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Abstract 14 
 15 
Distinguishing which traits have evolved under natural selection, as opposed to neutral evolution, 16 
is a major goal of evolutionary biology. Several tests have been proposed to accomplish this, but 17 
these either rely on false assumptions or suffer from low power. Here, I introduce a new 18 
approach to detecting lineage-specific selection that makes minimal assumptions and only 19 
requires phenotypic data from ~10 individuals. The test compares the phenotypic difference 20 
between two populations to what would be expected by chance under neutral evolution, which 21 
can be estimated from the phenotypic distribution of an F2 cross between those populations. 22 
Simulations show that the test is robust to parameters such as the number of loci affecting the 23 
trait, the distribution of locus effect sizes, heritability, dominance, and epistasis. Comparing its 24 
performance to the QTL sign test—an existing test of selection that requires both genotype and 25 
phenotype data—the new test achieves comparable power with 50- to 100-fold fewer individuals 26 
(and no genotype data). Applying the test to empirical data spanning over a century shows strong 27 
directional selection in many crops, as well as on naturally selected traits such as head shape in 28 
Hawaiian Drosophila and skin color in humans. Applied to gene expression data, the test reveals 29 
that the strength of stabilizing selection acting on mRNA levels in a species is strongly 30 
associated with that species’ effective population size. In sum, this test is applicable to 31 
phenotypic data from almost any genetic cross, allowing selection to be detected more easily and 32 
powerfully than previously possible. 33 
 34 
Significance Statement 35 
 36 
Natural selection is the force that underlies the spectacular adaptations of all organisms to their 37 
environments. However, not all traits are under selection; a key question is which traits have 38 
been shaped by selection, as opposed to the random drift of neutral traits. Here, I develop a test 39 
of selection on quantitative traits that can be applied to almost any genetic cross between 40 
divergent populations or species. The test is robust to a wide range of potential confounders, and 41 
has greater power to detect selection than existing tests. Applied to empirical data, the test 42 
reveals widespread selection in both domesticated and wild species, allowing selection to be 43 
detected more easily and powerfully than previously possible. 44 
 45 
Introduction 46 
 47 

Trait-based tests of selection aim to distinguish the effects of two major forces of 48 
evolution: natural selection and neutral drift. Because many factors affect trait divergence—e.g. 49 
population size, divergence time, and genetic architecture—distinguishing these two forces is 50 
seldom straightforward. Several types of trait-based selection tests have been proposed, all of 51 
which view neutrality as a null model, but which differ in how they assess this null and in the 52 
type of data they require (reviewed in Chapter 12 of Walsh and Lynch (1)).  53 

For example, time series tests use phenotypic measurements of a single species over time, 54 
typically from the fossil record (a stratophenetic series). If the trait shows departure from the 55 
neutral expectation of a random walk—e.g. many more time steps with trait increases than 56 
decreases—then neutrality is rejected. The key assumption is that environmental changes do not 57 
affect these phenotypic trends, which is difficult to justify considering how much environments 58 
can change over the millions of years typically covered in a stratophenetic series. 59 
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A more widely used approach is known as QST, where the population structure of 60 
phenotypic variance is compared to the analogous genetic metric FST. By utilizing genetic 61 
crosses in common garden experiments, the confounding effects of environment can be 62 
controlled, allowing selection to be assessed in a wide range of species (2). Limitations of this 63 
approach include low power (requiring data from >10 populations (3)) and several assumptions 64 
about epistasis and mutation rates (see Supplemental Note). However, an improved QST-based 65 
method has sufficient power to detect selection using only a few populations (4, 5). 66 

Another widely used test is known as the quantitative trait locus (QTL) sign test (6, 7). In 67 
this test, QTL are first mapped using genotype and phenotype data from a genetic cross between 68 
two divergent parental lines. Under neutrality (and the absence of ascertainment bias), QTL 69 
directionality—i.e. which parent’s allele increases the trait at each QTL—is expected to be 70 
binomially distributed around 50%, much like a series of coin flips (Fig. 1a left). In contrast, 71 
under lineage-specific selection, QTL directions will be biased in one direction (Fig. 1a right). 72 
Although this test is quite robust due to its minimal assumptions, it also suffers from low power: 73 
a minimum of eight QTL (which is rarely reached in practice; see Supplemental Note) is 74 
required to achieve a nominal p < 0.01.  75 

The sign test’s low power is largely due to the fact that it only uses QTL directionality 76 
information, while ignoring the phenotypic divergence between the two parental lines. However, 77 
the parental traits contain important information: if a trait evolves under directional selection, it 78 
will diverge much faster than under neutrality (Fig. 1b). If it were possible to estimate the 79 
divergence expected by chance under neutrality, then this could be used as a null hypothesis; 80 
parental trait divergence significantly greater than this expectation would suggest lineage-81 
specific directional selection, whereas divergence less than this would suggest stabilizing 82 
selection.  83 

Indeed, this intuitive logic underlies another class of trait-based methods, “rate tests,” that 84 
ask whether the phenotypic divergence of multiple populations is consistent with neutral drift (1, 85 
8). The neutral expectation is estimated from population genetic theory, using parameters such as 86 
the effective population size, the mutational variance, and the number of generations since 87 
population divergence. Since these parameters and their sampling variances can typically only be 88 
roughly estimated (at best), and several strong assumptions must also be made, rate tests are 89 
viewed as qualitative guides rather than quantitative tests of neutrality (1, 8) (Supplemental 90 
Note). 91 

In this work, I sought to develop a trait-based test of selection with the robustness of the 92 
sign test, while utilizing the framework of rate tests to increase the power to detect selection. 93 
 94 
Results 95 

The logic underlying rate tests could lead to a more rigorous test of selection if the 96 
expected divergence under neutrality could be more accurately estimated. This can be achieved 97 
using the neutral model of the sign test, where the genetic variants underlying QTL (quantitative 98 
trait nucleotides, or QTN) have no directionality bias (Fig 1a left and Fig 1b purple). How could 99 
the distribution of phenotypes expected under this model of neutrality be estimated? One way 100 
would be to measure the effect size of every QTN and then predict the phenotypes resulting from 101 
random allelic combinations. However, there is a simpler solution: the F2 trait distribution 102 
represents exactly this null model. Regardless of the QTN directionalities in the parents, the F2 103 
phenotypes result from random combinations of the segregating alleles; this randomness mimics 104 
the random directionality expected under neutral evolution (Fig 1a left, Fig 1b purple). Therefore 105 
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every F2 individual can be thought of as a random draw from the distribution of potential 106 
parental phenotypes resulting from neutral evolution. If the parental divergence is significantly 107 
greater than expected based on the phenotypic variance observed in the F2 population, then 108 
neutrality can be rejected in favor of directional selection (Fig 1c top). If instead the parents are 109 
significantly less diverged than expected—known as transgressive segregation—then stabilizing 110 
selection is inferred (Fig 1c bottom).  111 
 I will begin with a simple model of a trait in a haploid species where all QTN are additive 112 
with equal effect sizes, and there is no environmental variation or trait measurement error (i.e. 113 
broad-sense heritability H2 = 1). Let nq denote the number of QTN for this trait that differ 114 
between two strains/populations. Under neutrality, traits diverge from the ancestor like a random 115 
walk, proportional to ��� (Fig 1b purple). For two lineages evolving independently, the 116 

expected absolute difference will be �2��. The difference between the two parental trait values 117 
represents a single draw from a binomial distribution with p = 0.5 and n = nq (it is only one draw 118 
since once one parent’s allelic states are defined, the other’s must be the opposite for any QTN 119 
segregating in the cross); for nq > ~20 this approximates a normal distribution. The square of this 120 
difference is proportional to the parental trait variance; dividing this variance by the variance 121 
expected by chance under neutral evolution—i.e. the variance of the F2 trait distribution, as 122 
discussed above—results in the test statistic (denoted v and illustrated in Fig 1c):  123 
 124 
 � � �����

����  

 

(1) 

where ����  is the F2 phenotypic variance and �����  is the between-strain variance of the two 125 
parental strain (or population) means. This ratio is expected to be distributed as F(1, nF2-1) under 126 
neutrality, where nF2 is the number of F2 individuals. This approximates a χ2 distribution with 1 127 
degree of freedom for nF2 > ~20.  128 

We can now relax the simplifying assumptions above. In diploids, the expected variance 129 
in the F2 is half that between the parents; this is accounted for by multiplying the denominator by 130 
a constant, denoted c (more generally, any factors that affect the phenotypic variance in the 131 
progeny—including dominance and other cross designs such as backcrosses or recombinant 132 
inbred lines [RILs]—can be accommodated by adjusting the value of this constant; see 133 
Supplemental Note). Allowing environmental variation and trait measurement error is equivalent 134 
to adding random noise to both the numerator and denominator. Correcting for this yields: 135 

 136 
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where np1 and np2 are the number of replicate individuals measured for each parental strain, and 137 
����  and ����  are the within-strain variances of each parental strain (see Supplemental Note). All 138 
of these terms can be estimated from phenotype data in a single genetic cross, provided that 139 
multiple individuals of each parental type are included. Note that Equation 1 is a special case of 140 
Equation 2, where c = 1 (for haploids) and H2 = 1 (hence ����  = ����  = 0). 141 
 To explore the behavior of v as a neutral null model, I conducted simulations of neutral 142 
traits in parental strains and their F2 progeny (see Methods). These simulations allowed the 143 
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precise manipulation of individual parameters to assess their effects on v. These are presented as 144 
quantile-quantile (QQ) plots, where points following the Y=X line represent adherence to the 145 
expected F distribution. Points above and below the line represent values of v greater and less 146 
than expected under the null, respectively.  147 
 The test followed the expected distribution of v closely for a range of different QTL 148 
effect size distributions (Fig 2a). This includes the exponential distribution, which is thought to 149 
be a reasonable approximation for QTL (9, 10). However, extremely skewed distributions—e.g. 150 
a monogenic trait where one QTL explains all trait variance—will lead to half of all F2 151 
individuals identical to one of the parents and v values tightly distributed around 1, resulting in 152 
little power to detect any deviation from the null. Therefore the test is only useful for polygenic 153 
traits.  154 
 How polygenic must a trait be? More important than the number of genetic variants 155 
affecting the trait—which is likely to be quite large for complex traits (11)—is the number of 156 
independently segregating QTN, which is limited by the recombination index (12) (RI). The RI 157 
is defined as the haploid number of chromosomes plus the number of recombinations per 158 
meiosis; it represents the number of independent genomic regions segregating in a cross. 159 
Adherence of v to the null improves with greater RI (Fig 2b) since more shuffling of the two 160 
parental genomes leads to more normally distributed ����  values. For example, an extreme case 161 
of a single non-recombining chromosome (RI = 1) would be equivalent to the monogenic 162 
example above where v cannot deviate far from 1. The v-test behaves conservatively in crosses 163 
with RI < ~20 (Fig 2b). Fortunately, this is rarely an issue in practice since the mean RI for 164 
plants is ~30 and for animals is ~40 (13). (For RILs, there are more generations for 165 
recombination so the mean “effective RI” is ~45 for plants and ~58 for animals; see Methods.)  166 
 Sample size is another important consideration. Although more samples are always 167 
preferable, v follows the null distribution even with only three F2 individuals (Fig 2c).  168 
 Other potential sources of noise include environmental variability and measurement 169 
error. Although these affect both parental and F2 phenotypic variances, they have less effect on 170 
the parental estimates when parental replicates are included, because taking the mean of each 171 
parental strain reduces this noise. Without correcting for this effect (i.e. setting H2 = 1, and thus 172 
����  = ����  = 0, in Equation 2), low H2 leads to severe underestimates of v (Fig 2d left panels). 173 
However including a correction for this (Equation 2) precisely accounts for this effect (Fig 2d 174 
right panels).  175 
 The final effect explored via simulation is genetic interaction, which is the context-176 
dependence of phenotypic effects either between loci (epistasis) or between alleles at the same 177 
locus (dominance). Epistasis can take many forms, but the large-scale pattern most often 178 
observed is known as diminishing returns epistasis (14–16), where strains with the greatest trait 179 
value have lower values than expected from additivity. To model this, I transformed the 180 
simulated trait values as √�, where t is each trait value. Since this affects both ����  and �����  181 
similarly, it has little impact on the distribution of v (Fig 2e). I also modeled synergistic 182 
(increasing returns) epistasis as t2, and again found no effect (Fig 2e). However, epistasis in more 183 
extreme forms could obscure any signal of selection (Supplemental Note). Dominance can be 184 
accounted for by adjusting the value of c to offset its effect on ����  (Fig 2e, Supplemental Note). 185 
 In sum, simulations of neutral evolution show that v is robust with respect to the number 186 
of loci affecting the trait, the distribution of locus effect sizes, environmental variability, 187 
measurement error, dominance, and epistasis.  188 
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 Having established the behavior of v under neutrality, I explored its power by simulating 189 
directional selection. These were identical to the neutral simulations except that all QTN had 190 
concordant parental directionality (Fig 1a right, Fig 1b blue). I compared the v-test to the sign 191 
test to assess their relative performance in a range of parameter settings (other selection tests use 192 
very different types of data, precluding a direct comparison). Both tests utilized the same 193 
simulated F2 phenotype data for each cross; the sign test was also provided with optimal 194 
genotype data, meaning that each QTN was genotyped without error, had no linkage with other 195 
QTN, and no other genetic markers were included. Both tests result in a probability of neutrality 196 
(pnut) value for each trait (see Methods). More extreme pnut values represent greater power to 197 
detect selection, with points above the diagonal representing crosses with greater power for the 198 
v-test and those below the diagonal indicating greater power for the sign test. 199 

Even with optimal genotype data, at small sample sizes (nF2 = 10 or 100) very few QTL 200 
are mapped, resulting in the sign test’s low power (Fig 3). In contrast, the v-test often rejects the 201 
null with pnut < 10-4 even at nF2 = 10. The v-test is generally more powerful than the sign test at 202 
nF2 < 103. However, the sign test generally outperforms the v-test at very large sample sizes (nF2 203 
> 103 when H2 > 0.8, and nF2 > 104  for all H2).  204 

To further explore the v-test’s power at small sample sizes, I simulated crosses with a 205 
total of 10, 20, or 30 phenotyped individuals (including the parents). For example at n = 10, 93% 206 
of traits rejected the null at pnut < 0.05 when H2 = 0.1, and 99% when H2 = 0.8 (Supp Fig 1a). The 207 
v-test performed well with 10 individuals even when selection was weak (with up to 20% of 208 
QTN acting in opposition to the majority) and heritability was low (Supp Fig 2). In contrast, the 209 
sign test required 500-1000 phenotyped and genotyped individuals to reach the same power 210 
(Supp Fig 1b). This difference in power of the two tests makes sense considering that although 211 
they are both evaluating the same neutral null model, the sign test is doing so directly (by 212 
comparing QTL directionalities to the neutral expectation; Fig 1a), whereas the v-test is doing so 213 
indirectly. When enough QTL are mapped, the direct approach of the sign test is superior, but by 214 
not needing to map QTL, the v-test requires fewer individuals, as well as no genotype data.  215 

Due to its generality, the v-test can be applied to data from almost any genetic cross 216 
where both parental strains and their F2 (or other cross) progeny were phenotyped. This includes 217 
most QTL studies, as well as genetic studies from before genotyping was possible. To explore 218 
the test empirically, I collected published data for 126 traits from 21 species (Supp Table 1). The 219 
v-test pnut-values for artificially selected traits (in crops, livestock, and laboratory experiments) 220 
revealed a strong skew towards low pnut-values indicating directional selection, as expected(17) 221 
(Fig 4a; for a discussion of trait ascertainment bias—a major caveat for all trait-based selection 222 
tests—see Discussion and Supplemental Note). Three of the most significant traits were from 223 
maize, including data for ear length and seed weight published in 1913, suggesting intense 224 
artificial selection on these traits prior to this date (18). 225 

In contrast, the pnut-value distribution for traits naturally selected in the wild showed a 226 
less extreme skew (Fig 4b; Supp Table 1; comparing distributions, Wilcoxon p = 2x10-5), with 227 
peaks at both low and high p-values suggesting a wide range of selection pressures. The most 228 
significant trait for directional selection was male head shape in a cross between two species of 229 
Hawaiian Drosophila (19) (data from reciprocal F2 crosses and an F6 cross are all significant; 230 
Supplemental Note). This is a well-known example of rapid morphological evolution, potentially 231 
due to sexual selection (20), but whether the divergence could instead be explained by genetic 232 
drift was not previously testable. The next most significant trait was human skin color, measured 233 
in the “F2” grandchildren of West Africans and Europeans (21). Despite the small sample size 234 
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(nF2 = 14), the v-test is significant at all three reflectance wavelengths tested (Supp Table 1). 235 
Human skin color has long been thought to be adaptive based on its correlation with local UV 236 
radiation (22); these results provide independent confirmation for the role of selection. The third 237 
most significant wild trait was burrowing behavior in Peromyscus mice (23), as measured by 238 
burrow length in an interspecies backcross.  239 

The v-test can also be applied to molecular-level traits such as gene expression levels, 240 
which avoids the effects of trait ascertainment bias (Supp Note). The BXD collection of mouse 241 
RILs is an excellent test case, with gene expression data available for 16 tissues. Performing the 242 
v-test revealed that the pnut-value distributions of all tissues were shifted towards stabilizing 243 
selection to varying degrees (Fig 4c). To estimate the strength of stabilizing selection in each 244 
tissue, I calculated the fraction of genes with v-test pnut > 0.99. All 16 tissues had values between 245 
1.0%-1.8% (note this should not be interpreted as the fraction of genes under stabilizing 246 
selection, which is likely to be far higher). Interestingly, gene expression from six different 247 
regions of the brain had significantly stronger stabilizing selection than in the ten non-brain 248 
tissues (Fig 4c). This is consistent with previous reports of slower evolution of gene expression 249 
in the mammalian brain compared to other tissues(24, 25), and suggests that this slower 250 
evolution is at least partially due to greater selective constraint (as opposed to a lower mutational 251 
variance, which can also lead to a slower evolutionary rate (1)).  252 

Another type of molecular trait measured in the BXD cross is metabolite levels in liver 253 
(26). Applying the v-test to these metabolomic data, cohorts fed two diets (high-fat and normal 254 
chow) showed pnut-values strongly skewed towards one (Fig 4c). Therefore the measured 255 
metabolites appear to be under stronger stabilizing selection than mRNA levels.  256 

Despite the variation in stabilizing selection on gene expression across the 16 tissues, all 257 
tissues were relatively close to the neutral expectation (1% of genes at pnut > 0.99). To compare 258 
this to other species, I collected gene expression data from genetic crosses of five additional 259 
species (Saccharomyces cerevisiae, Oryza sativa, Arabidopsis thaliana, Brassica rapa, and 260 
Caenorhabditis elegans; Supp File 1). In contrast to mouse, some species had much stronger 261 
stabilizing selection (e.g. B. rapa with 10.7% of genes under stabilizing selection). One 262 
hypothesis to explain this wide range of values is that natural selection is expected to be stronger 263 
in species with larger effective population sizes (Ne). Direct measurements of Ne for these 264 
species are not possible, but an indirect indicator is the fraction of neutral genomic positions that 265 
are heterozygous (known as π), which is expected to increase with Ne (27). Plotting the strength 266 
of stabilizing selection against published values of π, I observed a strong correlation (Fig 4d). 267 
This suggests that Ne (or another factor correlated with Ne; see Supp Note) may be a major 268 
determinant of stabilizing selection on gene expression levels, as has been previously proposed 269 
(24, 25).  270 
 The peaks of gene expression pnut-values near zero (Fig 4d) suggest that directional 271 
selection may also be detectable from these data. For example, in S. cerevisiae genes with low 272 
pnut are highly enriched for roles in mitochondrial translation (FDR = 6x10-23 among genes 273 
down-regulated in the lab strain BY; no enrichment among genes up-regulated in BY). In B. 274 
rapa, the defense response to other organisms is the most enriched function among genes with 275 
low pnut (FDR = 0.02). Similarly in C. elegans, immune response was the most enriched (FDR = 276 
0.04). 277 
  278 
Discussion 279 
 280 
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In this work, I introduced a new test of selection that combines the logic of rate tests with 281 
the neutral null model of the sign test. The result is a test that is simple, robust, and more 282 
powerful than existing tests. This will allow researchers to assess selection on traits of interest 283 
any time they perform a genetic cross. Moreover, if multiple traits are measured in the same 284 
cross, results from the test can be directly compared to assess the strength of selection on diverse 285 
phenotypes (as in Fig 4c).  286 

There are many potential extensions to this test. For example, the v-test framework could 287 
be applied any time the genomes of two divergent populations are mixed, including naturally 288 
admixed populations. In this case, the only modification needed would be in the calculation of c, 289 
representing the expected ratio of parental variance to admixed progeny variance (Supplemental 290 
Note). Other extensions could include testing multiple correlated traits simultaneously, focusing 291 
only on additive effects, or estimating confidence intervals (Supplemental Note).   292 

It is important to note that results from all trait-based tests of selection must be treated 293 
with caution when trait ascertainment bias is present. If traits are chosen for study based on the 294 
extent of their divergence between populations, then the neutral model no longer holds. For 295 
example, imagine 100 neutral traits; in any properly calibrated selection test, we would expect ~5 296 
of these to reach a nominal p < 0.05. If these same five are the only traits included in a study 297 
(e.g. because they have the strongest phenotypic divergence), then they will appear to be 298 
inconsistent with whichever null model they are tested against. In some cases it is possible to 299 
correct for ascertainment bias, either by modifying the test itself (6) or by using a more 300 
conservative p-value threshold (see Supplemental Note). However, the ideal solution is to 301 
analyze traits that were selected for study independently of the parental trait values, which by 302 
definition lack any ascertainment bias. The most widespread examples of this are molecular-303 
level traits such as the levels of mRNAs, proteins, metabolites, etc. Similarly, standardized 304 
phenotyping (28) can be free of bias. 305 

Notably, Equation 2 is identical to the widely used Castle-Wright (CW) estimator for the 306 
number of loci underlying divergence in a quantitative trait (29–31) (though it was derived 307 
independently). The maximum possible value of this estimator is the RI of the species being 308 
crossed, resulting in a strong downward bias for most complex traits, which can have thousands 309 
of variants contributing (11). It is therefore rather fortuitous that this severely biased estimator is 310 
also precisely F-distributed under the null hypothesis of neutrality, even though neutrality had no 311 
role in its original derivation and the F distribution has no role in its traditional interpretation (29, 312 
30). Furthermore, the true number of loci underlying a trait (what the CW estimator aims to 313 
estimate) is not indicative of selection; a neutral trait could have any number of underlying loci, 314 
so this cannot be used to assess a trait’s neutrality.  315 

How can this one equation have two seemingly unrelated interpretations? The CW 316 
estimator requires a number of restrictive assumptions, including that all QTL must act in the 317 
same direction with respect to their parent of origin (as in Fig 1a right panel). Rather than being 318 
an assumption of the v-test, this concordant QTL directionality is exactly what the v-test was 319 
designed to detect. Therefore the connection between the two interpretations rests on the fact that 320 
the strength of the signal detected by the CW estimator—the number of reinforcing QTL acting 321 
in the same parental direction—is indicative not only of the number of loci, but also of any 322 
selection that has acted on those loci since the divergence of the two parental strains. 323 

One consequence of this mathematical homology is that the hundreds of published CW 324 
estimator values dating back to 1921 (29) can now be immediately reinterpreted as tests of 325 
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neutral evolution (Supplemental Note), even when the phenotype data from these studies are not 326 
available. 327 
 328 
 329 
 330 
  331 
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Methods 332 
 333 
Neutral simulations  334 

Parameters in neutral simulations are shown in Fig 2: QTN effect size distribution, RI 335 
(the number of independently segregating QTN), nF2, H

2, epistasis, and dominance (c = 2 for 336 
additive, c = 1 for bidirectional dominant, and c = 4/3 for unidirectional dominant; see 337 
Supplemental Note). Parameter values were chosen to reflect typical published data sets rather 338 
than optimal parameters for test performance. First I generated effect sizes for the specified 339 
number of QTN by sampling from the specified distribution. In neutral evolution, QTN 340 
directions in each parent are random (Fig 1a), so the first parent’s traits were determined by 341 
flipping the sign of each effect size with 50% chance and then summing the values. The second 342 
parent’s traits were calculated the same way but with all signs flipped from the first parent (each 343 
QTN increases the parental difference by twice its effect size, assuming parents are 344 
homozygous). F2 traits were determined by multiplying each effect size by one number chosen 345 
randomly from a set of four numbers that represent the four possible F2 genotypes at each locus 346 
and their resulting phenotypic effects ([0 1 1 2] for additive, [0 2 2 2] for unidirectional 347 
dominant, or [0 0 2 2] for bidirectional dominant; see Supplemental Note), separately for every 348 
individual, and summing across all QTN. When H2 < 1, random noise was also added to each 349 
parental and F2 individual as a normally distributed variable with zero mean and standard 350 

deviation � � �
�

�	
����

��
, where ��� � ���� � �����  (which in practice is calculated as the 351 

variance of the F2 trait values before noise is added, since ����  and �����  are not known until the 352 
noise is calculated). In epistasis simulations, traits were additionally transformed either by √� or 353 
��, where t is the trait value. Parental within-strain variances (����  and ���� ) were then estimated 354 
from 10 replicates per parent, and ����  was estimated from the F2 population. From these 355 
variables, v was calculated using Equation 2 and converted into a p-value based on the F(1, nF2-356 
1) cumulative distribution.  357 
 358 
Selection simulations 359 
 Selection was simulated using the framework described above, with one difference: 360 
omitting the step of flipping the sign of each effect size with 50% chance. This meant that all 361 
QTN were reinforcing in their directionalities. v was then calculated as described above and 362 
converted to a p-value based on the F(1, nF2-1) cumulative distribution. Parameter values are 363 
listed in Fig 3 legend. 364 
 To calculate the sign test p-value, QTL must first be mapped. The genotype of each QTN 365 
variant (randomly generated as described above) was provided in a genotype matrix, with no 366 
genotyping error and no additional genetic markers (this represents an unrealistic best-case 367 
scenario for QTL mapping). Pearson’s correlation coefficient between each marker and the F2 368 

phenotypes were then converted into LOD scores (32) as ��� � ��	��
����

���
��
. LOD > 3 was 369 

required to call a QTL. The directionalities for the full set of QTL for each cross were then 370 
assessed for their fit to the binomial distribution cumulative distribution with expected frequency 371 
= ½. The resulting two-sided p-value was the sign test p-value. 372 
 The simulations in Supp Figs 1-2 were identical to those in Fig 3, but with different 373 
parameter values and different visualizations. 1000 simulations were performed for each 374 
combination of parameter values shown. In Supp Fig 2, true positives were defined as crosses 375 
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simulating selection where the v-test p-value was below a given cutoff; false positives were 376 
crosses simulating neutral evolution where the p-value was below the same cutoff (the cutoff 377 
varied from 0 to 1 to generate each ROC curve). Selection strength was represented by the 378 
fraction of QTN with reinforcing directionality. This cannot be translated into a selection 379 
coefficient since it would depend on how the trait relates to fitness, the population size, time 380 
since population divergence, and many other parameters. 381 
 382 
Empirical analysis 383 

Traits were collected for Fig 4a from two sources: Wright (30) Tables 15.1-15.8, and 384 
Lynch and Walsh (32) Table 9.6. Traits were collected for Fig 4b from Lynch and Walsh (32) 385 
Table 9.6, Rieseberg (17) Table 5, and literature searches for cichlid and Peromyscus data. 386 

For traits in Fig 4a-b and Supp Table 1, H2 values were estimated as follows. If values 387 
were provided by the authors of the original study, these were used. If not, the environmental 388 
variance was estimated using Wright’s preferred method (30), a weighted average of within-389 
strain variances: ����� � ���� /4 � ���� /4 � ���� /2. If data from the F1 were not available, then I 390 
used the sample size of each parental type as weights: ����� � �������� � ������� �/���� � ����. 391 
This variance was then used to calculate H2 = ����� � ����� �/���� . In some cases this can lead to a 392 
negative H2 (likely due to overestimation of �����  since this was always based on fewer replicates 393 
than ���� ); therefore values of H2 < 0.1 were set to 0.1. For the two cases of traits with outbred 394 
parents (burrowing and parenting behavior in Peromyscus), H2 may be underestimated due to 395 
within-strain genetic variation contributing to ����� ; therefore I conservatively set H2 = 0.4 for 396 
these traits (which is higher than the heritability of most behavioral traits (33)), resulting in less 397 
significant values of pnut (see Supplemental Note).  398 

Data in Fig 4c were collected from http://www.genenetwork.org/ (selecting species: 399 
mouse; group: BXD family; type: any tissue with parental data). Since most mouse gene 400 
expression data sets in Fig 4c had only one sample per parental strain, H2, ���� , and ����  could not 401 
be accurately estimated. To allow a direct comparison between data sets with parental replicates 402 
vs. those without, I made two modifications: 1) for all tissues, I assumed half of the parental 403 
variance was genetic, and half environmental (i.e. the numerator of Equation 2 was set to ����� /404 
2). 2) I set H2=0.31 for all genes, this being the median value estimated for yeast (34) 405 
(specifically the median of 1-e, where e is the residual gene expression variance not explained by 406 
either additive or pairwise epistatic effects). I selected yeast because it had the largest number of 407 
gene expression profiles from a genetic cross of any species, a comprehensive heritability 408 
analysis performed by the original authors, and the closest π to mouse. Note that these 409 
modifications affect the Y-axis values in Fig 4c, but not the relative relationship between points; 410 
any values could have been used without affecting the trend shown. The complete list of tissues 411 
and stabilizing selection scores are in Supp File 1. 412 

Gene expression data for the six species in Fig 4d were from the following sources: S. 413 
cerevisiae (34), A. thaliana (35), B. rapa (36) (normal phosphorus condition), C. elegans (37, 414 
38) (control condition), O. sativa (39), and M. musculus (see above). Published expression data 415 
from other species’ crosses were not usable (e.g. no parental data). For mouse, the median 416 
stabilizing selection level across all 16 tissues was used. To avoid spuriously low or negative 417 
estimates of H2, for all six species any genes with H2 < 0.1 were set to 0.1 (as described above). 418 
As above, to facilitate comparison across data sets I assumed half of the parental variance was 419 
genetic, and half environmental. All pnut values are listed in Supp File 1. π values were taken 420 
from Leffler et al. (40) as the median of autosomal π estimates for each species. No values were 421 
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listed for O. sativa or B. rapa, so other published estimates were used (41, 42). For O. sativa, 422 
both parents of the genetic cross (Zhengshan 97 and Minghui 63) were in population group XI, 423 
so the π for this group was used. Using a more recently published π estimate for S. cerevisiae 424 
(0.18%, which is the median π across all 14 non-mosaic populations (43)) yielded a slightly 425 
stronger Pearson correlation (r = 0.935). Omitting B. rapa as an outlier also strengthened the 426 
correlation (r = 0.960). Gene Ontology process enrichments were calculated with GOrilla (44). 427 
 428 
Estimating recombination index 429 

RI was estimated as [mean cM/100] + [mean haploid chromosome number] for 189 430 
plants and 140 animals (13). RILs experience around twice as many detectable recombinations 431 
(defined as those occurring in a heterozygous genomic region) as an F2 cross, regardless of the 432 
exact number of generations of inbreeding, so for RILs the recombination values were doubled. 433 
Backcrosses experience about half as many detectable recombinations as an F2 cross. 434 
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Figure Legends 537 
 538 
Figure 1. The sign test and the v-test. a. Illustration of the sign test applied to the trait of mouse 539 
size. Left panel: two mice from separate populations that have had no selection acting on size are 540 
expected to have approximately equal numbers of QTL (or QTN) alleles increasing size 541 
(binomially distributed with expected frequency = ½; stabilizing selection on size would result in 542 
a similar pattern, but with a smaller expected parental trait divergence). Right panel: In contrast, 543 
two populations that have experienced lineage-specific directional selection on size will show 544 
greater phenotypic divergence and a preponderance of QTL alleles increasing size in the larger 545 
strain. A significant deviation from the binomial expectation indicates rejection of the null 546 
hypothesis of neutral evolution.  b. Simulation of trait divergence under a simple model of three 547 
selection regimes. One exponentially distributed QTL (or QTN) is added per time step and the 548 
number and effect sizes of QTL are identical in each selection regime; the only difference is their 549 
directionality. Under directional selection all QTL increase the trait value (as in Fig. 1a right 550 
panel); under neutral evolution their directionalities are random; and under stabilizing selection, 551 
their directionalities are whatever will bring the trait closer to the optimum (e.g. if the trait is 552 
above the optimum, the next QTL will be negative). Each selection regime has 100 lineages 553 
simulated for 100 time steps. c. Illustration of the v-test. Under a simple model, the variance of a 554 
neutral trait in two populations is expected to be approximately equal to that of their F2 progeny 555 
(Equation 1). Lineage-specific directional selection will result in higher parental variance, 556 
whereas stabilizing selection will lead to lower parental variance (transgressive segregation). 557 
 558 
Figure 2. Neutral simulations. Each panel shows 20 quantile-quantile (QQ) plots where every 559 
point is an independent simulation of a genetic cross between two lineages where the trait in 560 
question has been evolving neutrally (i.e. QTL directions in each parent are random; Fig 1a-b). 561 
The X-axis shows expected p-value quantiles (uniform between zero and one), and the Y axis 562 
shows observed values of v (Equation 2) in 20 QQ plots each with 104 simulations. For each 563 
panel, one parameter is varied from the baseline model (Exponential distribution of QTL effect 564 
sizes, recombination index = 50, number of parental replicates = 10, nF2= 100, H2=1, diploid, no 565 
epistasis or dominance), except for the upper right panel which is the baseline model. a. Effects 566 
of varying QTL effect sizes. b. Effects of varying recombination index. c. Effects of varying the 567 
number of F2 individuals. d. Effects of varying H2, with or without the correction in Equation 2. 568 
e. Effects of varying epistasis and dominance. Bidirectional dominance means all loci are fully 569 
dominant but with ~50% of loci being dominant towards one parent, and ~50% towards the 570 
other. Unidirectional means all loci are fully dominant in the same direction (i.e. the F1 571 
phenotype is identical to one of the parents). 572 
 573 
Figure 3. Directional selection simulations. All panels show scatter plots where every point is 574 
an independent simulation of a genetic cross between two lineages where the trait in question has 575 
been evolving under directional selection (i.e. all QTL are in the same direction; Fig 1a-b). The 576 
X-axis shows sign test log p-values, and the Y axis shows v test log p-values. For each panel, 577 
two key parameters (H2 and nF2) are set to the values shown and a third is varied within the panel 578 
(RI, which takes on all integer values from 5 to 100). For each value of RI, 10 simulations are 579 
shown, each with an independent set of QTL effect sizes; this results in 960 simulations (data 580 
points) per panel. All other parameters are kept constant throughout the figure (Exponential 581 
distribution of QTL effect sizes, npar = 10, diploid, no epistasis or dominance).  582 
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 583 
Figure 4. Empirical analysis. a. Results for artificially selected traits in crops, livestock, and 584 
laboratory selection experiments. Inset shows the six most significant traits. b. Results for 585 
naturally selected traits in plants and animals. Inset shows the three most significant traits.  c. 586 
Results for gene expression (mRNA levels) and metabolite levels measured in the same mouse 587 
RIL panel (BXD). Note that any selection detected between the two parental lineages could 588 
involve divergence of their wild ancestors (mostly M. musculus domesticus) and/or artificial 589 
selection during their inbreeding in the lab. T-test p-values shown for each comparison. d. Center 590 
panel: The strength of stabilizing selection vs. heterozygosity (π) in six species (in order of 591 
decreasing π: Brassica rapa, Arabidopsis thaliana, Caenorhabditis elegans, Oryza sativa, Mus 592 
musculus, Saccharomyces cerevisiae). Side panels: the full distribution of pnut values for the 593 
species with the highest (right) and lowest (left) π. 594 
 595 
Supplemental Figure 1. a. Directional selection was simulated as in Figure 3. Two replicates of 596 
each parental line were used together with the indicated number of F2 individuals. Therefore the 597 
total number of individuals n = nF2 + 4.  b. The v-test simulations from panel (a) were compared 598 
to sign test results using 50-fold (left) or 100-fold (right) more individuals (all F2 since the sign 599 
test does not require parental data). Negative values indicate the v-test had lower median p-value 600 
than the sign test in that comparison. The sign test generally requires >50-fold more phenotyped 601 
individuals (as well as genotypes) to reach the same median p-value as the v-test; for traits with 602 
low H2 it requires >100-fold more individuals. 603 
 604 
Supplemental Figure 2. Receiver-operator characteristic curves are shown for the v-test with a 605 
range of H2 and selection strengths. In these plots, a perfect classifier would have 100% true 606 
positives and 0% false positives; a random classifier would be on the diagonal X=Y line. All 607 
simulations used 10 individuals (two of each parental strain and six F2), exponential distribution 608 
of QTN effect sizes, RI = 50, diploid, and no epistasis or dominance. Neutral evolution was 609 
simulated as in Figure 2 (defined as having QTN directionality binomially distributed around 610 
50%). Directional selection was simulated as in Figure 3, except that the fraction of reinforcing 611 
QTN (reflecting the strength of selection) was allowed to vary. Note that in these simulations 612 
QTN directionality was independent of effect size; a more realistic case is that QTN of larger 613 
effect would be less likely to oppose the direction of selection, in which case the test 614 
performance would increase for any given % of reinforcing QTN. 615 
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