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Abstract 

Accurately quantifying gene and isoform expression changes is essential to understanding 
cell functions, differentiation and disease. Therefore, a crucial requirement of RNA sequencing 
is identifying differential expression. The recent development of long-read direct RNA (dRNA) 
sequencing has the potential to overcome many limitations of short and long-read sequencing 
methods that require RNA fragmentation, cDNA synthesis or PCR. dRNA sequences native 
RNA and can encompass an entire RNA in a single read. However, its ability to identify 
differential gene and isoform expression in complex organisms is poorly characterised. Using 
a mixture of synthetic controls and human SH-SY5Y cell differentiation into neuron-like cells, 
we show that dRNA sequencing accurately quantifies RNA expression and identifies 
differential expression of genes and isoforms. We generated ~4 million dRNA reads with a 
median length of 991 nt. On average, reads covered 74% of SH-SY5Y transcripts and 29% 
were full-length. Measurement of expression and fold changes between synthetic control 
RNAs confirmed accurate quantification of genes and isoforms. Differential expression of 231 
genes, 291 isoforms, plus 27 isoform switches were detected between undifferentiated and 
differentiated SH-SY5Y cells and samples clustered by differentiation state at the gene and 
isoform level. Genes upregulated in neuron-like cells were associated with neurogenesis. We 
further identified >30,000 expressed transcripts including thousands of novel splice isoforms 
and transcriptional units. Our results establish the ability of dRNA sequencing to identify 
biologically relevant differences in gene and isoform expression and perform the key 
capabilities of expression profiling methodologies. 
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Introduction 
Cellular fates and functions are underpinned by the expression of protein-coding and 

non-coding genes into RNA (termed the transcriptome). The expression profiles of individual 
genes can vary in complex ways to regulate their functional outputs. Expression of genes can 
be switched on or off, increased or decreased, while the RNA products (isoforms) made from 
individual genes can also vary extensively. In humans >90% of protein-coding genes express 
multiple RNA isoforms via processes such as alternative transcriptional start sites, termination 
sites and splicing, greatly increasing the diversity of the transcriptome and proteome within 
cells (Pan et al. 2008; Wang et al. 2008). Expression of different genes and isoforms drive 
cellular differentiation programs, control cell and tissue functions and allow cells to respond to 
their environment (Melé et al. 2015; Roundtree and He 2016). However, aberrant expression 
contributes to various diseases including neurological disorders, autoimmune disorders and 
cancer (Emilsson et al. 2008; Lee and Young 2013; Sui et al. 2014). 

Understanding the dynamic transcriptome requires techniques that can identify 
differential expression (DE) at both the gene (DGE) and transcript isoform (DTE) levels. 
Differential expression analysis enables comparisons between different tissues or conditions 
to identify genes that play a major role in determination of the phenotype. Short-read RNA 
sequencing (RNA-seq) methodologies are well validated for identifying differential gene 
expression but have limitations in identifying and quantifying both known and novel alternative 
isoforms (Steijger et al. 2013; Cali et al. 2019). This is exacerbated in complex mammalian 
transcriptomes which contain large numbers of highly similar transcript isoforms. A further 
limitation of short-read RNA-seq is the necessity to reverse transcribe RNA into cDNA and 
PCR amplify samples before sequencing, which introduces various biases (Aird et al. 2011). 

 Long-read sequencing techniques from Oxford Nanopore Technologies (ONT) and 
Pacific Biosciences have the potential to overcome many of these limitations (Sharon et al. 
2013; Weirather et al. 2017). Long-read methods can sequence entire transcripts in a single 
read, potentially allowing the unambiguous identification of the expressed gene and isoform. 
However, initial long-read methods still required PCR and/or reverse transcription. Recently, 
ONT developed direct RNA sequencing (dRNA), the first long-read technique to sequence 
native RNA molecules (Garalde et al. 2018). dRNA doesn’t utilise any amplification or 
fragmentation steps and has the potential to quantify both genes and isoforms in an unbiased 
manner, while also characterising the RNA modifications and polyA tail on each RNA. Studies 
to date have used dRNA sequencing to catalogue known and novel transcripts in yeast 
(Jenjaroenpun et al. 2018), C.elegans (Roach et al. 2020; Li et al. 2020), Arabidopsis (Zhang 
et al. 2020) and human cell lines (Workman et al. 2019; Soneson et al. 2019); characterise 
polyA tail lengths of individual transcripts (Roach et al. 2020; Workman et al. 2019); identify 
allele specific gene and isoform expression (Workman et al. 2019); identify RNA base 
modifications (Workman et al. 2019; Garalde et al. 2018; Liu et al. 2019; Lorenz et al. 2019) 
and infer RNA structure (Stephenson et al. 2020). Maximum read lengths for dRNA were also 
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much longer than for PCR-based long-read cDNA sequencing (Workman et al. 2019), 
demonstrating its potential to sequence long and complex RNA splice isoforms. 

Identification of expression differences between samples is a standard requirement in 
the transcriptomics field. Therefore, dRNA sequencing needs to effectively quantify RNA and 
identify differentially expressed genes and isoforms to become a mainstream transcriptomics 
technique. The unbiased nature of dRNA sequencing should allow accurate quantification and 
has previously shown good performance on synthetic control RNAs of known abundance 
(Garalde et al. 2018; Sessegolo et al. 2019). However, the ability of dRNA sequencing to 
identify differential gene and isoform expression has largely been performed on model 
organisms with much simpler transcriptomes than found in mammals and/or based on 
expression fold changes without statistical analysis (Jenjaroenpun et al. 2018; Li et al. 2020; 
Zhang et al. 2020). Therefore, it remains essential to establish the effectiveness of dRNA 
sequencing to identify differential expression in complex organisms. 

Here we use a combination of synthetic spike-in control RNAs and a neuroblastoma 
differentiation paradigm to demonstrate that dRNA sequencing accurately quantifies genes 
and isoforms and is able to identify biologically relevant differential gene and transcript isoform 
expression. We find that variance between samples is dominated by biological differences, 
allowing the identification of hundreds of DE genes and isoforms despite the lower throughput 
of dRNA sequencing. We further show that dRNA sequencing can identify differential 
transcript usage (DTU), where switching occurs between isoforms, often in the absence of 
overall changes to gene expression. Lastly, we demonstrate that dRNA sequencing can 
identify thousands of known and novel transcripts in SH-SY5Y (5Y) cells confirming the 
potential of dRNA sequencing to help fully decipher the complex transcriptome. 

Results 
To examine the ability of dRNA sequencing to identify differential expression from a 

complex mammalian transcriptome, we utilised the well characterised differentiation of the 
human neuroblastoma SH-SY5Y (5Y) cell line into neuron-like cells. Native RNA from 
duplicate samples of undifferentiated and triplicate samples of differentiated 5Y cells were 
sequenced on an Oxford Nanopore MinION (Figure 1A). In addition, the RNA extracted from 
one differentiated sample was sequenced twice, producing a technical replicate to examine 
the variability due to library preparation and sequencing. Synthetic RNA ‘sequin’ spike-in 
controls (Hardwick et al. 2016) (see methods) were included in all samples to provide positive 
controls for gene and isoform identification, quantification and differential expression. Sequin 
RNAs vary in abundance over >4 orders of magnitude and come in two mixes, each mix 
contains the same synthetic RNA isoforms but their concentrations are offset by known 
amounts. Mix A was added to undifferentiated 5Y RNA, while Mix B was added to RNA from 
differentiated samples. The yeast calibration RNA was also included to enable initial quality 
control of sequencing. 
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Figure 1. Length and coverage of direct RNA sequencing reads 
(A) Experimental overview. Cultured SH-SY5Y cells were differentiated in triplicate and RNA extracted from both 
undifferentiated and differentiated cells. Native polyA purified SH-SY5Y RNA was combined with ‘sequin’ spike-in 
RNA, prepared for dRNA sequencing and sequenced on an Oxford Nanopore MinION. Sequenced reads were 
base-called, filtered and analysed to identify and quantify genes and transcript isoforms and their differential 
expression between undifferentiated and differentiated cells. (B) Length of all SH-SY5Y and sequin pass reads. 
Dashed line shows median read length. X-axis truncated at 5 kb. (C) Gene body coverage of SH-SY5Y reads in 
each sequenced sample. Length of all genes normalised to 100. 5’ end of gene on left-hand side (0) to 3’ end on 
right-hand side (100). Lines show mean coverage across all genes across the length of the gene body. U1 & U2 - 
Undifferentiated replicates 1 & 2. D1 & D3 - Differentiated replicates 1 & 3. D2T1 & T2 - Technical replicates of 
differentiated replicate sample 2. (D) Fraction of GENCODE v31 transcripts covered by each read compared to 
annotated transcript length. Density plot shows the annotated length and the transcript fraction covered by each 
SH-SY5Y read. The trend line of coverage vs transcript length was plotted using a generalized additive model, an 
extension of a generalised linear model where the linear form is replaced by sum of smooth functions. (E) Fraction 
of full-length SH-SY5Y reads. Fraction of GENCODE v31 transcript covered by each read. Dotted line represents 
95% cutoff for full-length reads. Full-length reads shaded in blue. X-axis truncated at 50% coverage. 
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Sequencing metrics and read alignment 

dRNA sequencing generated 6.5 million reads in total, of which 4.4 million (~68%) 
were pass reads with a quality score greater than 7. Yeast calibration RNA generated 325k 
pass reads which had a median read length of 1.3 kb, which was consistent with the known 
length of this control and a median accuracy of 91%. There were ~4.1 million pass reads from 
5Y cells and RNA sequins (hereafter referred to as “reads”). Reads had a median length of 
1004 nucleotides and a median quality score of 10 across all samples (Figure 1B, Table 1).  

Reads from each sample were aligned using minimap2 (Li 2018) to the human and 
sequin reference genome and transcriptome. The aligned lengths had an overall median of 
991 nucleotides (Figure S1A), demonstrating almost the entire length of the reads aligned. 
Ninety eight percent of reads aligned to the genome and transcriptome, meaning almost all 
reads were assigned to a gene and transcript isoform (Table 1). Most reads only had a single 
primary genomic alignment. Similar to previous findings (Soneson et al. 2019), >70% of reads 
also had 1 or more secondary transcriptomic alignments, largely reflecting the increased 
difficulty of assigning reads to specific isoforms. Although isoform assignment was significantly 
improved by filtering with NanoCount prior to quantification (Figure S1B). We identified 
expression of 17,263 human genes (65% of protein coding genes) and 56,460 human 
isoforms (42% of protein coding isoforms), as well as 42 (55%) and 78 (49%) sequin genes 
and isoforms. 

 

Genome and transcriptome coverage 

One of the main advantages of nanopore sequencing is the potential to generate long 
reads that comprise full-length transcripts. However, both RNA degradation and ONT software 
limitations reduce the extent to which dRNA reads represent full-length transcripts (Workman 
et al. 2019). Sequin RNAs are in-vitro transcribed and so are not vulnerable to degradation by 
cellular RNases during RNA extraction. As such they should provide some indication of how 
much degradation is present in cellular RNA (even when RNA integrity appears high) vs how 
many incomplete transcripts are due to degradation during library preparation and/or 
sequencing limitations. 

We examined read coverage across gene bodies. dRNA sequencing requires an intact 
3’ end, which is sequenced first (Garalde et al. 2018) and we observed corresponding high 

Undiff1 Undiff2 Diff1 Diff2TR1 Diff2TR2 Diff3 Overall

Number of reads 468,790 778,037 518,176 806,067 867,371 634,226 4,072,667

Median read length (nt) 989 1,009 922 994 1,041 1,042 1,004

Median read quality score 9.8 10.2 9.9 10.0 10.0 9.9 10.0

Longest alignment length (nt) 13,439 15,081 12,600 13,739 13,624 14,362 15,081

Reads aligned to genome (%) 97.5 97.8 97.8 98.1 98.2 98.1 98.0

Reads aligned to transcriptome (%) 97.7 97.8 98.0 98.3 98.4 98.3 98.2

Table 1. dRNA sequencing and alignment metrics (pass reads only)
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coverage at the 3’ end (Figure 1C). Gene body coverage then progressively decreased 
towards the 5’ end, consistent with previous studies (Depledge et al. 2019; Soneson et al. 
2019). 

To assess the fraction of transcripts covered by reads and the proportion that represent 
full-length transcripts, we created a dataset of known/annotated transcript lengths from 
GENCODE (v31) (Frankish et al. 2018). A ‘coverage fraction’ was calculated for each primary 
alignment to the transcriptome. We defined coverage fraction as the observed transcript length 
divided by the known transcript length. The median coverage fraction was 0.74 for 5Y RNA, 
demonstrating that most reads covered a high proportion of the original RNA. This was lower 
than observed in the sequin data (0.88), suggesting some RNA degradation took place during 
RNA extraction. Alignments to longer transcripts were less likely to be full-length, consistent 
with previous studies (Jenjaroenpun et al. 2018) (Figure 1D, S2B, C). However, the highest 
density of coverage was close to 1 for transcripts approximately 1 kb long, showing many 
shorter transcripts are generally covered in their entirety. 

We classified alignments that covered at least 95% of their assigned transcript isoform 
as full-length as per Jenjaroenpun et al. (2018). In total, 46% of sequin reads were full-length 
compared to 29% of 5Y reads (Figure 1E). These results suggest that while a significant 
proportion of reads are full-length, there is considerable room for improvement through 
sequencing software improvements and by preventing degradation during RNA extraction and 
library preparation. 

Accurate expression quantification with dRNA sequencing 

Previous studies using dRNA sequencing revealed good quantitative accuracy 
(Jenjaroenpun et al. 2018; Garalde et al. 2018; Soneson et al. 2019). To confirm and extend 
these findings we utilised the sequin controls to investigate the quantitative accuracy of dRNA 
sequencing, and subsequently the potential to detect differential expression. 

Genes and isoforms were quantified with featureCounts (Liao et al. 2013) and 
NanoCount (Leger 2020) respectively (Table S1). To test the quantification accuracy of dRNA 
sequencing, the observed sequin gene and isoform counts were compared with known sequin 
input concentrations (Figure 2A, B). Measured sequin abundance was highly correlated with 
known abundance at the gene and isoform level (Spearman’s correlation of 0.96 and 0.91 
respectively, both p<0.0001, two-tailed). Results showed dRNA could detect but not quantitate 
sequins at very low concentrations, therefore a segmental linear regression was utilised to 
help identify the concentration where quantitative measurement began. This revealed a slope 
close to 1 above the cutoff for genes and isoforms. These findings demonstrate the ability of 
dRNA sequencing to accurately quantify detected genes and isoforms. 
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Figure 2. Quantification of sequin spike-in controls 
(A) Quantification of sequin genes. (B) Quantification of sequin transcript isoforms. Comparison of known sequin 
Mix B abundance (original concentration in attomoles/ul) to measured counts. Concentrations transformed 
log10(X+1). Mean and standard deviation plotted. N = 4. Trend line = segmental linear regression with breakpoint 
at 1.49 performed on log10 transformed data. 

Identification of differential expression with dRNA sequencing 

We next asked if dRNA sequencing could detect systematic expression level changes 
between conditions. Comparison of Mix A and B sequins using principal component analyses 
(PCA) demonstrated sequin mixes separated on PC1 (Figure 3A, S3). Expression changes 
between the mixes explained a very high degree of the variance (83% at the gene level and 
79% at the transcript isoform level). Similarly, endogenous 5Y samples separated by 
differentiation state along PC1, which explained 82% of the variance at the gene and 76% at 
the isoform level (Figure 3B). Technical replication produced almost identical samples, further 
confirming little technical variability from library preparation and sequencing (Figure S3). 
Together the sequin and 5Y results illustrate that dRNA sequencing can robustly identify 
differences in expression between samples at both the gene and isoform level and that the 
measured expression changes are reflective of the biological changes between samples. 

We examined differential expression (DE) of genes and transcript isoforms using 
DESeq2 (Love et al. 2014). We identified 7 sequin genes and 8 sequin isoforms as 
differentially expressed (adj-p<0.05). All were true positives suggesting high accuracy in the 
results (Figure 3C,D, Table S2). There are 47 sequin genes and 83 sequin transcripts 
potentially detectable as differentially expressed (fold change ≠ 0), however only 18 / 22 of 
these genes and transcripts passed our filtering thresholds for analysis. This suggests the 
high specificity, but lower sensitivity may be due to low overall read counts. To examine if 
dRNA sequencing accurately identified changes in sequin concentrations between Mix A and 
B, even if significance was not reached, we examined the correlation between observed and 
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known log2 fold changes of sequin genes and isoforms and also performed a linear regression 
to identify the quantification accuracy of fold change measurement (Figure 3C,D). 

Figure 3
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Figure 3. Identification of differential gene and isoform expression 
(A/B) Principal component analysis (PCA) of sequin (A) and SH-SY5Y (B) gene and isoform expression between 
undifferentiated and differentiated SH-SY5Y cells. All plots show the first two principal components. SH-SY5Y 
shows endogenous expression only. Sequins were added to undifferentiated (Mix A) and differentiated (Mix B) SH-
SY5Y RNA and plots reflect measured abundance differences between the sequin mixes. (C/D) Quantification of 
fold changes between Mix A and Mix B sequin genes (C) and isoforms (D). Comparison of known fold changes in 
abundance with measured fold changes from sequencing. Sequins with significant differential expression in blue, 
not significant in grey. Trend line shows slope from linear regression. Shaded grey area shows 95% confidence 
interval for regression slope. Correlation (r) is spearman correlation. (E) Volcano plot of differential gene expression 
between undifferentiated and differentiated SH-SY5Y cells. An adjusted p-value<0.05 (from DESeq2) was 
considered significant for differential expression. FC = Fold Change. (F) Gene ontology (GO) terms most associated 
with differentially expressed genes upregulated during SH-SY5Y differentiation. P-values adjusted using Bonferroni 
correction for multiple testing. 
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Correlations between observed and known log2 fold changes were high, 0.90 for genes and 
0.84 for isoforms, and the slopes were close to one, 0.96 for genes and 0.89 for isoforms (both 
significant at p<1x10-12). The significant linear relationships and strong correlations at both the 
sequin gene and isoform level demonstrates dRNA sequencing accurately detected changes 
in expression between groups. The slightly lower values for transcripts isoforms may be due 
to the increased difficulty in unambiguously assigning a read to a specific isoform, as most 
sequins, (like human genes) have multiple isoforms (Figure S1B). 

Applying the DE analysis on 5Y samples identified 231 annotated genes and 291 
transcript isoforms as DE between undifferentiated and differentiated samples (adj-p<0.05) 
(Figure 3E, Figure S4, Table S3). Genes significantly upregulated in differentiated samples 
(n=118) were used in a gene ontology analysis using PANTHER (Thomas et al. 2003). The 
most significant GO terms were predominantly associated with neuronal development and 
developmental processes more generally, with the GO term ‘neurogenesis’ (GO:0022008) the 
most associated (adj-p=2.9x10-8) with differentiated 5Y cells (Figure 3F, Table S4). GO 
analysis for upregulated isoforms (n=181) gave similar results, while ranking significant GO 
terms by fold enrichment also emphasised a number of terms relating to neuron differentiation, 
neuron projection and axonal development (Table S4). These results validate the ability of 
dRNA sequencing to identify biologically relevant changes in gene expression. 

Differential transcript usage (DTU) analysis between samples 

Along with DE of genes (DGE) and transcript isoforms (DTE), changes in isoform 
usage (DTU) can also be physiologically relevant and reveal important distinctions between 
cell types and in disease (Scotti and Swanson 2015). DTU involves isoform switches or 
changes in isoform proportions and can occur even when there is no change in expression at 
the gene level. As the results of DTE often largely reflect those of DGE, complexity at the 
isoform level can be masked (Yi et al. 2018). Our results demonstrated dRNA can perform 
quantitative sequencing of full-length isoforms and hence should be well suited to revealing 
this complexity. 

Transcript counts were used to identify isoform switching using DEXSeq within the 
IsoformSwitchAnalyzeR package (Vitting-Seerup and Sandelin 2017). After filtering out lowly 
expressed genes and isoforms and isoform fraction changes of less than 0.1, 4,823 5Y 
isoforms and 18 sequin isoforms were included for analysis. 

We identified 27 endogenous genes and 1 sequin gene (adj-p<0.05) with isoform 
switching between undifferentiated and differentiated 5Y cells (Table S5). The sequin (adj-
p=3x10-13) was a true positive for DTU, with a similar observed difference in isoform fractions 
(0.95) to the known difference (0.88) (Figure 4A). Less than 20% of genes with DTU showed 
DGE, while only 40% of DTU isoforms showed DTE, confirming how complexity at the isoform 
level can be masked and the importance of separately identifying DTU. To identify the potential 
consequences of isoform switching, the open reading frames, coding potential and protein 
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domains were predicted for each isoform. Consequences ranged from changes to non-coding 
5’ transcriptional start sites and 3’UTRs to alterations in coding regions and protein domains 
or switches between coding and non-coding isoforms. 

Figure 4. Differential transcript usage of control and endogenous genes 
Identification of DTU in the sequin gene R1_103 (A) and the potassium channel KCNQ2 (B). Top: structure of 
expressed isoforms. Arrows show direction of transcription. Narrow lines show intronic regions (not to scale). Exons 
displayed as boxes. Taller exonic boxes are coding regions, shorter boxes are 5’ and 3’ UTR regions. Colours 
represent identified protein domains. Below: graphs display gene and isoform expression and the fraction of 
expression corresponding to each isoform in Mix A / Undifferentiated and Mix B / Differentiated samples. Red lines 
show known (expected) sequin isoform fractions in Mix A and B. ns = not significant, * < 0.05, ** < 0.01, *** < 0.001. 
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DTU identified in endogenous 5Y genes included examples which matched the known 
biology and expression changes in neuroblastoma cells. KCNQ2 forms a multimeric 
potassium channel and expresses multiple mRNA isoforms encoding functionally variant 
proteins. The short isoform ENST00000344425 (protein isoform 6) lacks much of the 
cytoplasmic C-terminal region and can alter channel properties to suppress the potassium 
current (Smith et al. 2001). It is the dominant isoform in undifferentiated IMR-32 
neuroblastoma cells and also expressed in developing brain. In contrast, the long isoform 
ENST00000626839 (protein isoform 2), is the major protein isoform in adult brain and up-
regulated in differentiated IMR-32 cells (Smith et al. 2001). While we find no overall change in 
the expression level of KCNQ2 in 5Y cells, we identified an expression shift from the short to 
the long isoform upon differentiation, as would be expected from previous findings (Figure 
4B). Together these results demonstrate long-read dRNA sequencing can identify and 
quantify biologically relevant changes in isoform usage. 

Novel transcript identification and analysis 

A key advantage of long-read sequencing is its ability to resolve complex RNA 
isoforms, including the discovery of novel transcripts (Roach et al. 2020; Workman et al. 2019). 
Due to the ~10% error rate in dRNA sequencing, confident identification of isoforms first 
requires correction and clustering of individual reads. We used FLAIR (Tang et al. 2020) to 
process our aligned reads into a high-confidence set (each represented by at least 5 reads) 
of 30,914 unique human transcript isoforms (Figure 5A, Table S6). 

High-confidence FLAIR isoforms were compared to reference annotations using 
gffcompare (Pertea and Pertea 2020). Isoforms were grouped into the following categories; 
known, novel isoform (of a known gene), novel gene/transcript and other (including 
sequencing artefacts). The most abundant category (59.1%) was known isoforms, comprised 
of full-length matches (49.6%) and partial matches (9.5%) to annotated isoforms. Novel 
isoforms of known genes (32.3%) largely consisted of novel splice isoforms as opposed to 
transcripts with retained introns. Although long intronic-retaining transcripts may have been 
more prone to degradation making their detection less likely. Novel intergenic, intronic or 
antisense loci accounted for 6.2% of transcripts. Overall, the long-read nature of dRNA 
sequencing allowed us to identify thousands of novel gene isoforms and potentially novel 
transcribed loci. Previous long-read studies using dRNA sequencing with FLAIR observed 
higher percentages of novel isoforms (~50%) but used a lower read threshold for identification 
(Soneson et al. 2019; Workman et al. 2019).  

Given the high error rate of dRNA sequencing, we used the sequins to estimate what 
proportion of novel isoforms identified with FLAIR were false positives (Figure 5B). All sequin 
isoforms are annotated and should therefore be classed as known, whereas any novel 
isoforms represent false positives. FLAIR identified 55 unique sequin isoforms, 50 (91%) 
known; 4 (7%) novel splice isoforms and 1 (2%) novel intronic transcript. The main source of 
error was the incorrect identification of exon skipping creating spurious splice isoforms. 
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Additionally, applying the less stringent isoform identification settings used in previous studies 
increased the false positive rate from 9% to 14%. Taken together these results suggest most 
novel 5Y isoforms are real but that the false positive rate for novel transcripts classified by 
FLAIR/gffcompare is quite high.  

Figure 5. FLAIR transcriptome annotation and identification of novel genes and isoforms 
(A/B) FLAIR annotation of (A) SH-SY5Y and (B) sequins were compared with known annotations using gffcompare 
(Pertea and Pertea 2020). The gffcompare class codes were grouped into the following four categories: known, 
transcripts that are full-length or partial-length exact matches to existing annotations; novel isoform, transcripts 
from known genes with novel exon junctions or retained introns (RI); novel transcript, novel intergenic, antisense 
or intronic transcripts potentially representing novel genes; other, possible artifacts and RNA fragments. (C/D) 
UCSC Genome Browser screenshots of novel isoforms identified by FLAIR compared to known GENCODE 
annotations and raw nanopore dRNA reads. DEAF1 (C) and MAPK11 (D). Novel exons coloured blue; novel splice 
junctions of known exons coloured orange; retained intron exons coloured red. 
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We investigated examples of genes identified as having novel isoforms with FLAIR 
(Figure 5C,D). DEAF1 is a transcription factor essential for nervous system development 
(Hahm et al. 2004). Mutations in DEAF1 lead to intellectual disability (Vulto-van Silfhout et al. 
2014). In agreement with the individual dRNA reads, FLAIR identified the canonical isoform 
(ENST00000382409) and also provided evidence that two other GENCODE transcripts are 
likely incomplete isoforms using the standard 5’ initiation site. Other potential novel isoforms 
were filtered out by FLAIR due to a lack of supporting reads (Figure 4C). MAPK11, is a protein 
kinase involved in balancing apoptosis and autophagy (Beardmore et al. 2005). Individual 
reads suggested a number of novel isoforms including several with retained introns. FLAIR 
identified the canonical isoform and a novel isoform with skipping of exon 3 (Figure 5D). 

Discussion 
To enable wide uptake in the transcriptomics field, dRNA sequencing needs to quantify 

RNA expression accurately and identify differential expression between tissues, development 
stages and disease states. We performed an in-depth analysis of dRNA sequencing using 
synthetic spike-in RNAs and human SH-SY5Y (5Y) neuroblastoma cells. We assessed the 
capabilities of dRNA sequencing including quantification accuracy, differential expression 
analysis between groups and novel transcript identification. We demonstrated that dRNA 
sequencing is able to robustly identify differential expression between synthetic RNA mixes 
and human cell types and produce biologically relevant information. Combined with its 
previously demonstrated capabilities, the detection of differential gene and isoform 
expression, as well as switches in isoform usage (DTU), confirms the widespread potential for 
dRNA in transcriptome profiling.  

Previous studies have demonstrated dRNA sequencing is a highly accurate method 
for quantifying expression of spike-in controls (Garalde et al. 2018; Sessegolo et al. 2019) and 
could identify differential gene expression in yeast (Jenjaroenpun et al. 2018). DGE and/or 
DTE have recently been reported in C.elegans, Arabidopsis and mammalian cells with dRNA 
(Zhang et al. 2020; Li et al. 2020; Robinson et al. 2020). However, these have almost 
exclusively been identified from fold changes alone or using very lenient statistics, leaving the 
capability of dRNA to identify differential expression in a robust manner uncertain. In addition, 
the human transcriptome (with over 200,000 annotated transcript isoforms) is vastly more 
complex than that of model organisms (Frankish et al. 2018). This creates a larger challenge 
both in terms of sequencing depth required to quantify human genes and isoforms but also in 
performing accurate assignment of reads to their correct transcript isoform. Despite the 
modest read depth obtained, we found dRNA was sensitive enough to detect significant 
expression differences in 231 genes and 291 isoforms along with 27 isoform switches during 
5Y differentiation. In both human and sequin data, samples clustered by group in PC1 at both 
the gene and isoform level. The subsequent GO analysis showed that DE genes in 
differentiated 5Y cells were associated with neurogenesis. We used our sequin control to 
validate a close relationship between known and measured fold changes even if the 
significance threshold for DE wasn’t reached. Hence, we expect that the majority of 5Y results 
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represent true positives, but that the results are likely missing a number of DE genes and 
isoforms that may be of biological importance. 

Although the number of replicates used in this analysis was lower than recommended 
(Schurch et al. 2016), the technique still identified many differentially expressed features 
between groups. This raises the possibility that the number of replicates required to identify 
differential expression may be lower for dRNA sequencing due to the low level of bias and 
possibility of highly accurate quantification. 

The key challenges with dRNA are sequencing depth and correct isoform assignment. 
The first is due to the modest number of reads generated per sequencing run (0.5-1 million). 
Although higher sequencing depths with >1 million pass reads per run are now possible, it 
remains challenging for dRNA sequencing to detect lowly expressed genes and isoforms. This 
is demonstrated in the sequin results and indicates that many 5Y genes and isoforms are 
below the level for quantitative detection. The read depth achievable with dRNA sequencing 
needs to increase to routinely out-perform short-read RNA-seq in sensitivity. Currently, the 
ideal method for comprehensive transcriptome analysis is to complement high-throughput 
short-read sequencing with long-read technologies (Weirather et al. 2017). 

The challenge of correct isoform assignment has been previously noted (Sessegolo et 
al. 2019; Soneson et al. 2019) and is due to the high (~10%) error rate and the large proportion 
of non-full-length reads. Although RNA extracted from 5Y cells was of very high quality 
(RIN>9), it remains challenging to sequence a high proportion of full-length transcripts. dRNA 
sequencing starts at the 3’ end of transcripts (Garalde et al. 2018), therefore many incomplete 
reads are largely consigned to 3’UTRs and cannot specify the expressed isoform. 
Exemplifying this, >70% of reads had secondary transcriptome alignments, although 
quantification programs such as NanoCount use filtering and expectation–maximization to 
improve isoform assignment. For this reason, we do not recommend using primary alignments 
alone as this causes many reads to be specifically assigned to incorrect isoforms. 
Methodological improvements to increase the proportion of full-length transcripts will be just 
as important to maximising correct transcript assignment, if not more so, than those which 
improve dRNA sequencing accuracy. Another recent dRNA study reported that approximately 
20% of reads are truncated during sequencing due to signal noise (Workman et al. 2019). The 
truncation of reads due to software limitations is an obvious avenue for improvement, along 
with preventing RNA degradation during library preparation, for maximising full-length 
transcripts. 

A key advantage of dRNA sequencing is its ability to sequence transcripts as they exist 
in the cell, improving the detection of novel transcript isoforms and RNA modifications. In 
contrast, Illumina short-read sequencing performs poorly in resolving transcript isoforms, 
especially those resulting from alternative splicing (Steijger et al. 2013). FLAIR (Tang et al. 
2020) identified ~31,000 isoforms in 5Y cells, 38.5% of which were novel isoforms of known 
genes or potentially novel transcriptional units. Inclusion of spike-in controls provides 
confidence that most of these novel transcripts are genuine. The high number of novel 
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transcripts detected in this study and others indicates that the human transcriptome annotation 
is far from complete. Improving this annotation is a task in which dRNA sequencing will be 
highly valuable. 

In summary, the applicability of dRNA sequencing to gene expression profiling was 
demonstrated using synthetic controls and human cell populations. We show that dRNA 
sequencing identifies biologically relevant changes in gene and isoform expression in complex 
transcriptomes. The long read lengths generated by the technique provide a clear advantage 
for isoform quantification, however the throughput and accuracy of dRNA sequencing requires 
improvement before it can truly outweigh other sequencing technologies. In conclusion, dRNA 
is a promising method to decipher the complex expression and splicing patterns that 
characterise the transcriptome and to identify differentially expressed isoforms contributing to 
development and disease. 

Methods 

Cell culture 

Human SH-SY5Y neuroblastoma cells were cultured for use as a model of neuronal 
differentiation (Biedler et al. 1978). Undifferentiated SH-SY5Y cells were cultured in growth 
media under standard conditions (5% CO2, 37°C) with DMEM:F12 (Sigma D6421), 
supplemented with 10% fetal bovine serum (FBS) (Sigma F9665), 2 mM L-glutamine and 1% 
non-essential amino acids. SH-SY5Y differentiations were performed in triplicate. To 
differentiate the SH-SY5Y cells, flasks were coated with poly-lysine. Cells were seeded at 
4.4x104 cells/cm2 and grown for 24 hours in standard growth medium. The growth media was 
then exchanged for differentiation media neurobasal medium (Thermo Fisher 21103049), 2 
mM L-glutamine, 1% FBS, 10% B27 supplement (Thermo Fisher 17504044) and 10 mM 
retinoic acid (Sigma R2625). Media was replaced after 48 hours. After 72 hours of exposure 
to 10 mM retinoic acid the media was exchanged to differentiation media without retinoic acid 
and cells were allowed to further differentiate for 72 hours, including a media change at 48 
hours. RNA was then extracted from undifferentiated and differentiated cells with Tri Reagent 
(Thermo Fisher 15596026) and RNeasy columns (Qiagen 74106). 

Library preparation and sequencing 

To prepare RNA for sequencing, Turbo DNase was added for 30 minutes at 37°C in a PCR 
thermocycler with the lid set to 50°C to remove any DNA contamination. Samples were purified 
with the RNeasy MinElute Cleanup Kit (Qiagen 74204) and eluted with 15 µl nuclease-free 
water. Samples were run on an Agilent 4200 Tapestation to ensure RNA had a RIN of >9 and 
quantified via Qubit (Thermo Fisher). PolyA+ purification was performed with 50 µl of NEXTflex 
polyA+ beads on a minimum of 40 µg of total RNA. Confirmation of rRNA removal and sample 
quantification were performed with Qubit and Tapestation respectively. To minimise batch 
effects, all samples were prepared together. 
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Sequencing libraries were prepared with the SQK-RNA001 kit (Oxford Nanopore 
Technologies, ONT) using the standard protocol, including the optional reverse transcriptase 
step. Two different controls were added to each sample, yeast calibration RNA (supplied by 
ONT) and synthetic sequin V2 spike-in RNAs (Hardwick et al. 2016). The calibration RNA is 
from the yeast enolase II (YHR174W) gene and is 1.3kb in length. RNA sequins provide a 
quantitative and qualitative reference to enable transcriptome analysis. Sequins are synthetic 
spliced RNA transcripts for the investigation of gene and isoform quantification, alternative 
splicing and differential expression. RNA sequins consist of 160 isoforms from 76 artificial 
genes that vary in concentration over 4 orders of magnitude. Sequin controls are available in 
two mixes, Mix A and Mix B, which contain the same synthetic RNA isoforms but at different 
concentrations. Sequins were added to each sample at a concentration of 6%. 
Undifferentiated samples (U1, U2) contained sequin Mix A, and differentiated samples (D1, 
D2TR1, D2TR2, D3) contain Mix B. Sample input was 352.5 ng of polyA+ RNA and 22.5 ng 
of sequin RNA. Libraries were sequenced on the ONT MinION using R9.4.1 flow cells and 
MinKNOW (v18.01.6) to generate FAST5 files. FAST5 files were basecalled with Guppy 
(v3.4.5) (ONT) to create summary text files and FASTQ files of the reads. 

Sequencing metrics and quality control 

Initial data analysis was performed to gather general metrics on sequencing performance. All 
analyses were performed on pass reads (quality (Q) score >= 7). To ensure the sequencing 
was of high quality, EPI2ME (ONT) was used to determine the sequencing accuracy of the 
yeast calibration RNA. All subsequent analyses were performed on pass SH-SY5Y and sequin 
reads (hereafter referred to as reads). Overall data characteristics including median read 
length; median quality score; longest read length; total number of reads; read length and 
quality scores over run time were performing using NanoPack (Coster et al. 2018) and pycoQC 
(Leger and Leonardi 2019). 

Genome and transcriptome alignment 

FASTQ files containing ONT pass reads were aligned to the human (GRCh38) (Zerbino et al. 
2017) and synthetic (Hardwick et al. 2016) sequin genome and transcriptome using minimap2 
(v2.17) (Li 2018). The genome alignments were performed using the splice-aware mode of 
minimap2 -ax splice -uf as recommended. The transcriptome alignments were performed 
using the long-read mode for ONT data -ax map-ont -N 100 to retain multiple secondary 
alignments. When two alignments both have the same scores, minimap2 assigns the primary 
one at random. In order to maximise the likelihood of identifying the correct isoform of origin, 
we retained many secondary alignments. 

Full-length transcript identification 

A custom script was used to extract data from transcriptome BAM files and identify full-length 
transcripts. The GENCODE v31 annotation was used as input to assign a known transcript 
length to each primary alignment (Frankish et al. 2018). Coverage fractions were then 
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calculated by dividing the observed length by the known length for each read’s primary 
alignment. Reads were required to cover at least 95% of their annotated transcript to be 
classed as full-length. 

Gene and isoform quantification 

FeatureCounts was applied (v1.6.5) (Liao et al. 2013) to the human or sequin genome 
alignments along with annotations to calculate gene counts with the parameters -L --primary. 
NanoCount (v0.2.3) (Leger 2020) was used for isoform quantification on BAM files of all 
alignments with the parameters -p align_score -3 100 --extra_tx_info --discard_supplementary 
to obtain counts for human and sequin transcriptome alignments. These NanoCount 
parameters remove supplementary alignments, alignments with a 3' end greater than 100 nt 
away from the annotated 3' end site and alignments with less than 90% of the best alignment 
score for that read. Expectation maximisation to identify the most probable isoform was then 
applied by NanoCount on this filtered set of alignments. Sequin genes and isoforms are 
present at known concentrations over a 32773 concentration fold range (genes), and a 229409 
fold range (Mix B isoforms) and with known fold changes between Mix A and Mix B. To assess 
the quantitative abilities of dRNA sequencing, Mix B sequin counts at the gene and isoform 
level were compared to observed counts. Only detected sequins (count>0) were included in 
this analysis. Segmental linear regression (SLR) was utilised to identify the sequin 
concentration where quantitative measurement began. Criteria for breakpoint were 1. Multiple 
sequin genes/isoforms at concentration; 2. >50% detection across all replicates at 
concentration; 3. Slope 1 (before breakpoint) 95% confidence interval should include 0; 4. 
Optimal or near optimal SLR goodness of fit. All sequin Mix B genes and isoforms detected in 
at least one replicate were used to calculate Spearman correlations. To assess accuracy for 
detecting fold changes, known fold changes between Mix A and Mix B were compared to 
observed fold changes. Slopes were determined by linear regression. 

Differential expression analysis 

Differential expression analysis was performed with DESeq2 (v1.24) (Love et al. 2014). 
Normalised counts for the two technical replicates, Diff2TR1 and Diff2TR2, were averaged 
prior to analysis to produce Diff2 so as not to falsely increase the statistical power between 
groups. The counts from featureCounts and NanoCount were input for gene and isoform level 
analysis respectively. Count matrices were filtered to remove very lowly expressed features 
(≤5 in total for each gene/isoform). Counts were normalised for sequencing depth within 
DESeq2 prior to statistical analysis. Log2 fold changes and adjusted p-values (using the 
Benjamini-Hochberg method to correct for multiple testing) were calculated for each annotated 
gene or isoform and used to determine statistical significance. A regularised log transformation 
was subsequently performed on the normalised counts for visualisation. The PCA and volcano 
plots were made using the following code: 
https://gist.github.com/stephenturner/f60c1934405c127f09a6.  
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Differential transcript usage (DTU) analysis was performed using an R package 
IsoformSwitchAnalyzeR (Vitting-Seerup and Sandelin 2017). The isoform counts from 
NanoCount were input, along with the annotation and transcriptome files. The DTU statistical 
analysis was performed within IsoformSwitchAnalyzeR with DEXSeq (v1.32) (Anders et al. 
2012; Ritchie et al. 2015) to identify exons (used to infer transcript isoforms) present in 
different proportions between groups. Counts were filtered to remove single isoform genes 
and a gene and isoform expression cutoff of 5 was included to filter out lowly expressed 
features. A cutoff fraction of 0.1 was used as the minimum difference in isoform fraction 
between conditions to further increase stringency. DEXSeq normalises counts and outputs a 
table of isoform fractions and their adjusted p-values for switches. The coding potential and 
protein domains of transcripts were then predicted as part of IsoformSwitchAnalyzeR using 
CPAT and PFAM respectively (Wang et al. 2013; Punta et al. 2011). Premature termination 
codons and nonsense-mediated decay sensitivity were also predicted as part of the workflow 
which enabled the functional consequences of isoform switches between conditions to be 
predicted and plots to be produced of isoform switches. Known isoform fractions in sequin 
data were calculated by dividing each isoform concentration by its total gene concentration. 
To compare isoform switches with DGE and DTE in the same genes (Table S5) we used 
consistent counts data to calculate adjusted p-values. DTE results from DESeq2 (described 
above) were input directly, while DGE was performed with DESeq2 after collapsing isoform 
counts to gene counts with IsoformSwitchAnalyzeR. 

Novel transcript identification 

FLAIR (v1.4) was used on the human and sequin primary genome alignments (BAM converted 
to BED12 files using FLAIR script) for novel transcript identification (Tang et al. 2020). 
Samples were first corrected using genome annotations and with the -n flag enabled to keep 
read strands consistent after correction. The two separate corrected PSL files for human and 
sequin data were then collapsed into high-confidence isoforms that were represented by at 
least 5 reads. 

The collapsed isoform GTF files were compared to annotated transcripts using gffcompare 
(v0.11.2) (Pertea and Pertea 2020). Gffcompare assigns each transcript a class code based 
on how it compares to annotated reference transcripts. The class codes were grouped into 
the following categories. Known: full (=) or partial (c) intron chain match to annotated transcript 
isoform. Novel isoforms of known gene: novel splice isoform (j), splice chain match with 
additional terminal exon(s) (k), retained intron isoforms (m,n). Novel transcripts potentially 
representing novel genes or transcriptional units: intronic transcript (i), antisense transcript (x), 
intergenic transcript (u), 5’ distal overlapping RNA (y), other exonic overlap (o). Other: 
including RNA fragments and potential sequencing artifacts (p,e,s,r). 

Data and code availability 

All data, including FAST5 and FASTQ outputs is available from ENA: PRJEB39347. 
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All code used to perform the analysis (custom scripts, R workflows for DGE, DTE and DTU) 
is available on GitHub: https://github.com/josiegleeson/directRNA; 
https://github.com/josiegleeson/BamSlam. 
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