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Abstract

Analyzing the trajectories of cellular differentiation sheds light on key questions
across biology, from how cell types are stabilized during embryonic development to
how they destabilize with age or disease. New single cell measurement technologies
offer the prospect of reconstructing these developmental trajectories from snapshots
of cell state together with lineage trees inferred from continuously-induced muta-
tions in heritable DNA-barcodes. However, current methods for reconstructing
developmental trajectories are not designed to leverage the additional information
contained in lineage trees. Inspired by these recent experimental advances, we
present a novel framework for reconstructing developmental trajectories from snap-
shots of cell state combined with lineage trees. Our method learns from both kinds
of information together using mathematical tools from graphical models and opti-
mal transport. We find that lineage data helps disentangle complex state transitions
with fewer measured time points, enabling increased accuracy for lower experimen-
tal cost. Moreover, integrating lineage tracing with trajectory inference in this way
enables accurate reconstruction of developmental pathways that are impossible to
recover with state-based methods alone.

Introduction

Understanding the genetic and epigenetic programs that control differentiation during
development is a fundamental challenge, with broad impacts across biology and medicine.
Single-cell measurement technologies like single-cell RNA-sequencing (scRNA-seq) [9, 12],
single-cell ATAC-seq [2] and CRISPR-based lineage tracing [13, 16, 19] have opened new
windows on these processes, but it remains challenging to analyze dynamic changes in
cell state over time because the measurements are destructive: cells must be lysed before
information about their state can be recovered, and so a cell’s state can in general only
be profiled at one point along its developmental trajectory.

In response, there has been a flurry of work on designing methods to infer develop-
mental trajectories from static snapshots of cell state [5, 25, 31, 32], including our own
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efforts [21]. While initial efforts have shed some light on important biological questions
relating to embryonic development [1, 5], hematopoiesis, and induced pluripotent stem
cell reprogramming [21], the field of trajectory inference is still in its infancy.

One of the most significant deficiencies of previous trajectory inference methods is
that they are not designed to incorporate lineage trees. Technologies for reconstructing
cellular lineage trees have seen tremendous recent advances, fueled by the CRISPR–Cas9
genome editing technology [4, 16, 19]. While developmental biologists have long used
various methods to tag cells and trace the lineage of their descendants, newer approaches
make it possible to recover more complex lineage relationships, including the full lineage
tree of a population of cells [13, 16, 19]. These newer technologies employ CRISPR-Cas9
to continuously mutate an array of synthetic DNA barcodes, which are incorporated
into the chromosomes so that they are inherited by daughter cells and can be further
mutated over the course of development. By analyzing the pattern of mutations in the
barcodes, one can reconstruct a lineage tree describing shared ancestry within a popula-
tion of cells. Recent advances allow the DNA barcodes to be expressed as transcripts and
recovered together with the rest of the transcriptome in scRNA-seq [16, 19]. This enables
simultaneous collection of information on cell state and cell lineage, which provides an
experimental solution to part of the trajectory inference problem. Note, however, that
high-resolution lineage tracing does not obviate the need for trajectory inference because
lineage tracing alone does not reveal the state of the ancestral cells. While the prob-
lems of reconstructing lineage trees and inferring trajectories have attracted substantial
attention individually [17, 29], there is much to be gained from combining these two
complementary perspectives [6].

Here, we propose an integrated mathematical framework for inferring developmental
trajectories from snapshots of both cell lineage and cell state. Our framework, called
LineageOT, is broadly applicable to lineage tracing time-courses, where populations of
cells are profiled with both scRNA-seq and lineage tracing at various time points along a
developmental process. As a proof of concept, we test our methodology on a time-course
of C. elegans embryonic development, collected with scRNA-seq [15]. Because the lineage
tree of C. elegans is known [26], we have an objective measure of performance. We find
that our method significantly improves trajectory inference both on this data set and
on simulated examples where algorithms without lineage information cannot completely
recover the correct trajectories. Our results show a path towards realizing the substantial
potential benefits of lineage tracing [6, 28] in applications across developmental biology.

Results

A unified framework for lineage tracing and trajectory inference

We develop a mathematical framework for analyzing scRNA-seq time-courses equipped
with a lineage tree at each time point. We formulate the goal of trajectory inference
in terms of recovering the embedding of these lineage trees, defined as follows. As a
population of cells develops, each cell traces out trajectories in a high-dimensional vector
space of cellular states (e.g. gene expression space). Cell divisions create branching paths,
and the trajectories of related cells coincide up to the point when their ancestry diverges
(Fig. 1a). For example, if all the cells share a common ancestor, then the trajectories
will all originate from a common point. This collection of branching paths forms the
embedded lineage tree for the population. Note the emphasis on ‘embedded’ — without
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Figure 1: Schematic of the LineageOT model and inference procedure. (a) A lineage tree
embedded in two dimensional gene expression space. As cells change state over time, they
trace out paths. Branches in the tree correspond to cell divisions, giving rise to four cells
at time t3 (red dots). Cell states from two ancestral periods are also highlighted: three
ancestors at time t2 (green dots), and two ancestors at time t1 (blue dots). (b) A barcode
sequence is mutated over time and mutations are shown on the embedded lineage tree
from (a). Starting from the ancestral barcode sequence ACTG, mutations are indicated
with a red × on the lineage tree and the change to the sequence is shown in red. (c) The
lineage tree of the population is shown with straight black lines. Note that this tree is not
embedded in gene expression space. The vertical axis represents time and cell divisions
correspond to bifurcations in the tree. Red ×s indicate mutation events. (d) Embedded
lineage trees from multiple independent realizations of the developmental process. In a
scRNA-seq time-course we measure just the leaves of each tree, without observing the
lineage. (e) A scRNA-lineage time-course with three time points (red, green, and blue).
For each time point, we observe cell states (dots) and also the lineage tree. The lineage
tree is visualized in the vertical dimension, separate from the two pictured dimensions of
gene expression space. (f) The LineageOT procedure consists of two steps. (1) Adjust
cells at the later time, here t3 (black arrows). The red dots show the adjusted estimates
of ancestral state, based on lineage information. Note that cells with shared lineage are
moved closer together. (2) Infer a coupling (dashed lines) connecting the cells from time
t2 (green) to cells from time t3 (red).
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this modifier, the term ‘lineage tree’ refers to the coordinate-free tree structure, where
all information about the embedded state of each ancestral node is lost (Fig. 1c).

Single cell measurement technologies allow us to sample from a population and mea-
sure cell states together with barcodes that enable recovery of the lineage tree any point in
time (Fig. 1b,c). However, because the measurements are destructive, we cannot directly
chart the embedded lineage tree at multiple time points. One can, however, leverage the
reproducibility of development and collect samples from separate populations at different
time points (Fig. 1d,e). For example, one can prepare two independent populations of
cells and collect samples from the first population at time t1 and samples from the second
population at time t2. The key question is then: which cell from the first sample would
have given rise to each cell from the second sample, if these were two views of the same
population?

We have recently demonstrated [21] that a classical mathematical tool called optimal
transport [8, 14, 27] can be applied to infer ‘state couplings’ from a scRNA-seq time-
course, without any information about cell lineage. This method, called WaddingtonOT,
connects cells sampled at time t1 to their putative descendants at time t2 by minimizing
the total distance traveled by all cells. It also includes entropic regularization with a
tunable regularization parameter to model the inherent stochasticity in developmental
trajectories and allows for variable rates of growth across cells by adjusting the distribu-
tions at times t1 and t2 based on estimates of division rates. The inferred connections
approximate the frequency of transitions between regions of cell-state space, i.e. the
couplings of the developmental process.

Our present notion of an embedded lineage tree refines the notion of a coupling
from [21]. Where WaddingtonOT aims for a state coupling describing all possible an-
cestries of a hypothetical cell with a given state, our embedded lineage tree gives rise
to a lineage-resolved coupling. The difference is significant in situations where cells can
arrive at a particular state from different ancestral states (Methods 1). Lineage tracing
helps resolve these ambiguities: without lineage tracing, we must assume that cells with
similar states have similar ancestral states; with lineage tracing, we instead assume that
cells with similar lineage have similar ancestral states.

We apply optimal transport to recover lineage couplings, considered as approximations
to embedded lineage trees, from scRNA-seq time-courses equipped with an unembedded
lineage tree at each time point. We refer to these datasets as scRNA-lineage time-courses.
In practice, the unembedded tree can be reconstructed from mutations accumulated in
DNA barcodes over the course of development (Fig. 1b,c), or some lineage information
might be known in advance (e.g. in C. elegans development). We do not focus on how
the unembedded lineage tree is estimated, but we do demonstrate in simulations below
that our method is robust to errors in the estimated lineage tree.

Our method applies two key steps to recover the lineage coupling spanning a pair of
time points t1, t2. We first leverage the lineage tree to adjust the positions of the cells at
time t2 before connecting them to their ancestors at time t1 using entropically regularized
optimal transport (Fig. 1f). The adjustment in the first step can be interpreted as sharing
information between closely related cells in order to construct a rough initial estimate
of the ancestral states at the earlier time t1. The rationale behind the second step is
based on Schrödinger’s discovery that entropically regularized optimal transport gives the
maximum likelihood coupling of diffusing particles [11, 22]. Assuming that the trajectories
are generated by diffusion plus drift through Waddington’s landscape (Methods 2), our
estimates of ancestral states from the first step are approximately normally distributed,
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as we explain below. Therefore our procedure gives an approximate maximum likelihood
estimate of the lineage coupling.

We now describe these two steps in detail. The core problem involves a single pair of
time points, t1 and t2, where we are given cells x1, . . . , xn sampled at time t1, and cells
y1, . . . , ym sampled at time t2 together with an estimate of their lineage tree. Because
diffusion dominates drift on short time-scales, we can infer the ancestral state of yi at time
t1 by assuming the dynamics are driven by pure diffusion. However, conditional on the
lineage tree, the cells are not diffusing independently. Intuitively, cells with similar lineage
should diffuse back towards one another to reach a common ancestral state. The difference
in cell state across each of the edges of the lineage tree is given by an independent Gaussian
random variable with variance proportional to the time-span along the edge (Methods 4).
This implies that the ancestral state at time t1 for each yi is normally distributed with
mean and variance that can be calculated from the lineage tree (Methods 4). Because
the ancestral states of each yi are normally distributed, optimal transport will give the
maximum likelihood matching to the observed ancestors x1, . . . , xn, when we use an
entropy parameter proportional to the inferred variance of ancestral states (Methods 4).
This matching, or lineage-resolved coupling, summarizes our knowledge of the ancestral
states of cells from t2 and the hypothetical descendant states of cells from t1, providing
a window onto the embedded lineage tree of each time point.

LineageOT outperforms WaddingtonOT on a lineage-resolved
time-course of C. elegans embryonic development

We sought to test our method by applying it to a scRNA-lineage time-course. While
CRISPR-based lineage tracing [3, 23] offers tremendous potential for generating scRNA-
lineage time-courses, this type of dataset has not yet been published. We reasoned, how-
ever, that we could create a scRNA-lineage time-course from an ordinary, non-barcoded,
scRNA-seq time-course of C. elegans embryonic development [15], because the lineage
tree is entirely known [26]. Packer et. al sampled 86,024 cells with 10X from loosely syn-
chronized embryos spanning the first 800 minutes of C. elegans embryonic development.
Because the precise timing of each embryo is not known, they estimated the develop-
mental time of each cell by correlating gene expression levels with data from a previous
bulk RNA time-course [7, 15]. They then divided the cells into groups with similar esti-
mated developmental times. We treat these groups of cells as discrete time points along
a scRNA-seq time-course, using the end of each group’s time interval as the group’s time
of sampling.

To obtain the scRNA-lineage time-course required for LineageOT, we needed to incor-
porate lineage information at each time point. However, lineage annotations are missing
from 46% of the cells in the Packer et al. dataset. Moreover, the lineage of many of the
annotated cells is not completely specified: some symmetric lineages are not distinguished
(e.g. cells whose true lineage is ABprp or ABplp are all labeled as ABpxp). We explored
three different strategies to get around this problem of incomplete lineage information.
We first simply filtered out all cells with imperfect lineage annotation. This leaves us
with only 5123 cells but with no ambiguity in the lineage tree. Second, we filtered out
only cells completely lacking lineage annotation. For cells with incomplete annotations,
we imputed a precise lineage label by randomly selecting from the options consistent
with the partial annotation. Third, we restricted attention to the well-annotated ABpxp
sublineage, which contains 7087 cells (entirely distinct from the 5123 cells above), and we
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Figure 2: When tested on lineage-labeled C. elegans data, LineageOT outperforms op-
timal transport with no lineage information. (a) Relative accuracy of optimal transport
and LineageOT on the 5123 cells with complete lineage annotations. Errors were normal-
ized by dividing by the error of the noninformative independent coupling. (b) The error
in predicting ancestor states, like the error for predicting descendant states (Fig. S3), is
lower for most cells with LineageOT. Here each point represents one cell from the 270
minute time point, which was coupled to the 210 minute time point. The red line marks
equal error for both methods. For each method in both (a) and (b), we chose the en-
tropy parameters that gave the minimum error from parameter scans like those in (c)
and (d). LineageOT consistently improves on WaddingtonOT for reasonable values of
the entropy parameter, both in ancestor error (c) and descendant error (d), shown here
for the 210-270 minute couplings.

treated the lineages ABprp and ABplp as if they were identical. For each approach, we
also removed a small number of cells (< 5%) whose assigned sampling time was before
their birth time according to the reference lineage tree. These three strategies yield three
scRNA-lineage datasets which we analyze separately. The results we describe below are
broadly similar for each of the three strategies (Fig. 2, Fig. S1, Fig. S2).

With each strategy, we applied both WaddingtonOT [21] and LineageOT to infer
developmental trajectories and compare their performance. We provide both methods
with ground-truth growth rates (Methods 7), and compute state couplings and lineage
couplings connecting each pair of time points. The input cell states are the first 50
coordinates from principal components analysis of the 46,159 cells with partial lineage
annotations, corrected for background counts as in [15]. For LineageOT, the input lineage
trees come from mapping cell lineage annotations onto the known C. elegans lineage tree.

We compare each fitted coupling to a ground-truth lineage coupling computed directly
from the lineage-annotated data. This ground truth is constructed by connecting each
early cell to all late cells labeled as being its descendants. Note that creating a coupling
in this way would not be possible in other organisms without cell annotations from a
known, invariant lineage tree. While previous work [17] has measured the success of
trajectory inference by reducing to discrete branching representations, we directly check
whether the predicted ancestors and descendants are similar in state to the true ancestors
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and descendants, respectively (Methods 6). These are two separate error metrics: the
ancestor prediction error and the descendant prediction error.

In all our tests, LineageOT has consistently lower error for both ancestor and de-
scendant prediction at reasonable levels of entropy (Fig. 2a, Fig S1, Fig S2). LineageOT
systematically predicts better for the majority of cells (Fig. 2b). The degree of improve-
ment depends on the choice of entropic regularization parameter and the strategy for
getting complete lineage annotations (Fig. 2c-d, Fig. S1, Fig. S2), but there is no entropy
choice for which LineageOT performs significantly worse.

Lineage-based trajectory inference outperforms state-based tra-
jectory inference on complex trajectories

We next explored the performance of LineageOT on simulated data, with the goal of
characterizing some of the settings where lineage-based trajectory inference can signifi-
cantly outperform state-based trajectory inference. We found that lineage information is
most helpful in resolving convergent trajectories, where similar cells arise from different
ancestral states. Moreover, we found that LineageOT is robust to imperfections in the
lineage tree. Below we present three simulations illustrating these concepts.

In each simulation, we generate an embedded lineage tree by allowing an initial pop-
ulation of cells to follow a vector field with diffusion and also to divide. Each cell has
a lineage barcode that randomly mutates and is inherited by the cell’s descendants. We
sample populations of cells at two time points, compute couplings with WaddingtonOT
and LineageOT, and compare to the ground truth coupling from the simulation, using
the ancestor and descendant prediction errors we described above. We also test the ro-
bustness of LineageOT by giving the algorithm either a lineage tree constructed from the
simulated barcodes (Methods 5) or the ground-truth lineage tree.

Simulation 1 Our first example is a simple bifurcation of a single progenitor cell type
into two descendant cell types (Fig. 3a). This is one of the simplest trajectory structures
to recover and one where ordinary state-based inference already does well. Given a
sufficiently accurate tree, LineageOT performs marginally better at ancestor prediction
(Fig. 3b) and marginally worse at descendant prediction (Fig. 3c). In hindsight, this is
not surprising. The lineage tree, rather than providing substantial new information, just
reaffirms the natural assumption that cells in the same cluster are a bit more closely
related.

Simulation 2 Inferring whether a single differentiated cell type came from multiple
lineages is a common problem [24] and one of the standard goals of lineage tracing meth-
ods [28]. These convergent trajectories are difficult for state-based trajectory inference,
which cannot distinguish the different ancestries of cells with similar measured states.
Here we simulate two clusters that each split; after the split, two of the resulting clus-
ters merge together (Fig. 3d). Now lineage information is important: LineageOT can
separate cells in the convergent cluster by ancestry, while state-based methods cannot.
Incorporating lineage information leads to substantially better prediction of ancestors
than purely state-based optimal transport (Fig. 3e), without undermining descendant
prediction (Fig. 3f).
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Figure 3: LineageOT matches the performance of WaddingtonOT for simple trajec-
tories and exceeds it for complex trajectories. (a-c) For a simple bifurcation, optimal
transport alone works well and adding lineage information makes little difference. (a) We
simulated a cluster of cells at an early time point (blue) splitting into two clusters at a
later time point (red). Green lines connect ancestors to descendants in (a), (d), and (e).
The ancestor errors (b) and descendant errors (c) are similar for optimal transport and
LineageOT with any entropy parameter, even when LineageOT is given an imperfect tree
fitted to simulated barcodes. (d-f) For a convergent trajectory, LineageOT significantly
improves ancestor prediction with no loss of accuracy in descendant prediction, even with
an imperfectly fitted lineage tree. (d) Here we simulated two early clusters (blue) that
each split; later, two of the resulting clusters (red) merge together. Using LineageOT
reduces error substantially for ancestor prediction (e) and slightly for descendant predic-
tion (f). (g-i) With sufficient time between samples, clusters of cells may move closer
to early time point cells that are not their ancestors. (g) We again start with two early
clusters (blue) that each split. In this simulation, two of the late clusters (red) are closer
to non-ancestral cells than to their true ancestors. Optimal transport couples clusters
incorrectly, leading to high error for predicting both ancestors (h) and descendants (i).
LineageOT corrects the errors in this example by averaging with other clusters that are
mapped correctly.
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Simulation 3 Our third example illustrates that lineage information can go beyond
resolving ambiguity and even correct mistakes from state-based inference. We consider
two clusters that split so that two of the late-time clusters end up closer to early cells
that are not their ancestors (Fig. 3g). Optimal transport fails dramatically in this case,
mapping entire clusters to the wrong set of ancestors. The failure is not due to any mistake
in the algorithm: any method that uses only state information could not correctly infer
the trajectory from this data. LineageOT, on the other hand, can use the shared ancestry
to match clusters correctly, leading to significantly better prediction of both ancestors
and descendants (Fig. 3h-i).

Optimal transport finds the shortest possible path between the initial and final dis-
tributions; mathematically, this means following the shortest geodesic according to the
optimal transport metric. Here, that is a mistake for WaddingtonOT, but not because
the true trajectory is far from a geodesic. Locally, the true trajectory does minimize the
distance travelled by cells. Globally, however, the geodesic followed by the true trajectory
is not the shortest path between its endpoints. We can see this cleanly by plotting the
true and inferred couplings with a smaller number of cells (Fig. 4a-c). We computed inter-
polated distributions from each coupling, found the pairwise optimal transport distances
between interpolants, and visualized the resulting distance matrix with multidimensional
scaling (Fig. 4d, Methods 9). The resulting paths are approximately straight lines, dis-
torted because there cannot be two straight lines of different lengths between the same
pair of points in Euclidean space. For this example, therefore, increasing the temporal
resolution by sampling the system in between the two time points we present could allow
optimal transport or other state-based methods to accurately describe the trajectories,
albeit with greater experimental cost. However, note that this is not the case for the
convergent trajectory in Simulation 2: there, adding more time points without lineage
information would not help characterize cells’ ancestry.

Discussion

Analyzing the trajectories cells traverse during differentiation is crucial for understand-
ing development and harnessing the potential of stem cell therapies. However, general-
purpose techniques for directly measuring differentiation trajectories have remained elu-
sive, except in limited biological contexts, such as hematopoeisis [30] and other systems
grown in suspension. Trajectory inference therefore remains the most promising general-
purpose approach for understanding the genetic and epigenetic forces driving develop-
ment.

We develop a unified mathematical framework for inferring developmental trajec-
tories from scRNA-seq time-courses equipped with a lineage tree at each time-point.
Lineage tracing techniques are progressing from early demonstrations of the technol-
ogy [3, 23] through elaboration of the potential value of the data [28] and on towards
future widespread use. We envision that scRNA-lineage time-courses will soon replace
traditional scRNA-seq time-courses, because adding lineage information enables a far
more powerful form of trajectory inference.

We demonstrate that LineageOT dramatically outperforms WaddingtonOT on a time-
course of C. elegans development (Fig. 2, Fig. S1, Fig. S2), and we illustrate through
simulation that LineageOT can accurately recover complex trajectory structures that are
impossible to recover from measurements of cell state alone (Fig. 3d-i). Lineage trees are
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Figure 4: When the assumption that descendant states are closest to their ancestors is
violated, WaddingtonOT makes clear mistakes that can be corrected with lineage infor-
mation. Here the cell dynamics are the same as in Fig. 3g except for a lower division rate
which leads to a smaller number of cells. The true coupling (a) matches the LineageOT
coupling (b) exactly, while WaddingtonOT (c) mismatches the cells in the center. Early
cells are shown in blue and late cells in red. (d) Visualization of distributions interpolated
using each coupling. Each point is a distribution in between times t1 and t2 embedded
in two dimensions using multidimensional scaling (Methods 9); the black × marks the
initial distribution at time t1, corresponding to the blue cells in (a-c). The interpolants
for each coupling would follow a straight line if visualized individually; the curvature is
a distortion required for a picture in two dimensional Euclidean space.
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particularly helpful for untangling convergent trajectories, where cells arrive at a partic-
ular state from multiple ancestries. This occurs, for example, in the development of the
lymphatic endothelium [24] and in macrophage development. While finer temporal reso-
lution might allow state-based trajectory inference to succeed in some of these examples,
LineageOT can achieve higher accuracy with fewer time points (Fig. 4d). Therefore our
methodology has the potential to dramatically reduce the experimental cost of single cell
trajectory studies of development.

Our algorithm is derived from a flexible mathematical framework that can be adapted
to include future methodological advances. Most immediately, novel methods for inferring
a lineage tree from any kind of experiment, or from prior knowledge, can be used directly
in the LineageOT pipeline. To leverage this to its fullest extent, one could incorporate
an explicit quantification of uncertainty in the lineage tree. Furthermore, there could
be significant advantages to simultaneously inferring the lineage tree together with the
trajectories, rather than first fitting the tree and subsequently recovering a coupling.
Finally, it might be possible to incorporate additional information, beyond cell state and
cell lineage. For example, measurements of RNA velocity [10] could be incorporated into
our framework of estimating ancestor or descendant states and then coupling across time
points. As with LineageOT, the resulting algorithm would apply optimal transport with
a modified cost function.

All of these improvements would build on the key observation that lineage tracing
allows us to share information across closely related cells. State-based trajectory inference
relies exclusively on the assumption that each descendant considered individually should
be close in state to its ancestor. As we have demonstrated, expanding that assumption
to consider related cells together allows for more powerful trajectory inference that can
recover more complicated trajectories without relying on the restrictive assumption that
cells with similar states having similar ancestry. LineageOT analyses of future cell state
and lineage time-courses collected with current technologies will provide a new, more
accurate window on the intricate processes of development.
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Methods

1 State couplings and lineage couplings

A developmental stochastic process is a mathematical representation of a population
of cells developing over time, where a single cell is represented by a point in a high-
dimensional vector space of cellular states (e.g. gene expression space), and a population
of cells is represented by a probability distribution on this state space. When we profile
the population with scRNA-seq, we model the resulting data as a set of random samples
from this probability distribution. In the context of development, a time-varying distri-
bution Pt represents the cells alive at time t, and the data from a scRNA-seq time-course
consists of samples from Pt collected at various times t1, t2, . . . , tN . The crucial point is
that the random samples from different time points are independent in the probabilistic
sense, because each time point is typically collected from a separate biological sample.

This brings us to the second key concept of a developmental stochastic process: the
notion of a coupling connecting a pair of time points. We distinguish between two kinds of
couplings: state couplings and lineage couplings. Intuitively, the state coupling connecting
time t1 to t2 specifies relationships between ancestral states at t1 and descendant states
at t2. Mathematically, it is a joint probability distribution over pairs of cell states (x, y),
with x and y corresponding to cells alive at t1 and t2 respectively. Conditioning on cell
state x at time t1 gives a distribution over possible descendant states y at time t2. In
other words, while Pt simply describes the states of cells that exist at each time point,
the state couplings specify the trajectories that give rise to the changes we observe in the
population. The state couplings contain information lost in a scRNA-seq time-course:
the measurements are destructive so we cannot simultaneously measure the state of a cell
and the state of its ancestors or descendants.

Even state couplings, however, still omit some of the information from a specific ex-
periment or realization of the stochastic process. A cell j at time t2 has a true history,
which may differ from the average history of cells with state equal to yj. Lineage infor-
mation makes it possible to recover the history of j in particular. The history can again
be described by a coupling, this time thought of as a coupling on cells rather than on
states. We refer to this coupling as a lineage coupling.

One reason the distinction matters is that our descriptions of cell state are incomplete.
Gene expression profiles, for example, are only one easily measured part of the cell state.
Cells with similar current gene expression but different history could in principle differ
in other aspects of their current state. Investigating that possibility requires separating
the cells by ancestry even when their current states are similar.

2 Stochastic differential equation model

We consider a cell at time t to be a point x(t) in some high-dimensional space X such as
gene expression space. Over time, cells follow some true path through X according to a
stochastic differential equation combining diffusion and drift:

dXt = v(Xt)dt+
√

2DdBt (1)

where v denotes a velocity field and Bt denotes standard Brownian motion. Note that
diffusion dominates drift on short time-scales because diffusion is O(

√
dt) and drift is

O(dt).
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In this setting, we can model an experiment as sampling a set of cell paths {xi} from
a distribution P over the space of paths [0, 1] → X . Importantly, these paths are not
observed in full; we only see x(t1) for the one measurement time t1. In a time-course
experiment, in addition to measuring a set of cells {xi} at time t1 we also measure a
second set of identically prepared cells {yj} at time t2.

We then want to couple the early and late distributions in order to trace cells forward
and backward in time. As described above, a coupling γ is a joint distribution over pairs
(xi, yj). When {xi} and {yj} are discrete sets, as they are here, γ is a matrix whose
entries sum to 1.

The forward and backward questions are in principle different for lineage couplings.
We could seek either a coupling γF such that γFi,:, considered as a distribution on the
{yj}, is approximately the true distribution of the descendants of cell i; or we could seek
a coupling γB such that γB:,j, considered as a distribution on the {xi}, is approximately
the true distribution of the ancestors of cell j. For one cell, that true ancestor distribution
will be a single point mass.

3 Optimal transport as maximum likelihood estimate

For both the forwards and backwards problems, entropic optimal transport can be under-
stood as the maximum likelihood coupling between an infinite population of cells started
with the distribution of {xi} and conditioned to end up with the distribution of {yj}. If

the likelihood of a cell at x ending at y is p(y|x) = e−
c(x,y)
ε , maximizing the log-likelihood

log(p(y|x, γ)) leads to

γML = arg min
γ

∑
ij

γijc(xi, yj)− εH(γ)

where H(γ) = −
∑

ij γij log(γij) is the entropy of γ. This is precisely the objective
function for optimal transport with cost c(x, y) and entropy parameter ε.

If the times t1 and t2 are sufficiently close together, the dynamics of x between t1 and
t2 are approximately purely diffusive, so that x(t2)− x(t1) ∼ N (0, D(t2− t1)). This then
translates to a quadratic optimal transport cost

c(xi, yj) = ‖xi(t1)− yj(t1)‖2

and entropy parameter
ε = D(t2 − t1).

Note that because the likelihood is symmetric there is no difference between estimating
forwards and estimating backwards. Other assumptions about the dynamics of the cells,
such as might come from RNA velocity, could be incorporated here. Our goal with
LineageOT is to find an appropriate replacement for the likelihood using the lineage
information and use that as a new cost for optimal transport.

4 Ancestor inference with lineage information

A complete lineage tree T for {yj} encodes the time tj1,j2 of the most recent common
ancestor of each pair of cells {yj1 , yj2}. In terms of paths yj1(t) and yj2(t) of the cells, a
common ancestor at time tj1,j2 implies that

∀t ≤ tj1,j2 , yj1(t) = yj2(t). (2)
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This gives no direct information about the unknown {yj(t1)}; instead, it tells us
something about the correlations among {yj(t1)}. For LineageOT, we follow the same
maximum-likelihood derivation that leads to entropic optimal transport but replace the
distribution of x conditional on yj with the distribution of x conditional on the full sample
{yj} and the lineage tree T :

γlineage = arg max
γ

log(p(x|{y}, γ, T )). (3)

In the diffusive model where the differences in gene expression over time are Gaussian,
if we are given the tree T for {yj} then the expression values at the nodes (i.e., the common
ancestors) are sampled from a Gaussian graphical model on the tree. We can then con-
dition on the observed values {yj(t2)} to find the posterior density p(yj(t1)|{yk(t2)}, T ).
This density will be Gaussian with each mean ȳj(t1) equal to a weighted average of
the values {yj(t2)}. We then use an entropically regularized optimal transport coupling
between {ȳj(t1)} and {xi(t1)} to approximate the backwards coupling γB.

Specifically, LineageOT implements the following procedure:

1. Fit a lineage tree estimate T̂ for {yj(t2)} including the estimated time of division of
each most recent common ancestor, for example via neighbor-joining on CRISPR
barcodes.

2. Add nodes {yj(t1)} for the ancestor of each time t2 cell at time t1 to T̂ . Some cells
may share an ancestor here.

3. Pick a reference cell y0(t2). The difference in expression of other nodes of T̂ with
respect to this reference (i.e., yv − y0(t2)) are assumed to be normally distributed
with mean zero; the precision matrix has entries

Λuv =
1

D|tu − tv|
1
[
(u, v) ∈ T̂

]
.

4. Condition on the values yj(t2) for the set O of observed nodes. The conditional
means for yv− y0(t2) in the set U = Oc of unobserved cells can then be found using
the appropriately truncated precision matrix:

µU = Λ−1UUΛUO(yO − y0).

5. Compute the entropic optimal transport between {xi} and {yj} with cost

c(i, j) =
(xi − µyj(t1))2

σ2
yj(t1)

,

where µyj(t1) and σ2
yj(t1)

are the conditional mean and variance respectively for the
ancestor of each t2 cell at time t1.

In practice, despite being designed for ancestor prediction rather than descendant
prediction, LineageOT outperforms entropic optimal transport on both tasks for all but
the simplest trajectories.
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5 Fitting a lineage tree

To apply LineageOT, we need to infer a lineage tree that will define the structural equation
model. We do not optimize this step, instead relying on a heuristic algorithm called
neighbor joining [18]. Neighbor joining starts from pairwise lineage distance estimates,
which can be estimated in CRISPR-based barcoding approaches using the Hamming
distances between observed barcodes [3]. The fitted tree will not be perfect, and indeed
simulations with currently plausible experimental parameters find significant errors in the
inferred tree topology [20]. As our own simulations demonstrate, however, an imperfectly
inferred tree can still substantially improve trajectory inference. Moreover, the source of
the tree does not matter: a lineage tree based on detailed prior biological knowledge, as
is available for C. elegans, can be used directly in LineageOT.

For LineageOT, we need not only the tree topology but also the time elapsed along
each edge of the tree. The raw lineage distances computed from Hamming distances,
however, give very noisy estimates of the edge times. We therefore correct the distances
using the fact that all cells were sampled at the same time; this means that all leaves of the
tree must have the same total distance to the root. Minimizing the mean squared error
to the Hamming distance estimates subject to this constraint is a quadratic program that
can be solved with standard convex optimization techniques and dramatically improves
the estimated lineage distances (Fig. S4).

6 Error metrics

While we only produce one estimated coupling for both ancestor and descendant predic-
tion, we separate out the two questions in evaluation. Given a true coupling γ∗, we define
the descendant prediction error LD(γ) for a fitted coupling γ with the same marginal over
{xi} as the mean squared optimal transport distance between γi,: and γ∗i,: considered as
distributions over {yj}:

LD(γ) =
∑
i

W 2
2

(
γ∗i,:, γi,:

)
(4)

where W2(µ, ν) denotes the optimal transport distance between distributions µ and ν
with quadratic cost, also called the Wasserstein-2 distance. Symmetrically, we define
the ancestor prediction error LA(γ) for a fitted coupling γ with the same marginal over
{yj} as the mean squared optimal transport distance between γ:,j and γ∗:,j considered as
distributions over {xi}:

LA(γ) =
∑
j

W 2
2

(
γ∗:,j, γ:,j

)
. (5)

7 C. elegans ground truth and growth rates

Our ground truth coupling γ∗ for the C. elegans time-course is the forward coupling based
on the lineage labels: we set γ∗ij = (|{xi}|nd,i)−1, where nd,i is the number of descendants of
cell xi in {yj}. This forward coupling has a uniform marginal over {xi} but not over {yj}.
For simplicity, rather than using soft marginal constraints with estimated growth rates as
WaddingtonOT does, we use the true marginals of γ∗ for all fitted couplings. Knowledge
of the true marginals should help WaddingtonOT and LineageOT approximately equally
without significantly affecting the comparison between them.
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8 Simulations

For our simulations, we construct a vector field to recreate a biologically plausible tra-
jectory structure. Cells follow the vector field with diffusion and occasional cell division;
the time between cell divisions is normally distributed with variance sufficiently small
that all sampled cell lifetimes are positive. Each cell has a lineage barcode that randomly
mutates and is inherited by the cell’s descendants. For each vector field, we simulate
a single embedded lineage tree measured at two time points and compute the couplings
inferred by WaddingtonOT, LineageOT given the true lineage tree, and LineageOT given
a lineage tree fitted to the simulated barcodes. Because the simulated division rates are
uniform across cells, we set the marginals for each fitted coupling to be uniform rather
than inputting the true marginals as we did for the C. elegans evaluations. The fitted
couplings are compared to the true coupling with the same ancestor and descendant
prediction errors we used for C. elegans.

9 Multidimensional scaling of interpolated distributions

Each coupling γ implicitly defines a family of distributions interpolating between the
distribution of {xi} and {yj}. Given a time t between t1 and t2 and a sample (xi, yj)
from γ, let

zij(t) = xi
t2 − t
t2 − t1

+ yj
t− t1
t2 − t1

. (6)

The distribution Zγ(t) of {zij(t)} continuously changes from the distribution of {xi} at
t = t1 to the distribution of {yj} at t = t2. If γ accurately captures the true cell dynamics,
the path these interpolants Zγ(t) follow in the space of distributions on X will approxi-
mately match the path of the unobserved true distributions. We sought to compare the
interpolated distributions visually by embedding the paths in two dimensions.

To create a clean visualization, we simulated the double bifurcation from Fig. 3g-i with
a low division rate so there were four cells at each time point. We computed interpolated
distributions at 100 intermediate time points for each of the WaddingtonOT, LineageOT,
and ground-truth couplings and then found the optimal transport distances between all
pairs of interpolated distributions. Using that distance matrix, we embed the distribu-
tions in two dimensions using multidimensional scaling, an algorithm that attempts to
place points in Euclidean space so that pairwise distances are preserved. Because the
space of distributions with the optimal transport metric is both high-dimensional and
non-Euclidean, the embedding necessarily has some distortion.

The interpolants from an optimal transport coupling follow the shortest geodesic
between the initial and final distributions. In the example of Fig. 4, LineageOT, rather
than deviating from a geodesic locally, approximately follows the correct longer geodesic
between the two distributions.
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