 

log (λ𝑠) = 𝐸 [log (
𝑁𝑡+1

𝑁𝑡
)] (10) 705 

Where E calculates the mean, and N is the total population size at the end (t+1) and at the 706 
beginning (t) of a transition. We repeated these projections across the whole range of observed 707 
climate anomalies we observed during our study period. These temperatures go from an average 708 
annual temperature of about 11° Celsius to an average annual temperature of 13°. 709 

  710 
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Appendix S7: Individual based model 711 

Our individual based model simulated each probabilistic event in the life cycle of L. tidestromii 712 
(Appendix S1: Fig. S3) using an appropriate statistical distribution. Our probabilistic events were 713 
linked to survival, growth, probability of flowering, production of inflorescences, the abortion of 714 
inflorescences, the consumption of inflorescences, and the germination of seeds. Starting from 715 
the production of flowers, each individual flowered based on a Bernoulli process depending on 716 
its individual size, so that: 717 

𝐹𝑙𝑜𝑤𝑒𝑟~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖( 𝑝𝑏(𝑧; 𝛽𝑐) )  (11) 718 

Where 𝐹𝑙𝑜𝑤𝑒𝑟 is either a 0, if an individual failed to flower, or 1, if an individual flowered. 719 
𝑝𝑏(z;βc) shows that the probability of reproduction depends on individual size, z, and on the 720 
climate anomaly. If an individual reproduces, its production of inflorescences depends on a 721 
negative binomial distribution, so that 722 

𝑅𝑎𝑐𝑒𝑚𝑒𝑠𝑁~𝑃𝑜𝑖𝑠𝑠𝑜𝑛( 𝑏(𝑧; 𝛽𝑐), 𝜃 )  (12) 723 

Which is also a size- and climate- dependent process. The number of inflorescences would 724 
decrease because of abortion following a binomial process  725 

𝑅𝑎𝑐𝑒𝑚𝑒𝑠𝑁~𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑅𝑎𝑐𝑒𝑚𝑒𝑠𝑁, (1 − 𝑎) )  (13) 726 

where 1-a is the probability of an inflorescence not aborting. The remaining inflorescences could 727 
still be consumed by predators,  728 

𝑅𝑎𝑐𝑒𝑚𝑒𝑠𝑁~𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑅𝑎𝑐𝑒𝑚𝑒𝑠𝑁, (1 − 𝑐) )  (14) 729 

where 1-c is the probability of not being consumed (the probability of experiencing pre-dispersal 730 
predation). The seeds produced by the surviving inflorescences on each individual could then 731 
germinate based on a binomial process, so that: 732 

𝑆𝑒𝑒𝑑𝑙𝑖𝑛𝑔𝑁~𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑠𝑒𝑒𝑑𝑠, 𝑔𝑡(1 − 𝛿))  (15) 733 

Where SeedlingN is the number of seedlings emerging in each population, and gt is one of the 734 
germination rates associated with seeds that germinate in the year of the transition (g0), the year 735 
after (g1), and two years after (g2). Finally, individuals could survive based on a size- and 736 
climate-dependent Bernoulli process  737 

𝑆𝑢𝑟𝑣~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖( 𝑠(𝑧; 𝛽𝑐) )  (16) 738 

and, in case they survived, they could grow based on a normal process: 739 

𝑧′~𝑁𝑜𝑟𝑚𝑎𝑙( 𝐺(𝑧′, 𝑧), 𝜎 ).  (17) 740 
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Appendix S8: Elasticity analysis 742 
 743 

 744 
Figure S12. Elasticity of asymptotic population growth rate (λ) to the parameters of the IPM. 745 
Parameters refer to the average values across years and populations. The elasticity is a 746 
proportional sensitivity, meaning that it quantifies by what percentage λ will change after a 747 
percent change in each parameter. Thus, elasticity facilitates the comparison among parameters. 748 
The parameter names for size-dependent processes show the effect of annual temperature 749 
anomaly (_clim), the intercept of linear models (_b0), and the linear (_b1), quadratic (_b2), and 750 
cubic (_b3) effects of size. Parameters “recr_size” and “recr_sd” refers to the mean size and 751 
standard deviation of recruits. The remaining parameter names are identical to those in equations 752 
7-9. 753 
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