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2 
 

ABSTRACT 35 

 36 

Neurons in the prefrontal cortex are typically activated by multiple factors when 37 

performing a cognitive task, and by different tasks altogether. The selectivity of single 38 

neurons for the same stimulus dimension often changes depending on context or task 39 

performed, a phenomenon known as nonlinear mixed selectivity. It has been 40 

hypothesized that neurons with such mixed selectivity offer a computational advantage 41 

for performing cognitive tasks due to high-dimensional neural representations.  In this 42 

study, we sought to determine how nonlinear mixed selectivity is affected by training to 43 

perform a cognitive task by examining the neural responses of monkeys before and after 44 

they were trained to perform visual working memory tasks. We also compared nonlinear 45 

mixed selectivity in different sub-regions of the prefrontal cortex that play different roles 46 

in these tasks. Our findings indicate that a small population of prefrontal neurons exhibit 47 

nonlinear mixed selectivity even prior to any training to perform cognitive tasks. 48 

Learning to perform working memory tasks induces a modest increase in the proportion 49 

of neurons with both linear and non-linear mixed selectivity. However, we saw little 50 

evidence that nonlinear mixed selectivity is predictive of task performance. Our results 51 

provide insights on the representation of stimulus and task information in neuronal 52 

populations.   53 
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SIGNIFICANCE STATEMENT 54 

 55 

Working memory depends on the ability of neurons to represent stimuli in their pattern of 56 

discharges when they are no longer present. How neurons represent simultaneously 57 

different types of information remains a complex computational problem. It has been 58 

hypothesized that nonlinear mixed selectivity emerges as a result of training to perform 59 

tasks that require maintenance of stimuli and task parameters in memory. We tested 60 

experimentally this hypothesis by examining neuronal responses at different areas of the 61 

prefrontal cortex, before and after training to perform cognitive tasks. We reveal the 62 

regions of the prefrontal cortex that are most responsible for different types of selectivity, 63 

as well as how these types of selectivity vary as a result of training, the context of 64 

information represented in working memory tasks, and their modulating factors. These 65 

insights are critical to formulating a practical understanding of working memory, and by 66 

extension, of memory-related disorders dependent on neural selectivity.    67 
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INTRODUCTION 68 

 69 

Working memory (WM) is commonly defined as the ability to encode, maintain, and 70 

manipulate information in the conscious mind over a period of seconds without the 71 

presence of any sensory inputs. Although this is a core component of complex cognitive 72 

abilities such as planning and reasoning, the true importance of WM ultimately depends 73 

on whether it can maintain task relevant information and manipulate information in task 74 

relevant manner (Baddeley, 2012). To do achieve the necessary adaptability in WM, the 75 

brain needs to be able to encode multiple variables, including both external sensory 76 

inputs and internal task requirements. The mechanisms that underlie and organize this 77 

encoding across time and population is one of the most important questions in current 78 

WM research.  79 

When humans or animals are required to maintain objects in their WM, neurons in 80 

a network of brain areas exhibit selective and sustained increases or decreases in their 81 

activity in order to represent the remembered objects through these unique patterns of 82 

activity (Constantinidis and Procyk, 2004). The prefrontal cortex (PFC) plays a leading 83 

role in this network, and by extension, in the use of WM (Riley and Constantinidis, 84 

2016). For example, when the PFC is damaged or degraded, whether through trauma, 85 

illness, or experimental lesions, performance in WM tasks seems to decrease dramatically 86 

(Curtis and D'Esposito, 2004; Morris and Baddeley, 1988; Rossi et al., 2007).  87 

PFC neurons often encode more than one variables, and the exact variables 88 

encoded are task dependent (Asaad et al., 2000; Machens et al., 2010; Mansouri et al., 89 

2006; Qi et al., 2015; Warden and Miller, 2010). More interestingly, a proportion of 90 
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neurons exhibit nonlinear mixed selectivity (NMS) for different variables, which means 91 

their response to the combination of variables cannot be predicted by the linear 92 

summation of their responses to single variables (Johnston et al., 2020; Parthasarathy et 93 

al., 2017; Rigotti et al., 2013). Theoretical studies have shown that NMS is useful for 94 

linear readouts of flexible, arbitrary combinations of variables (Buonomano and Maass, 95 

2009; Fusi et al., 2016; Rigotti et al., 2010), and may also control the trade-off between 96 

discrimination and generalization (Barak et al., 2013; Johnston et al., 2020).  97 

Despite the proposed importance of NMS on theoretical grounds, some 98 

experimental studies have failed to detect neurons with NMS (Cavanagh et al., 2018). It 99 

is therefore possible that NMS is a property of only a limited set of prefrontal 100 

subdivisions or that NMS emerges exclusively after training to perform specific types of 101 

cognitive tasks. Moreover, the implications of NMS on other aspects of encoding, such as 102 

code stability, have also not yet been investigated. We were therefore motivated in the 103 

current study, to analyze and compare neural data recorded when rhesus macaque 104 

monkeys were performing different visual working memory tasks. We report that NMS 105 

can be changed by training experience and task context and that NMS cells differ in 106 

coding dynamics comparing to linear cells. However, the average amount of linear 107 

decodable information is similar for single neurons in both populations.  108 
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METHODS 109 

 110 

Animals: Six male rhesus monkeys (Macaca mulatta), age 5–9 years old, weighing 5–12 111 

kg were used in these experiments. None of the animals had any prior experimentation 112 

experience at the onset of the experiments. Monkeys were either single-housed or pair-113 

housed in communal rooms with sensory interactions with other monkeys. All 114 

experimental procedures followed guidelines by the U.S. Public Health Service Policy on 115 

Humane Care and Use of Laboratory Animals and the National Research Council’s 116 

Guide for the Care and Use of Laboratory Animals and were reviewed and approved by 117 

the Wake Forest University Institutional Animal Care and Use Committee.  118 

 119 

Experimental setup: Monkeys sat with their head fixed in a primate chair while viewing a 120 

monitor positioned 68 cm away from their eyes with dim ambient illumination. Animals 121 

were required to fixate on a 0.2° white square appearing in the center of the screen. 122 

During each trial, animals maintained fixation on the square while visual stimuli were 123 

presented either at a peripheral location or over the fovea in order to receive a liquid 124 

reward. Any break of fixation immediately terminated the trial and no reward was given. 125 

Eye position was monitored throughout the trial using a non-invasive, infrared eye 126 

position scanning system (model RK-716; ISCAN, Burlington, MA). The system 127 

achieved a < 0.3° resolution around the center of vision. Eye position was sampled at 240 128 

Hz, digitized and recorded. Visual stimuli display, monitoring of eye position, and the 129 

synchronization of stimuli with neurophysiological data were performed with in-house 130 
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software55 implemented on the MATLAB environment (Mathworks, Natick, MA), and 131 

utilizing the psycho-physics toolbox.  132 

 133 

Pre-training presentation: Following a brief period of fixation training and acclimation to 134 

the stimuli, monkeys were required to fixate on a center position while stimuli were 135 

displayed on the screen. The monkeys were rewarded for maintaining fixation during the 136 

trial with a liquid reward (fruit juice). The stimuli shown were white 2° square stimulus 137 

presented in one of nine possible locations arranged in a 3 × 3 grid of 10° distance 138 

between adjacent stimuli. The same stimuli were shown following training in a working 139 

memory tasking during the “post- training” phase. A fixation interval of 1 s where only 140 

the fixation point was displayed was followed by 500 ms of stimulus presentation, 141 

followed by a 1.5 s “delay” interval where, again, only the fixation point was displayed. 142 

A second stimulus was subsequently shown, either identical in location to the initial 143 

stimulus, or diametrically opposite the first stimulus. This second stimulus display was 144 

followed by another “delay” period of 1.5 s. The location and identity of stimuli in these 145 

experiments was of no behavioral relevance to the monkeys during the “pre- training” 146 

phase. In a few sessions, a variable delay period was used. Neurons recorded in these 147 

sessions appear in most analyses, though they are excluded from analyses that assume a 148 

fixed delay period.   149 

 150 

Working memory task: Four of the six monkeys were trained to complete spatial working 151 

memory tasks. The task used in most experiments required the monkeys to remember the 152 

spatial location of the first stimulus shown, observe a second stimulus, and report 153 
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whether the second stimulus was shown in the same location as the first stimulus or if it 154 

was in the diametrically opposite location via saccading to one of two target stimuli. For 155 

two of the monkeys, a match would mean a saccade to the green square stimulus while a 156 

nonmatch would mean a saccade to a blue square stimulus. Targets for the remaining 157 

monkey were an “H” and a diamond shape for match condition/nonmatch condition, 158 

respectively. Each target stimulus appeared at locations orthogonal to the cue/sample 159 

stimuli while the target feature locations were varied randomly from trial-to-trial. One of 160 

the four monkeys was trained in a different spatial task, a variant of the delayed response 161 

task. Its structure was identical to the first five epochs of the match/ nonmatch task except 162 

that the second stimulus always appeared in the same location as the first stimulus. After 163 

the end of the second delay period, the animal then had to saccade to the location where 164 

the stimulus was located. Neurons recorded from this animal are excluded from the 165 

match/nonmatch analysis.  166 

 167 

Surgery and neurophysiology: A 20 mm diameter craniotomy was performed over the 168 

PFC and a recording cylinder was implanted over the site. The location of the cylinder 169 

was visualized with anatomical MRI imaging and stereotaxic coordinates post-surgery. 170 

For two of the four monkeys in the post-training phase (sub- jects MA and EL), the 171 

recording cylinder was moved after an initial round of recordings so that an additional 172 

surface of the prefrontal cortex could be sampled.  173 

 174 

Anatomical localization. Each monkey underwent a magnetic resonance imaging scan 175 

prior to neurophysiological recordings. Electrode penetrations were mapped onto the 176 
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cortical surface. We identified 6 lateral prefrontal regions: a posterior- dorsal region 177 

including area 8 A, a mid-dorsal region including area 8B and area 9/ 46, an anterior-178 

dorsal region including area 9 and area 46, a posterior-ventral region including area 45, 179 

an anterior-ventral region including area 47/12, and a frontopolar region including area 180 

10. However, the frontopolar region was not sampled sufficiently for this analysis. 181 

In addition to comparisons between areas segmented in this fashion, other analyses were 182 

performed taking into account the position of each neuron along the AP axis. This was 183 

defined as the line connecting the genu of the arcuate sulcus to the frontal pole, for the 184 

purposes of this analysis. The recording coordinates of each neuron were projected onto 185 

this line and position was expressed as a proportion of the length of this line.  186 

 187 

Neuronal recordings: Neural recordings were carried out in areas 8, 9, 9/46, 45, 46, and 188 

47/12 of the PFC prior to training and following training in a spatial working memory 189 

task. Subsets of the data presented here were previously used to determine the properties 190 

of neurons in the dorsal and ventral prefrontal cortex pooled together, and properties of 191 

neurons prior to training. Newly acquired data were added here, to determine differences 192 

before and after training in posterior-dorsal, mid-dorsal, anterior-dorsal, posterior-ventral, 193 

and anterior-ventral prefrontal subdivisions. Extracellular recordings were performed 194 

with multiple microelectrodes. These were either glass- or epoxylite-coated tungsten 195 

electrodes with a 250 μm diameter and 1–4 MΩ impedance at 1 kHz (Alpha-Omega 196 

Engineering, Nazareth, Israel). Arrays of up to 8-microelectrodes spaced 0.2–1.5 mm 197 

apart were advanced into the cortex with a Microdrive system (EPS drive, Alpha- Omega 198 

Engineering) through the dura into the prefrontal cortex. The signal from each electrode 199 
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was amplified and band-pass filtered between 500 Hz and 8 kHz while being recorded 200 

with a modular data acquisition system (APM system, FHC, Bowdoin, ME). Waveforms 201 

that exceeded a user-defined threshold were sampled at 25 μs resolution, digitized, and 202 

stored for off-line analysis. Neurons were sampled in an unbiased fashion, collecting data 203 

from all units isolated from our electrodes, with no regard to response properties of a 204 

neuron being isolated. Recorded spike waveforms were sorted into separate units using 205 

an automated cluster analysis relying on the KlustaKwik algorithm, which applied 206 

principal component analysis of the waveforms. To ensure the stability of firing rate in 207 

the recordings analyzed, we identified recordings in which a significant effect of trial 208 

sequence was evident on the baseline firing rate (ANOVA, p < 0.05), e.g., due to a 209 

neuron dis- appearing or appearing during a run, as we were collecting data from multiple 210 

electrodes. Data from these sessions were truncated so that analysis was only performed 211 

on a range of trials with stable firing rate. Less than 10% of neuronal records were 212 

corrected in this way.  213 

Identical data collection procedures, recording equipment, and spike sorting 214 

algorithms were used before and after training, to ensure that any changes reported 215 

between stages were not due to these factors. To also ensure that changes in neuronal 216 

firing properties were not the result of systematic differences in the inherent properties of 217 

neurons sampled, we compared the Signal-to-Noise Ratio (SNR) of neuronal recordings 218 

before and after training10. For each unit, we defined SNR as the ratio of the peak-to-219 

trough height of its mean action potential waveform, divided by the standard deviation of 220 

the noise. The latter was computed from the baseline of each waveform, derived from the 221 

first 10 data points (corresponding to 0.25 ms) of each sample. SNR provides an overall 222 
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measure of unit isolation quality10. We used this measure to identify neurons with 223 

excellent isolation, defined based on SNR > 5.  224 

 225 

Data analysis: Data analysis was implemented with the MATLAB computational 226 

environment (Mathworks, Natick, MA), with statistic tests implemented through 227 

Originlab (OriginLab Corporation, Northampton, MA) and StatsDirect (StatsDirect Ltd. 228 

England). PSTHs were calculated by moving window average method with a Gaussian 229 

window with 200 ms standard deviation, shaded area indicating two times standard error 230 

cross trials. For all tasks, only cells with at least 12 correct trials for each cue-sample 231 

location/shape pairs were included in the analysis. To classify neurons of the spatial task 232 

into different categories of selectivity, we performed two-way ANOVAs on the spike 233 

count between either the sample location x matching status in for the trial, or between 234 

sample location x task epoch (first or second stimuli presentation). Neurons with classic 235 

selectivity (CS) exhibited a main effect of only one factor without significant interaction 236 

term. Neurons with linear mixed selectivity (LMS) exhibited main effects of both factors 237 

without significant interaction term. Neurons with nonlinear mixed selectivity (NMS) 238 

exhibited a significant interactions term. Finally, neurons with no selectivity (NS) 239 

exhibited no significant term for both the main effects and the interaction term. Similarly, 240 

the two factors for feature task ANOVA analysis were sample shape x matching status 241 

for the trial.  242 

PFC areas with more than 50 cells in both pre- and post-training time points were 243 

included in the subdivision mixed selectivity analysis. Thus, for the feature task, only 244 

data from mid-dorsal, posterior-dorsal and posterior-ventral PFC were analyzed, while 245 
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the spatial task analyzed data from the mid-dorsal, posterior-dorsal, posterior-ventral, 246 

anterior-dorsal and anterior-ventral PFC.  247 

For comparing mixed selectivity in feature and conjunction tasks, conjunction 248 

trials in which cue and sample stimuli both showed in the same location as in the feature 249 

task were picked as the dataset for conjunction task, then in the feature task same number 250 

of trials using the same shapes were picked as corresponding feature task dataset. 251 

Moreover, comparing mixed selectivity in success and error trials, we only utilized 252 

neurons that had at least 4 usable error trials across at least two cue-sample locations 253 

pairs, in order to avoid anomalous data. The same number of trials from the 254 

corresponding cue-sample locations pairs were then randomly chosen in the success trials 255 

as the dataset for the correct behavioral response condition. This randomized success trial 256 

selection process was repeated for 50 times, in order to allow us to compensate for our 257 

relatively limited selection of available trials. 258 

For decoding analysis, spiking responses from 1 second before cue onset to 5 259 

seconds after cue onset were first binned using a 400 wide window and 100 ms steps to 260 

create a spike count vector with a length of 57 elements. A pseudo-population was then 261 

constructed using the spike count vectors from all the available neurons of all the 262 

available animals, thus resulting in a dataset with 96 trials, as if they were recorded 263 

simultaneously. A linear SVM decoding algorithm was implemented using fitcecoc 264 

function in MATLAB to decode stimuli location, shape, or matching status of trials. 10-265 

fold cross validation was used to estimate the decoder performance, 10 random samplings 266 

were implemented to calculate 95% confidence interval. For location and feature task, the 267 

decoding baseline for sensor information was 12.5%, since there are 8 different choices. 268 
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For conjunction dataset decoding analysis, neurons were treated as if the same shape and 269 

location pairs were used for every neuron. For the conjunction task, the decoding chance 270 

level is 50% for location and feature.  271 

In the pre- vs post-training decoding analysis (Fig. 6), linear (CS and LMS) and 272 

nonlinear (NMS) neurons are first defined by their pre and post training responses in the 273 

sample or sample delay period. Each classified population was then applied to decode 274 

sensory information (location and shape) and matching status. All informative neurons 275 

(CS, LMS, and NMS neurons) in both the sample and sample delay periods were used for 276 

the cross temporal decoding analysis (Fig. 7). The SVM decoder was trained on the 277 

conjunction dataset and got 57 linear decision boundaries for each time points. The same 278 

dataset was then classified by every decision boundary in the vector to produce a 57x57 279 

matrix—a process that was repeated for 10 times in order to plot the mean. For passive-280 

active cross task decoding analysis (Fig. 4C), only neurons that showed nonlinear mixed 281 

selectivity during sample period of both tasks were used. The SVM decoder was trained 282 

on the passive dataset, then tested on the active spatial dataset—a process that was 283 

repeated 10 times to produce a 95 percent interval. 284 

Data availability: All relevant data and code will be available from the 285 

corresponding author on reasonable request. Matlab decoder code for figure 6 and 7 are 286 

also available at https://github.com/dwhzlh87/mixed-selectivity.git  287 
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RESULTS 288 

 289 

Extracellular neurophysiological recordings were collected from the lateral prefrontal 290 

cortex (LPFC) of six monkeys before and after they were trained to perform a 291 

match/nonmatch task (Meyer et al., 2011; Riley et al., 2018). The task required them to 292 

view two stimuli appearing in sequence, with delay periods intervening between them 293 

and to make a judgement on whether the second stimulus was identical to the first or not 294 

(Fig. 1). The two stimuli could differ in terms of their location (spatial task), shape 295 

(feature task), or both (conjunction task). If the second stimulus matched the first, the 296 

monkey had to choose a green choice target, at a subsequent interval, or a blue target 297 

otherwise. A total of 1617 cells from six monkeys and 1495 cells from five monkeys 298 

were recorded while the animals were performing passive spatial and passive feature 299 

tasks respectively pre-training (Fig. 1A) and 1104 cells from three and 1116 cells from 300 

two of the same six animals were collected from post-training time points performing 301 

spatial and feature match-to-sample task respectively (Fig. 1B-C). Additionally, 975 cells 302 

from two of the same six animals were collected while the monkey performing the 303 

conjunction task post-training (Fig. 1D). Besides, we also collected neural data from 247 304 

neurons for the passive spatial task (Fig. 1A) from two monkeys after they were trained 305 

for the active spatial task.  306 

 307 

Types of selectivity in individual neuronal responses 308 

In our tasks, the exact same stimulus has a different context depending on the task 309 

interval during which it is presented and the sequence of stimuli in the trial. We first 310 
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considered how selectivity for stimulus location in the spatial working memory task (Fig. 311 

1B) varies when the same stimulus appears as a match (it is preceded by a cue at the same 312 

location) or a nonmatch (it is preceded by a cue at a different location). We thus 313 

examined firing rate during the second stimulus (sample) presentation as a function of the 314 

location the stimulus appeared (eight locations arranged on a 3x3 grid with 10 degrees 315 

distance between stimuli, excluding the center location) and on whether this stimulus was 316 

a match or a nonmatch. We used a 2-way ANOVA with factors stimulus location and 317 

match/nonmatch status to classify neurons into four categories: classical selective (CS) 318 

were the neurons that exhibited a significant main effect of stimulus location, but not 319 

match/nonmatch status i.e. they were selective for the location of stimuli and did not 320 

respond differently when the stimulus appeared as a match or nonmatch. Linear mixed 321 

selective (LMS) were the neurons with a significant main effect of location and a 322 

significant main effect of match/nonmatch status but no significant interaction, i.e. 323 

neurons whose selectivity for stimuli remained the same for the match and nonmatch 324 

conditions, but the overall level of response was higher when a stimulus appeared either 325 

as a match or nonmatch. Non-linear mixed selective (NMS) neurons were the neurons 326 

with significant main effect of location and a significant interaction i.e. neurons whose 327 

spatial selectivity differed for the match and nonmatch conditions. Finally, non-selective 328 

(NS) were the neurons with no location selectivity. We repeated the identical analysis 329 

based on firing rates in the delay period that followed the second stimulus presentation 330 

(sample delay). 331 

 A second type of NMS was identified in terms of selectivity for a stimulus when 332 

it appeared as the first stimulus in the sequence (cue) or the second (sample). For this 333 
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analysis, we only examined sample stimuli that matched the cue. In this case too, we set 334 

up a 2-way ANOVA model, and identified CS, LMS, NMS, and NS neurons now in 335 

terms of how the represented the exact same stimulus when it appeared as a cue and as a 336 

sample (match) stimulus.  337 

 338 

Effects of training on NMS 339 

Training in the spatial working memory task increased the proportion of NMS cells in 340 

both the sample and sample-delay period (sample period: pre-training proportion=6.2%, 341 

post-training proportion=12.3%, two-sample proportion test, z=5.31, p=1.13×10-7; 342 

sample delay period: pre-training proportion= 2.8%, post-training proportion=6.2%, two-343 

sample proportion test, z=4.62, p=4.86×10-5). However this increase was not exclusive to 344 

NMS cells. The proportion of CS cells also increased in the sample-delay period (sample 345 

period: pre-training proportion=17.1%, post-training proportion=15.0%, two-sample 346 

proportion test, z=1.47, p=0.142; sample-delay period: pre-training proportion= 10.58%, 347 

post-training proportion=14.8%, two-sample proportion test, z=3.19, p=0.0014). Nor was 348 

the increase in NMS cells evident for all types of training. When we looked at the 349 

proportion change for feature task between post- and pre-training, we only found an 350 

increase of proportion for CS cells (sample period: pre-training proportion= 12.0%, post-351 

training proportion=15.7%, two-sample proportion test, z=2.65, p=0.0081; sample-delay 352 

period: pre-training proportion= 9.0%, post-training proportion=22.6%, two-sample 353 

proportion test, z=9.37, p=0). No significant increase in the proportion of NMS cells was 354 

observed (sample period: pre-training proportion=5.8%, post-training proportion=6.7%, 355 

two-sample proportion test, z=1.01, p=0.314; sample-delay period: pre-training 356 
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proportion= 4.2%, post-training proportion=4.6%, two-sample proportion test, z=0.522, 357 

p=0.602) (Fig. 2B,C).  358 

 Generally the same results held when we used task epoch (cue vs. match) as the 359 

second independent variable for the two-way ANOVA (Fig. 2D,E). For the spatial task, 360 

training increased proportion of both NMS (sample period: pre-training proportion= 361 

4.1%, post-training proportion=7.3%, two-sample proportion test, z=3.36, p=7.89×10-4; 362 

sample-delay period: pre-training proportion= 3.0%, post-training proportion=9.5%, two-363 

sample proportion test, z=6.69, p=2.30×10-11) and CS (sample period: pre-training 364 

proportion= 27.4%, post-training proportion=33.2%, two-sample proportion test, z=3.20, 365 

p=0.0014; sample-delay period: pre-training proportion= 30.0%, post-training 366 

proportion=37.9%, two-sample proportion test, z=4.25, p=2.15×10-5), but for the feature 367 

task, only the proportion of CS cells changed (sample period: pre-training proportion= 368 

22.5%, post-training proportion=34.1%, two-sample proportion test, z=6.49, p=0.0014; 369 

sample-delay period: pre-training proportion= 25%, post-training proportion=36.4%, 370 

two-sample proportion test, z=4.25, p=8.39×10-11. NMS cells sample period: pre-training 371 

proportion= 9.8%, post-training proportion=9.4%, two-sample proportion test, z=0.364, 372 

p=0.716;  NMS cells sample-delay period: pre-training proportion= 7.4%, post-training 373 

proportion=7.6%, two-sample proportion test, z=0.184, p=0.854). 374 

 375 

Regional localization of NMS 376 

It is possible that neurons with NMS are localized in some sub-regions of the prefrontal 377 

cortex. To figure out what portion of the LPFC contributed to the observed mixed 378 

selectivity changes, we subdivided the lateral PFC intro regions (Fig. 3A), and analyzed 379 
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neurophysiological data from five of these regions. Only subregions with more than 50 380 

cells in both pre- and post-training conditions were included in the comparison. We 381 

looked at the mixed selectivity defined by location/shape and matching status in the 382 

sample period. It was found that the mid-dorsal subdivision underwent the most change 383 

in the proportion of NMS cells for the spatial task after training (Fig. 3B). For the feature 384 

task, the most apparent change in NMS happened in the posterior-dorsal region, while a 385 

small increase in classic and linear mix selectivity could be found in all three 386 

subdivisions tested (Fig. 3C).  387 

 388 

NMS in task context 389 

The comparison of the naïve and trained conditions allowed us to test the overall 390 

incidence of NMS in different populations of prefrontal neurons, sampled randomly 391 

before and after training, which lasted over several months. If nonlinear mixed selectivity 392 

is critical for the representation of task-relevant information one might expect that it may 393 

also dynamically change in the same neurons, when animals are performing the task vs. 394 

they are passively viewing stimuli. Our dataset included a condition where this 395 

comparison was possible: passive presentation of stimuli to monkeys after they had been 396 

trained to perform the tasks. We thus performed a two-way ANOVA on collected 397 

neurons from which we recorded responses in both passive and active spatial tasks. 398 

Although we found there was an increase in the proportion of cells that coded 399 

matching status during the sample period, as well as more cells coding sensory 400 

information in the cue-delay when the animal need to report the matching decision, the 401 

increase in the proportion of NMS cells is not significant (passive proportion= 9.3%, 402 
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active proportion=11.7%, exact matched pair proportion test, F=1.385, p=0.362) (Fig. 4 403 

A). Interestingly, a large proportion of cells changed their selectivity category across 404 

tasks, especially for CS cells. Also it was found that the degree of nonlinear mixed 405 

selectivity in NMS cells does not seem to be predictive of whether the cell will fall in the 406 

same selectivity category in both tasks (Fig. 4B).  407 

Other than the stability on the cell ensemble level, we also wondered if the 408 

encoding code is stable in cells that are informative in both tasks. To do that, we trained 409 

SVM classifier in the passive task and tested in the active spatial task, if the code is stable 410 

cross tasks, the decoding performance will be close. The cross-task decoding analysis 411 

using the same cells showed that the encoding of the sensory information was more stable 412 

across tasks, comparing to that of matching information (Fig. 4C). This indicates at least, 413 

some cells dynamically change their coding variable, or start to code multiple variables 414 

when the task at hand require to do so, while most cells keep the same code for the same 415 

requirement cross tasks. 416 

We were able to address the effect of task context on NMS observed in the same 417 

cells, in a second data set. We compared responses to identical stimuli when they 418 

appeared in the context of the conjunction task, which required maintenance in memory 419 

of both the spatial location and feature of stimuli, and when they appeared in the context 420 

of the feature task, when only the feature needed to be remembered (all stimuli always 421 

appeared at the same location). Responses from the same cells could then be compared in 422 

two conditions, and the same number of trials and same stimuli location pairs were 423 

chosen in two conditions to make a fair comparison. We did not find any significant 424 

differences for neither CS cells ( feature task proportion= 11.9%, conjunction task 425 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 2, 2020. ; https://doi.org/10.1101/2020.08.02.233247doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.02.233247
http://creativecommons.org/licenses/by-nc-nd/4.0/


20 
 

proportion=9.9%, exact matched pair proportion test ,F=1.229, p=0.197)  nor NMS cells 426 

(feature task proportion= 4.1%, conjunction task proportion=4.4%, exact matched pair 427 

proportion test ,F=1.031, p=0.901) in the sample period. Similarly for the sample-delay 428 

period, we still did not found significant proportion change for neither CS cells (feature 429 

task proportion= 10.8%, conjunction task proportion=11.6%, exact matched pair 430 

proportion test ,F=1.069, p=0.681)  nor NMS cells (feature task proportion= 4.6%, 431 

conjunction task proportion=5.9%, exact matched pair proportion test ,F=1.278, p=0.266) 432 

(Fig. 5A). Like the case of passive-active comparison, we found an unstable mapping 433 

between tasks in the selectivity categories, for both CS and NMS cells (Fig. 5B), but this 434 

may just reflect the fact that most of the informative cells we found are just by chance 435 

(p=0.05 was used as threshold for detecting significant terms). In contrast to passive-436 

active spatial dataset, in the current dataset the degree of nonlinear mixed selectivity 437 

presented for NMS cells in one task could predict whether the cell would exhibit NMS in 438 

the other task (Fig. 5C). 439 

 440 

Information encoding by NMS neurons 441 

To quantify the amount of task variable information contained in linear (CS and LMS) 442 

and nonlinear mixed (NMS) cells, we used a linear Support Vector Machine (SVM) 443 

decoder to decode sensory information (location and shape) and match/or nonmatch 444 

status information. We performed this comparison on firing rates recorded in the sample 445 

and sample-delay period. For each comparison, we picked randomly equal numbers of 446 

linear and nonlinear cells in the respective task epoch. Pre- and post-training time points 447 

were also plotted side by side to be compared (Fig. 6). As expected, decoding 448 
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performance for matching information increased above chance level only after the sample 449 

had been presented, in the sample and sample-delay period. Some non-chance 450 

performance could be detected before training, but performance rose well above chance 451 

after training, for both CS and NMS cells. Compared to the shape information, the 452 

location information was already well-represented before training.  453 

In general, linear and non-linear cells contained near equal amount of linear 454 

decodable information about external sensory information as well as task-related 455 

variables, though CS appeared slightly more important for shape feature encoding in the 456 

sample period, while NMS appeared more important in the spatial task in the sample-457 

delay period. Cross temporal decoding approach was utilized to probe the encoding 458 

dynamics for CS and NMS cells in the conjunction task (Fig. 7), the analysis showed that 459 

NMS cells are more dynamic compare to CS cells in the sample-delay period for 460 

location, indicated by the worse performance off the diagonal in the cross-temporal 461 

decoding performance matrix. We also found that even the location matching alone was 462 

not enough to solve the conjunction task, location matching information was still 463 

maintained in the sample and sample-delay period. That was not true for feature matching 464 

information, despite the fact that a subset of neurons could reach near-perfect decoding 465 

performance in feature matching task (Fig. 6). 466 

 467 

NMS in correct and error trials 468 

The presence of decodable information in the prefrontal cortex does not necessarily imply 469 

the presence of information in the conscious mind. We thus compared mixed selectivity 470 

in correct and error trials. Limited to a small number of error trials, we only analyzed the 471 
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trials in which the sample stimuli was a match to the cue. We used location and task 472 

epoch as two independent variables for this ANOVA analysis. The number of trials and 473 

the number of cue locations included was also matched for each cell. We found that the 474 

proportion of cells selective to stimuli locations are higher in error trials (sample period: 475 

correct trials proportion= 8.8%, error trials proportion=17.0%, two-sample t test, 476 

t(98)=45.74, p=6.38×10-68;  sample-delay period: correct trials proportion= 9.6%, error 477 

trials proportion=15.4%, two-sample t test, t(98)=0.364, p=2.87×10-53), indicating that 478 

individual neurons are more broadly responding to different locations. To our surprise, 479 

we did not find a change in nonlinear mixed selectivity (sample period: correct trials 480 

proportion= 4.7%, error trials proportion=4.9%, two-sample t test, t(98)=1.13, p=0.262;  481 

sample-delay period: correct trials proportion= 2.8%, error trials proportion=2.3%, two-482 

sample t test, t(98)=3.82, p=2.33×10-4), but that may be due to lack of trials to detect 483 

interaction. In both correct and error trials the proportion of interaction term is very low, 484 

despite the fact that in the full spatial matching dataset the proportion of interaction term 485 

is above chance (Fig. 2). 486 

  487 
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DISCUSSION 488 

 489 

Selectivity for different types of information is critical in representing the multitude of 490 

information that can be maintained in WM. However, recent research suggests that the 491 

role of neural selectivity may extend far beyond merely serving as a medium for 492 

representation in WM, and the increased dimensionality in NMS has been highlighted as 493 

a potential means of increasing the efficiency of WM task performance (Johnston et al., 494 

2020; Rigotti et al., 2013; Shaoyu et al., 2016). Specifically, Rigotti et al. correlated 495 

dimensional collapse with failed task performance, noting that the increased 496 

dimensionality of NMS could lead to greater efficiency in information storage, as well as 497 

greater flexibility in adapting to execute new tasks (Rigotti et al., 2013). Moreover, all 498 

task relevant information could be decoded from NMS neurons alone, despite their 499 

relative scarcity, with decoder accuracy actually increasing as the task became more 500 

complex (Rigotti et al., 2013). This implies that NMS may play a role in the successful 501 

performance of complex tasks.  502 

A causal relationship between success and dimensionality—and by extension, 503 

NMS—was not supported by our results, as we did not observe any significant changes in 504 

NMS between error and success trials. Nevertheless, training still resulted in a slight 505 

increase in NMS, just as we have previously observed in CS, with NMS increasing in 506 

spatial tasks, just as CS increased in feature tasks. These insights seem to imply that 507 

NMS plays a key role in spatial WM, and further investigation is therefore encouraged to 508 

further elaborate upon the role of this phenomenon.  509 

 510 
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Effects of training on neural responses 511 

Working memory is considerably plastic and at least some aspects of it, such as mental 512 

processing speed and the ability to multitask, can be improved with training (Bherer et 513 

al., 2008; Dux et al., 2009; Jaeggi et al., 2008; Klingberg et al., 2005; Klingberg et al., 514 

2002). Working memory training has been proven particularly beneficial for clinical 515 

populations, e.g. in traumatic brain injury, attention deficit hyperactivity disorder 516 

(ADHD), and schizophrenia (Klingberg et al., 2002; Subramaniam et al., 2012; 517 

Westerberg et al., 2007). However, the verdict of whether working memory training 518 

confers tangible benefits on normal adults and whether these benefits transfer to 519 

untrained domains, remains a matter of heated debate. (Constantinidis and Klingberg, 520 

2016; Cortese et al., 2015; Fukuda et al., 2010; Owen et al., 2010; Peijnenborgh et al., 521 

2015; Schwaighofer et al., 2015).  522 

This malleability of cognitive performance is thought to be mediated by the 523 

underlying plasticity in neural responses, most importantly within the prefrontal cortex 524 

(Constantinidis and Klingberg, 2016). In a series of prior studies, we have investigated 525 

changes in prefrontal responsiveness and selectivity (Meyer et al., 2011; Meyers et al., 526 

2012; Qi et al., 2011; Riley et al., 2018), as well as other aspects of neuronal discharges 527 

such as trial-to-trial variability and correlation between neurons (Qi and Constantinidis, 528 

2012a, b). In the present analysis, guided by experimental and theoretical predictions 529 

(Rigotti et al., 2013), we examined another potential source of enhanced ability to 530 

represent working memory information after training, Nonlinear Mixed Selectivity.  531 

In agreement with our hypothesis, we found that training increased the proportion 532 

of neurons that exhibit NMS. However, we encountered neurons with NMS even in 533 
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animals that were naïve to any cognitive training. It is now well established that the 534 

human and primate prefrontal cortex represent stimuli in memory if when not prompted 535 

to do so (Foster et al., 2017) or even prior to training in working memory tasks (Meyer et 536 

al., 2007). Our finding of NMS neurons in naïve monkeys provides another exemplar of 537 

that principle, and future experiments should consider investigation NMS as a possible 538 

mechanism through which this principle is implemented. Additionally, we determined 539 

that the training-induced increase in neuronal selectivity was generalized across 540 

categories of neurons, including neurons with Classical Selectivity which were much 541 

more abundant in the trained than the naïve prefrontal cortex. Finally, NMS increased 542 

only for some types of task information and not for others. The increase in feature 543 

selectivity after training was driven almost exclusively by CS cells. This results suggest 544 

that NMS may play a role in the simultaneous representation of multiple types of 545 

information in memory, however this is not universal across tasks, in agreement with 546 

some prior studies, which have failed to uncover substantial NMS in the tasks they 547 

employed (Cavanagh et al., 2018). 548 

 549 

Task Complexity and Difficulty  550 

A possible factor that determines the emergence of NMS is task complexity. In principle, 551 

NMS may be only necessary in highly complex tasks, that require subjects to maintain in 552 

memory and combine multiple types of information, particularly if the primary role of 553 

NMS is to simplify the involved neural circuits, thus achieving greater efficiency, as 554 

originally suggested (Rigotti et al., 2013). Our dataset relied on three tasks which differed 555 

in complexity (and overall difficulty) and thus allowed us to test the idea. The spatial and 556 
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feature tasks each required maintenance of a single stimulus property in memory 557 

(location or shape). The conjunction task required both.  558 

Surprising however, we did not observe a higher incidence of NMS in the 559 

conjunction task when compared to the feature task. Moreover, we observed a much 560 

lower incidence of NMS in the feature than the spatial task although the latter was no 561 

more complex, and the monkeys achieved higher overall performance. This implies that 562 

NMS may ultimately be a spatially centered phenomenon.  563 

 564 

Regional Specialization  565 

Different types of information are represented across the dorso-ventral and anterior-566 

posterior axes of the prefrontal cortex (Constantinidis and Qi, 2018), and it was therefore 567 

important to examine the regional distribution of NMS neurons within the prefrontal 568 

cortex. We saw that NMS cells were most strongly demonstrated in the mid dorsal area 569 

for the spatial task and the posterior dorsal area for the feature task. This pattern was 570 

generally consistent with the known distribution of neuronal selectivity for stimuli in the 571 

prefrontal cortex (Riley et al., 2018).  572 

 573 

Information Content and Task Performance 574 

The most critical hypotheses of the Mixed Selectivity theory are that NMS represent 575 

information more efficiently and that it is critical for performance. We relied on a linear 576 

SVM decoder to determine specifically what information could be represented by NMS 577 

cells, compared to CS cells. Similar quantity of information could be decoded from 578 
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(equal-sized) populations of CS and NMS neurons. We only saw a minor preference for 579 

spatial information in NMS cells, and for feature information in CS cells.  580 

Similarly, when we compared the NMS levels of successful and failed task trials, 581 

we were surprised to find that there was no significant difference. This means that 582 

although equal information may be stored in NMS neurons, the information is not 583 

necessarily accessible to the conscious mind. An important caveat for this conclusion is 584 

that we based our analysis on the feature task for which sufficient number of neurons and 585 

error trials per neuron were available (the spatial task was too easy for the animals, and 586 

not enough neurons were available in the conjunction task). Since very little NMS was 587 

present in the feature task in correct trials, a floor effect may have prevented a further 588 

decline from becoming apparent. Nonetheless, our result reinforces the idea that NMS is 589 

not necessary in all tasks, without which performance fails. An interesting observation in 590 

this analysis was that spatial location was elevated in error trials. The result may imply 591 

that task success also depends on the task relevance of the represented information. 592 

Ultimately, by comparing and evaluating the conditions in which significant quantities of 593 

neurons exhibit NMS, we may decipher the true role of NMS in working memory and 594 

beyond.   595 
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FIGURES 596 

 597 

 598 

Figure.1 Task structure for (A) Passive presentation; (B) Spatial location match-to-599 

sample task; (C) Shape feature match-to-sample task; (C) Location-Shape conjunction 600 

task. 601 

  602 
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 603 

 604 

Figure.2 Training increased mixed selectivity preferentially in the spatial task. (A) 605 

Example neurons with classic selectivity (CS), linear mixed selectivity (LMS), and 606 

nonlinear mixed selectivity (NMS). (B) and (C) Training increased non-linear mixed 607 

selectivity, especially for the spatial task, revealed by two-way ANOVA of stimuli 608 

location and match/nonmatch. (D) and (E) Training increased non-linear mixed 609 

selectivity, especially for the spatial task, revealed by two-way ANOVA of stimuli 610 

location and task epoch. 611 

  612 
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 613 

 614 

Figure.3 Cell selectivity changes by brain regions. (A) recording location subdivision in 615 

LPFC. (B) Proportion changes for different selectivity categories in the feature task. (C) 616 

Proportion changes for different categories in the spatial task. 617 

  618 
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 619 

 620 

Figure. 4 Neuron selectivity modulated by task requirements. (A) Comparison of the 621 

proportion of cells with different selectivity in passive vs. active spatial task after 622 

training. The same population was included for the comparison in two conditions. (B) 623 

Informative cells in two tasks are largely nonoverlapping. The degree of mixed 624 

selectivity does not differ in overlapping and nonoverlapping populations of NMS cells. 625 

(C) Within and cross-task decoding for sample location and match/nonmatching using 626 

overlapping NMS population. 627 

  628 
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 629 

 630 

Figure. 5 Neuron selectivity modulated by task context. (A) The proportion of different 631 

selectivity cells in feature and conjunction tasks in the same population of cells, after 632 

controlling for trial number and stimuli pairs used. (B) cell selectivity category mapping 633 

in two tasks. (C) overlapping and nonoverlapping populations differ in degree of 634 

nonlinear mixed selectivity. 635 
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 637 

 638 

Figure.6 Decoding for stimuli and matching status in the linear and nonlinear selective 639 

cell, before and after training. 640 
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 642 

 643 

Figure.7 Cross temporal decoding for different task variables in conjunction task using 644 

linear and nonlinear mixed cells reveals different coding dynamics between linear and 645 

nonlinear populations. 646 
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 648 

 649 

Figure. 8 Comparison of cell selectivity in correct and error trials in the same population 650 

for spatial match to sample task, after controlling for trial number and location pairs used.  651 
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