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ABSTRACT 20 

 21 

1. Generating insights about a null hypothesis requires not only a good dataset, but also 22 

statistical tests that are reliable and actually address the null hypothesis of interest. Recent 23 

studies have found that permutation tests, which are widely used to test hypotheses when 24 

working with animal social network data, can suffer from high rates of type I error (false 25 

positives) and type II error (false negatives).  26 

2. Here, we first outline why pre-network and node permutation tests have elevated type I and 27 

II error rates. We then propose a new procedure, the double permutation test, that 28 

addresses some of the limitations of existing approaches by combining pre-network and 29 

node permutations.  30 

3. We conduct a range of simulations, allowing us to estimate error rates under different 31 

scenarios, including errors caused by confounding effects of social or non-social structure in 32 

the raw data.  33 

4. We show that double permutation tests avoid elevated type I errors, while remaining 34 

sufficiently sensitive to avoid elevated type II errors. By contrast, the existing solutions we 35 

tested, including node permutations, pre-network permutations, and regression models with 36 

control variables, all exhibit elevated errors under at least one set of simulated conditions. 37 

Type I error rates from double permutation remain close to 5% in the same scenarios where 38 

type I error rates from pre-network permutation tests exceed 30%. 39 

5. The double permutation test provides a potential solution to issues arising from elevated 40 

type I and type II error rates when testing hypotheses with social network data. We also 41 

discuss other approaches, including restricted node permutations, testing multiple null 42 

hypotheses, and splitting large datasets to generate replicated networks, that can strengthen 43 

our ability to make robust inferences. Finally, we highlight ways that uncertainty can be 44 

explicitly considered during the analysis using permutation-based or Bayesian methods. 45 

 46 

 47 

  48 
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 2

INTRODUCTION 49 

 50 

Permutation tests are among the most useful statistical tools for the modern biologist. They 51 

are commonly used in ecology (Gotelli & Graves, 1996), biogeography (Harvey, 1987), community 52 

ecology (Miller, Farine, & Trisos, 2017), and in studies of ecological networks (Dormann, Fründ, 53 

Blüthgen, & Gruber, 2009) and social networks (Croft, Madden, Franks, & James, 2011). Permutation 54 

tests randomize (or re-assign) observed data with respect to particular features to generate a 55 

distribution of statistic values that would be expected under a given null hypothesis. They are 56 

particularly useful when the standard assumptions of other statistical tests are violated, as is the case 57 

with social network data. Perhaps most importantly, permutation tests enable the researcher to 58 

create case-specific null models by permuting data in specific ways (e.g. constraining permutations 59 

within specific groups) while keeping other aspects of the dataset the same (e.g. where and when 60 

observations were made). For example, to understand how social network structure differs from 61 

what would be expected if animals made random social decisions, a researcher can permute the 62 

observation data to create many expected networks that could have occurred in the absence of social 63 

preferences (pre-network permutations). Alternatively, a researcher can ask whether the distribution 64 

of trait attributes within a network is not random by preserving the same observed network 65 

properties in all the randomised networks and only permuting the node attributes (node 66 

permutations). The difference in the design of these two permutation approaches has important 67 

consequences. They make different assumptions, they have different strengths and weaknesses, and, 68 

ultimately, they assess different null hypotheses. These consequences, together with the diverse 69 

range of drivers of network structure, can make even the most basic test of a hypothesis using animal 70 

social networks surprisingly difficult. 71 

Recent studies (Weiss et al. 2020; Puga-Gonzalez et al. 2020) have highlighted some of the 72 

challenges that researchers face when testing hypotheses about the relationship between a predictor 73 

and a response variable, when one of these variables is generated from social network data. Consider 74 

these common questions: Does pairwise kinship influence association rates (edge weights)? Does an 75 

individual’s sex predict how many associates it has (degree centrality)? To test the null hypothesis in 76 

these cases, we need to know what the data would look like in the absence of the effect of interest 77 

(in these cases, no effect of kinship or sex, respectively). A node permutation test tells us whether 78 

there is a statistical relationship between the effect of interest and the patterns of connectivity 79 

among the nodes in the observed network. The problem, however, is that the animal social networks 80 

that we observe are often the outcome of many processes and effects, besides the hypothesized 81 

effect of interest, and a node permutation test is not able to distinguish the hypothesized effect from 82 

the contributions of other, confounding, effects. A pre-network permutation test can better control 83 

for a range of confounding effects, however, it is actually testing a different null hypothesis—that the 84 

network-generating processes is random. 85 

We can broadly assign confounding effects—effects that contribute to structuring a social 86 

network but are unrelated to the hypothesis of interest—to two categories. First, there are multiple 87 

non-social “nuisance effects”, such as biases in sampling, non-random spatial constraints, and 88 

temporal differences in the presence or absence of individuals. These nuisance effects constrain our 89 

ability to observe each individual or dyad equally, meaning that network edges represent the 90 

outcome of not only social decisions, but also methodological and other non-social processes or 91 

constraints. Nuisance effects are common to most empirical studies in ecology, but the impacts of 92 

nuisance effects can be particularly pronounced in social network studies because they estimate 93 

pairwise relationships among individuals, as opposed to measuring the individuals themselves, and 94 

relationships are much more numerous than individuals. Second, there can be multiple social effects, 95 

besides the effect of interest, that operate simultaneously to shape the connections among 96 

individuals. In other words, nonrandom social structure often has multiple social causes or 97 

constraints. For example, individuals might have a limited number of possible close associates or 98 

always vary in their tendency to associate with different groupmates. Another example is triadic 99 

closure: if an individual A is closely associated to individual B that is also closely associated to 100 

individual C, then this will necessarily result in more encounters between A and C even in the absence 101 
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of any social preferences between A and C. The relative roles of such social and non-social 102 

confounding effects on the observed network structure can be difficult to identify and disentangle 103 

(Figure 1). Failing to do so can easily lead to spurious outcomes (Farine & Aplin 2019). 104 

 105 

 106 

 107 

 108 

Figure 1. Observed social networks are usually the product of many different social and non-social effects, which can 109 

impact the observed difference or relationship that is expected by “chance”. Researchers typically aim to test for a 110 

relationship between a measure taken from the social network data and some independently-measured data. Such tests 111 

can take the form of a predictor (e.g. sex, kinship, health) on a social response (e.g. degree centrality, edge weight, 112 

eigenvector centrality), of a social predictor (e.g. degree centrality) on a response (e.g. infection status), or via an estimation 113 

of the correlation between network and non-network-based measures. However, spurious relationships and correlations 114 

are common in social network data because of multiple non-social ‘nuisance effects’ (examples above) and other social 115 

effects or constraints (examples in italics above). We give examples of each effect above, but many other such effects are 116 

possible. Pre-network permutation tests can control for some non-social nuisance effects, but other social effects or 117 

constraints that shape the network structure are not maintained. Node permutation tests can control for the contribution of 118 

other social effects or constraints on the social network structure, but precisely controlling for non-social nuisance effects is 119 

more challenging. 120 

 121 

Two common permutation approaches (pre-network permutations and node permutations) 122 

create null expectations that are better at addressing one category of confounding effects but not the 123 

other. Pre-network permutation tests swap observations to create a set of possible networks that 124 

would be expected from animals showing no social preferences (e.g. about which social groups to 125 

join), and these can effectively control for nuisance effects by constraining these swaps within blocks 126 

of time and space. For example, one might swap observations within sampled locations to control for 127 

spatial effects or within sampled time periods to control for non-overlapping presence and temporal 128 

autocorrelation in behaviour (Farine, 2017; Spiegel, Leu, Sih, & Bull, 2016; Sundaresan, Fischhoff, & 129 

Dushoff, 2009; Whitehead, 2008; Whitehead, Bejder, & Ottensmeyer, 2005). Unless explicitly 130 

designed to do so, pre-network permutation tests do not distinguish among alternative social 131 

processes, thereby creating a different problem. Pre-network permutation tests can yield 132 

unacceptably high rates (>30%) of false positives when drawing inferences about the effect of a 133 

predictor X on a response Y (i.e. linear models or difference between means, where one of X or Y is a 134 

network-based measure; Weiss et al. 2020; Puga-Gonzalez et al. 2020). These high type I error rates 135 

occur because pre-network permutation tests do not actually address the null hypothesis that X is 136 

distributed randomly with respect to Y (or that the effect of X on Y is zero); instead they test if the 137 

distribution of X with respect to Y is different than expected had individuals made random social 138 

choices given the possible options that were available to them. For example, spatially-restricted pre-139 
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network permutations simulate a scenario where individuals’ spatial decisions are not socially 140 

influenced, and all pre-network permutations assume that individuals make decisions independently 141 

of each other. In other words, because pre-network permutations aim to remove all bias from social 142 

decisions in the randomised networks, these networks also deviate from the realistic non-random 143 

social structures that are expected for a given species or population.  144 

Node permutation tests face a different problem. Although they can test for a non-random 145 

relationship between variables X and Y in a way that controls for social structure, they also assume 146 

that the observed network corresponds to the real social structure (i.e. the structure based on social 147 

preferences in the absence of any non-social “nuisance effects”). This assumption makes sense if the 148 

social networks were completely accurate reflections of social preferences, but observed animal 149 

social networks (as with most biological data) are almost always shaped by at least some 150 

observational, spatial, and temporal biases. For example, some individual animals might only use a 151 

subset of all possible locations where observations were made, individuals might vary in the amount 152 

of their home range that overlaps with the study area, some individuals might leave or join the study 153 

population at different times, and some might not be individually marked or identifiable for the 154 

entire duration of the study. Even if some processes are relevant to the hypothesis of interest (for 155 

example individuals’ decisions about where to settle in space) they can still contribute to some 156 

inaccuracies in the resulting network. For example, individuals at the edge of a study area (compared 157 

to individuals at the centre of the area) might have many more associations with individuals that 158 

were never observed (we discuss further examples below). These nuisance effects can vary in 159 

magnitude and importance across study designs, but they are arguably inevitable. Even automated 160 

methods such as proximity sensors (Ryder et al. 2012; Ripperger et al. 2020) or barcodes (Crall et al. 161 

2015; Alarcón-Nieto et al. 2018) that aim to provide equal sampling across individuals would not be 162 

free of sampling biases, if animal-borne proximity sensors vary in their sensitivity (for example due to 163 

tiny differences in how they were soldered) or if some barcodes are more difficult to identify by 164 

computer vision. Thus, methodological factors are rarely completely eliminated, even under highly 165 

controlled conditions. Such sampling biases and other nuisance effects can lead to elevated rates of 166 

false positives and false negatives when using node permutations (Croft et al. 2011; Farine & 167 

Whitehead 2015; Farine 2017; Puga-Gonzalez, Sueur & Sosa 2020), and many can be quite difficult to 168 

correct using correction terms in a statistical model. 169 

A major challenge, as it stands, is developing permutation methods that can robustly account 170 

for both social and non-social nuisance effects. One approach to dealing with nuisance effects is to 171 

control for them by including them as covariates or random effects in a statistical model. 172 

Incorporating a specific non-social nuisance effect, such as the number of observations of each 173 

individual (which affects network metrics like degree) explicitly into the model can correct the 174 

coefficient values. Doing so helps ensure that the zero value of a test statistic (like a t-value or linear 175 

slope) accurately represents the null hypothesis of interest, potentially alleviating the need for pre-176 

network permutation tests (Franks et al. 2020). While there are major advantages to this approach, 177 

the process of capturing all nuisance effects in the model becomes increasingly challenging as the 178 

number of interacting effects increases. Observed network data often have multiple simultaneous 179 

nuisance effects, and attempting to measuring all of them individually, let alone in combination, can 180 

be more difficult than with a permutation-based approach, which maintain nuisance effects (and 181 

their variation) constant across the permuted networks. For example, it is challenging to assign 182 

individuals to a singular spatial location, as required when fitting individuals' location as a random 183 

effect, if home ranges are continuously distributed and overlapping in space. It is also difficult to 184 

control for cases where two individuals have both been repeatedly observed at the same location(s) 185 

but were never present there at the same time. A strength of pre-network permutation tests is that 186 

they can inherently control for multiple potential nuisance effects because the permuted data can be 187 

kept identical to the observed data with regards to the number of observations per individual, the 188 

size of groups, individual variation in space use (and therefore spatial overlaps with all others), 189 

temporal auto-correlation in behaviour, temporal overlap among all pairs of individuals, the 190 

distribution of demographic classes across space and time, the variation in the density of individuals 191 
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across space and time, differences in sampling effort across space and time, and the observability of 192 

individuals.  193 

Our goal here is to propose an initial solution to the current problems with the use of 194 

permutation tests outlined above. Our solution uses both pre-network and node permutations for 195 

what they each do best: pre-network permutations to control for nuisance effects, and node 196 

permutations to statistically test for the effects of X on Y while holding the network structure 197 

constant across expected networks. Our approach proceeds as follows: (1) we calculate the network-198 

based observations of interest (e.g. degree for each node or edge weight for each dyad), (2) we use 199 

pre-network permutations to generate an expected null distribution of alternative network-based 200 

expected values for each unit (node or edge), (3) to control for nuisance effects, we subtract the 201 

median of the expected values for each unit from its corresponding observed value to create 202 

residual-like estimates, (4) we fit these “residuals” into the statistical model, and (5) we use node 203 

permutations to calculate the P value for the observed effect of X on Y, where the network-based 204 

variable and corresponding test statistic are now corrected for nuisance effects.  205 

This double permutation procedure tests the null hypothesis that deviations from random 206 

social structure (within some set of constraints) are not explained by the predictor variables. The 207 

procedure can be easily applied to any model for calculating test statistics, such as Mantel tests 208 

(Mantel, 1967), network regression models like MRAQP (Dekker, Krackhardt, & Snijders, 2007), and 209 

metrics such as the assortativity coefficient (Farine, 2014; Newman, 2002). As we will show, it also 210 

performs equally well with group-based association data and with data collected using focal 211 

observations. We acknowledge that this is only one potential solution, and we therefore also 212 

highlight alternative methods that are also worth evaluating further, including several that are not 213 

based on permutation tests.  214 

 215 

 216 

ILLUSTRATING THE DRIVERS OF TYPE I AND TYPE II ERRORS 217 

 218 

Before we discuss our solution in detail, let us clarify the main problem by considering a 219 

simple, verbal, but concrete example of why errors can arise when using permutation tests. Imagine a 220 

study population where animals cluster for warmth each night in variable groups of 2-10 individuals. 221 

The dataset contains a list of observed clusters, their location, time, and the individuals in those 222 

clusters that could be correctly identified. From these data, researchers generate a network 223 

describing the propensity for each dyad to be observed in the same cluster with the aim of finding 224 

out if kin are more likely to cluster. Specifically, they ask: Does the dyadic kinship predict the observed 225 

propensity to be observed clustering together (edge weight)? 226 

First, the researchers consider a node permutation approach (e.g. using a Mantel or MRQAP 227 

test). However, if siblings are born at the same time, limited to similar home ranges, and then 228 

disperse at around the same time—then they could be more associated with each other than with 229 

non-kin, even without kin discrimination (e.g. Leedale et al. 2018). Under such a scenario, a 230 

significant result from a node permutation would correctly support that the network is kin-231 

structured, but represent spurious support for the specific hypothesis that kinship is a driver of social 232 

associations. Alternatively, a non-significant result may be caused by sampling bias. For instance, 233 

associations among kin could be under-estimated if younger animals are both more likely to associate 234 

with kin and less likely to be individually marked and recorded. In summary, hypotheses about the 235 

process generating an effect of kinship on association could be challenging to accurately assess using 236 

node permutations, in the presence of nuisance effects (but see Alternative Approaches section for 237 

more discussion on how node permutations can be restricted to potentially help alleviate some of 238 

these effects). 239 

The researchers might therefore turn to using a pre-network permutation test. They create 240 

expected outcomes (i.e. measure the relationship between kinship and edge weights) after 241 

repeatedly swapping individual observations within sampled locations and time periods. Doing so 242 

allows them to eliminate the nuisance effects described above. However, now imagine that there is 243 

another unknown social effect: all individuals spend about 90% of their time with only 1-3 closely 244 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 4, 2020. ; https://doi.org/10.1101/2020.08.02.232710doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.02.232710
http://creativecommons.org/licenses/by/4.0/


 6

bonded associates. This constraint on social structure means that every node (individual) always has 245 

a large variance in edge weights across all its possible associations, because many association rates 246 

are zeros while a few others are closer to one, and this variance is much greater than expected from 247 

random associations. When the researchers create randomised networks using pre-network 248 

permutations, the observations of individuals (i.e. their social actions) are swapped independently of 249 

each other, meaning that individuals in the resulting random networks almost never (or possibly 250 

never) spend 90% of their time with a few individuals, while many zeros are replaced with non-zeros 251 

as individuals that never co-occurred are swapped into groups together. While this removal of social 252 

preferences is one of the aims of pre-network permutation tests, it can confound non-random social 253 

structure generated by the trait of interest with that of other processes not related to the hypothesis 254 

being evaluated. In the context of the kinship scenario above, even if close social bonds are not kin-255 

biased (i.e. the social bonds are randomly distributed with regards to kinship), the extremely non-256 

random social structure of the observed network could easily lead to a false positive with regards to 257 

the effect of kinship. If even a few strong bonds exist among kin by chance in the observed data, it is 258 

possible that these strong kin bonds will never appear in the expected data. This scenario occurs 259 

because the observed network typically has much higher variance in the measure of interest (edge 260 

weight or node metric) than the corresponding random networks from pre-network permutations 261 

(Aplin et al. 2015; Firth et al. 2018; Weiss et al. 2020). Thus, once again, the actual effect of kinship 262 

on association is challenging to accurately evaluate in the presence of a confounding effect (in this 263 

case social preferences unrelated to kinship). 264 

The false positive in the last example is related to a different potential problem with pre-265 

network permutation tests—they can provide overly-confident estimates of minor deviation from 266 

random (Figure 2). In part, this problem occurs because constructing social networks requires large 267 

numbers of observations (Langen 1996; Farine & Strandburg-Peshkin 2015; Davis, Crofoot & Farine 268 

2018) with many repeated observations of the same individuals, and a sufficiently large number of 269 

observations can invariably produce P values well below 0.05 even when the effect size is not 270 

biologically important (Figure 2).  271 

Pre-network permutations are also likely to suffer from more incorrect inference in analyses 272 

based on networks containing only a few nodes. For instance, consider a network containing only 273 

three nodes (male, male and female), from which only three dyadic associations are recorded, with 274 

all three being between the two males. In such a scenario, a pre-network permutation testing 275 

whether females are less connected (lower degree) than expected by chance would be significant at 276 

P<0.05, as the observed data is the only one of 27 combinations of the three dyadic associations that 277 

would result in the female having a degree of zero (the P value here would approach 0.037). Clearly, 278 

any inference drawn from three observations of three individuals would be immediately apparent as 279 

unreliable, but the same problem can be harder to notice in more complex analyses. 280 

 281 

 282 

 283 

Figure 2. The problematic relationship between effect size and significance. (a) A large effect in a test with a relatively low 284 

power dataset, producing a P value of 0.016. (b) A weak effect in a test with a high-power dataset, producing a P value of 285 

2.87x10
-7

. The former is more biologically significant, whereas the latter is more statistically significant. When drawn from 286 

large numbers of observations, pre-network permutation tests can detect marginal differences that have little biological 287 

0 µ

(a)

0 µ

(b)
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relevance (i.e. b), thereby producing elevated type I errors (sensu Nakagawa & Cuthill 2007; Lantz 2013; Szucs & Ioannidis 288 

2017). 289 

 290 

The previous example illustrates problems caused by nuisance effects involves variables that 291 

are traits of dyads (edges), and the same principles apply when testing hypotheses relating the traits 292 

of individuals (nodes) to their connectivity in the network. For instance, a false impression that male 293 

birds are more gregarious (i.e. sex predicts degree centrality) could be caused by sex-based 294 

differences in observability, attraction to spatially clumped resources, variation in home-range size, 295 

differential survival in different habitats, or differences in the timing of their presence or absence in 296 

the population. Again, these issues are common to many other types of ecological studies, but their 297 

influence can be exacerbated in social network studies. Some of these effects are sampling effects; 298 

others will only cause a problem if there’s a mismatch between the question of interest to the 299 

researcher and the question being addressed by the analysis (e.g. ‘do males prefer larger groups?’ 300 

versus ‘do males occur in larger groups?’, see Figure 3). Further, while we refer to many nuisance 301 

effects as ‘non-social’, social behaviours can also contribute to these effects, and studies could benefit 302 

from making more explicit considerations of the social decisions that contribute to them. For 303 

example, individuals’ spatial ranges could be determined by social habitat selection (e.g. density-304 

dependence in their decisions to settle in a location or move elsewhere). We provide some advice on 305 

how permutation tests can help uncover such effects in the future directions section. 306 

Social behavior itself can affect observability. For example, if females tend to be found at the 307 

periphery of groups, then an observer standing close to the center of a group might be more likely to 308 

miss observations of females and their associates, whereas the observer can always detect the 309 

associates of the (predominately male) individuals at the center of a group, thereby introducing a sex 310 

bias in the number of observed associates. An observer standing outside the group could have the 311 

opposite bias. This simple example highlights how biases can arise even when observations are made 312 

in groups where every individual is individually-identifiable, and why the focus on detecting 313 

relationships (i.e. estimating edges) makes network studies more prone to nuisance effects than 314 

many other types of studies.  315 

 316 

 317 

Figure 3. Example of the challenges associated with testing hypotheses on social data. Are males more often in larger 318 

groups? In the scenario shown above, males (colourful individuals) are observed in larger groups (e.g. groups a, b, c) more 319 

often than are females (less colourful individuals). However, now consider the question: Are males more gregarious than 320 

females? The same observation is not informative about the causal processes with respect to this question. Imagine that 321 

groups a and b represent birds outside a territory (shown by the dashed line) defended by a single dominant male (in c). 322 

Females are allowed to enter freely and form groups within the territory (c and d) but other males are excluded. Even if 323 

each male (e) chooses smaller groups (b vs a), and females (e.g. f) choose larger groups (c vs d) in their given environments, 324 

we could still observe males in larger groups than females due to the constraints imposed by the territory. Thus, even if 325 

males are less gregarious, they can end up having more social connections. A node permutation test (where the sex labels 326 

? ?

(a) (b) (c) (d)

(e) (f)
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are randomized in the overall network) that produced a significant result would incorrectly support for the hypothesis that 327 

males are more gregarious. By permuting the individual observations within locations (a pre-network permutation), we can 328 

simulate the random social decisions that individuals would make given the options that were available to them. Under such 329 

a null model, a subordinate male that was never seen in the territory (groups c and d) would never be observed there in the 330 

permuted data, and would therefore always be found in larger groups. Such a test would correctly avoid rejecting the null 331 

hypothesis that males are more gregarious (because in the randomised data they would always chose larger groups). 332 

However, the same pre-network permutation test would incorrectly fail to reject the null hypothesis that males and females 333 

do not differ in their numbers of connections, if that were the question of interest. 334 

 335 

An advantage of pre-network permutations is that they allow precise control over many 336 

possible nuisance effects, without needing to measure or even identify them. For example, 337 

individuals at the edge of a study area, where a lower proportion of individuals are individually-338 

identifiable, would always occur in groups containing fewer individuals that can be individually-339 

identified; controlling for space would automatically control for differences in group size that arise 340 

due to spatial variation in identification rates. Such an effect could be challenging to control for by 341 

explicitly including it in a statistical model. However, pre-network permutation tests can allow many 342 

other important aspects of the data to change (such as degree distributions or variances) in the 343 

expected data, and thus pre-network permutations alone cannot be used to assess the effect of a 344 

predictor while controlling for social structure (Weiss et al. 2020, Puga-Gonzalez et al. 2020). 345 

 346 

 347 

THE DOUBLE PERMUTATION METHOD 348 

 349 

We propose an approach that uses pre-network permutations to control for nuisance effects, 350 

and then uses node permutations to test for the statistical significance of the effect of interest. Our 351 

double permutation testing method (Figure 4) first uses pre-network permutations to calculate the 352 

deviation of each of the units of interest (a node-level or edge-level metric) from its random 353 

expectation given the structure of the observation data. That is, by comparing a unit’s observed 354 

measure to its expected random value (e.g. the median values of the same unit’s measure across the 355 

permuted networks), we can calculate the equivalent of a residual value. These residual values can 356 

then be fit into a model of interest—such as an MRQAP, regression, or other model—to generate a 357 

corrected test statistic, and node permutations used to calculate the significance of this statistic. Such 358 

an approach is conceptually similar to generalised affiliation indices (Whitehead & James 2015), but it 359 

uses pre-network permutation tests, rather than regression models, to estimate the deviance from 360 

random, and it applies them directly to the metric of interest (e.g. a node’s degree) rather than using 361 

a two-step process of calculating corrected affiliation indices before generating a given network.  362 

 363 
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 364 

 365 

Figure 4. Overview of the double permutation method. We propose a solution to the problem of elevated type I and type II 366 

errors when using permutation tests in animal social network analysis. Our approach has four steps. (1) A pre-network 367 

permutation is used to (2) generate a distribution of expected metric values for a unit of interest (e.g. a node’s degree or an 368 

edge’s weight). For each unit (i.e. each node or each edge), (3) the unit’s expected metric value (e.g. the median) is 369 

subtracted from its observed metric value, which yields a corrected metric value (the equivalent of residual values after 370 

controlling for non-social nuisance effects). (4) The test of interest (e.g. a regression, difference in means, or correlation), 371 

and its corresponding test statistic (e.g. the coefficient of the slope or the correlation coefficient) is calculated to generate a 372 

corrected test statistic. (5) A node permutation test, in which the trait values are shuffled relative to the residuals of the 373 

metric values, is then used to compare the corrected test statistic with those expected given the structure of the network, 374 

to generate a P value. 375 

 376 

 377 

 378 

TESTING THE ROBUSTNESS OF THE DOUBLE PERMUTATION APPROACH 379 

 380 

We demonstrate the suitability of our approach using three sets of simulations. In the first, 381 

we show that double permutation tests provide robust outputs when used with regression models on 382 

group-based data, both in the absence of any real relationship (to test for elevated type I error rates) 383 

and when there is a strongly confounding nuisance factor (e.g. a spatial effect, to test for elevated 384 

type II errors rates). In the second model, we use the same simulation framework as Puga-Gonzalez, 385 

Sueur and Sosa (2020) to demonstrate that double permutation tests are robust when using focal-386 

observation data and when used to compare means. Finally, we develop a third model to show that 387 

double permutation tests are robust to testing edge-based hypotheses (e.g. the role of kinship in 388 

shaping the strength of connections among individuals) in the presence of other social effects (e.g. 389 

the presence of non-kin social bonds). 390 

 391 

Simulation 1: node-based regression 392 

The first simulation starts by drawing � individual trait values ��  from a normal distribution 393 

with a mean of 0 and a standard deviation of 2. We assign each individual to have on average K 394 

observations by drawing �� from a Poisson distribution with � � � and balancing these values to 395 

ensure that ∑ �� � � � �.  We then create � groups, where � � 0.5 � � � �, and randomly assign 396 

each of these groups to have a group size value � ranging from 1 to 10. To allocate individuals into 397 

groups, we order the individuals from the smallest trait value to the largest to create scenarios where 398 

the trait value should impact the social behaviour of individuals (trait has social impact, �� � ���), 399 

or order these at random to create scenarios where the trait value has no relation to the social 400 
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behaviour of individuals (�� � �����). We assign each individual into groups by selecting the 401 

��  groups that have empty spaces, and with a higher probability of selecting smaller groups. In doing 402 

so, individuals earlier in the order are disproportionately more likely to be assigned to smaller groups, 403 

filling them up, and leaving only larger groups for later individuals to fill, thereby creating a 404 

relationship between individuals’ trait value ��  and their weighted degree ��  when ��  is true.  405 

From these observation data, we follow the design of our double permutation method (see 406 

Figure 4) to first calculate how each node’s degree deviates from what is expected from random 407 

behaviour, and, second, to calculate the relationship between the residual weighted degree values ��
� 408 

and the trait values �� . We then implement two conceptual variations, ��, to go with the two ��  409 

scenarios above. The first variant (no location effect, �� � �����) is a scenario in which the group 410 

size values � corresponds to the outcome of social decisions. In the second variant (location effect, 411 

�� � ���), we assume that rather than � representing a group size preference, � instead 412 

corresponds to spatial preferences, such that individuals prefer patches closest to the centre of their 413 

home ranges in a one-dimensional linear environment ranging in values from 1 to 10. Patches at one 414 

end of this environment, i.e. those patches with a larger �, contain more resources and therefore can 415 

hold more individuals. These variants enable us to use the same code to produce a relationship 416 

between �� and network degree �� where in one scenario where the decisions are social (�� � ��� 417 

and �� � �����) and in another scenario where the relationship between ��  and ��  arises from 418 

decisions that are not social (�� � ��� and �� � ���). To control for the location ��  that each 419 

group was observed in when �� � ���, we used within-location swaps in the pre-network 420 

permutation tests. 421 

We simulate 100 replications for varying combinations of network sizes, with number of 422 

individuals ranging from � � 5 to � � 120 and for mean numbers of observations per individual 423 

ranging from � � 5 to � � 40. The different combinations of scenarios (��  and ��) allow us to 424 

evaluate the performance of different approaches in cases where there are no real effects (�� �425 

����� and �� � �����), real social effects but no nuisance effects (�� � ��� and �� � �����), 426 

and where the driving factor behind the effect is a strong non-social nuisance effect (�� � ��� and 427 

�� � ���). The latter represents an example of a study with a confound (differences in spatial 428 

preferences among individuals) that is challenging to control for because individuals are observed in 429 

most locations, meaning that their spatial preferences cannot be reduced down to a single value, 430 

which is required when model fitting (e.g. adding location as a random effect) or when restricting 431 

node permutations by location (because each node can only have one location attribute used for 432 

swapping).  433 

For each run of the simulation, we calculate P values for the effect of the trait value on 434 

degree using (1) node permutation tests with the coefficient value as the test statistic, (2) node 435 

permutation tests with the coefficient value as the test statistic while controlling for number of 436 

observations (Franks et al. 2020), (3) pre-network permutation tests with the coefficient value as the 437 

test statistic, (4) pre-network permutation tests with the t statistic as the test statistic, and (5) double 438 

permutation tests with the coefficient as the test statistic. We extract β coefficients (slopes) and t 439 

statistics by fitting the model weighted degree (�) ~ trait (�) using the lm function in R. We create the 440 

networks and conduct the pre-network permutation tests using the R package asnipe (Farine 2013). 441 

 442 

Simulation 2: difference in group means 443 

 We implement the second simulation using exactly the same code as Puga-Gonzalez, Sueur 444 

and Sosa (2020). In brief, these simulations start by assigning individuals to groups, with each group 445 

having a focal individual. Simulations can be run with and without a difference in gregariousness 446 
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among females and males, where females are more gregarious by being disproportionately allocated 447 

to larger groups when the effect is present. The simulations can also introduce an observation bias, 448 

whereby females are often not observed even when present, whereas males are always observed 449 

when present. Such biases are common in field studies—for example in a study on vulturine 450 

guineafowl (Acryllium vulturinum) (Papageorgiou et al. 2019), juveniles are marked with a soft wing 451 

tag on the right wing and therefore only identifiable if their right side is observable, whereas adults 452 

are marked with leg bands that can be identified from any direction. The code runs 500 simulations 453 

for each scenario (sex effect or not, observation bias present or not), with parameter values that are 454 

randomly drawn from uniform distributions as follows: population size ranging from 10 to 100, 455 

observation bias ranging from 0.5 to 1 (where 1 is always observed), the female sex ratio ranging 456 

from 0.2 to 0.8, and the number of focal follows ranging from 100 to 2000.  457 

The simulation procedure above follows closely from the design in Farine (2017), and was 458 

designed to provide the ability to record both the pre-bias and post-bias effects, thereby allowing an 459 

estimation of false positives (when no effect should be present but one is detected), false negatives 460 

(when an effect is present, but masked by the observation bias, and therefore not detected), and 461 

whether the model can accurately estimate the original effect size (before the observation bias is 462 

applied). For each simulation, we calculate P values of the effect of sex on degree using (1) node 463 

permutation tests with the coefficient value as the test statistic, (2) pre-network permutation tests 464 

with the coefficient value as the test statistic, (3) pre-network permutation tests with the t statistic as 465 

the test statistic, and (4) double permutation tests with the coefficient as the test statistic. We extract 466 

β coefficients (the difference in the mean degree between males and females) and t statistics by 467 

fitting the model weighted degree ~ sex in the lm function in R.  468 

 469 

Model 3: edge-based regression 470 

We demonstrate that the double permutation method is robust to the presence of other 471 

social effects. To evaluate the impact of other social effects on error rates, we generate simulated 472 

networks in which individuals have three types of social associates: (i) weak associates, (ii) preferred 473 

associates, and (iii) strongly-bonded associates. We start (1) by creating a ‘real’ network comprised of 474 

� individuals with a network density � drawn from a uniform distribution (ranging from 0.05 to 0.6), 475 

and selecting � � � edges (where � is the maximum possible number of undirected edges) with 476 

probabilities 0.6, 0.3, and 0.1 for edge types 1 to 3, respectively (and all other edges set to 0). As with 477 

our first simulation, we then (2) make an average of � observations per individual. However, in the 478 

current simulation, we create 1.2 � max���� sampling periods (Whitehead 2008), and randomly 479 

allocate individuals to being observed in �� of these sampling periods. (3) For each sampling period, 480 

we then select all pairs of individuals with an edge present in the real network and where both are 481 

present in that sampling period, and draw a 0 or 1 to signify whether they were observed together or 482 

not. Here we set the binomial probability of drawing a 1 set to 0.1 for edges of weak associates, 0.6 483 

for edges of preferred associates, and 0.9 for edges of strongly-bonded associates, based on the real 484 

network. These values therefore represent weak, strong, and very strong likelihoods of individuals 485 

being co-observed when they are both present. We select � and � values using the same parameter 486 

sets as in model 1. 487 

Next, we (4) create a kinship network, setting the kinship level of each individual based on 488 

their edge type in the real network. Specifically, we draw relative kinship values from a beta 489 

distribution with � � 1 and  � 2 (i.e. left-skewed) for missing edges and edges of weak associates, 490 

� � 2 and  � 2 (i.e. unskewed) for edges of preferred associates, and � � 3 and  � 2 (i.e. right-491 

skewed) for edges of strongly-bonded associates. Because beta distributions range from 0 to 1, these 492 
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distributions assume that 1 corresponds to the closest relatives in the population. We use these 493 

parameters to create kinship distributions with differences in mean kinship (0.33, 0.5, 0.6, 494 

respectively) according to social relationship type (these relative kinship values can be divided by two 495 

to create a maximum kinship value of 0.5 with no effect on the outputs of the model). 496 

Our simulations comprise two scenarios. In the first scenario, edge weights are purely social 497 

and unrelated to kinship, which we achieve by randomizing the kinship matrix relative to the 498 

association matrix after generating it (thereby keeping the same relationship between the variance in 499 

the network edges and in the kinship matrix). In the second scenario, associations are kin-biased by 500 

keeping the kinship matrix as it was generated, thus strongly-bonded associates have the highest 501 

kinship on average and weak associates and non-associates (missing edges) have on average the 502 

lowest kinship. 503 

We simulate 100 replications for combinations of network sizes, with number of individuals 504 

ranging from � � 5 to � � 120 and for the mean numbers of observations per individual ranging 505 

from � � 5 to � � 40. For each run of the simulation, we calculate P values of the effect of the trait 506 

value on degree using (1) node permutation tests with the coefficient value as the test statistic, (2) 507 

node permutation tests controlling for number of observations, (3) pre-network permutation tests 508 

with the coefficient value as the test statistic, (4) pre-network permutation tests with the t statistic as 509 

the test statistic, and (5) double permutation tests with the coefficient as the test statistic. We create 510 

the networks, conduct the pre-network permutation tests, and conduct the regressions using the 511 

MRQAP functionality in the R package asnipe (Farine 2013). 512 

 513 

 514 

THE DOUBLE PERMUTATION APPROACH IS ROBUST TO TYPE I AND TYPE II ERRORS 515 

 516 

Our simulations confirm that when there are no effects (�� � ����� and �� � �����), pre-517 

network permutation tests are prone to elevated false positives (type I error rate of 26%, Figure S1, 518 

Table 1), confirming previous studies. Our simulations also show that the tendency for pre-network 519 

permutation tests to generate type I errors is greater in smaller networks and when more data are 520 

collected (Figure S1). When the t value is used as a test statistic instead of the coefficient, pre-521 

network permutation tests are still prone to false positives (type I error rate of 14%, Table 1), and also 522 

perform relatively poorly at detecting a real effect (detecting true effects approximately 20% less 523 

often than other approaches, Figure S2, Table 1). The node permutation tests perform particularly 524 

poorly when the effects are driven by non-social factors, such as variation in the spatial distribution 525 

of individuals (type I error rate of 85%, Figure S3, Table 1). By contrast, double permutation tests 526 

perform largely as expected throughout the parameter space, producing conservative P values when 527 

no effect is present (type I error rate of 5%), reliably detecting effects when they were present (in line 528 

with other tests, Table 1), and being much more conservative than other tests when the effect is 529 

driven by non-social factors (type I error rate of 10%, Figures S1-S3, Table 1).  530 

 531 

 532 

 

No effects 

(�� � ����� and 

�� � �����) 

Social effect  

(�� � ��	� and 

�� � �����) 

Spatial confound 

(�� � ��	� and 

�� � ��	�) 

Node permutation (β) 4.9% 84.8% 84.9% 

Node permutation 

controlling for number 
5.1% 87.3% 87.8% 
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of observations (β) 

Pre-network 

permutation (β) 
26.3% 88.1% 22.9% 

Pre-network 

permutation (t) 
13.6% 62.9% 28.2% 

Double permutation 5.1% 86.9% 9.9% 

 533 

Table 1. Propensity for permutation tests to yield errors or detect real effects when using regression models to test 534 

hypotheses on network data (model 1). Table shows the proportion of statistically significant results for an effect of a trait 535 

on degree under three sets of scenarios. When �� � ����� and �� � �����, the expected proportion of significant 536 

results should be approximately 5%. When �� � ��	� and �� � �����, the simulated data should have a strong social 537 

effect that, and most results should be significant. When both �� � ��	� and �� � ��	�, the simulated data should have 538 

a strong spatial ‘nuisance’ effect, with the local density of individuals varying across space, and the proportion of significant 539 

results should again approach 5%. Figures S1-S3 show how the proportion of significant results is affected by the number of 540 

observations and the number of nodes in the network. Bold values highlight test results that performed relatively well. 541 

 542 

The problem of elevated error rates is not one of how the data are collected, but rather how 543 

the biological inference is drawn from a given dataset. To demonstrate this, we also show the 544 

applicability of our combined node permutation solution to data collected from focal observations. 545 

Puga-Gonzalez, Sueur and Sosa (2020) recently published the results from simulations (originally 546 

based on Farine 2017) showing that the same issue with pre-network permutations using group 547 

observations also exists for data collected using focal observations. By simulating scenarios 548 

combining both the presence/absence of an effect (females are more social) as well as the 549 

presence/absence of a strong observation bias (females are missed 20% of the time), Puga-Gonzalez, 550 

Sueur and Sosa (2020) also confirm that node permutations generate substantial rates of type I errors 551 

(false positives) when non-social nuisance effects are present.  552 

Using the same simulation code, we show that our double permutation test performs well 553 

across all four scenario combinations (Table 2). It is a more conservative approach than pre-network 554 

permutation tests alone (remaining close to 5% false positives), performs adequately in terms of type 555 

II errors, for example by being less prone to nuisance effects when compared to node permutations.  556 

Note that the true number of real positives is not actually known, and therefore the 557 

proportion of type II errors estimated by the simulations is likely to be over-inflated, as not all the 558 

simulations will have produced data with an effect present. Finally, because we use this simulation to 559 

explore effect size issues (see following section), we report the results of node permutations while 560 

controlling for the number of observations there. 561 

 562 

 563 

 No observation bias Observation bias (‘nuisance’ effect) 

 
Phenotypes equal 

(Type I errors) 

Females more 

social  

(Type II errors) 

Phenotypes equal 

(Type I errors) 

Females more 

social  

(Type II errors) 

Node permutation 

(β) 
4.6% 2.4% 57.8% 47.6% 

Pre-network 

permutation (β) 
38.2% 10.0% 37.2% 13.2% 

Pre-network 

permutation (t) 
28.4% 47.0% 53.4% 44.0% 

Double 

permutation 
5% 18.0% 7.2% 24.4% 
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 564 

Table 2. Propensity for permutation tests to produce type I and type II errors from datasets simulating focal sampling 565 

(model 2). Simulations use the code from Puga-Gonzalez, Sueur and Sosa (2020), that comprised four scenarios: (1) females 566 

and males have identical social phenotypes and are observed equally, (2) females are more social and both sexes are 567 

observed equally, (3) females and males have identical social phenotypes but observations are biased towards males (20% 568 

of observations of females are missed), and (4) females are more social but observations are biased towards males (20% of 569 

observations of females are missed). Using double permutation tests has relatively conservative type I and type II error rates 570 

across scenarios. False positives (type I errors) are near 5%, avoiding the high rates suffered by pre-network permutations 571 

alone and by node permutations in the presence of nuisance effects.  572 

 573 

 Finally, we show that the double permutation test is robust to the presence of nonrandom 574 

social structure (similar to a node permutation test). A number of social effects can simultaneously 575 

shape the structure of social networks (Figure 1), thereby increasing variance in both node-based 576 

metrics (e.g. degree) and edge-based metrics (e.g. edge weights). Such high variance can then lead to 577 

elevated type I error rates (Weiss et al. 2020). Simulations comprised two scenarios, testing the 578 

hypothesis that edge weights are predicted by kinship in networks in networks where the association 579 

rates (edge weights) are related to kinship and in networks where they are not. As with the above 580 

two simulations, the double permutation test performs as expected when no real effect is present 581 

(i.e. type I error rates were close to 5%, Table 3). All models have elevated type II error rates because 582 

not all simulated networks result in a strong effect present, but the double permutation test performs 583 

more conservatively than node permutations (producing more type II errors, Table 3). While pre-584 

network permutations appear to outperform other approaches with respect to Type II errors, this is 585 

likely because they are also more sensitive to weak effects in small networks, which are likely to 586 

correspond to type I errors rather than correctly identifying a true effect (see Figure S5, which shows 587 

higher rates of significant effects in small networks with high numbers of observations). 588 

 589 

 590 

 Kinship ≠ Associations 

(Type I errors) 

Kinship ∝ Associations 

 (Type II errors) 

Node permutation 

(β) 
5.1% 16.7% 

Pre-network 

permutation (β) 
18.6% 9.9% 

Pre-network 

permutation (t) 
3.0% 80.6% 

Double 

permutation 
5.2% 22.1% 

 591 

Table 3. Propensity for permutation tests to produce type I and type II errors regarding kinship effects from simulated 592 

datasets with confounding social effects, i.e. nonrandom social structure (model 3). Table shows the type I error rates in 593 

simulations where the social effect is a confound (i.e. strong associations are not linked to kinship), and estimated type II 594 

error rates in simulations where the social effect corresponds to the hypothesis being tested (i.e. strong associations are 595 

linked to kinship). Figures S4-S5 show how the proportion of significant results is affected by the number of observations 596 

and the number of nodes in the network.   597 

 598 

In summary, our results suggest that double permutation tests are most useful when 599 

sampling biases or other nuisance effects might be an issue, and especially when the impact of such 600 

effects are expected but not well understood. This method is an alternative to model-fitting methods, 601 

such as fitting generalized additive models that can handle non-linearity in the relationship between 602 
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sampling intensity and a network metric of interest (Franks et al. 2020). Some sampling biases (such 603 

as spatial variation in the proportion of individuals that can be identified) are quite complex to 604 

model. However, in situations where there is good reason to believe that network data are unbiased, 605 

node permutations (or restricted node permutations, see alternative approaches section) can 606 

perform well. 607 

 608 

THE CHALLENGE OF CALCULATING EFFECT SIZES 609 

 610 

Inference will always benefit from relying less on P values and instead focusing more on 611 

effect sizes (Nakagawa & Cuthill 2007). Franks et al. (2020) proposed that the coefficients of models 612 

can generate reliable relative effect sizes after controlling for the number of observations. However, 613 

multiple other nuisance effects can also create problems for estimating effect sizes and their 614 

significance. We explored this using the simulation of scenarios in which females are more social but 615 

also less observable (using Model 2). While the original coefficient (before the observation bias) and 616 

estimated coefficient (with the observation bias) were correlated (r=0.54), controlling for the number 617 

of observations of each individual consistently inflated the estimated coefficient size (Figure S6). We 618 

tested whether regression models can recover the original coefficient value using two approaches to 619 

fitting the number of observations as a covariate. First, we used a naïve model, whereby the scaled 620 

number of observations is simply added as a covariate. Second, we used a more informed model 621 

whereby the number of observations is added as an interaction with the effect of sex (exploration of 622 

the data would show that the number of observations differs between sexes). The naïve model 623 

performed worse, producing estimated effect sizes that were on average 1.8 times the original value 624 

(and up to 5.1 times the original value). Correctly fitting observations as an interaction term did not 625 

dramatically improve this, with the average estimated coefficient values being 1.7 times the original 626 

value (and up to 3.3 times the original). These two models performed even worse at estimating effect 627 

sizes when the true effect was not present (the estimated effect sizes were on average over 250 times 628 

the true values, Figure S7).  629 

One reason why the models could not generate robust effect sizes is because the models do 630 

not deal well with correcting data in situations where individuals are observed in groups rather than 631 

in pairs. For group observations, the loss of each observation can result in a variable number of edges 632 

being removed, with variation occurring both within groups (missing one individual from a group of 633 

10 will reduce its degree by 9 units whereas others’ degree will only reduce by 1 unit) and between 634 

groups (missing one individual will result in a larger loss of edges in a larger group than in a small 635 

group). Given our findings, approaches to estimating corrected effect sizes should be carefully tested 636 

before being used. Estimating effect sizes in the presence of bias is a major priority in the continued 637 

development of robust tools for animal social network analysis. 638 

 639 

 640 

ALTERNATIVE APPROACHES 641 

 642 

While our double permutation test performs similarly, and generally better, than the single 643 

permutation procedures across a range of scenarios, many alternative approaches or methodological 644 

refinements can improve the robustness of inferences from hypothesis testing. Here we discuss some 645 

alternative and/or further approaches. 646 

For many studies, it may not be necessary to use a double permutation test. It will often be 647 

sufficient to use node permutations and control for nuisance effects by restricting which individuals’ 648 
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data are swapped when performing the randomization. Such restricted node permutations are useful 649 

if individuals can be easily allocated to a distinct spatial location, or if there are clear categories of 650 

individuals that correspond to biases. For example, if individual animals enter the study in distinct 651 

waves, because of a standard dispersal time or because a study expanded at some point to include 652 

new individuals, then node permutations could be restricted among individuals entering the study at 653 

approximately the same time. However, if multiple factors have to be accounted for, one can rapidly 654 

run out of sets of individuals to swap. For example, a study population comprising 40 individuals that 655 

aims to restrict swaps by two parameters (e.g. age and location) would have on average only 10 656 

individuals per class if these are binary, only 6-7 per class if one is trinary, and only 4-5 per class if 657 

both are trinary.  658 

Another approach is to explicitly estimate the uncertainty of the combination of a given 659 

dataset and hypothesis-testing method. The procedure we used here—simulating a random trait 660 

value for each node in a network and running through the full hypothesis-testing procedure—can be 661 

a straightforward way of characterising the robustness of any given study’s results. That is, one can 662 

explore how sensitive a given dataset is to generating false positives or false negatives under different 663 

hypothesis-testing approaches. This procedure simply involves generating a random trait variable 664 

(e.g. drawing a trait value from a normal distribution) and testing how this value corresponds to the 665 

metric of interest from the observed network using the same code as for the real variable(s) being 666 

studied. By repeating this procedure many times, the proportion of the tests that produce a 667 

significant P value can be reported. It is worth exploring if and how this study-specific information 668 

might be used. For example, one might be able to correct the threshold for rejecting the null 669 

hypothesis to the point where the expected false positive rate will be 5%. Shuffling the actual node 670 

values (even doing so within space or time) and repeatedly running pre-network permutation tests 671 

might provide an even more precise estimation of the true false positive rate, as it will be fully 672 

conditioned on the real observation data.  673 

Rather than testing one null hypothesis, which encourages confirmation bias, the principle of 674 

strong inference (Platt 1964) requires considering and testing multiple alternative hypotheses. One 675 

criticism of null hypothesis testing using permutation tests is that they do not provide an exhaustive 676 

exclusion of alternative explanations (Zhang 2020). However, this apparent weakness can be turned 677 

into a strength if multiple models are used to collectively examine the different processes that might 678 

be shaping the patterns present in observation data. The use of multiple permutation-based null 679 

models can therefore be highly informative. For example, while it is important to control for the 680 

contribution of ‘nuisance’ spatial effects to social network structure when testing hypotheses about 681 

social decision-making, how animals use space (and its links to social structure) is itself an important 682 

biological process (Webber & Vander Wal 2018; He, Maldonado-Chaparro & Farine 2019). We show 683 

an example of this in Figure 3, where both social and spatial processes shape the differences in the 684 

group sizes of males and females, and where pre-network permutations that control for space would 685 

discard the biological drivers of space use (and, consequently, group size) as a nuisance effect. Aplin 686 

et al. (2015) evaluated the extent that the spatial distribution of individuals contributed towards their 687 

repeatability in social network metrics by reporting the distribution of repeatability values from a 688 

spatially-constrained permutation test. Farine et al. (2015) used two different permutation tests to 689 

identify the expected effects of individuals choosing social groups versus choosing habitats. Such an 690 

approach can characterise the relative drivers of apparent gregariousness among males and females 691 

in Figure 3. Hobson, Monster and Dedeo (2019) permuted observations of dominance interactions 692 

and then used the direction of the deviations from null expectations for inferring the likelihood of 693 
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different dominance strategies, such as individuals that preferentially attacked groupmates that were 694 

closer in rank (targeting close competitors) or farther in rank (bullying weaker opponents).  695 

Another approach that is often considered to be useful for estimating uncertainty (e.g. 696 

confidence interval around effect sizes) is bootstrapping (Lusseau, Whitehead & Gero 2008; Farine & 697 

Strandburg-Peshkin 2015; Bonnell & Vilette 2020). Bootstrapping involves resampling the observed 698 

data with replacement to create new datasets of the same size as the original. This procedure can 699 

estimate the range of values that a given statistic can take, and whether the estimate overlaps with 700 

an expected null value (see Puth, Neuhauser & Ruxton 2015). Bootstrapping, however, is not always 701 

appropriate as a means of hypothesis testing in animal social networks, because like node 702 

permutations, it relies on resampling the observed data, under the assumption that the observed 703 

network reflects the true social structure. For example, missing edges in an association network 704 

represent an association rate of zero, but in reality these zero values could be weak associations that 705 

exist in the real world, but were simply never observed. Bootstrapping the edge weights incorrectly 706 

suggests that unobserved edges have no uncertainty, which is obviously false for most studies. Thus, 707 

bootstrapping social network data should only be used with care and for specific aims. 708 

Several other methods that do not rely on permutation tests have been proposed to deal 709 

with sampling biases when constructing networks or to deal with non-independence of data to test 710 

hypotheses. For example, Gimenez et al. (2019) propose using capture-recapture models to explicitly 711 

model heterogeneity in detections, thereby providing more accurate estimates of network metrics. 712 

Studies estimating phenotypic variance using animal models have also proposed methods to 713 

decompose multiple sources driving between-individual variation in trait values (Thomson et al. 714 

2018). Such multi-matrix models have recently been applied to animal social networks as a means of 715 

identifying the relative importance of different predictors in driving differences in social network 716 

metrics (Albery et al. 2020). 717 

Pre-network permutation tests were initially designed to evaluate whether the social 718 

structure of a population is non-random, given sparse association data (Bejder, Fletcher & Brager 719 

1998). However, as shown by recent studies (Weiss et al. 2020; Puga-Gonzalez et al. 2020), and our 720 

own, producing reliable tests of some hypotheses can predictably degrade as the size of the 721 

observational dataset increases (Figure S1, for the reasons outlined in Figure 2). With rich datasets, 722 

however, it becomes possible to create replicated networks (Hobson, Avery, & Wright, 2013). That is, 723 

the data can be split to produce multiple networks (without overlapping observations), where each 724 

network contains sufficient data to produce reliable estimates of network structure (Farine, 2018). 725 

The same hypothesis-testing procedure can then be applied to each network independently. Using 726 

emerging methods for automated tracking, social networks can be created for each season (e.g. 727 

Papageorgiou et al. 2019), across periods of several days (e.g. Dakin et al. 2019), for each day (e.g. 728 

Boogert, Farine & Spencer 2014), or right down to each second (e.g. Blonder & Dornhaus 2011). If 729 

these networks produce consistent results when tested independently, this provides much stronger 730 

support for a given hypothesis than any single network. Alternatively, waxing and waning of effects 731 

might suggest some underlying dynamics are present that warrant further investigation, more careful 732 

analyses, or longer periods for each replication. Any inference becomes stronger again if each of the 733 

replicate social networks contains different sets of individuals, and the networks are re-formed in 734 

each sample period, as for instance when networks represent spatial proximity in roosts after 735 

individuals come back together to sleep or rest after having foraged or moved individually (Ripperger 736 

et al. 2019). Given sufficient data, many networks could be combined by using tools from meta-737 

analyses to estimate an overall effect size. However, such an approach would need to ensure that the 738 

same biases don’t impact each of the networks in the same way. 739 
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Although within-study replication can improve our confidence in a given result, ultimately the 740 

gold standard is replication across studies. Within-study replications cannot control for many of the 741 

nuances in how data are collected, stored, and analysed. One example of a replication study tested 742 

the effects of developmental conditions on the social network position of juvenile zebra finches 743 

(Taeniopygia guttata). In the original study (Boogert, Farine & Spencer 2014), birds were given either 744 

stress hormone or control treatments as nestlings, and their social relationships were studied after 745 

they became nutritionally independent from their parents. In the replication study (Brandl et al. 746 

2019), clutch sizes of wild zebra finches were manipulated to experimentally increase or decrease 747 

sibling competition (a source of developmental stress), and social associations (in the wild) were 748 

recorded after birds fledged. Across both studies, 9 out of 10 hypothesized effects had the same 749 

result (i.e. both statistically significant or not), and all 10 of the differences were in the same direction 750 

(binomial P<0.0001).  751 

 752 

 753 

POTENTIAL IMPROVEMENTS 754 

 755 

There are many further directions that can be explored for the double-permutation test. 756 

While we have demonstrated that our method performs adequately across a range of scenarios using 757 

simulated data, it is not always possible to simulate all possible types of uncertainty that might exist 758 

in empirical datasets. For example, the median expected value might not effectively represent the 759 

value expected by the null hypothesis, because when the possible configurations of the data are 760 

severely limited (for instance by a small sample size of observations per individual), the resulting 761 

distribution of expected metric values might not be unimodal. For example, if individuals have strong 762 

group size preferences, then their expected degree might jump dramatically from their preferred 763 

values to the distribution of mean degrees from the population, as more and more swaps are made. 764 

It can therefore be useful to visualize the expected distributions of metric values across individuals 765 

when possible, and to remove individuals that have been under-sampled (Farine & Strandburg-766 

Peshkin 2015). 767 

Rather than using a single value (such as the median, see Figure 4), future studies could 768 

explore ways of carrying over uncertainty from the distribution of permutation values when 769 

calculating the corrected test statistic. For example, one could use a Monte Carlo approach that 770 

repeatedly samples from the distribution of permuted values when calculating the residual for each 771 

unit in the analysis (each node or each edge), and using these many measurements to estimate the 772 

95% range of the corrected test statistic. An alternative way of carrying uncertainty through the 773 

analysis could be to implement a Bayesian framework for inferring the network (Farine & Strandburg-774 

Peshkin 2015), or even to modelling the dynamic process of the observations of connections in the 775 

network (Koskinen & Snijders 2007). Thus, there remains significant grounds for continued 776 

improvements in the methods for conduction hypothesis testing using animal social network data. 777 

For many studies, it is important to not only test a hypothesis of interest but also to 778 

accurately estimate the connection strength between individuals. One method that has been 779 

proposed are generalized affiliation indices (Whitehead & James 2015). These involve regressing the 780 

observed association strength against nuisance factors (such as home-range overlap) to generate a 781 

corrected value that accounts for the opportunity to associate. Permutation tests have also been 782 

suggested as a means of identifying non-random preferred or avoided relationships (Whitehead, 783 

Bejder & Ottensmeyer 2005). Yet, it remains to be determined whether permutation tests could also 784 

provide more accurate estimates of the strength of each relationship. Following our methods, it could 785 
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be possible to estimate a corrected association (or interaction) strength by subtracting some measure 786 

of the distribution of permuted values from the observed value of each edge. 787 

 788 

 789 

CONCLUSIONS 790 

 791 

In this paper, we have revisited some of the factors that can raise problems when conducting 792 

hypothesis testing using animal social network data, highlighting the need for more robust methods. 793 

By combining the strengths of two randomisation routines, we developed an approach that does not 794 

suffer from elevated false positives and suffers relatively little from false negatives. However, our 795 

proposed solution, or the use of permutation tests more generally, does not negate the need to 796 

carefully consider statistical issues that have been highlighted for more orthodox statistical practices 797 

(Forstmeier, Wagenmakers & Parker 2017). For example, the common practice of using linear models 798 

for both data exploration and hypothesis testing are estimated to produce rates of type I error as high 799 

as 40% (Forstmeier & Schielzeth 2011). High false discovery rates can also be caused by choosing an 800 

incorrect model structure (e.g. by failing to fit random slopes to a mixed effects model, see Schielzeth 801 

& Forstmeier 2009), which could also be applicable to the method used when calculating a test 802 

statistic for use with a permutation test. In general, false positive rates are likely to increase with the 803 

complexity of the question and the dataset, and dealing with empirical datasets in the biological 804 

sciences often requires making complex decisions for which the solutions aren’t clear—such as 805 

whether to log-transform data (Ives 2015) or not (O'Hara & Kotze 2010). In the context of social 806 

network data, different permutation procedures (including constricting the same test in different 807 

ways) each test quite a specific null hypothesis (see Figure 3 for an example), so part of statistical 808 

considerations should include ensuring that the correct null hypothesis is being tested. 809 

One particularly important point that our work, and that of others (e.g. Franks et al. 2020), 810 

highlights is the need to pay particularly close attention to the importance of different processes for a 811 

given hypothesis of interest. Take, for example, variation in space use and corresponding differences 812 

in the local density of individuals. If we assume that space use is constrained by non-social factors, 813 

and if we aim to understand animal social decisions, then space use (and its consequences for 814 

density) could be considered a nuisance effect. However, if we aim to study the transmission of 815 

information or pathogens, then these same effects are now an important factors contributing to the 816 

outcome of the transmission process. Thus, a given factor might represent a nuisance effect for one 817 

question but not another, even if these factors represent two halves of the same feedback loop 818 

(Cantor et al. 2019). Unfortunately, a major challenge remains in estimating the importance of effect 819 

sizes, in the presence of nuisance effects, when using animal social network data. 820 

Using three different simulations, each including multiple scenarios, we have shown that pre-821 

network permutation tests can produce reliable results when combined with node permutations to 822 

form a double permutation test. In contrast to parametric approaches (or drawing heavily from these 823 

when producing a test statistic), they can control for a large range of nuisance effects without 824 

implementing complex model structures, measuring and controlling for every source of bias, or 825 

assessing the consequences of deviating from parametric model assumptions. Further, they avoid 826 

making assumptions that the observed network corresponds exactly to the true network. Using 827 

permutation tests requires and encourages researchers to focus on thinking carefully about what 828 

specific processes may have produced the patterns in a given observed dataset. One can use a range 829 

of permutation tests to evaluate the relative contribution of different processes by measuring the 830 
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relative deviations of the data away from their null expectations. The strength and robustness of 831 

permutation tests therefore lies in their flexibility and simplicity.  832 
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APPENDIX 964 

 965 

 966 

 967 

Figure S1. Proportions of statistically significant results for differently-sized networks and different observation efforts for 968 

simulation 1 under the scenario when 
� � ���� (no effect is present) and � � ���� (individuals are not 969 

preferentially located in different patches). Panels represent the P values calculated using (a) node permutation tests with 970 

the coefficient value as the test statistic, (b) node permutation tests controlling for number of observations, (c) pre-network 971 

permutation tests with the coefficient value as the test statistic, (d) pre-network permutation tests with the t statistic as the 972 

test statistic, and (e) double permutation tests with the coefficient as the test statistic. These results highlight the propensity 973 

for pre-network permutation tests (c) to produce spurious results when networks have few nodes but many observations 974 

(top left of the plot). 975 
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 978 

 979 

Figure S2. Proportions of statistically significant results for differently-sized networks and different observation efforts for 980 

simulation 1 under the scenario when 
� � 
��� (an effect is present) and � � ���� (the effect is not a spatial 981 

confound). Panels represent the P values calculated using (a) node permutation tests with the coefficient value as the test 982 

statistic, (b) node permutation tests controlling for number of observations, (c) pre-network permutation tests with the 983 

coefficient value as the test statistic, (d) pre-network permutation tests with the t statistic as the test statistic, and (e) 984 

double permutation tests with the coefficient as the test statistic. These results highlight the propensity for pre-network 985 

permutation tests (c) to be more likely to produce significant results when networks have few nodes but many observations 986 

(left-hand of the plot relative to panels a, b and e). Further, results show that using the t statistic (d) produces unreliable 987 

results (i.e. the significance does not increase when more observations are made). 988 
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 992 

Figure S3. Proportions of statistically significant results for differently-sized networks and different observation efforts for 993 

simulation 1 under the scenario when 
� � 
��� (an effect is present) and � � 
��� (the effect is a spatial 994 

confound). Panels represent the P values calculated using (a) node permutation tests with the coefficient value as the test 995 

statistic, (b) node permutation tests controlling for number of observations, (c) pre-network permutation tests with the 996 

coefficient value as the test statistic, (d) pre-network permutation tests with the t statistic as the test statistic, and (e) 997 

double permutation tests with the coefficient as the test statistic. These results highlight the poor performance of node 998 

permutation-based models (panels a and b). 999 
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 1001 
 1002 

Figure S4. Proportions of statistically significant results for differently-sized networks and different observation efforts for 1003 

simulation 3 under the scenario where kinship does not predict association rates (edge weights). Panels represent the P 1004 

values calculated using (a) node permutation tests with the coefficient value as the test statistic, (b) node permutation tests 1005 

controlling for number of observations, (c) pre-network permutation tests with the coefficient value as the test statistic, (d) 1006 

pre-network permutation tests with the t statistic as the test statistic, and (e) double permutation tests with the coefficient 1007 

as the test statistic. These results highlight the propensity for pre-network permutation tests (c) to produce spurious results 1008 

when networks have few nodes present (left-hand-side of the plot). 1009 
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 1012 

Figure S5. Proportions of statistically significant results for differently-sized networks and different observation efforts for 1013 

simulation 3 under the scenario where kinship predicts association rates (edge weights). Panels represent the P values 1014 

calculated using (a) node permutation tests with the coefficient value as the test statistic, (b) node permutation tests 1015 

controlling for number of observations, (c) pre-network permutation tests with the coefficient value as the test statistic, (d) 1016 

pre-network permutation tests with the t statistic as the test statistic, and (e) double permutation tests with the coefficient 1017 

as the test statistic. These results highlight the propensity for pre-network permutation tests (c) to be more likely to produce 1018 

significant results when networks have few nodes but many observations (left-hand of the plot relative to panels a, b and e). 1019 

Further, results show that using the t statistic (d) produces unreliable results (i.e. the significance does not increase with 1020 

when more observations are made). 1021 

 1022 

  1023 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 4, 2020. ; https://doi.org/10.1101/2020.08.02.232710doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.02.232710
http://creativecommons.org/licenses/by/4.0/


 28

 1024 

 1025 

Figure S6. Relationship between the original coefficient value (the relationship between degree and sex prior to 1026 

introducing an observation bias) and estimations of the coefficient value using the data from simulation 2 where an 1027 

effect is present (females are more gregarious). (a) The original coefficient versus the coefficient estimated from the biased 1028 

observations. (b) The original coefficient versus a naïve correction involving adding only the number of observation for each 1029 

individual as a covariate in the model. (c) The original coefficient versus an informed correction that involves including an 1030 

interaction term between sex and the number of observations. Each point represents one simulation. While these 1031 

coefficients are correlated, the corrected coefficient values can be greatly over-estimated, suggesting that adding the 1032 

number of observations into a model does not produce reliable effect sizes. 1033 

 1034 

 1035 

 1036 

 1037 

 1038 

 1039 

Figure S7. Relationship between the original coefficient value (the relationship between degree and sex prior to 1040 

introducing an observation bias) and estimations of the coefficient value using the data from simulation 2  where no 1041 

effect is present (females and males are equally gregarious). (a) The original coefficient versus the coefficient estimated 1042 

from the biased observations. (b) The original coefficient versus a naïve correction involving adding only the number of 1043 

observation for each individual as a covariate in the model. (c) The original coefficient versus an informed correction that 1044 

involves including an interaction term between sex and the number of observations. Each point represents one simulation. 1045 

Because there was no original effect present, the coefficients are not correlated. However, the corrected coefficient values 1046 

generate extremely large coefficient values, suggesting that adding the number of observations into a model does not 1047 

produce reliable effect sizes. 1048 
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