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ABSTRACT 

 

The connection between stimulus perception and time perception remains unknown. The present 

study combines human and rat psychophysics with sensory cortical neuronal firing to construct a 

computational model for the percept of elapsed time embedded within sense of touch. When subjects 

judged the duration of a vibration applied to the fingertip (human) or whiskers (rat), increasing 

stimulus mean speed led to increasing perceived duration. Symmetrically, increasing vibration 

duration led to increasing perceived intensity. We modeled spike trains from vibrissal somatosensory 

cortex as input to dual leaky integrators – an intensity integrator with short time constant and a 

duration integrator with long time constant – generating neurometric functions that replicated the 

actual psychophysical functions of rats. Returning to human psychophysics, we then confirmed 

specific predictions of the dual leaky integrator model. This study offers a framework, based on 

sensory coding and subsequent accumulation of sensory drive, to account for how a feeling of the 

passage of time accompanies the tactile sensory experience. 
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INTRODUCTION 

 

Every sensory experience is embedded in time, and is accompanied by the perception of the passage 

of time. The coupling of the perception of the content of a sensory event and the time occupied by 

that event raises a number of questions: Do these percepts interact with each other? Do they emerge 

within separate neuronal populations? Which neuronal mechanisms underlie the generation of two 

distinct percepts? By comparing and contrasting human and rat psychophysics, the present study 

addresses these questions and thus aims to uncover generalized mechanisms through which the brain 

represents the passage of time. 

 

Two principal frameworks have been proposed to explain the neuronal bases of the feeling of time in 

time scales of up to about 1 s: one framework posits a central clock, not connected with any specific 

sensory modality (1) while a second framework posits that the cortical circuit associated with each 

modality intrinsically encodes the passage of time for events within that modality (2,3). There are 

also mixed models that argue for the existence of a core timing structure that integrates cortical 

activity in a context-dependent way (4,5).  

 

To determine to what extent the coding of time is embedded within the coding of the stimulus itself, 

here we examine the relationship between the perceived features of a sensory event and the perceived 

duration of that same sensory event. As a stimulus feature, we focus on the mean speed of tactile 

vibrations, and its subjective correlate, intensity. The psychophysical experiments reveal a systematic 

interaction between perceived intensity and perceived duration, both in humans and in rats, leading 

us to propose that an early-stage sensory representation provides common sensory input to two 

downstream integrators that generate two corresponding percepts. To test this model, we use neuronal 

activity recorded from somatosensory cortex of behaving rats to generate neurometric curves for 
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perceived intensity and perceived duration, and derive a close match to observed psychophysical 

curves. From these findings, we propose a framework, general to humans and to rats, for the 

construction of the feeling of the intensity of a stimulus and the time occupied by that same stimulus. 

 

RESULTS  

 

We carried out four experiments to investigate the effect of two tactile vibration features – mean 

speed and duration – on the two percepts directly connected to those features – perceived intensity 

and perceived duration. Experiments 1 and 2 involve both human subjects, to whom stimuli were 

delivered to the left index fingertip, and rats, to whom vibrations were delivered to the whiskers on 

the right side of the snout (Figure 1A). Psychophysical experiments point to a candidate mechanism 

for the generation of the percepts – two accumulators of sensory drive, operating in parallel with 

percept-specific parameters of integration – and we probe the feasibility of the posited mechanism in 

Experiment 3 by generating intensity and duration neurometric curves from recorded rat 

somatosensory cortex firing. Experiment 4 tests additional predictions of the model in human 

subjects.  
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Fig1. Experiment conditions and stimulus parameters. 
A) Left: Experiment setup, with the rat’s whiskers in contact with the vibrating plate. Right: 
Experiment setup for the human, with the left index fingertip in contact with the vibrating probe.  
B) Schematic representation of the noisy vibration stimulations delivered by the motor. The left side 
shows two traces of sampled speed over time, and the right side shows the folded half Gaussian 
distribution to which each sample corresponds. The distribution’s expected value is shown for each 
trace. 
C) Delayed comparison trial structure. Each trial consisted of the presentation of two noisy stimuli, 
with specified durations and mean speeds, separated by an interstimulus delay. The response was 
deemed correct according to the task rule: Compare the relative durations (blue-shaded rule) or 
relative intensities of Stimulus 1 and 2 (red-shaded rule). 
D) Representation of all possible stimulus intensities and durations presented to the subjects in the 
delayed comparison task. Each square in the matrix is color coded according to the NTD and NSD of 
the two vibrations presented. Selected NSD/NTD combinations from the top left and bottom right of 
the matrix are illustrated. 
 

 

Experiment 1: Interaction of vibration speed and duration in a delayed comparison task 

 

Each vibration was constructed by stringing together over time a sequence of velocity values, 𝑣! , 

sampled from a Gaussian distribution. We consider the stimuli as speed rather than velocity since 

earlier work has shown that perceived intensity is mapped directly from vibration mean speed (6,7). 

The distribution then took the form of a folded half-Gaussian (right side of Figure 1B) and the 

vibration can be considered a sequence of speed values, 𝑠𝑝! (left side of Figure 1B). A single vibration 

was thus defined by its nominal mean speed in mm/s, denoted 𝑠𝑝 (equivalent to the standard deviation 
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of the Gaussian multiplied by %(2/𝜋)). We consider perceived intensity to be the subjective 

experience related to objective intensity, or sp. Each stimulus was also defined by its duration in ms, 

𝑇.  

 

Experiment 1 employed a delayed comparison task, also known as the two interval forced choice task 

(Figure 1C). On each trial, subjects received two vibrations (Stimulus 1, Stimulus 2), separated by a 

fixed delay (500 ms for human subjects, 2 s for rats). The experiment was comprised of two distinct 

tasks: for duration delayed comparison, the subject had to judge which of the two stimuli was longer 

according to the relative T values (T1 > T2 or T2 > T1). For intensity delayed comparison, the subject 

had to judge which of the two stimuli was of greater intensity according to the relative mean speeds 

(sp1 > sp2 or sp2 > sp1). On trials when the parameter of interest was equal, the correct (rewarded) 

answer was assigned randomly. Each of 10 human subjects carried out both tasks, on different days, 

while individual rats were trained on a single task: 7 were intensity rats and 7 duration rats. 

 

To constrain subjects to rely on working memory, we used a set of stimulus pairs referred to as the 

stimulus generalization matrix (SGM; Supplementary figure 1) in which any value of sp1 could be 

followed by a larger or smaller sp2 and any value of T1 could be followed by a larger or smaller T2 

(6,8). Since neither stimulus alone provided the information necessary for a correct choice, both 

stimuli had to be attended to and utilized to solve the task.  

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 2, 2020. ; https://doi.org/10.1101/2020.08.02.232801doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.02.232801
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Supplementary figure 1. Stimulus generation matrix. 
A) Upper row: Matrices used for the intensity delayed comparison task. Lower row: matrices used 
for the duration delayed comparison task, for human subjects. Each trial’s pair of task relevant feature 
values (sp in the intensity task, T in the duration task) was drawn uniform randomly from the set of 
pairs scattered in the leftmost plots. Each trial’s pair of task irrelevant feature values (T in the intensity 
task, sp in the duration task) was drawn uniform randomly from the set of pairs scattered in the 
rightmost plots. 
B) Same as A, for rat subjects. 

 

In each trial, the two stimuli could differ in sp, in T, or both. To quantify stimulus differences, we 

designated two indices. The normalized speed difference (NSD), defined as (sp2 – sp1) / (sp2 + sp1), 

ranged from -0.3 to 0.3 for both humans and rats, while the normalized time difference (NTD), (T2 – 

T1) / (T2 + T1), ranged from -0.3 to 0.3 for humans and from -0.35 to 0.35 for rats. The stimulus set 

was constructed to present every possible combination of NTD and NSD values during the session 

(Figure 1D). Subjects received the same stimuli whether the task was to judge intensity or duration 

(see Supplementary figure 1 for the set of speed and duration values). Thus, any resulting difference 

in performance of the tasks could not be attributed to differences in tactile input. 

 

The upper plot of Figure 2A shows results from the duration delayed comparison sessions, with 

human data given as solid lines and rat data as dashed lines. The likelihood of judging T2 > T1 is 

plotted as a function of NTD, and the resulting steep curves report the capacity of human and rat 

subjects to extract the elapsed time. The similarity between the curves obtained from rats and human 
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subjects demonstrates that the two species are approximately equally as proficient at discriminating 

stimulus durations.  

 

Fig 2. Humans and rats extract two distinct percepts. 
A) Psychometric curves averaged across all subjects as a function of NTD while averaging across all 
NSD values (upper panel), and as a function of NSD while averaging across all NTD values (lower 
panel). Solid lines show the choice probability for humans, while dashed lines show the choice 
probability for rats.  
B) Upper plots: Performance obtained by human subjects (left column) and rats (right column) in 
duration delayed comparison task. Bars on the left of each plot show the performance calculated 
according to the intensity rule (correctness according to stimulus speed difference) revealing a 
consistent bias of the irrelevant feature on choice in both species. Bars on the right of each plot show 
the performance according to the duration rule, revealing similar performances in both species. 
Lower plots: Symmetrical analyses for intensity delayed comparison task, showing comparable 
performance and biases caused by the non-relevant feature on choice between the two species. In all 
plots, each line connecting a pair of dots represent single subjects. 
 

By the same layout, the lower plot of Figure 2A show results from the intensity delayed comparison 

sessions. When the likelihood of judging sp2 > sp1 is plotted as a function of NSD, the resulting steep 

curves report the capacity of human (solid) and rat (dashed) subjects to extract stimulus intensity. 

Again, the two species show similar capacities in discriminating stimulus speeds. 

 

Figure 2B shows the overall performance achieved by humans (left) and rats (right) in the two delayed 

comparison tasks. The left bar of each plot depicts the percentage of correct trials obtained when the 
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subjects’ performance is analyzed by the intensity rule (the feature to be compared is vibration speed), 

while the right bar depicts the correct percentage when the subjects’ performance is analyzed by the 

duration rule (the feature to be compared is vibration duration). The upper panels show that the two 

species had similar performance (75-80% correct) in duration delayed comparison sessions when 

their choices were measured according to the duration rule. However, if their choices were measured 

according to the relative speeds of the stimuli, performance within the same stimulus set would 

remain above chance (about 55% correct). The small but significant bias according to the non-

relevant stimulus feature means that in both species the higher-speed stimulus, on average, tends to 

be judged as longer in duration. That is, stronger feels longer.  

 

Similarly, the lower panels show that the two species had similar performance (75-80% correct) in 

intensity delayed comparison sessions when their choices were measured according to the intensity 

rule. However, if their choices were measured according to the relative durations of the stimuli, 

performance within the same stimulus would remain above chance (about 55% correct). Again, the 

small but significant bias according to the non-relevant stimulus feature means that in both species 

the greater-duration stimulus, on average, tends to be judged as higher in intensity. That is, longer 

feels stronger.  

 

To assess the effect of vibration speed on perceived duration in more detail, the upper panel of Figure 

3A shows results from the duration delayed comparison sessions, with separate psychometric curves 

plotted for each value of NSD. In both species, there was a pronounced shift of the duration 

psychometric curves as NSD grows from negative to positive (dark red to yellow), signifying that a 

greater value of sp2 relative to sp1 increased the likelihood of the subject judging T2 > T1. The lower 

panel reveals the effect of vibration duration on perceived intensity. The substantial shift of the 

psychometric curves as NTD grows from negative to positive (dark blue to cyan) signifies that, in 

both species, a greater value of T2 relative to T1 increased the likelihood of the subject judging sp2 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 2, 2020. ; https://doi.org/10.1101/2020.08.02.232801doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.02.232801
http://creativecommons.org/licenses/by-nc-nd/4.0/


> sp1. We quantified the bias in perception as the slope of the linear correlation relating the change 

in the non-relevant feature to the change in the NTD or NSD value at which the subject judged 

Stimulus 1 and Stimulus 2 as equivalent (the point of subjective equality, PSE). In humans and rats, 

both in the duration task (Figure 3B, upper panel) and in the intensity task (Figure 3B, lower panel), 

the median value of bias was significantly above zero (humans: p = 0.002 for both intensity and 

duration bias, rats: p = 0.0156 for intensity bias, p = 0.032 for bias, Wilcoxon signed rank test, 

Supplementary figure 2). Median values reveal a greater influence of the irrelevant feature in humans 

than in rats.  

 

Fig 3. Interacting stimulus features in delayed comparison. 
A) Psychometric curves for 10 humans (left) and 7 rats (right) in the duration (top) and intensity 
(bottom) delayed comparison tasks. 
B) Upper plot: Bias caused by the non-relevant stimulus feature, intensity, in duration comparison. 
Lower plot: Bias caused by the non-relevant stimulus feature, duration, in intensity comparison. In 
all plots, dots represent single subjects, bars represent mean of biases across subjects, while error bars 
represent the standard error of the mean across all subjects. The median value of each bias was 
significantly different from zero (humans: p = 0.002 for both intensity and duration bias, rats: p = 
0.0156 for intensity bias, p = 0.032 for duration bias, Wilcoxon signed rank test). 
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Supplementary figure 2. Quantification of the perceptual biases. 
Upper panel: Duration delayed comparison task. Each bar is the standard error, centered on the mean, 
of the psychometric curve PSE for each NSD value across all 10 human subjects (solid) and all 7 rats 
(dashed), relative to the PSE for the NSD = 0 condition. Lower panel: Same analysis for intensity 
delayed comparison task. The downward slanting distribution of data indicates that, for the duration 
task, PSE shifted to the left as NSD grew while, for the intensity task, PSE shifted to the left as NTD 
grew. 

 

Two observations point to the shifts of psychometric curves as a perceptual rather than a decisional 

phenomenon. First, variations in the non-relevant feature affected choices in the same way whether 

applied to Stimulus 1 or Stimulus 2 (Supplementary figure 3) even though Stimulus 1 is dissociated 

from any decisional process; the choice can be generated only after presentation of Stimulus 2. 

Second, the biases were better explained as a horizontal psychometric curve shift than a vertical shift 

(Supplementary figure 4).  

 

 

Supplementary figure 3. Effect of variations in the non-relevant feature whether applied to 
Stimulus 1 or Stimulus 2  
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A) Upper row: Each bar is the standard error, centered on the mean, of the psychometric curve PSE 
for each NSD value across all 10 human subjects, relative to the PSE for the NSD = 0 condition, when 
varying the non-relevant feature of Stimulus 2 (left panel) or Stimulus 1 (middle panel), for the 
duration delayed comparison task. Right panel shows bias caused by the non-relevant stimulus 
feature, intensity, in duration comparison, for both conditions. Dots represent single subjects, while 
error bars represent the standard error of the mean across all subjects. Lower row: symmetrical 
analysis for intensity delayed comparison task.  
B) Same analysis as in B, for 7 rats in duration delayed comparison (upper plots), and 7 in intensity 
delayed comparison (lower plots). 

 

 

 

Supplementary figure 4. Characterization of the observed bias as horizontal versus vertical 
curve shifts.  
Left column shows the analysis of the rat data; right column human data. Uppermost plot shows the 
in and out of sample deviance estimated by WAIC using the perceptual (horizontal) and choice 
(vertical) biasing models. Empty dots show the out-of-sample deviance (WAIC) of each model, the 
filled dots show the in-sample deviance (WAIC - 2 pWAIC) of each model. The black bars show the 
WAIC standard deviation of each model. Gray triangle shows the model’s WAIC difference, and the 
bar represents the WAIC difference’s standard deviation. Standard deviation is smaller, due to 
correlations between the computations of WAIC for each model. The middle row shows the data in 
the duration delayed comparison task (dashed lines) along with each model’s prediction (solid 
curves). The bottom row shows the data in the intensity delayed comparison task (dashed lines) along 
with each model’s prediction (solid curves). The columns correspond to either the perceptual or 
choice bias models. Much better fit is obtained in all cases by the perceptual (horizontal) shift model. 
 

In short, the main finding of Figures 2 and 3 is that humans and rats readily extracted the perceptual 

feature required by the task, be it duration or intensity, but were biased by the non-relevant feature 
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(speed and duration, respectively).  

 

Experiment 2: Interaction of vibration speed and duration in a direct estimation task 

 

Delayed comparison (Experiment 1) involves a number of steps: Stimulus 1 encoding, storage in 

working memory, Stimulus 2 encoding, and comparison of current Stimulus 2 to the memory of 

Stimulus 1. Interaction between intensity and duration could occur during Stimulus 1 storage, recall, 

or during the Stimulus 2 versus 1 comparison. In Experiment 2, perception in human subjects was 

measured through direct intensity estimation and direct duration estimation (Figure 4A). If an 

intensity/duration confound were to persist in direct estimation, it would strengthen the argument that 

mixing emerges within the initial percept, before the percept is committed to or retrieved from 

working memory. 

 

Fig 4. Interacting stimulus features in direct estimation. 
A) Experiment setup. 10 Human subjects received a single noisy vibration and reported perceived 
duration or intensity by mouse-clicking on a computer screen. 
B) Stimulus matrix. The vibration duration and mean speed was randomly picked from the set of (T, 
sp) combinations represented by the colored squares. Two sample stimuli from the upper right and 
lower left of the matrix are illustrated. 
C) Duration estimation results. The left plot shows the median perceived duration as a function of 
true duration. Middle plot shows how the mean percept, averaged across all values of T, changed with 
increasing values of sp in log scale, for the duration estimation session. On the right, the intensity 
bias, calculated as the linear coefficient between mean perception and different values of sp in log 
scale, across all 10 subjects.  
D) Intensity estimation results, following the same convention as panel C). 
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On a given trial, the subject received a single vibration, defined (as before) by sp and T. A slider 

image appeared on the monitor 500 ms after the end of the vibration. By choosing the mouse-click 

position along the slider, the subject reported the perceived intensity of the vibration or else the 

perceived duration of the vibration. Scale normalization procedures are detailed in Methods. The 

slider did not display any landmarks, numbers, or ticks. To help subjects create two separate 

subjective scales, the orientation of the slider was specific to the task (e.g. horizontal for the intensity 

session and vertical for duration session), with task/orientation association randomized among 

subjects. The test stimulus set was comprised of 10 durations (linearly spaced from 80 to 800 ms in 

80 ms steps) and 10 mean speed values (linearly spaced from 9.6 mm/s to 67.2 mm/s in 6.4 mm/s 

steps). All 100 possible combinations of speed and duration were presented in each session (Figure 

4B). 

 

Figure 4C, left panel, shows the results of direct duration estimation, averaged across subjects. 

Perceived duration increased not only with T, as expected, but also with sp (designated by colors from 

dark red to yellow), confirming the main result from Experiment 1. From the same data set, Figure 

4C, middle panel, plots the mean reported duration (pooling all presented durations) as a function of 

sp (in log-scale), highlighting the speed-induced bias. The rightmost panel of Figure 4C shows that 

the intensity bias, calculated as the linear coefficient of the fit between mean perceived duration and 

sp in log scale, is significantly different from zero (Wilcoxon signed rank test, p = 0.002).  

 

Figure 4D, left panel, shows the results of direct intensity estimation, averaged across subjects. 

Perceived intensity increased not only with sp, as expected, but also with T (from dark blue to cyan). 

Thus, longer stimuli were perceived as stronger in direct estimation, as found earlier in delayed 

comparison. Again, the mean reported intensity increases with the non-relevant feature T (Figure 4D, 

middle panel); the duration bias (Figure 4D, right panel), calculated as the linear coefficient of the fit 

between mean perceived intensity and T in log scale, is significantly different from zero (Wilcoxon 
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signed rank test, p = 0.002). 

 

Experiment 3: A sensory integration account for time and intensity perception 

 

Next, we asked which computations the brain might use to construct the two percepts from a common 

stream of sensory input. Neurons in rat somatosensory cortex precisely encode instantaneous speed 

(7), and analogous coding mechanisms exist in primates (9). Because the vibration was stochastic, no 

instantaneous value could provide an intensity estimate for the entire vibration (10). A subject could, 

in theory, achieve optimal performance in the intensity task by linearly integrating (summating) the 

output of speed-coding neurons over the entire vibration and then normalizing the integrated value 

by elapsed time. The denominator of this normalizing operation – elapsed time – could itself be the 

basis of the estimate of stimulus duration. But this computation would not explain the observed 

perceptual confound between the relevant and the irrelevant stimulus features, inasmuch as the time 

counter in the normalization is conceived of as an independent term. 

 

As an alternative, we posit that the brain constructs the percept of both stimulus duration and stimulus 

intensity by nonlinear accumulation of the sensory signal over time. Nonlinear relations between 

stimulus features (sp, T) and percepts are hinted at by the psychophysical functions of Experiment 2, 

(left panels of Figure 4C and D; also see Supplementary figure 5).  
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Supplementary figure 5. Non-linearities between percept and stimulus T, in direct estimation. 
A) Duration estimation results. The two plots show the median perceived duration as a function of 
true duration in a linear-linear scale (left) and in a log-log scale (right), with each color denoting one 
sp. In log scale, perceived duration increases linearly with stimulus T, suggesting a non-linear 
interaction between the two.  
B) Intensity estimation results. Left plot shows the median perceived intensity as a function of sp in 
a linear-linear scale, with each color denoting one duration. Right plot shows the median perceived 
intensity as a function of stimulus T in a log-log scale, with each color denoting one sp. In log scale, 
perceived intensity increases linearly with T, suggesting a non-linear interaction between the two. 
 
 

A renowned model of accumulation in perceptual decision-making is the leaky integrator, in which 

some form of input is summated across time, while the accumulator simultaneously diminishes by 

some proportion of its accumulated quantity (11). Leaky integration of sensory input can be 

formulated as: 

 

𝐶
𝑑𝛾
𝑑𝑡

= −𝜆𝛾 + 𝑓(𝑠𝑝! , 𝑡) (1) 

 

where g is the percept, f(spt,t) is the external drive to the integrator, l is the leak rate and C/l = t 

specifies a time constant of integration. We now link the model to brain activity, hypothesizing that 

the leaky integrator’s source of drive may be sensory cortex. To test the feasibility of this hypothesis, 

we ask whether neuronal firing from rat vibrissal somatosensory cortex (vS1) can be inserted into Eq. 

(1) in place of the term f(spt,t), to generate neurometric functions consistent with the observed rat 
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psychometric functions (see Methods and Supplementary figures 6 and 7). If so, then the parameters 

of integration that optimize the similarity between neurometric and psychometric functions would be 

informative about the underlying brain mechanisms. Figure 5A shows raster plots of one neuronal 

cluster recorded from vS1 of an awake-behaving rat (see Methods) as it received vibrations. Stimulus 

duration was 1 s and plots are arranged according to vibration sp, from 147 mm/s (top) to 42 mm/s 

(bottom). For present purposes, two forms of sensory drive emanating from vS1 are of interest: sp-

coding neurons and non sp-coding neurons. The positive relation between sp and firing rate is 

highlighted by the peristimulus time histogram at the bottom of Figure 5A; this was a “sp-coding” 

neuronal cluster, as defined by the significant (p < 0.05) Spearman correlation coefficient between sp 

and whole-stimulus average firing rate. Coding of sp can also be negative, where firing rate decreases 

significantly as sp increases. 

 

 

Figure 5. Leaky integration of vS1 neuronal activity replicates psychophysical results. 
A) Raster plots of one neuronal cluster recorded from vS1 of an awake-behaving rat as it received 
vibrations. Stimulus duration was 1 s and plots are arranged according to vibration sp, from 147 mm/s 
(top) to 42 mm/s (bottom). Lower panel shows the peristimulus time histogram of the same neuronal 
cluster, sorted by vibration sp. In order to replicate behavioral stimulus set, responses of individual 
neurons were measured from t = 0 to 7 different duration T, logarithmically spaced from a minimum 
of 140 ms to a maximum 600 ms.  
B) Upper plot: PSTH of all sp-coding neurons (n=66) sorted by sp. Lower plot: PSTH of all non sp-
coding neurons (n=57) sorted by sp. Color scale for sp as in A). 
C) Output g of the duration leaky integrator as a function of time, obtained by integrating 34% of 
coding neurons and 66% of non-coding neurons with a time constant t of 666 ms, and a noise 
parameter of 3.1 standard deviations. Color scale for sp as in A). 
D) Comparison between the psychometric curves (left plot) and the neurometric curves (right plot) 
obtained for one example rat trained in duration delayed comparison.  
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E) Output g of the intensity leaky integrator as a function of time, obtained by integrating 90% of 
coding neurons and 10% of non-coding neurons with a time constant t of 90 ms, and a noise parameter 
of 1.6. Color scale for sp as in A). 
F) Comparison between the psychometric curves (left plot) and the neurometric curves (right plot) 
obtained for one example rat trained in the intensity delayed comparison task. 
G) Optimal values of the 3 parameters of the leaky integrator model obtained for each individual 
duration rat (blue dots) and intensity rat (red dots). The upper plot shows the percent coding of 
neurons versus t. The lower plot shows t versus the neuronal noise. 
 

The uppermost peristimulus time histogram (PSTH) of Figure 5B was generated from the averaged 

firing of all positive and negative sp-coding neurons (n = 66) The lower PSTH of Figure 5B was 

generated from the averaged firing of non sp-coding neurons (Spearman correlation coefficient p > 

0.05 for each neuron; n = 57). Here, a small rise in firing rate at vibration onset is visible, but 

subsequent firing rate was not significantly correlated with sp.  

  
Could inputs like those shown in Figure 5B be accumulated to generate the neuronal substrates of the 

intensity and duration percepts? We implemented two leaky integrator models as an attempt to 

account for duration and intensity perception. The two integrators differ at three levels: the leak time 

constant t, the proportion of sp-coding versus non sp-coding neurons that are integrated, and the 

neuronal noise, which quantifies the variability in the firing pattern within the neuronal population 

that serves as the input to the integrator. To replicate the duration delayed comparison performance 

of one example rat, the input to the duration leaky integrator consists of 34% sp-coding neurons (66% 

non sp-coding neurons), accumulated with a time constant t of 666 ms and a noise level of +/-

3.1  standard deviations (see Methods for the details on the quantification of noise). Figure 5C shows 

how the accumulated quantity, gduration, of the duration leaky integrator grows over time for different 

vibration sp values. The accumulated quantity builds up almost linearly, due to the long time constant, 

and increases modestly with stimulus sp, due to the drive from sp-coding neurons. The left and right 

panels of Figure 5D show the strong similarity between the psychometric curves and the simulated 

neurometric curves, respectively, obtained for this example rat (see Supplementary figures 6 and 7 

and Methods for the model fitting procedure).  
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To replicate the intensity delayed comparison performance of one example rat, the input to the 

intensity leaky integrator consists of 90% sp-coding neurons (10% non sp-coding neurons), 

accumulated with a time constant t of 90 ms and a noise level of 1.6 standard deviations. As seen in 

Figure 5E, the intensity leaky integrator, gintensity, saturates earlier than the duration leaky integrator, 

due to the short time constant. Moreover, the integrator grows more strongly with sp than does the 

duration leaky integrator, a consequence of the predominant input from sp-coding neurons. The left 

and right panels of Figure 5F show strong similarity between the psychometric curves and the 

simulated neurometric curves, respectively, obtained for this example rat. Psychometric/neurometric 

comparisons for all rats are given in Supplementary figure 6 and 7. 

 

 

Supplementary figure 6. Parameter optimization for the duration leaky integrator model. 
A) Leftmost plots show the leaky integrator parameters values that yielded a match of overall 
performance and intensity bias, for an example rat. Upper panel shows the values of t and percent 
sp-coding neurons that yield leaky integrator performance replicating the actual performance of the 
rat (black dots). Lower panel shows the values of t and percent sp-coding neurons yield leaky 
integrator bias replicating the intensity bias of the same rat (black dots). Middle panel shows the 
parameters that gave a match in performance (blue dots) and intensity bias (orange dots) in the 3d 
parameter space. Yellow dots indicate the parameters values that produced a match in both features. 
Among those parameter values, the ones that minimized the difference between the choice of the rat 
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and the choice of the ideal observer, for all NTD and NSD values, were used to generate the 
neurometric curves (rightmost panel).  
B) Psychometric curves (upper row) and neurometric curves (middle row) for all individual rats.  
 

 

 

Supplementary figure 7. Parameter optimization for the intensity leaky integrator model. 
A) Leftmost plots show the leaky integrator parameters values that yielded a match of overall 
performance and duration bias, for an example rat. Upper panel shows the values of t and percent sp-
coding neurons that yield leaky integrator performance replicating the actual performance of the rat 
(black dots). Lower panel shows the values of t and percent sp-coding neurons yield leaky integrator 
bias replicating the duration bias of the same rat (black dots). Middle panel shows the parameters that 
gave a match in performance (blue dots) and duration bias (orange dots) in the 3d parameter space. 
Yellow dots indicate the parameters values that produced a match in both features. Among those 
parameter values, the ones that minimized the difference between the choice of the rat and the choice 
of the ideal observer, for all NTD and NSD values, were used to generate the neurometric curves 
(rightmost panel).  
B) Psychometric curves (upper row) and neurometric curves (middle row) for all individual rats.  
 

 

Figure 5G shows the optimal values of the 3 variables of the leaky integrator model obtained for each 

individual duration rat (in blue) and intensity rat (in red). The optimal parameters for the two tasks 

were clearly separated in two clusters in all 3 dimensions. To replicate the behavioral results of the 
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duration task, the sensory drive must be integrated with a long time constant (average t, 592 ms; 

range 282-794 ms) compared to that of the intensity task (average t, 83 ms; range 74-90 ms). If the 

duration percept, gduration, were to integrate the sensory drive with the time constant suitable for the 

intensity integrator, it would vary too greatly in relation to sp, giving an unrealistically large intensity 

bias (Supplementary figure 8, left plot). Symmetrically, if the intensity percept, gintensity, were to 

integrate sensory drive with the time constant suitable for the duration integrator, it would vary too 

greatly in relation to T, giving an unrealistically large duration bias (Supplementary figure 8, right 

plot). 

 

 

Supplementary figure 8. Neurometric curves obtained with the opposite leaky integrator. 
A) Neurometric curves obtained by integrating the sensory drive with the time constant suitable for 
the duration integrator, plotted as a function of NSD values. 
B) Neurometric curves obtained by integrating the sensory drive with the time constant suitable for 
the intensity integrator, plotted as a function of NTD values. 
 

Moreover, the two integrators differ in the nature of their sensory drive. Duration delayed comparison 

neurometric curves replicate actual psychometric curves only when the sensory drive includes a low 

proportion of sp-coding vS1 neurons with high neuronal noise, whereas intensity neurometric curves 

replicate actual psychometric curves only when the sensory drive includes a high proportion of sp-

coding vS1 neurons with low neuronal noise (Figure 5G). The duration leaky integrator’s tolerance 

for non sp-coding neurons and for noise implies that it is “open” to inputs unrelated to the vibration 

sensory code. This is consistent with the fact that time perception is a supramodal process; in the 

perceptual experience of an event, all sensory channels are connected with one unique feeling of time 
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(12). Furthermore, multimodal (audio-visual) stimuli are perceived as longer in duration than 

unimodal stimuli, suggesting the convergence of separate streams (13). One possible interpretation 

of our data is that the duration leaky integrator normally accumulates neuronal activity from sensory 

areas besides vS1, reflected in the integrator’s requirement to receive non sp-coding activity with 

high noise within its sensory drive. On this basis, we predicted that the percept of duration (but not 

intensity) could be affected by input carried within a sensory modality other than that whose duration 

must be judged. Psychophysical experiments in human subjects support the prediction (see 

Supplementary figure 9 and Supplementary text 9), revealing that an acoustic stimulus delivered 

together with tactile vibration is accumulated by the duration integrator but not the intensity 

integrator. 

 

 

Supplementary figure 9. Test for integration of task-unrelated sensory drive. 
A) Schematic representation of a trial with non-informative acoustic noise delivered through 
headphones. 
B) Bars denote mean performance on the duration and intensity tasks for trials with noise on and off, 
across 9 human subjects. Each dot represents a single subject’s mean performance. Orange error bars 
are standard error of the mean across subjects. The presence or absence of noise did not affect 
accuracy (Kruskal-Wallis test, p = 0.72 for the duration task, p = 0.66 for the intensity task)  
C) Effect of acoustic noise on the bias caused by the task-irrelevant feature. For the duration task, the 
presence of noise reduced the bias normally caused by intensity (one sample, one-tailed Wilcoxon 
signed rank test, p = 0.0273). For the intensity task, noise did not affect the bias caused by duration 
(one sample, one-tailed Wilcoxon signed rank test, p = 0.5). Each dot represents a single subject’s 
bias difference, whilst the bar represents the average across subjects. Error bars are standard error of 
the mean across subjects. 
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Experiment 4: Dual leaky integrators 

 

Having seen that the leaky integrator framework offers a plausible account for both percepts, when 

acting on sensory cortical spike trains, we next asked whether a single integrator is at work, one which 

operates with parameters tuned on each trial according to the current task (Model 1: Figure 6A). 

Alternatively, do two integrators, characterized by different parameter values, operate in parallel, 

with the subject retrieving the percept from the task-specified integrator (Model 2: Figure 6A)?  

 

 

Fig 6. Test of single versus dual integrators.  
A) Alternative hypotheses for the leaky integration process underlying the construction of both 
intensity and duration perception. Model 1 is represented by a single integrator that receives tactile  
drive but switches between task-specific values for the parameter t. Model 2 is represented by dual 
integrators that receive the same tactile drive. Each integrator has task-specific values for the 
parameter t. 
B) Schematic representation of cue-before versus cue-after direct estimation experiment. On half the 
trials, the cue providing trial instruction (symbolized by red or blue box) was provided before the 
vibration (above dashed line), and on the remaining half, the cue was presented after the vibration 
(below dashed line). 
C) Comparison of median perceived duration (upper row) and median perceived intensity (lower row) 
when the cue was presented before (left column) versus after (right column) the vibration, for 8 human 
subjects. Time of cue did not affect estimation.  
 

 

To select between the two models, we designed Experiment 4, in which human subjects performed 

direct stimulus estimation, however the instruction cue indicating which stimulus feature to report 

was given to the subject either before or after stimulus delivery (Figure 6B). According to the single 
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integrator Model 1 of Figure 6A, performance would be good on trials with cue delivery prior to 

vibration onset, inasmuch as the integration parameters could be correctly “pretuned” for the relevant 

feature. Performance would be lower with cue delivery after the conclusion of the stimulus inasmuch 

as the integration parameters could not be optimally pretuned prior to stimulus presentation. 

According to the dual integrator Model 2 of Figure 6A, performance would be nearly the same on 

trials with cue delivery after vibration offset versus cue delivery prior to vibration onset. This is 

because the two integrators operate in parallel, each with optimized parameters. The results, 

illustrated in Figure 6C, show that performance was not significantly affected by cue delivery time 

(Kruskal Wallis test: for duration estimation p = 0.83, for intensity estimation p = 0.75; see 

Supplementary figure 10). Experiment 4 thus supports the dual integrator model. 

 

Supplementary figure 10. Observed bias in Experiment 4.  
Left plot: Bias caused by the irrelevant feature (sp) in the duration estimation task. Each dot 
corresponds to a single subject, while the bar is the mean across subjects. Right plot: Bias caused by 
the irrelevant feature (T) in the intensity estimation task. Each dot corresponds to a single subject; the 
bar is the mean across all 8 subjects. In both plots, orange error bars are standard error of the mean 
across subjects. Cue delivery did not affect the bias of the non-relevant feature (Kruskal Wallis test: 
for duration estimation p = 0.83; for intensity estimation p = 0.75). 
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DISCUSSION 

Rat tactile perceptual capacities 

This study extends the range of high-level perceptual functions for which rats can serve as models. 

In Experiment 1, rats were able to perform a tactile intensity delayed comparison task with capacities 

similar to those of human subjects, replicating recent studies (6,7). In Experiment 1, rats were also 

able to perform a tactile duration delayed comparison task, again with capacities strikingly similar to 

those of human subjects (Figure 2). Extracting stimulus duration and committing it to memory for 

future reference now enters for the first time the rodent perceptual repertoire. 

 

Intensity/duration confound reflects intertwined mechanisms 

Having established rats as an appropriate target for investigation, the study turned to the problem of 

understanding how, from a single tactile stimulus, rats and humans can extract multiple percepts – 

the vibration’s intensity together with the time it occupies. In both tasks, judgments were biased by 

the non-relevant stimulus feature – duration in the intensity delayed comparison task and sp in the 

duration delayed comparison task (Figure 3). As neither rats nor humans were able to generate 

independent representations of intensity and duration, a systematic perceptual interaction that 

transcends the species and the physical configuration of the receptors (fingertip and whiskers) must 

be at play. Experiment 2 replicated the perceptual interaction using a direct estimation task in human 

subjects, indicating that the interaction takes place regardless of whether the percept is manipulated 

in working memory (Figure 4). 

 

Our results derive from the case in which the duration that must be measured is the elapsed time of 

the sensory stimulus itself. In conditions where the time to be judged lies between two discrete events 

— a start and stop signal, for example — the integration mechanisms remain to be worked out and 

the involvement of the dorsal striatum has been highlighted (14,15). 
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In earlier psychophysical work, an increase in perceived intensity with increased stimulus duration 

was reported in touch (7,16), audition (17–19) and vision (17). The duration effect on perceived 

intensity was thought to arise from a temporal integration process: the sensory system summates input 

over time linearly, following Bloch’s Law (20), or else nonlinearly (7,19,21). Independently, an 

increase in perceived duration with non-temporal stimulus features has been reported in touch 

(22,23), audition (24) and vision (23,25). However, the effect of stimulus features other than duration 

itself on perceived duration has been interpreted in a separate framework, which posits that an 

internal, central clock keeps track of time (1). In this framework, the increase of perceived duration 

with increasing vibration sp would be an attentional phenomenon, where a stronger stimulus leads to 

an increase in arousal, resulting in augmented speed of the central clock (26,27).  

 

By uncovering both perceptual confounds on the basis of a single set of stimuli (Figure 1D, 

Supplementary Figure 1), our experiments made it possible to configure perceived intensity and 

perceived duration within a unified framework. Opposing the view of two independent confounds, 

our experiments suggest that the influence of stimulus duration on perceived intensity and the 

influence of vibration sp on perceived duration constitute inextricable phenomena.  

 

Integration of sensory drive and alternative models 

We propose leaky integration of one common source of sensory drive (Eq. 1) as the mechanism 

underlying both sets of psychophysical data. In Experiment 3, we recorded vibration-evoked neuronal 

activity from vibrissal somatosensory cortex (vS1) of awake, behaving rats and inserted that firing as 

the sensory drive term of the leaky integrator formulation. After setting the parameters of sensory 

drive integration separately for the two tasks and then simulating choices by applying a decision rule 

to the leaky integrator’s accumulated quantity, the resulting neurometric curves mimicked observed 

intensity and duration psychophysical curves (Figure 5).  
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The three parameter settings that optimized neurometric/psychometric overlap are informative about 

mechanisms. First, the leak time constant, t, was greater for the duration integrator (282-794 ms) than 

the intensity integrator (74-90 ms). These values accord with the intuition that the accumulated 

quantity underlying the perception of the passage of time must grow in a manner approaching 

linearity, while the accumulated quantity underlying the perception of vibration intensity must 

quickly reach a steady state. It is interesting that the intensity time constant is similar to that for the 

accumulation across touches of vibrissal kinematics-evoked activity in the formation of a texture 

percept (28,29), suggesting some common integrative mechanism or circuit underlying both percepts. 

 

Second, the degree to which stimulus-unrelated neuronal activity is integrated differed for the two 

integrators. Intensity neurometric curves fully overlapped psychometric curves only when the leaky 

integrator input was comprised of 80-100% sp-coding neurons, suggesting that the neuronal 

population underlying the final intensity percept gives more weight to synapses transmitting stimulus-

specific information and tends to exclude non-responsive neurons. Whereas the tactile features of a 

multimodal event may be experienced distinctly from the concurrent visual or acoustic features, there 

is not a distinct sense of elapsed time for each sensory stream (13). At the level of neuronal 

processing, this implies the convergence of diverse channels onto a single duration integrator, 

promiscuous to all inputs. Our study uncovered three correlates of this presumed convergence. First, 

duration neurometric curves matched psychometric curves only when the proportion of sp-coding 

vS1 neurons in the sensory drive was reduced to 14-68%. Second, neurometric matched psychometric 

only when the noise level within the sensory drive was boosted from 1.2-1.7 (for the intensity 

neurometric) to 2.6-3.9 standard deviations. Third, the duration percept but not the intensity percept 

of tactile vibrations was influenced by the addition of acoustic noise alongside the trial 

(Supplementary Figure 9), again consistent with the expected multimodal convergence upon the 

duration integrator. 
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The hypothesis that perceived duration is achieved through leaky integration of stimulus-related and 

stimulus-unrelated sensory input is particularly relevant to the debate on models for the perception of 

time in the scale that ranges from tens of milliseconds up to a few seconds. Our results are in line 

with other work that assumes temporal integration processes behind the encoding of the passage of 

time (30,31) and are also in accordance with the idea that sensory-specific areas contribute to time 

perception (3,32). They are harder to reconcile with the amodal central clock theory (1). The “state-

dependent networks” model (33) and the “striatal beat frequency” model (34) have not yet been 

challenged as to the dependence of time perception on non-temporal stimulus features. In the first 

type of model, time is encoded by the evolving temporal pattern of activity of a recurrent neuronal 

network, so that almost any network could in principle represent the elapsed time without the need 

of an explicit representation of duration (33,35). In the second type of model, time is encoded by a 

pattern of relative phases of different oscillators, thought to be present in both thalamic and cortical 

neuronal activity, and is read out by striatal neurons, which act as coincidence detectors. Both models 

would explain the influence of vibration sp on its perceived duration as an increase or decrease of the 

speed by which the activity of the connected neuronal population evolves in time or else by which 

the oscillators follow the pattern of their relative phases. Whether intensity-dependent modulation 

could be reliably implemented in these models is not known. 

 

Integration timescales point to target regions and mechanisms 

Temporal leaky integration of sensory information can be performed by a recurrent neuronal circuit 

(36–39). Recurrent neuronal circuits have been widely used to explain decision-related neuronal 

activity in areas of the brain such as lateral intraparietal cortex (LIP) (40), premotor cortex (41), 

prefrontal cortex (42), and dorsal striatum (43,44). The different level of leakiness for intensity versus 

duration could be achieved by a difference in the strength of recurrent connections in the network, 

and also on the different levels of background input (36,45,46). 
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Experiment 4, where human performance did not depend on preparatory knowledge about the percept 

to be reported, argues that the two percepts are generated through two computations that operate in 

parallel. We speculate that two different neuronal populations receive a common input, and the final 

state of these populations can be interrogated separately in order to produce the required judgment 

(Figures 6A, Model 2). The hierarchical ordering in the timescales of intrinsic fluctuations in the 

primate cortex, increasing from posterior to anterior (47,48), suggests that duration may be computed 

in a more anterior region with respect to intensity, perhaps at a downstream stage. Our rat experiments 

were limited to individuals reporting one percept, either duration or intensity. We speculate, however, 

that rats also simultaneously experience two distinct percepts, an assumption that would require 

discrete brain populations to simultaneously integrate sensory drive with different time constants. 

Primary somatosensory cortex is characterized by a short intrinsic timescale, and does not show 

temporal integration (7,10,28,47,49). Intrinsic timescales for intensity integration may be found in 

primary and secondary vibrissal motor cortex (vM1 and vM2) and intrinsic timescales for duration 

integration may be found in farther anterior or medial regions. The convergence of tactile and acoustic 

input for the generation of the duration percept might occur in a population that processes sensory 

inputs from several modalities, such as premotor cortex (50) or dorsal striatum (51). 

 

The two integrators are not a literal portrayal of a physiological mechanism, but are a characterization 

of some network property that participates in the conversion of the vibration sensory code to the 

conscious experiences of intensity and duration. The dual integrators constitute a unified framework 

inasmuch as both key features of the stimulus – the coding of vibration sp and elapsed time occupied 

by that stimulus – contribute to both integrators. While the framework put forward in this study cannot 

exclude the feasibility of all other models, it does create a set of predictions that can serve to alert us 

as to which network properties should be sought in future physiological work. For instance, the 

successful generation of neurometric curves to replicate both duration and intensity perception 

suggests vS1 as a common input, a hypothesis that could be directly tested by optogenetic control 
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over vS1. Our model also makes the straightforward prediction that the neuronal population 

implementing the readout of stimulus duration must be modulated by stimulus sp. 
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METHODS 

 

Human and rat subjects 

 

Thirteen healthy human subjects (age range 22–35 yrs) were tested in the delayed comparison task, 

after giving their informed consent. Only subjects that reached better than 70% performance in both 

intensity and duration delayed comparison (10 out of 13) were included in the analysis. The same 10 

subjects were then recruited for the direct estimation tasks. All subjects were recruited on-line through 

the SISSA Sona System. (https://sissa-cns.sona-systems.com/). The number of subjects was 8 in 

Experiment 3 and 9 in Experiment 4. Protocols conformed to international norms and were approved 

by the Ethics Committee of SISSA (protocol number 6948-II/7). 

 

14 male Wistar rats (Harlan, San Pietro al Natisone, Italy) were housed individually or with one cage 

mate and maintained on a 14/10 light/dark cycle. Daily access to water was restricted to promote 

motivation in the behavioral task, yet weight gain followed a standard Wistar-specific curve, 

indicating that the quantity of water obtained during training and testing was comparable to the ad lib 

quantity. After each session, rats were placed for several hours in a large, multistory enriched 

environment with other rats. Protocols conformed to international norms and were approved by the 

Ethics Committee of SISSA and the Italian Health Ministry (license numbers 569/2015-PR and 

570/2015-PR). 

 

Stimulus generation 

 

Vibrations were generated by stringing together sequential velocity values (vt) at 10,000 samples/s, 

taken from a normal distribution. Converting vt to its absolute value, spt, the distribution takes the 

form of a folded, half-Gaussian (see Figure 1B). A Butterworth filter with 150 Hz cutoff was then 
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applied to yield low-pass filtered noise. The spt time series for a given trial was taken randomly from 

among 50 unique sequences of pseudo-random values. Because stimuli were built by sampling a 

normal distribution, the statistical properties of an individual vibration did not perfectly replicate 

those of the distribution from which it was constructed. As a vibration’s sp could not precisely match 

the distribution from which it was sampled, the assigned value may be termed “nominal” sp. 

 

Delayed comparison task for rats 

 

Each trial began when the rat positioned its nose in the nose-poke (equipped with optic sensor) and 

placed its whiskers on the plate (Figure 1A). After a delay of 500 ms, Stimulus 1 was presented, 

characterized by nominal mean speed, sp1, and duration, T1 (Figure 1B). After the inter-stimulus 

delay of 2 s, Stimulus 2 (with sp2 and T2) was presented (Figure 1C). The rat remained in the nose-

poke throughout both stimuli and could withdraw only when the “go” cue sounded at the end of the 

post-stimulus delay of 500 ms. Early withdrawal was considered an aborted trial and went 

unrewarded; it was not scored as correct or incorrect. After the go cue, the rat selected the left or right 

spout; reward location depended on the relative values of sp1 and sp2 for rats doing the intensity 

delayed comparison task, while it depended on the relative values of T1 and T2 for rats doing the 

duration delayed comparison task. Incorrect choices went unrewarded. Trials with sp1 = sp2 or T1 = 

T2, according to the task, were rewarded randomly. 

 

Rats learned the delayed comparison task by generalizing the comparison rule across the entire 

stimulus range, referred to as the stimulus generalization matrix (SGM; Supplementary figure 1), 

whereby neither stimulus alone provided the information necessary for a correct choice (1,2). Seven 

rats were trained to discriminate T1 vs T2 and another 7 were trained to discriminate sp1 vs sp2. The 

stimulus range used during both duration and intensity delayed comparison task was from 112 to 

1000 ms for stimulus duration, and from 25 to 160 mm/s for stimulus sp. 
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Delayed comparison task for human subjects 

 

Experiments 1 and 4 employed a delayed comparison design. Stimulus 1 was characterized by 

nominal mean speed sp1 and duration T1. After the interstimulus delay of 1 s, Stimulus 2 (with sp2 

and T2) was presented. Stimuli delivered to human subjects on the fingertip were the same as those 

used in rats except that the velocity values were halved. Each subject went through both an intensity 

and a duration delayed comparison session on different days. Subjects were verbally instructed to 

report which of the two stimuli was perceived as longer in duration or stronger in intensity, according 

to the behavioral task, by pressing the left (for Stimulus 1) or right (for Stimulus 2) arrow on the 

computer keyboard. They received visual feedback (correct/incorrect) on each trial through a monitor. 

A total of 1,456 trials were presented at each session. 

 

The stimulus range used for intensity delayed comparison session was from 161 to 557 ms for 

stimulus duration, and from 9.28 to 110.36 mm/s for stimulus mean speed. The stimulus range used 

for duration delayed comparison session was from 87 to 1034 ms for stimulus duration, and from 

17.2 to 60 mm/s for stimulus mean speed. 

 

Direct estimation task 

 

The same human subjects that went through the duration and intensity delayed comparison task 

participated in the estimation task. Each subject went through both a duration estimation and an 

intensity estimation session, held on different days. Each session began with a training phase. In this 

phase, subjects received 40 stimuli, sampled randomly from the 100 possible stimuli (10 possible sp 

values from 9.6 mm/s to 67.2 mm/s and 10 possible T	values from 80 to 800 ms, linearly spaced), to 

become confident with the task and to sample the stimulus range. In the test phase, a single stimulus 
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was presented, characterized by nominal mean speed, sp, and duration, T. After a post-stimulus delay 

of 500 ms, a slider appeared on the screen. The slider did not present any landmark, ticks or numbers. 

The orientation of the slider was different between the two sessions, either vertical or horizontal. 

Subjects were instructed to report the perceived intensity or else the perceived duration of the 

vibration on a subjective scale, in which the extreme left/bottom position indicated a very weak or a 

very short stimulus, and the extreme right/top position indicated a very strong or a very long stimulus. 

The report was done by mouse-clicking on the chosen position along the slider. A total of 1,300 trials 

was presented at each session. 

 

Five durations linearly spaced from 80 to 800 ms, and 5 sp values from 9.6 to 67.2 mm/s were used. 

A visual cue, either a blue or a red square, was presented for 1 second, either before or after the 

delivery of the vibration. The orientation of the slider was kept horizontal for both intensity and 

duration estimation trials, so that the orientation could not be used as a cue for the trial type and 

subjects were forced to attend to the visual cue. A total of 1,300 trials was presented at each session. 

 

Analysis of human and rat delayed comparison data 

 

To characterize the performance of the intensity delayed comparison task, we computed the 

proportion of trials in which subjects judged Stimulus 2 greater than Stimulus 1 on stimulus pairs 

characterized by a fixed sp1 (sp1 = 32 mm/s for human subjects, sp1 = 64 mm/s for rats) and different 

sp2 values, separately for each normalized time difference (NTD) value, defined as (T2 – T1) / (T2 + 

T1). We fit the data with a four-parameter logistic function using the nonlinear least-squares fit in 

MATLAB (MathWorks, Natick, MA): 

 

𝑃(𝑆𝑡𝑖𝑚2 > 𝑆𝑡𝑖𝑚1) = 𝛿 + (1 − 𝛿 − 𝜆)
1

1 + 𝑒"#
$%&#'

( )
(2) 
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where NSD is normalized speed difference, (sp2-sp1) / (sp2+sp1), 𝛿 is the lower asymptote, λ is the 

upper asymptote, 1/ν is the maximum slope of the curve and μ is the NSD at the curve’s inflection 

point. 

 

For the duration delayed comparison task we computed the proportion of trials in which subjects 

judged Stimulus 2 > Stimulus 1 on stimulus pairs characterized by a fixed T1 (T1 = 300 ms for human 

subjects, T1 = 300 ms for rats) and different T2 values, separately for each NTD value by fitting: 

 

𝑃(𝑆𝑡𝑖𝑚2 > 𝑆𝑡𝑖𝑚1) = 𝛿 + (1 − 𝛿 − 𝜆)
1

1 + 𝑒"#
$*&#'

( )
(3) 

 

where 𝛿 is the lower asymptote, λ is the upper asymptote, 1/ν is the maximum slope of the curve 

and μ is the NTD at the curve’s inflection point. 

 

In order to quantifying the bias of stimulus duration on the percept of stimulus intensity in the 

intensity delayed comparison task, we then computed a linear correlation between the PSE values 

fitted for different NTD values, and the actual NTD values. The additive inverse of the regression 

coefficient, was defined as duration bias. Symmetrically for the duration delayed comparison task, 

we computed a linear correlation between the PSE values fitted for different NSD values, and the 

actual NSD values. The additive inverse of the regression coefficient, was defined as intensity bias. 

 

Delayed comparison task: perceptual versus choice bias 

 

Figure 3A reveals that both species show a pronounced shift in their psychometric curves on both 

duration and intensity discrimination tasks due to the task irrelevant feature, NSD and NTD 
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respectively. Horizontal and vertical shifts of the psychometric curve are frequently attributed to 

different steps in the cognitive process, a perceptual shift and a choice shift, respectively (52). To 

quantify whether the shifts are better explained as purely horizontal or vertical we fit the following 

two models of decision probabilities: 

 

𝑃(𝑆𝑡𝑖𝑚2 > 𝑆𝑡𝑖𝑚1) = (1 − 𝑝+)𝑠?𝛽,Δ𝑝 + 𝛽-Δ𝑏 + 𝜀,D + 𝑝+	𝑠(𝜀+) (4) 

 

𝑃(𝑆𝑡𝑖𝑚2 > 𝑆𝑡𝑖𝑚1) = (1 − 𝑝+)𝑠?𝛽,Δ𝑝 + 𝜀,D + 𝑝+	𝑠(𝛽-Δ𝑏 + 𝜀+) (5) 

 

where P(Stim2 > Stim1) is the probability of choosing Stimulus 2 greater than Stimulus 1, 𝛥𝑝 and 

𝛥𝑏	are the normalized differences of the relevant and irrelevant task features, respectively (i.e. NTD 

and NSD for the duration delayed comparison task, and NTD and NSD for the intensity delayed 

comparison task). 𝑝+ is the probability of a lapse trial, 𝛽, is the linear weight that the task relevant 

feature has on choice, 𝛽- is the linear weight that the task irrelevant feature has on choice, and 𝑠(𝑥) 

is a logistic function, 𝜀, is the constant perceptual bias, and 𝜀+ is the lapse trial constant choice bias. 

Both models in Equations 4 and 5 assume that on each trial there is a probability 𝑝+ that the choice 

will not be determined by the task-relevant features. A non-sensory error is called a lapse. On the 

remaining trials, choice is determined by a generalized linear model (GLM), specifically the logit link 

function, of the task relevant feature Δ𝑝. The two models differ in the role of the task irrelevant 

feature. In the model of Equation 9, Δ𝑏 is linearly combined with Δ𝑝 on the non lapsed trials, whilst 

in the model of Equation 10, Δ𝑏 goes through a separate GLM that determines the choice on lapsed 

trials. This means that the model of Equation 9 assumes that the task-irrelevant feature biases the 

effective percept yielding only a horizontal shift, whilst the model of Equation 5 assumes that the 

task-irrelevant feature biases choice on lapsed trials, yielding only a vertical shift. 
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We fit both models to the human and rat data using a Python software package PyMC3 (53). In both 

cases, we pooled all the subjects together. We then compared the goodness of fit of both models using 

the Widely Applicable Information Criteria (WAIC, (54)). WAIC shows that the entire dataset is 

better explained by a perceptual bias (Equation 4) as compared to a choice bias (Equation 5). In the 

case of the humans, the normalized WAIC difference (ndWAIC which is equal to WAIC divided by 

its standard deviation) was equal to 6.62. In the case of the rats, ndWAIC = 0.34 (Supplementary 

Figure 4). A detailed comparison can be found in Table 1. 

 

 

Table 1: Model comparison for the human and rat data. The WAIC column shows the model’s WAIC value 

with its corresponding standard deviation. The pWAIC column shows the model’s effective number of parameters 

given the dataset. The dWAIC column shows the WAIC difference across each model and the one with the lowest 

WAIC value. The standard deviation of the dWAIC is smaller than that of each WAIC value, because each model’s 

WAICs are correlated, as they are fit to the same dataset. 

 

Subject Model Type WAIC pWAIC dWAIC 

Human Perceptual bias 15357±174 17 0 

Choice bias 15690±172 19 333±50 

Rat Perceptual bias 6146±143 42 0 

Choice bias 6181±133 39 35±101 
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Analysis of direct estimation task data 

Results from the direct estimation task were analyzed taking into account two main factors. First is 

that the subjects tended to be more variable in their responses at the beginning of the session before 

setting a consistent subjective scale. In order to keep this variability from affecting our results, we 

calculated the mean response for each of the possible combinations of sp and T and excluded outlier 

responses, those more than 1.5 SD displaced from the mean. Second was that not all subjects used 

the whole range of the slider; every participant set their minimum and maximum responses at a 

different position in the scale. In order to make each subject’s subjective scale comparable, we used 

a min-max normalization algorithm: 

 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑	𝑥. = 9
𝑥. −𝑚𝑖𝑛(𝑥)	

𝑚𝑎𝑥(𝑥) 	− 𝑚𝑖𝑛(𝑥)	
+ 1 (6) 

 

where 𝑥. is the non-normalized response on trial 𝑛, 𝑥 is the range of total responses, and 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑	𝑥. is the normalized response. We then multiplied by 9 and added 1, so that the 

normalized responses range from 1 to 10. 

 

In order to estimate duration bias for intensity estimation trials in Experiment 3, we first computed 

the average normalized response across all possible 𝑠𝑝, for each T. We then computed a linear 

regression between the average normalized responses and stimulus 𝑇, and defined the regression 

slope as duration bias. 

 

Similarly, in order to estimate intensity bias for intensity estimation trials in Experiment 3, we first 

computed the average normalized response across all possible T, for each sp. We then computed a 

linear regression between the average normalized responses and stimulus sp, and defined the 

regression slope as intensity bias. 
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Electrode implantation and data acquisition  

Trained rats (n = 2) were anesthetized with 2%–2.5% Isoflurane delivered with oxygen under 

controlled pressure through a plastic snout mask. They received an implant in the primary vibrissal 

sensory cortex (vS1), which was accessed by craniotomy, using standard stereotaxic technique 

(centered 2.8 mm posterior to bregma and 5.8 mm lateral to the midline). The multielectrode array 

(Tucker Davis Technologies) was inserted via micromanipulator. The extracellular activity of vS1 

was sorted into 31 single units and 92 multiunits, as verified through the spike waveform and the 

refractory period observed in interspike interval histogram using a MATLAB-based software, 

UltraMegaSort 2000 (55,56). In total, 123 neurons were recorded in 7 recording sessions. Part of the 

data set analyzed in the present study has been analyzed to different purposes in previous work (6).  

Neuronal population response  

All analyses and statistical tests were done with custom codes written in MATLAB. We propose that 

the population activity of the vS1 that represents vibration sp is integrated by downstream areas to 

produce the percepts of intensity and duration. An observer is imagined to make a perceptual choice 

based on the neuronal population integrated value, g. The resulting choice, when plotted against 

stimulus difference (NSD or NTD), is referred to as the neurometric curve. A high degree of similarity 

between the neurometric curve and the psychometric curve observed in the behavioral task supports 

the feasibility of the posited neuronal operation as a mechanism underlying behavior. In order to 

obtain an adequate number of trials per neuron per condition, we focused on trials with fixed and long 

duration and variable sp values. In these sessions, stimuli lasted 200 ms, 600 ms, and in some sessions 

1s. Only trials in which the stimulus duration was 600 ms or longer were used in the generation of 

neurometric curves. 
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In order to construct the neurometric curves from equivalent (sp, T) values to those used in the 

psychometric analysis, pseudo random trials were created by measuring the responses of individual 

neurons from t = 0 to T (1 ms bin size) and averaged over equi-sp trials. In order to have the same 

number of trials per combination of sp and T, 200 resampled pseudo random trials per (sp, T) stimulus 

class were generated by resampling (57). The data set was then divided in half with the first half 

serving as the training set to estimate parameters of interest, and the second half serving to test how 

accurate the model with selected parameters predicts the observed psychometric curve. 

 

Leaky integration of neuronal firing 

To quantify the coding properties of individual neurons, the Spearman correlation strength between 

stimulus sp and the average response during the first 600 ms of the vibration was measured. Neurons 

with significant correlation (p < 0.05) were considered sp-coding neurons (66 out of 123, 54%). The 

integrated neuronal response, g, for each (sp, T) stimulus class was calculated in 1 ms steps and g at 

time T (ms) was taken as input to the observer’s choice. Neuronal activity drove the leaky integrator 

through a modified form of Equation (1): 

																																								𝐶
𝑑g
𝑑𝑡
= −𝜆g+ 𝑓(𝑟! , 𝑛!)																																	 (7) 

The external drive 𝑓(𝑟! , 𝑛!) to the integrator is: 

					𝑓(𝑟! , 𝑛!) =
∑ 𝑟𝑐!/ +$
/01 ∑ 𝑟𝑛𝑐!

23
201

𝑀 +𝑁 + 𝑛! (8) 

where the first sum is the summation of the response of N neurons randomly sampled from the sp-

coding neuronal population. The second sum is the response of non sp-coding neurons, and 𝑛!	is the 

neuronal fluctuation, sampled from a Gaussian distribution with 50 different values of variance and 

mean. The neuronal fluctuation within the sensory drive is generated from the Gaussian distribution 
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with zero mean and standard deviation s,	𝑁(0, 𝜎!4). The variance of the noise term at a given time-

point is proportional to the average response of input channels pooled over all sp-coding vs. non sp-

coding neurons at the same time-point (𝑅!	 ).  

𝑅!	 =
∑ 𝑟!/ +$
/01 ∑ 𝑟𝑛𝑐!

23
201

𝑁 +𝑀 																																																													(9) 

																																																																																			𝜎!	 = %𝑅!	𝑛!																																																																			(10) 

 

 The proportion of coding vs. noncoding neurons was chosen among 50 different (N, M) combinations 

such that $
$63

 spanned  0 to 1 linearly. The leak time constant τ was chosen randomly among 50 

values that spanned 50-800 ms linearly. 

Neurometric curves  

For each combination of (t, proportion coding neurons, noise level) parameters the neurometric curve 

is calculated as: 

𝑃?choice(𝑠𝑡𝑖𝑚𝑙𝑢𝑠2 > 𝑠𝑡𝑖𝑚𝑙𝑢𝑠1)D = 𝛿 + (1 − 𝛿 − 𝜆)𝑃(𝛶4 > 𝛶1) (11) 

 

where	𝛿	and 𝜆 are the probability of upper and lower lapse (incorrect decision unrelated to perceptual 

processing) and are estimated from the psychometric curve of each subject. Integrator outputs for 

Stimulus 1 and Stimulus 2 (g4	and g1) are compared on a trial by trial basis (pseudorandom trial) for 

each ( sp, T) stimulus pair. 

 

The neurometric curves should replicate two key features of the psychometric curves. The first is the 

bias, namely, the shift in the psychometric curve caused by the feature that should be exclude. This 
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is quantified by the slope of the linear correlation relating the change in the non-relevant feature to 

the change in the NTD or NSD value at which the subject judged Stimulus 1 and Stimulus 2 as 

equivalent – that is, the point of subjective equality (PSE). In the case of the neuronal analysis, we 

found that the noise in the bias measure (caused by neuronal response variability) could be diminished 

by computing the area under the neuromeric curve rather than the shift in PSE. The second key feature 

is the overall performance achieved by an observer who compares two stimuli on the basis of the 

integrated neuronal firing. We selected the values of leaky integrator parameters (t, proportion coding 

neurons, noise level) such that the bias and performance resulting from the output of Equation (11) 

fell within 5 percent of the actual psychometric values that were meant to be replicated 

(Supplementary figure 6 and 7 panel A). The neurometric curves constructed with the selected values 

of leaky integrator parameters produce similar performance and bias to those observed in behavior. 

For each selected value (Supplementary figure 6 and 7 panel A, right, filled yellow dots), the 

neurometric curves were constructed using the test trials. The neurometric values for each (sp, T) 

stimulus pair was then compared to the behavioral response. The parameter set that produces the least 

error was then used as the optimized integrator values (Figure 5 panel D and G, Supplementary figure 

6 and 7 panel B). 
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SUPPLEMENTARY TEXT 9 

 

Discrimination task with supplementary auditory noise 
 

RESULTS  

Figure 5E showed that, in order to reproduce the behavioral results, the duration leaky integrator 

needs to integrate a lower proportion of sp-coding neurons with a higher amount of neuronal noise, 

as compared to the intensity leaky integrator. One possible interpretation of this result is that the 

duration leaky integrator integrates input from sensory areas beyond vS1. In our simulation, we can 

replicate the non-vS1 input by including non-sp-coding neurons. This hypothesis is motivated by the 

fact that time perception is a supramodal process; all sensory channels are connected with the same 

sense of time (Kanai et al., 2011), and the durations of multimodal (audio-visual) stimuli are known 

to be perceived as longer than unimodal ones (De La Rosa and Bausenhart, 2013). 

 

We asked whether the hypothesis that the duration percept is generated by integration of sensory 

channels beyond those of the tactile stimulus itself could be generalized to humans. As a test, human 

subjects again performed the delayed comparison task; in half the trials, the tactile stimuli to be judged 

were accompanied by non-informative acoustic noise played through headphones (Supplementary 

figure 9A). Each session tested one percept, either intensity or duration.  

 

If the irrelevant acoustic noise is integrated by both the duration and intensity leaky integrators, it 

will “dilute,” the influence of sp-coding neurons. In the intensity delayed comparison task this would 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 2, 2020. ; https://doi.org/10.1101/2020.08.02.232801doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.02.232801
http://creativecommons.org/licenses/by-nc-nd/4.0/


result in a decrease in performance while in the duration delayed comparison task this would result 

in a reduction of the sp-dependent bias.  

 

The presence or absence of noise did not affect accuracy in either task (Supplementary figure 9B; 

Kruskal-Wallis test, p = 0.72 for the duration task, p = 0.66 for the intensity task). To quantify the 

bias induced by the non-relevant feature on the perception of the relevant feature, as before we 

measured the shift of the PSE of psychometric curves caused by the non-relevant feature (see 

Methods). Supplementary figure 9C, shows that in the duration comparison task, the bias induced by 

sp was significantly different between the “noise on” and “noise off” conditions (one sample, one-

tailed Wilcoxon signed rank test, 𝑝 = 0.0273), whereas in the intensity comparison task the bias 

induced by duration was not significantly different between the “noise on” and “noise off” conditions 

(one sample, one-tailed Wilcoxon signed rank test, 𝑝 = 0.5). These results are not consistent with the 

findings predicted if both integrators were influenced by the non-relevant stimulus feature. Instead, 

they are consistent with the hypothesis that the irrelevant acoustic noise is integrated within the 

sensory drive of  the duration leaky integrator, but not by the intensity leaky integrator. 

 

MATERIAL AND METHODS 

 

Stimulus generation 

The acoustic noise was generated by stringing together sequential amplitude values at 10,000 

samples/s, taken from a normal distribution. The signal was then filtered using a Tukey (also known 

as tapered cosine) window and delivered through headphones. The rising phase of acoustic noise 

amplitude was initiated 0.1-0.5 seconds (taken randomly) before Stimulus 1 vibration onset, and the 

falling phase occurred at a random time interval between 0.1 and 0.5 seconds, after the conclusion of 

Stimulus 2; in this manner, overall duration of the acoustic stimulus changed on each “Noise on” trial 

and provided no information about the vibration duration or intensity. 
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Experimental design 

Each subject went through both an intensity and a duration delayed comparison session, in different 

days. The trial structure was the same as the previous delayed comparison tasks, except for the fact 

that in half the trials, the tactile stimuli to be judged were accompanied by non-informative acoustic 

noise played through headphones. Moreover, no visual feedback was presented to subjects after their 

response. A total of 1,020 trials were presented at each session. 

 

Analysis of data from delayed comparison task with supplementary auditory noise 

We first characterized the behavior by using the same procedure as in the purely tactile delayed 

comparison task. For the intensity delayed comparison task, we then computed a linear correlation 

between the PSE values fitted for different 𝑁𝑇𝐷 values, and the actual 𝑁𝑇𝐷 values. The additive 

inverse of the regression coefficient, was defined as duration bias. Symmetrically for the duration 

delayed comparison task, we computed a linear correlation between the PSE values fitted for different 

𝑁𝑆𝐷 values, and the actual 𝑁𝑆𝐷 values. The additive inverse of the regression coefficient, was 

defined as sp bias. 
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