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Abstract 
One rate-limiting factor in the fight against illegal logging is the lack of powerful, affordable, 
scalable wood identification tools for field screening. Computer vision wood identification using 
smartphones fitted with customized imaging peripherals offer a potential solution but to date, 
such peripherals suffer from one or more weaknesses: low image quality, lack of lighting 
control, uncontrolled magnification, unknown distortion and spherical aberration, and/or no 
access to or publication of the system design. To address cost, optical concerns, and open 
access to designs and parameters, I present the XyloPhone, a 3D printed research quality 
macroscopic imaging attachment adaptable to any smartphone. It provides a fixed focal 
distance, exclusion of ambient light, selection of visible light or UV illumination, uses the lens 
from a commercially available loupe, is powered by a rechargeable external battery, is fully 
open-sourced, and at a price point of less than 110 USD is a highly affordable tool for the 
laboratory or the field, and can serve as the foundational hardware for a scalable field 
deployable computer vision wood identification system. 
 
Introduction 
The need for forensic wood identification to combat illegal logging 
Calls for various forms of scientific timber testing to combat illegal logging and prevent fraud 
are well established in the literature (Johnson and Laestadius 2011; Dormontt et al. 2015; 
Expert Group UNODC 2016; Lowe et al. 2016; Schmitz et al. 2019; Wiedenhoeft et al. 2019; 
Schmitz et al. 2020). Answers to those calls necessarily focus on the underlying biological 
variation inherent in wood itself, and therefore address questions not of paperwork or permits, 
but rather of the botanical identification (“species”), the geographic origin, or individualization 
(log to stump, board to log, etc.) of wood. There are two broad sources of that variation in 
wood that are relevant for scientific timber testing, molecular variation, and structural or 
anatomical variation.  
 
Methods interrogating molecular variation in wood are almost all limited to a laboratory setting 
and for the foreseeable future cannot be expected to have practical field deployability (e.g. 
mass spectrometric methods, DNA barcoding, DNA-based individualization, DNA-based 
population assignment, other chemometric methods such as LIBS, pyrolysis mass spectrometry, 
DART-ToF), but what these methods lack in field relevance, they may provisionally make up for 
in the promise to resolve: species-level identification, identification of geographic origin, and 
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individualization. The one molecular-based technique with a demonstrated potential for field 
deployment is near infrared spectroscopy (Snel et al. 2018). Limits to field deployability of NIRS 
are primarily the comparatively narrow range of taxa for which published models exist (Pastore 
et al. 2011; Bergo et al. 2016; Soares et al. 2017; Silva et al. 2018), and the rather high per-unit 
costs for field equipment (~ at least 10k USD). 
 
Methods making use of the structural variation in wood include human-based wood 
identification using various forms of macroscopy and microscopy in the laboratory (Koch et al. 
2011; Koch et al. 2018; Gasson et al. 2011; He et al. 2020), human-based field identification of 
wood using a loupe (Miller et al. 2002; Miller et al. 2004; Miller et al. 2005; Wiedenhoeft 2011; 
Ruffinatto et al. 2015; Yin et al. 2016; Arévalo et al. 2020; Ruffinatto and Crivellaro 2020), and 
computer vision wood identification which can be implemented in the laboratory or in the field 
(Khalid et al. 2008, Martins et al. 2013; Filho et al. 2014; Figueroa-Mata et al. 2018; Ravindran 
et al 2018; Ravindran et al. 2019; de Andrade et al. 2020; Lopes et al. 2020; Olschofsky and Kohl 
2020; Ravindran and Wiedenhoeft 2020; Souza et al. 2020). Wood anatomy, even with full 
access to reference collections and microscopic modes of evaluation, is rarely accurate to the 
species level when performed by human analysts (Gasson 2011), and field level wood 
identification is typically expected to be less accurate still. Research using machine learning in 
wood identification demonstrates that species-level resolution may be possible based on wood 
anatomy, either by employing machine learning in conjunction with human expertise (Esteban 
et al. 2009; Esteban et al. 2017; He et al. 2020) or by computer vision wood identification 
systems operating on images alone, mostly restricted to the laboratory (Martins et al. 2013; 
Filho et al. 2014; Rosa et al. 2017; Figueroa-Mata et al. 2018; Ravindran et al 2018; Souza et al. 
2020). 
 
Field-deployable computer vision wood identification (CVWID) systems 
Only three potentially field-deployable computer vision wood identification (CVWID) systems 
have been published to date (de Andrade et al. 2020; Lopes et al. 2020; Ravindran et al. 2020), 
with a fourth available commercially but lacking peer reviewed literature explicitly subtending it 
(https://www.xylorix.com). Three of the four systems use images collected from smartphones 
with image quality varying from quite poor, showing obvious and extreme spherical aberration 
(https://www.xylorix.com/wood-directory/), to good (de Andrade et al. 2020), or with image 
quality essentially impossible to evaluate (e.g. Figure 1, Lopes et al. 2020) based on the failure 
to adequately prepare specimen surfaces for imaging wood anatomical features. The fourth 
CVWID system, the XyloTron, requires custom imaging hardware and a laptop (Ravindran et al. 
2020) to conduct real-world, in-field, on-device inference (Ravindran et al. 2019) and is the only 
system to report actual field use and inference in real-time.  
 
Imaging hardware design considerations for field-deployable CVWID systems to combat 
global illegal logging 
In addition to topics covered in the conceptual overview of imaging wood for CVWID 
(Hermanson and Wiedenhoeft 2011), there are three broad factors that inform design and 
implementation imaging hardware for field-deployable CVWID systems: a form factor related to 
necessary operator expertise; cost of the system; and, optical and imaging parameters.  
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Necessary operator expertise and device form factor 
For all the CVWID systems in existence to date, the operator must cut or polish the transverse 
surface of a wood specimen such that the wood anatomical features are exposed. Failure to do 
this well (e.g. Figure 1 in Lopes et al. 2020) could result in spurious results when training a 
model – assuming that a system is purporting to identify the woods based on wood anatomy, if 
the characteristic wood anatomy is not captured in the images no amount of machine learning 
can generalize a model, nor can a model built from good data properly identify an image during 
the inference phase from a specimen prepared in such a way that does not show the anatomy. 
Beyond this manual skill (easily taught to undergraduates in wood identification classes around 
the world and to law enforcement officers when training for field wood identification), operator 
expertise mostly involves orienting the imaging hardware on or near the surface of the wood 
and capturing an in-focus image. Imaging hardware should therefore be easy to position on the 
substrate, should be robust to small bumps or perturbations, should easily establish a focal 
distance, should be small enough to be convenient without being too small and fragile, and for 
phone-based systems should be easy to attach reliably to the phone in the same position each 
time. 
 
Cost of the system 
The XyloTron platform (Ravindran et al. 2020) is able to image and identify both wood and 
charcoal, is field-portable, and costs ~1300 USD to build the XyloScope, and then another 
several hundred USD for a suitable laptop for storage, power, visualization, and inference, but 
remains the de facto gold standard for standardized macroscopic wood imaging. The per-unit 
cost for a XyloTron is approximately 1800 USD, which while quite scalable compared to training 
humans or laboratory-based approaches, but remains impractical for many global contexts 
where its functionality could be valuable. The imaging systems described in Verly Lopes et al. 
(2020, the Ollo Clip, ~60 USD), de Andrade et al. (2020, unspecified lens costing ~3 USD), and 
the Xylorix system (29 USD) are clearly much more affordable and therefore vastly more 
scalable. With these latter systems, a bring-your-own-device model is implied, leveraging the 
comparative ubiquity of smartphones. 
 
Optical and imaging parameters 
Whether concerned with field imaging for real-time identification or collection of reference 
images, optical and image quality metrics should be important factors guiding the design of any 
new system, but to date reports on new systems have not published such details. Ravindran et 
al. (2020) specify the exact camera and lens in the XyloTron and the fixed field of view of each 
image, and de Andrade et al. (2020) specify the camera zoom, image size in pixels, and total 
image field of view in millimeters of their images, whereas Lopes et al. (2020) and Xylorix 
provide no such detail. Given the ubiquity of zoom functionality in smartphone camera apps, 
reporting the actual size of the resultant field of view is a critical factor. It would also be 
valuable to report the optical resolution of a system, the geometric distortion across a 
reference image, and the spherical aberration of the system. Such data facilitate comparisons 
between systems, as well as possibly providing useful information for post-processing images to 
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correct systematic errors and to create effective data augmentation strategies for training 
identification models. 
 
Also important is controlled illumination of the substrate. Of the works cited, only Lopes et al. 
(2020) make no effort to control illumination of the wood surface. The XyloTron (Ravindran et 
al. 2020) and the work by de Andrade et al. (2020) both exclude ambient light and provide 
controlled illumination, and the Xylorix system has a rechargeable LED lighting array to provide 
light, but the translucent hood between the lens and the specimen could permit the entrance 
of ambient light into the system. Additionally, the XyloTron is the only system to allow a user to 
select either visible light or UV illumination of the substrate. UV illumination permits the 
detection of wood surface fluorescence and can be useful for discriminating between woods 
with similar wood anatomy under visible light. 
 
These factors are important not only as basic system parameters, but because depending on 
the image-based machine learning strategies employed to develop classification models, if 
distortion is present in an image, features of a given size in the center of the image will appear 
larger or smaller in the corners. With spherical aberration of sufficient severity, features with 
fine spatial scale will cease to be observable at the margins or corners of the images. Systematic 
error of these types endemic to a foundational data set could limit the accuracy or robustness 
of CVWID models developed from such data, depending on how such models are constructed. 
 
For example, prior work in my laboratory (Ravindran et al. 2018; Ravindran et al. 2019; 
Ravindran et al. 2020; Ravindran and Wiedenhoeft 2020) uses multiple image patches from 
across the parent image to train classification models. If hardware-induced systematic error is 
present across the images at a scale or severity equal to or greater than the magnitude of 
image augmentation measures taken to control for such error, the resulting models could be 
less accurate, less robust, or even spurious. The garbage-in, garbage out (GIGO) rule of 
computer science can be one step more insidious in CVWID – garbage in, fiction out (GIFO), for 
example, CVWID models that claim species level accuracy over 98% in large models with many 
taxa that are considered inseparable by light microscopy, or models where the anatomical 
features were not observable in the parent images. GIFO is dangerous because the fiction-out 
might seem believable, even when too good to be true. The only way to ensure that in silico 
models have any appreciable real-world relevance (whether CVWID or other modalities) is 
through field testing that verifies the results forensically. Though it should go without saying, 
perhaps it needs to be said – collecting high-quality images is better than collecting low-quality 
images. It is trivial to add noise, distort, blur, or otherwise post-process high-quality parent 
images, but the reverse is not true. 
 
Access to the system parameters 
A final factor when considering imaging hardware for a CVWID system is the relative access that 
a user will have to the details of the system itself. Open source systems (such as the XyloTron) 
allow end users to adapt the hardware for their specific use-cases as needed, whereas closed or 
commercial systems do not offer such access. Lack of access in this way forces a user to accept 
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all design constraints whether or not they serve well for a specific use-case, which may reduce 
or constrain the utility of the CVWID system. 
 

 
Figure 1. The XyloPhone printed in white polymer to facilitate photography. When mated to a 
phone-specific mounting plate, the XyloPhone can be used with any smartphone. As noted in 
the Supplementary Information, printing the XyloPhone in black polymer provides the best 
performance. 
 
To address above noted concerns, in this paper I present the XyloPhone (Figure 1), an open 
source, 3D-printed research quality macroscopic imaging attachment adaptable to any 
smartphone. It provides a fixed focal distance, exclusion of ambient light, selection of visible 
light or UV illumination, uses the lens from a commercially available loupe, is powered by a 
rechargeable external battery, and at a price point of less than 110USD is a 12-fold price 
reduction over the XyloTron, while delivering comparable image quality. To document the 
efficacy of the XyloPhone I present comparative data on distortion, maximum resolution, and 
spherical aberration, as well as example images taken with the XyloTron, the XyloPhone on two 
different smartphones (an iPhone and a Samsung Android phone), and the Ollo Clip system on 
an iPhone. 
 
Materials and Methods 
Smartphones: Two phones were used to collect data on field distortion and spherical 
aberration, a Samsung Note 5 running Android version 7.0, and an iPhone XS Max, running iOS 
13.4.1. The native Android camera app was used on the Samsung Note 5, but on the iPhone the 
ProCamera app from the App Store was used to collect images. Images were saved in the JPEG 
format with square aspect ratio, maximum resolution and minimum compression. 
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Hardware configurations: All calibration and reference images were collected by mounting the 
phone + optical and lighting array (either XyloPhone or Ollo Clip + XyloPhone lighting array) to a 
3D-printed phone holder that was secured to an x/y/z micromanipulator mounted to a 
stereomicroscope stand (Figure 2). This readily permitted the fine adjustments necessary for 
collecting reference images of the various targets for measuring optical performance, but is not 
required for wood image data collection or field use. This system was also used to collect the 
images of wood specimens in Figure 4 in order to capture substantially the same locations in 
the reference blocks. 
 

 
Figure 2. The 3D printed phone holder mounted to an x/y/z micromanipulator affixed to a 
stereoscope stand. The Ollo Clip + XyloPhone lighting array is shown illuminating a specimen of 
Robinia pseudoacacia. 
 
Ollo Clip hardware: To collect comparable metrics for the 14X Ollo Clip lens I developed a 3D 
printed custom holder for the lens that mated with the iPhone and positioned the lens 
identically to the XyloPhone for scalar, field distortion, and spherical aberration measurements. 
Initial observations (data not shown) indicated that uncontrolled lighting with the OlloClip 
negatively affected the image quality. In order to maximize the validity of the comparisons 
between the XyloPhone and the OlloClip and to afford the OlloClip the maximum possible 
performance, I designed a jig (Figure 3) to position the XyloPhone lighting array in an equivalent 
position with the OlloClip, and this was used to collect all OlloClip images.  
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Figure 3. OlloClip lens jig and XyloPhone imaging array to collect OCi data. 
 
Field of view: The size of the field of view was determined by capturing a reference image of 
the metric divisions of an Edmund Optics dual axis metric/English stage micrometer (#59277-
0021) at each in-app camera zoom step to bracket the XyloTron’s field of view (~6.35mm x 
~6.35mm, Ravindran et al. 2020). Resulting images were opened in Mac OS Preview and a 
bounding rectangle was selected from the leftmost edges of two reference values, and then 
nominal um per pixel were calculated from those values.  
 
XyloTron as baseline: Because the XyloTron (Ravindran et al. 2020) is already used in a number 
of countries around the world (Ravindran et al. 2019; Arevalo et al. submitted, distribution of 
XyloTrons by Wiedenhoeft), we use the XyloTron image size as the baseline for comparison 
throughout the manuscript. For each device combination (smartphone + imaging/lighting 
hardware), the camera zoom level producing a field of view nearest to but not smaller than that 
of the XyloTron was chosen for data collection, resulting in an image that could be cropped and 
resized to be equivalent to the XyloTron field of view without need to alter the XyloTron image. 
The device combinations evaluated are the XyloTron (XT), the XyloPhone + iPhone (XPi), the 
XyloPhone + Samsung (XPs), and the Ollo Clip 14x + iPhone (OCi). These abbreviations are used 
throughout the balance of the manuscript. 
 
Field distortion:  Measurements were made on images of an Edmund Industrial Optics dot grid 
target (cert. 46250, s.n. 0000-0307). Images of the smallest dot grid (0.25mm diameter, 
0.50mm spacing) were taken using the in-app camera zoom function to bracket fields of view as 
for determining field of view size. A XT image of the dot grid was also taken. Images were 
processed in ImageJ to determine the area per dot and total dot area of 3x3 patches of dots 
from the center of each image, and a 3x3 patch in each corner of each image, where distortion 
should be greatest.  
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Determination of dot diameter: Equation 1 was used to calculate the estimated diameter based 
on the average dot area determined in the distortion measurements and the µm per pixel 
resolution determined in the field of view measurements. The known dot diameter is 250 um 
 
Equation 1. 

Estimated	diameter	in	µm = 2 ∗ µm	per	pixel	resolution ∗ 56
Average	dot	area

π ;
!

 

 
Image analysis:  Images were processed in ImageJ v1.53c with the following steps: Adjust >> 8 
bit; Adjust>> Threshold (lower = 0, upper = 60); Analyze>> Analyze particles; 5000-inifinity for 
size, Circularity 0.00-1.00. Measured properties included:  Area; with limit to threshold checked. 
Ultimately, area was used as the metric from which calculate distortion, comparing the central 
3x3 dots to 3x3 dots in each corner. 
 
Determination of spherical aberration: An Edmund Optics NBS 1963A (#85276) positive target 
was used to determine the maximum resolvable line pairs per millimeter (lpmm) for each 
hardware configuration. Images of a range of lpmm were taken in the center of each field of 
view, and in each corner. Images were standardized to 100% zoom (in-silico) to evaluate the 
clear separation of line pairs, the maximum resolvable number of line pairs was recorded, then 
the mean value for each position (center, upper left, upper right, lower left, lower right) was 
calculated.  
 
Results: 
The XyloPhone: 
The XyloPhone weighs ~93 grams (individual 3D printing parameters (e.g. infill density and 
pattern) and polymer choice will affect this), with another 10-20 grams contributed by the 
phone plate, for total of less 115 grams. With an approximate volume of 112 cm3 the 
XyloPhone is lightweight, small, and highly portable. The 1000mA rechargeable lithium-ion 
battery provides over 7.5 hours of continuous illumination and can be recharged with the in-
device charger connected to any powered USB port on a computer or any DC 5V cell phone 
charger.  
 
Human-user evaluation of images:  
Figure 4 shows an image of substantially the same spot on a specimen of Dalbergia retusa 
sapwood. This taxon was chosen because its diffuse-in-aggregate parenchyma and numerous, 
narrow rays can fail to be resolved clearly when spherical aberration is prominent, as with the 
OCi (Figure 4, B) and the XPs (Figure 5, D). The XT image (Figure 4, A) appears to the naked eye 
to have consistent focus across the field of view, as does the XPi image (Figure 4, C). 
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Figure 4. Macroscopic images of Dalbergia retusa sapwood of substantially similar fields of 
view. A, XT image. B, OCi image. C, XPi image. D, XPs image. Note the loss of focus (spherical 
aberration) in the corners of image B, and to a lesser degree D. The color balance of the XT 
image is set against a white balance card (Ravindran et al. 2020), whereas the white balance in 
the smartphone images was allowed to be controlled by the camera app. 
 
The visible light and UV light illumination options of the XyloPhone are demonstrated in Figure 
5, which shows side-by-side images of Robinia pseudoacacia and Morus rubra. The heartwood 
fluorescence in Robinia is clearly visible.  
 

105 and is also made available for use under a CC0 license. 
(which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 

The copyright holder for this preprintthis version posted August 3, 2020. ; https://doi.org/10.1101/2020.08.02.233114doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.02.233114


 
Figure 5. Free-hand XPi images of Robinia pseudoacacia (A, C) and Morus rubra (B, D) with 
visible light illumination (A,B) and UV illumination (C,D). Note the clear yellow-green 
fluorescence of Robinia in C. All images are 6,742 um on a side. 
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Quantitative evaluation of the optical properties of the XyloPhone, XyloTron, and Ollo Clip 
 

  Image size Distortion (proportional area) Calibrated estimate of dot 
diameter (um) 

Proportional LPMM (line pairs per 
millimeter) 

  Pixels um C C- UL C - 
UR C- LL C- LR Mean 

Residual C △ 
actual 

Mean 
of 

corners 

△ 
actual C C- 

UL 
C - 
UR C- LL C- LR Mean 

Residual 

OCi 
3024 

X 
3024 

6661 
X 

6661 
1.0 0.911 0.909 0.937 0.963 0.930 249 -1 239 -11 1.0 0.536 0.536 0.445 0.445 0.490 

XPi 
3024 

X 
3024 

6403 
X 

6403 
1.0 1.008 1.006 1.014 1.005 1.008 242 -8 243 -7 1.0 0.900 0.800 0.950 0.950 0.900 

XPs 
2976 

X 
2976 

6485 
X 

6485 
1.0 1.026 1.032 1.021 1.031 1.027 240 -10 243 -7 1.0 0.947 0.842 0.895 0.895 0.895 

XT 
2048 

X 
2048 

6360 
X 

6360 
1.0 1.012 0.996 1.022 1.002 1.008 251 1 252 2 1.0 0.889 0.889 0.889 0.889 0.889 

Table 1. Quantitative aspects of optical system performance for the Ollo Clip + iPhone (OCi), the 
XyloPhone + iPhone (XPi), XyloPhone + Samsung (XPs), and the XyloTron (XT). C = center of 
image, UL = upper left corner of image, UR = upper right corner of image, LL = lower left corner 
of image, LR = lower right corner of image.  
 
Table 1 lists details for each of the hardware configurations studied here. Distortion ranged 
from 7% barrel distortion for the OCi, to 3% pincushion distortion for the XPs, to less than 1% 
pincushion for the XT and the XPi.  
 
The calibrated estimate of dot diameter determined from images was closest to the true value 
for center patch in the XT and the OCi, differing only by 1 um. For the OCi, the corner patches 
differed by 11 um, the worst performance of any configuration tested here, and the largest 
center-to-corner difference. The XT performed the best with the estimated diameter at the 
center patch only 1 um greater than actual, and with the corner estimates only 1 um larger 
than center. The XPi had a similar proportional difference between center and corners, but with 
a larger initial underestimate (8 um) of diameter in the center patch.  
 
The maximum resolution in line pairs per millimeter (lpmm) in the center of an image was 101 
for the OCi, 90 for the XT, 80 for the XPi, and 57 for the XPs. Using these values as the reference 
values, the comparison to the corners of the images (Table 1) showed that the XT and two XP 
configurations retained the largest proportion of optical resolution (89-90%) and therefore had 
the lowest spherical aberration. The OCi configuration retained less than 50% of its center-
image resolution.  
  
Discussion: 
The images produced by the XyloPhone, especially the XPi are, for most metrics and to the 
human eye, as good as XT images (Figure 4, Figure 5). Distortion, while undesirable, can be 
removed using post-processing algorithms if the distortion for the device is mapped (Zhang 
1999; Hartley and Kang 2005) or can be removed using machine learning approaches (e.g. Li et 
al. 2019). Systematic errors in estimating feature size (e.g. dot diameter) can be readily 
calibrated as well. Unlike geometric distortion in an image, spherical aberration cannot as easily 
be ameliorated. Based on the results here, the OCi configuration showed the largest change in 
resolution across an image and therefore would be a poor candidate for acquiring research-
grade or archival macroscopic images, and may need additional post-processing for robust and 
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stable training of image classification models for CVWID applications, especially if models were 
trained to use patches of the parent image. Any patch incorporating a corner of such an image 
will be incorporating tissue imaged at less than half the spatial resolution, so otherwise 
macroscopically observable features might be obscured.  
 
Of the phone-based configurations, the XPi had the highest initial and residual resolution in the 
corners, suggesting that it would be best-suited for acquiring research-grade or archival 
macroscopic images with comparatively consistent parameters across the image. Given the 
similarity to XT image metrics and the existence of several published CVWID XT models  
(Ravindran et al. 2018, Ravindran et al. 2019, Ravindran et al. 2020, Ravindran and Wiedenhoeft 
2020, Arévalo et al. submitted), the XyloPhone is clearly attractive hardware for a possible 
CVWID system. It is important to revisit the fact that the Samsung phone used in this study was 
a relatively old Samsung Note 5, whereas the iPhone was a much newer model. Because the 
Ollo Clip was evaluated on the same phone as the XyloPhone, comparisons between these 
systems are valid, and the XyloPhone greatly out-performed the Ollo Clip (Table 1), even when 
the Ollo Clip has the benefit of the XyloPhone illumination array. 
 
I chose not to evaluate the Xylorix lens system in this work. Available preview images posted on 
the Xylorix website are 800 x 800 pixels, and only the central 350-400 x 350-400 pixel patch 
shows sufficient image quality for evaluation, with spherical aberration obvious and extreme in 
the remaining three fourths of the image. This observation precluded the need to evaluate the 
optical properties of the Xylorix lens, as it is clearly inadequate for research grade imaging and 
seems to produce images from which only the center patch is likely to reliably show the 
underlying wood anatomical features.  
 
Tests are underway to compare the cross-compatibility of XP and XT wood images for CVWID 
models for laboratory testing and field deployment. If XP images can be used to train models 
for deployment on the XT, and conversely, if existing or new XT models can be deployed on a 
smartphone with the XP hardware and suitable software, the field-deployability of CVWID 
technology can be greatly expanded, as not only is the per-unit cost reduced by a factor of 12, 
but there is no need for a laptop for deployment (another several hundred USD cost reduction). 
In such a future, the total kit needed for field use would be a sharp utility knife, one’s own 
smartphone, and the XyloPhone. 
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Figure 6. Free-hand visible light XyloPhone images of: A, red oak plywood. B, the stipe and gills 
of a white button mushroom. C, the abaxial surface of a variegated Coleus leaf. D, fabric from a 
sportswear shirt. A, B, and D are 6,742 um on a side. C, courtesy of Caitlin Gilly, using an iPhone 
7 Plus, is 6,159 um on a side. 
 
In addition to its potential for application in CVWID systems, the XyloPhone can be used to 
image a wide range of biological or manmade materials (Figure 6), just as with the XyloTron 
(Ravindran et al. 2020). In principle, any substance with useful or interesting macroscopic 
variation can be imaged, if it can withstand contact of the XyloPhone, or if the user has a steady 
hand to image without contact. 
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Open-source, affordable, high-performance imaging hardware like the XyloPhone can provide a 
consistent foundation from which one can build macroscopic reference data sets, but specimen 
selection and specimen preparation, at least for wood, become paramount, as they are likely to 
be the quality-limiting-factors in a dataset. Models developed from poor specimen sampling or 
inadequate hardware may represent cases of garbage-in fiction out (GIFO), a subset of the 
larger and well-known garbage-in garbage-out (GIGO) principle in computer science, and should 
give rise to healthy skepticism about the validity of any models built from such data sets. It is 
critical that as more research teams become involved in CVWID research, wood anatomists 
with key domain knowledge remain involved in the process. When specimens are poorly 
chosen, inadequately prepared, inappropriately imaged, and/or when the forensic questions 
are ill-conceived, the final result should be regarded warily (e.g. Olschofsky and Kohl 2020). 
Hasty or poorly executed work has the potential to harm the advancement of the field by 
making astute readers skeptical of future CVWID research outputs and limiting its adoption. It is 
my hope that by providing an even-lower-cost alternative to the XyloTron (which remains as 
the gold-standard for wood imaging, albeit at a higher price-point), the XyloPhone can ensure 
that future data sets collected across the world share cross-compatibility that gives rise to a 
future with a master data set that can be selected from and deployed globally. 
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Supplementary Information: 

• 3D files (XyloPhone main unit, charger cap, surface plate, electronics lid, spacer ring, a 
generic phone mounting plate, and several phone-specific plates) 

• Assembly manual with a bill of materials 
• Gerber files for PCBs – the power input, output, and distribution boards are as in 

Ravindran et al. 2020, and the VIS LED boards are adapted from those in that publication 
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