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ABSTRACT: The massive worldwide spread of the SARS-CoV-2 virus is fueling the COVID-19 
pandemic. Since the first whole-genome sequence was published in January 2020, a growing 
database of tens of thousands of viral genomes has been constructed. This offers opportunities to 
study pathways of molecular change in the expanding viral population that can help identify 
molecular culprits of virulence and virus spread. Here we investigate the genomic accumulation 
of mutations at various time points of the early pandemic to identify changes in mutationally highly 
active genomic regions that are occurring worldwide. We used the Wuhan NC_045512.2 sequence 
as a reference and sampled 15,342 indexed sequences from GISAID, translating them into proteins 
and grouping them by month of deposition. The per-position amino acid frequencies and Shannon 
entropies of the coding sequences were calculated for each month, and a map of intrinsic disorder 
regions and binding sites was generated. The analysis revealed dominant variants, most of which 
were located in loop regions and on the surface of the proteins. Mutation entropy decreased 
between March and April of 2020 after steady increases at several sites, including the D614G 
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mutation site of the spike (S) protein that was previously found associated with higher case fatality 
rates and at sites of the NSP 12 polymerase and the NSP13 helicase proteins. Notable expanding 
mutations include R203K and G204R of the nucleocapsid (N) protein inter-domain linker region 
and G251V of the viroporin encoded by ORF3a between March and April. The regions spanning 
these mutations exhibited significant intrinsic disorder, which was enhanced and decreased by the 
N-protein and viroporin 3a protein mutations, respectively. These results predict an ongoing 
mutational shift from the spike and replication complex to other regions, especially to encoded 
molecules known to represent major b-interferon antagonists. The study provides valuable 
information for therapeutics and vaccine design, as well as insight into mutation tendencies that 
could facilitate preventive control. 
 
KEYWORDS:  Nucleocapsid protein, spike protein, SARS-CoV-2, mutation, entropy     

Introduction  
The first case of ‘coronavirus disease 2019’ (COVID-19) was identified in the Chinese city of 
Wuhan in December 2019. Since then, the novel virus has rapidly spread to 188 countries and 
territories, infecting more than 15 million people and causing over 0.6 million deaths1,2. COVID-
19 patients develop a ‘severe acute respiratory syndrome’ analogous to that of the 2002-2003 
SARS epidemic that spread to 23 countries, infected ~8,000, and killed 774 people. The COVID-
19 virus was named SARS-CoV-2 by the WHO, and is the seventh coronavirus known to infect 
humans2,3. Currently, there are no vaccines or antiviral drugs capable of preventing or treating 
human infections4. 

SARS-CoV-2 belongs to the Betacoronavirus genus of the Coronaviridae family, a group of 
related enveloped positive-sense single stranded RNA viruses that infect both mammals and birds. 
In chickens, viruses cause upper respiratory tract diseases, while in cows and pigs they cause 
diarrhea. In humans, viruses can cause respiratory tract infections that can range from mild to 
lethal. For example, the well-known SARS-CoV-2-related SARS-CoV-1 and MERS-CoV 
coronaviruses caused severe diseases in the zoonotic outbreaks of 2002-2003 and 2012-onwards, 
respectively5–8. Compared with its siblings, SARS-CoV-2 spreads more rapidly, infects more 
people, and shows a much lower fatality rate1,9,10.  

SARS-CoV-2 has a ~30 kb genome, which was first reported on January 5, 20208. The genome 
encodes both structural and non-structural proteins. The leader sequence and ORF1ab encode non-
structural proteins (NSPs) functioning in replication and transcription11. Together with accessory 
proteins, the structural proteins are encoded in the downstream regions of the genome. They 
include the spike (S) protein of the viral ‘corona’, the envelope (E) protein, the membrane (M) 
protein, and the RNA-binding nucleocapsid (N) protein. Coronaviruses infect human cells by using 
the homotrimeric spike glycoprotein, known as S-protein, to bind the angiotensin-converting 
enzyme 2 (ACE2) receptor, which is located in the epithelia of the lung and small intestine of 
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humans12,13. SARS-CoV-2 has an optimized receptor-binding domain (RBD) that binds with high 
affinity to ACE2 in human and animals14. High receptor homology was supported by a series of 
structural and biochemical studies14–19. When compared with SARS-CoV, S-protein amino acids 
at positions 455 (leucine) and 486 (phenylalanine) on SARS-CoV-2 showed an enhanced 
interaction with hot spot 31 and viral binding to human ACE216. These studies tested the origin of 
the virus, challenging the suggestion that SARS-CoV-2 represents an artificially designed 
manipulation. Instead, it likely arose as a novel recombinant virus transmitted from both horseshoe 
bats and pangolins20. Thus, transmission to and among humans appears a result of natural 
selection14–16,21.  

Viral genome sequence data has been collected in real-time from COVID-19 patients at significant 
pace. By May 7, 2020, the GISAID database (https://www. gisaid.org/) gathered 15,366 full 
sequences of human coronavirus. This data provided opportunities to explore when, where and 
how mutations happen within the SARS-CoV-2 genome. The majority of mutational studies thus 
far have mainly focused on the S-protein. These studies revealed that the RBD is the most variable 
region, with several RBD amino acids showing critical ACE2 receptor binding functions8,14–16,22. 
S-protein mutations adjusted the binding efficiently to its human receptor. In contrast, mutations 
in other genomic regions have been rarely studied. Besides the notable S-protein, mutations on the 
N-protein that makes the nucleocapsid could alter virulence and virus spread. The N-protein (50 
kDa) is the most abundant in both viruses and virus-infected cells, playing multiple roles in the 
replication and transcription of the virus, as well as in the assembly of the viral genome23. The N-
protein binds to the viral RNA genome at its N-terminal end, forming a ribonucleoprotein complex 
that plays essential roles in maintaining a functional RNA conformation24. Due to it being highly 
immunogenic and possessing a normally conserved amino acid sequence, the SARS-Cov-2 N-
protein is an optimal target for both diagnostic assays and vaccine formulations23,25.  

Here we study pathways of molecular change in the genomes of the expanding SARS-CoV-2 
population that can help identify molecular culprits of virulence and virus spread. Using the 
mutational entropy of nucleotide and amino acid sequences as a measure of molecular diversity 
over time, we study the evolutionary trajectory of crucial viral proteins such as the S- and N-
proteins and several NSP and accessory proteins as we trace mutational changes in the sequences 
of 12,606 SARS-CoV-2 genomes. Remarkably, we find that while virulence-associated mutations 
in the S-protein are becoming fixed in time, nucleotide changes in the N-protein and the viroporin 
protein 3a that we find are associated with protein intrinsic disorder are establishing themselves as 
more prominent. Here we explore their significance. 
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Materials and Methods 

Data 

The SARS-CoV-2 reference sequence, accession NC_045512.2 (version March 30, 2020; 
previously ‘Wuhan seafood market pneumonia virus’) was obtained from the NCBI Virus 
repository on May 4, 20208. A total of 15,366 sequences were acquired on May 7, 2020 from 
GISAID26 and its initiative’s platform EpiCoV (see Supplementary Table 1 for sequence 
information). Metadata was acquired from NextStrain27. The sequence data and metadata were 
mapped using the GISAID EPI_ISL number as the primary key. The metadata revealed 24 non-
human host sequences, which were removed. Any primary keys not appearing in both the metadata 
and sequences were also removed. 

The remaining 15,342 sequences were then aligned with the reference sequence, removing any 
gaps caused by the initial inclusion non-human host sequences. The head (<g.266) and tail 
(>g.29,684) sections were removed, as these sites lie outside all known coding regions and are 
highly variable in composition and length across sequences, providing little salient information for 
protein analysis. The sequences were then split into coding region sequences (CDS) corresponding 
to NSPs, structural and accessory protein regions, as listed by the reference sequence GenBank 
document. These sub-sequences were translated into proteins using BioPython28,29, requiring 
replacement of all gap characters in the nucleotide sequence with ‘N’ characters, and for additional 
‘N’ characters to be added to the end if the end contained a split codon. The protein sequences 
were also categorized by month of collection, using the NextStrain metadata. The complete data 
workflow is summarized in Figure 1. The blue sections are the main workflow steps, while the 
annotations in grey show details or notes about each section. 

Analysis 

The per-position amino acid frequencies and Shannon entropies were calculated across the CDS 
for each sampled month of the initial period of the pandemic (December through April). The 
number of genomes sampled (% total) increased in time, 18 genomes (0.1%) in December, 390 in 
January (2.5%), 612 in February (4.0%), 11,407 in March (74.4%) and 2,915 in April (19.0%). 
While the sample count per month varied widely, the difference should not affect the comparisons 
of per-location proportionality. To confirm the March dataset was not introducing noise due to the 
disproportionate size, the original entropy calculation as well as the entropies of 10 randomly 
sampled March subsets of 2,915 sequences (April’s sequence count) were compared using cosine 
similarity. The mean similarity between the original March entropy and the sampled entropy arrays 
was 0.997 (min: 0.9964, max: 0.9973). Likewise, 10 entropic samples of 612 March sequences 
(February’s count, 5.4% compared to March) had a mean similarity of 0.9851 (min: 0.9825, max: 
0.9875). 
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Characters not included in the IUPAC standard protein alphabet (i.e., B, Z, J, U, O, and X) were 
ignored. This was justified through reasoning that (a) the amount of non-standard characters per 
sequence-set was negligible, and (b) the independent nature of the entropy of each location 
removes the chance of a cascading error. This exclusion also permitted the use of all obtained 
sequences, as sequences with high proportions of ambiguous characters would only contribute 
information if a valid amino acid were present at the analyzed location. 
 
Calculation of pairwise distance metrics used a subset of distinct sequences per protein, allowing 
computation in reasonable time while maintaining a global view of the dataset, as all identical 
sequences will share pairwise distances. Sequences containing more than 5% ambiguous 
characters per protein were removed to further reduce the set and remove excess noise. Identical 
sequences were discovered through comparing hashes (SHA256) of the remaining sequence 
strings, producing a subset of distinct representative sequences. Pairwise distance calculations 
were performed using a BLOSUM80 (Block Substitution Matrix 80%) model30. This model was 
chosen based on the similarity between sequences was expected to be ≥80% as the set was a pre-
made multiple sequence alignment containing variants of SARS-CoV-2 taken in a 5-month span. 
It should be noted that the BLOSUM models are not considered ideal for intrinsically disordered 
sequences31, but the pre-alignment, specific similarity of the sequences in the set, and the intended 
goal of analysis was not considered a severe detriment to the performance or outcome.  

Downstream analyses included performing exploratory data analysis with principal component 
analysis (PCA), tracing mutations in crystallographic models, exploring if they fell in conserved 
or variable regions of the molecules, and analyzing of intrinsic disorder and binding potential in 
the proteins of the entire proteome. Dimensionality reduction was conducted using classical PCA 
on the distance matrices, capturing the landscape of observed distinct sequence variants. Mutations 
were traced onto published crystallographic models, or in their absence, i-Tasser de novo 
inferences32 downloaded from https://zhanglab.ccmb.med.umich.edu/COVID-19/. When possible, 
these inferences were later confirmed by structural alignments to regions that are structurally 
known. Structural neighborhoods were analyzed using DALI and sequence and structural 
conservation were mapped onto 3-dimensional models33. Finally, explored intrinsic disorder in the 
proteins of the SARS-CoV-2 proteomes. We categorized sequences as ‘highly structured’ (0-10% 
of the total protein length is unstructured), ‘moderately unstructured’ (10-30% of the protein is 
unstructured) and ‘highly unstructured’ (30-100% of the protein is unstructured) following the 
classification of Gsponer et al.34. A map of intrinsic disorder regions and binding sites within each 
of the reference sequence coding regions were produced using IUPred2A35,36. In addition, the 
Anchor2 algorithm implemented in IUPred was used to predict binding regions of viral protein 
based on the amino acid sequence. The algorithm is designed to identify segments in disordered 
regions that have the capability to gain energy by interacting with a globular partner protein. 
Anchor2 is based on the following three properties: (i) ensuring a residue belongs to a long 
disordered region and filters out globular domains, (ii) ensuring that the residue is not able to form 
enough favorable contacts with its own local sequential neighbors to fold, and (iii) ensuring there 
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would be an energy gain upon interaction by testing the feasibility that a given residue can form 
favorable interactions with globular proteins upon binding27,37.  

Results 

Entropic Variation 

Informational entropy describes the amount of variation in discrete per-location nucleotide or 
amino acid composition data. Here we study the evolutionary diversification of SARS-CoV-2 with 
an entropy-based strategy that quantifies diversity and selection in viral populations with two 
independent state variables38. First, we focus on mutational entropy as a measure of molecular 
biodiversity of the SARS-CoV-2 proteome. Mutational entropy is maximal when all amino acids 
in an amino acid site of the viral population are equally represented. Entropy is zero when only 
one amino acid overtakes that site. Increases in entropy imply dilution of mutations in the viral 
population while decreases signal fixation of those mutations. Second, we then consider a relative 
measure of entropy, ‘relative entropy delta’, which measures selection pressure by comparing viral 
diversity at two different time points of the pandemic and identifying entropy reversal trends 
suggestive of fitness advantage unfolding in time-space or entropy expansions suggesting other 
evolutionary forces are at play.  
 
An initial analysis of mutational entropy at nucleotide level (Figure 2A) led to an evaluation of 
entropy at amino acid level (Figure 2B). Analyses identified several genomic sites of high protein 
entropy during at least one of the initial months of the pandemic. These were located for example 
in ORF1a, ORF1b, N, M, S and some accessory proteins (Figure 2B). Only 13 out of ~29 proteins 
of the viral proteome had mutations of significance (Figure 2C). Table 1 lists 27 distinct residues 
that feature an entropy greater than 0.1 bits, significant in the month of March. In all cases, the 
incidence of the reference amino acid (ranging 63.6-98.7%) did not increase/decrease more than 
18.6%.. However, two contrasting pathways of mutational change were evident in these sites, one 
in which entropy usually increased and then decreased and the other in which entropy increased 
constantly (Figure 3): 

(i) Entropy reversals: Of the 27 residues with significant entropy, 19 decreased their entropy in 
April (entropic delta ranging from –0.01 to –0.26). This pattern of entropic reversal is of interest, 
as a gradually rising entropy followed by a drop suggests the most-recent dominant residue is out-
competing the others. Remarkably, the entropy of residues at location 614 of the S-protein of the 
spike increased continuously from December to March before decreasing -0.22 bits between 
March and April. However, the continuously increasing incidence of the glycine (G) variant over 
aspartic acid (D) did not change, rising 15.7% (from 63.6% to 79.33%) between the months of 
March and April. This observation agrees with previously reported evidence (assessed April 6) of 
a D614G mutation of S-protein that increases case fatality rate22. Similarly, a P323L mutation in 
NSP12, the viral RNA-dependent RNA polymerase encoded in ORF1b also showed a reversal in 
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entropy of -0.22 bits, as the leucine (L) variant increased in prevalence 18.6% (from 63.8% to 
82.4%) over the proline (P) reference, which also decreased 18.6% in incidence. These two 
locations appear the only sites experiencing significant amino acid swaps. Other sites exhibited 
less significant patterns. The incidence of leucine (L) of site 84 of ORF8 increased 7.77% (from 
86.78% to 94.6%) by directly replacing serine (S). Similarly, the incidence of proline (P) of site 
1427 of ORF1b increased 5.63% (from 91.1% to 96.71%) by replacing leucine (L) and the 
incidence of tyrosine (Y) of site 1476 of ORF1b increased 5.82% (from 90.9% to 96.76%) by 
replacing cysteine (C). Both mutation sites affect the NSP13 helicase protein (sites p.504 and 
p.541, respectively). It is important to note that unlike D614G and L323P, the amino acid present 
in the reference sequence remains dominant in these cases. 

(ii) Entropy expansions: Eight sites showed entropy constantly increasing but with a concurrent 
pattern of mutational change (a tendency to swap amino acids) (Table 1, Figure 3). These sites 
reveal a significant increase in entropy from March to April (entropic delta ranging from 0.05 to 
0.16), with a variant residue rising in April with respect to the dominant residue of March. These 
concurrent tendencies are evident in residues 203 and 204 of the nucleocapsid N-protein. The 
arginine (R) at site 203 decreased in prevalence 8.33% (from 81.9% to 73.5%) as the incidence of 
a lysine (K) variant increased 8.2% (from 18.12% to 26.32%). In turn, the glycine (G) residue of 
the directly adjacent 204 site was exchanged by an arginine (R), increasing 8.2% the incidence of 
the variant (from 18.1% to 26.3%). In another example, the threonine (T) of site 85 of the NSP2 
protein encoded by ORF1a decreased ~3% in its incidence (from 78% to 75%) as it is replaced by 
an isoleucine (I) variant. These concurrent patterns of amino acid replacements perhaps indicate 
that sites will be the next to exhibit a trend of entropy decrease upon reaching a peak.  

Principal Component Analysis 

To explore how pathways of mutational change are affecting the viral quasispecies along the 
timeline of the early pandemic, we performed conventional PCA analysis of genomic samples 
using BioPython28,29 Cluster package, identifying mutation examples of main entropic reversals 
and expansions (Figure 4). Two distinct elongated clouds described the proteomic make up of 
evolving viruses, one depicting the departure from the sequence makeup of the reference Wuhan 
strain (star symbol located on the leftmost part of the cloud) that signals the start of the pandemic 
and another matching variants in site 614 of the S-protein or sites 203 and 204 of the N-protein. 
Clouds contained a patchwork of genomes collected throughout the different months of the 
pandemic, which diversified in sequence along the first component. This is consistent with entropic 
expansion caused by diversification and drift. However, the temporal incidence throughout the 
elongated clouds seem to contract towards the location of the reference strain, likely signaling 
mutational pathways of active fixation are at play. As expected, the genomes harboring the S-
protein variant were more numerous than those that preserved the original mutation, which is 
consistent with the rapid expansion of the D614G mutation and its associated haplotype. In turn, 
genomes harboring the original N-protein mutations were more abundant, given the slow but 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 31, 2020. ; https://doi.org/10.1101/2020.07.31.231472doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.31.231472
http://creativecommons.org/licenses/by-nc-nd/4.0/


8 
 

steady spread of the variants in the new mutational pathway. We note that the removal of duplicate 
sequences decreases the variance caused by sequence frequency, causing multidimensional 
methods to over-represent rare and under-represent common sequences. These are only 
undesirable if frequency is a variable of interest. As frequency and proportion were already 
accounted for in the entropy analysis, PCA describes the differences in amino composition, not 
the likelihood of any given sequence. The inclusion of duplicate sequences would act as noise, 
skewing the results for the projected dimensions. Regardless of these caveats and justifications, 
PCA should be merely regarded as a descriptive tool, which satisfactorily performed the role for 
analysis of the contribution of sequence variances . 

Structural Analysis 

To make inferences of possible molecular functions affected by the mutants, we traced mutations 
onto crystal and cryo-EM structures of SARS-CoV-2 proteins and when not available, viral 
proteins modeled with I-Tasser32. Figure S1 describes results. We found that most of the 27 
mutation sites were located in loop regions (81%) that were generally on the surface of the 
molecules (89%). Out of 27 sites, 22 were in loop (also known as turn) regions and 5 in helical 
regions. No sites were in strand structures. A total of 24 sites were located on the surface of the 
molecules suggesting an important role in intermolecular interactions. Only two sites were buried 
(the 203 and 204 mutants of the N-protein) and one faced the pore of accessory viroporin 3a 
protein. A total of 18 were in ordered regions of the molecules while 7 were in disordered regions 
(in the N, NSP3 and 3a proteins). Intrinsic disorder and binding propensity scores confirm the 
disorder of these regions. Sites in NSP4 and protein 3a were located in trans-membrane (TM) 
regions, consistent with the close association with membranes of these viral proteins.   

Intrinsic Disorder 

We performed a global analysis of intrinsic disorder with IUPred2A of the SARS-CoV-1 
proteome. It revealed that while intrinsic disorder was variable, the entire protein repertoire was 
‘highly structured’. The only notable exceptions were the ‘highly unstructured’ N-protein, the 
disordered hypervariable (HVR) domain in NSP3, the largest encoded protein of the virus, and 
disordered terminal regions of viroporins. An analysis of protein intrinsic disorder showed areas 
exhibiting high disorder scores within the N-protein, indicating significant levels of intrinsic 
disorder is present in the nucleocapsid (Figure 7). Remarkably, sites 203 and 204 of the N protein 
that showed increasing entropy and their entropically variable neighborhoods aligned with areas 
of high disorder. In contrast, sites that experienced no entropic variation (high-conservation) 
tended to have low disorder. These sites also had high binding site score following an analysis 
with Anchor2. The conservation of binding sites seems intuitive due to the important functional 
nature of those regions. In fact, binding site scores peaked around sites 20, 220 and 400 in intrinsic 
disordered regions and in sites 50, 170, 275 and 355, flanking the two RNA-binding domains 
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(Figure 6). Variable areas of intrinsic disorder raise several possibilities, ranging from being truly 
disordered functionally unimportant regions to an area experiencing significant functional change. 

Discussion 

RNA viruses are known for their high mutation rates, and hence, for rapid genome evolution39. 
One consequence of these rates is that viral populations become ‘quasispecies’, highly diverse 
collectives of closely related viruses expressing vast numbers of distinct genotypes40. 
Coronaviruses harbor the largest known non-segmented RNA genomes reported to date (~27-32 
kb in length) and a proteome with a repertoire of ~29 proteins, many with published atomic 
structures (Figure 2). They adapt to host environments by relying on the low fidelity of a 
replication complex, which assembles around the NSP12 polymerase with its extra N-terminal b-
hairpin domain in interaction with an hexadecameric complex of disordered NSP7 and NSP8 
cofactors that are currently targets of COVID-19 therapeutics (e.g. remdesivir postinfection 
treatment)41,42. While the limited proofreading and repair capabilities typical of RNA viruses puts 
coronaviruses close to an ‘error threshold’ of too many deleterious mutations for successful 
persistence40, their proofreading is crucially enhanced by the 3’-to-5’ exonuclease domain of the 
NSP14 protein43. This additional enzymatic activity and interaction increases 12-15-fold the 
template copying fidelity of coronaviruses44, which protects them from the error threshold 
relationship and enables both genome expansion and mutation robustness39. It also allows for an 
ample mutant spectrum fueled by the average mutation rates of ~1 mutation per genome per round 
or replication that are typical of RNA viruses45. Indeed, our study of 12,606 evolving genomic 
sequences finds the expected complex mutant spectrum responsible for pathways of mutational 
change operating in SARS-CoV-2 populations during the initial stages of the COVID-19 
pandemic. These pathways cannot be considered neutral traits. As we will now discuss, pathways 
specifically involve the replication complex and innate and adaptive immune responses triggered 
by the spike, the nucleocapsid, and other proteins, all of which confer selective advantage to the 
viral quasispecies. Interestingly, while we find highly entropic sites in the NSP14 exonuclease 
protein at nucleotide level (Figure 2A), we identified no significant entropic diversity at the amino 
acid level in this crucial proofreading molecule (Figure 2B, Table 1). This suggests strong selective 
pressure to maintain invariant the NSP14 amino acid sequence, possibly because its exonuclease 
activity is central for viral quasispecies diversity.  
 
Most entropically-significant mutations in NSPs showed entropy ‘reversals’, in which entropy 
increases were followed by decreases along the timeline of the pandemic (Figure 3). In turn, 
mutations in structural and accessory proteins followed both modes, entropy reversals and entropy 
expansions. We first illustrate entropy reversals with three high-entropy mutations, one in the 
structural protein of the coronavirus spike and the other two with mutations in NSP proteins 
important for virus replication: 
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(i) S-protein: As previously reported22,28, our research exploration reveals the active fixation of 
the D614G mutation of the S-protein of the spike, which we also find has coordinated entropic 
trends associated with the P323L mutation of the NSP12 polymerase that mediates viral 
replication (Figure 3). Note that D614G is part of a haplotype of 4 mutations (including those 
that alter NSP12, the 5’ UTR, and silently NSP3), which constitute the G-clade that originated 
in China and was established in Europe28. In silico modeling suggests the G614 variant of the 
spike: (i) breaks a D614 -T859 side chain hydrogen bond between the neighboring S1 and S2 
units of different spike protomers, thereby enhancing flexibility and modifying their 
interactions,22,28 (ii) modulates glycosylation of the neighboring N616 site28, and/or (iii) alters 
the dynamics of conformational transitions of the proximal fusion peptide28. Figure 5A traces 
the location of the mutation in an atomic model of the spike of SARS-CoV-2 and reveals it falls 
in regions of the molecule that are poorly conserved at both sequence and structure levels. 
Remarkably, the G614 variant was found associated with increased viral loads and higher 
infectivity, but not disease severity28. However, in another study the variant was shown to be 
strongly correlated with case fatality rate22. While the link to virulence needs confirmation, the 
coronavirus S-protein mediates entry into host cells and the residues within the RBD are critical 
for determining virus transmission and host range16. In an earlier study, several mutations in the 
RBD were found to enhance SARS-CoV (K479N and S487T) and SARS-CoV-2 (493 and 501) 
interaction with human ACE2 binding hot spots Lys31 and Lys353, and mutations K479N and 
S487T played a critical role in the civet-to-human and human-to-human transmission, 
respectively16,19. Ferrets, cats, pigs, orangutans, monkeys share similar critical virus-binding 
residues with humans, suggesting SARS-CoV-2 could infect these animals16. None of these sites 
were significantly mutated in the expanding SARS-CoV-2 populations we sampled, stressing the 
fact that the current pandemic is mediated by human transmission through stabilized binding 
capacity to human ACE2. However, future mutations could expand transmission potential and 
host range to for example domesticated animals (e.g. cats, ferrets, and hamsters, which are 
infected and spread the disease)46. 
 
(ii) NSP12 polymerase: As part of the 4-mutation haplotype, the P323L mutation of the NSP12 
polymerase is also actively fixed (Table 1). NSP12 contains a nidovirus-unique N-terminal 
extension domain with a nucleotidyltransferase (NiRAN) architecture that is connected to the C-
terminal polymerase domain (with its fingers, palm and thumb subdomains) through an 
‘interface’ domain that spans residues 250-36541. P323L seats at the center of the interface 
domain, contacting the NiRAN and fingers domains of NSP12 and the second subunit of NSP8 
(Figure 5B). The mutation site is at the surface of a pocket formed by the NiRAN, fingers, and 
interface regions that is poorly conserved at the sequence and structure levels. The interface 
domain acts as a protein-interaction junction42. 
 
(iii) NSP13 helicase: One novelty is that our analysis shows active fixation tendencies of two 
mutations in the NSP13 helicase protein that mediates viral RNA unwinding, L504P and C541Y 
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(Figure 5C). The NSP13 helicase catalyzes the NTP-dependent unwinding of oligonucleotide 
duplexes into single strands. NSP13 adopts a triangular pyramid shape structure with 5 domains 
in SARS-CoV47 and in modeled SARS-CoV-2 molecules48. Three Rec-A domain structures, 1A 
and 2A and 2B form a triangular base for the N-terminal Zn binding domain (ZBD) and the stalk 
domain. The triangular base forms a nucleic acid binding channel with 1A crucially participating 
in unwinding, in which 1A tightens the grasp on the nucleic acid while 2A loosens the grip in 
each translocation unwinding step47. The sites of the L504P and C541Y mutations fall on the N-
terminal region of the 2A domain and are located in loops at the surface of the domain structure 
(Figure 3C). These mutations are therefore center stage for translocation functions. In addition, 
helicase translocation structure 1A and the ZF3 motif of the ZBD domain interact with the 
NSP12 polymerase during viral replication47. The close polymerase-helicase interaction could 
explain the joint fixation of the NSP12 and NSP13 mutations we have identified.   

 
The coordinated reversals of entropic expansions provide support to the fixation of mutations in 
the spike, polymerase and helicase proteins, some of which fostered virulence and viral loads. A 
number of mutations that we do not discuss followed this same entropic mode but achieved lower 
entropy levels (Table 1; Figure 3). For example, the large NSP3 scaffold and protease that initiates 
cleavage of the ORF1a/ORF1ab protein and mediates genome replication and transcription11, 
harbors a mutation at the hypervariable region (HVR), which decreases disorder in only the 
disordered domain of the protein (Figure S2). While HVR appears dispensable for viral infection, 
its role is currently unknown11. In parallel, we also identified significant entropic regions with 
persistent tendencies of entropic expansion that could be important determinants of disease 
progression (Table 1; Figure 3). Here we focus on high-entropy mutations affecting two important 
molecules, the accessory viroporin 3a protein and the N-protein, which we posit represent new 
pathways of mutational change that involve intrinsic disorder: 
 

(i) Viroporin protein 3a: Viroporins are small hydrophobic ion-channel proteins that modify 
cellular membranes to facilitate virus release, replication and virulence49. Coronaviruses have 
three viroporins, the E-protein and accessory proteins 3a and 8, the first two required for viability 
and virulence50. Protein 3a is the largest of the three viroporins (Figure 2C) and is encoded by 
ORF3a. The cryo-EM structure of the SARS-CoV-2 viroprotein has been recently acquired in 
lipid nanodiscs51. Protein 3a molecule has two domains, a N-terminal transmembrane domain 
(TD) and a C-terminal cytosolic domain (CM) with a new globular fold (Figure 6A). The 40 Å 
high TD region has 3 helices per protomer, with their N-termini oriented towards the lumen. 
Viewed from the lumenal (extracellular) side (Figure 6B) the 6 helices of two promoters arrange 
in clockwise order along an elliptical trajectory. The first two and the last two helices are joined 
by short intracellular and extracellular linkers, respectively. The last helix of the TM domain 
connects to the globular cytosolic CD via a helix-turn-helix motif. A DALI structural 
neighborhood analysis of the cryo-EM structure returned 92 significant hits to small fragments 
of Z ≥ 7 (red dots in the RMSD vs Z plot), all of which aligned to the TM region (Figure 6C). 
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Their alignment revealed matches to the structures of the TD region that were well conserved at 
structure but less so at sequence levels. The best structural match was to transmembrane units of 
the Orai protein channel responsible for store-operated Ca2+ influx pathways in metazoan cells52. 
The Orai proteins are necessary to activate immune responses and are involved in a vast range 
of physiological processes important for cancer research. It is therefore likely that protein 3a 
facilitates virus spread by helping dissipate membrane potential for cell lysis and virus release 
using store-operated mechanisms similar to those of Orai proteins. The high-entropy mutation 
Q57H, which follows an entropy expansion mode (Figure 3), is located in the first 
transmembrane helix at the major hydrophilic constriction of the pore, which is important for 
ion channel activity.  However, the mutation did not affect the main function of the ion channel, 
perhaps because the mutated residue does not affect ion channel properties51.  In turn, low-
entropy mutation G197V, which follows the entropic return mode (Figure 3), forms part of a 
loop at the surface of the CD region. Mutations 13 and 251 are located in terminal amino acids 
1-38 and 239-275 regions, respectively. Low entropy mutation 13 follows an entropy expansion 
mode while high-entropy mutation 251 follows an extropy return mode. Together with a 175-
180 amino acid region in CD, these regions could not be modeled because their cryo-EM 
structures were weakly resolved. Kern et al.51 suggested these regions of protein 3a represented 
areas of intrinsic disorder. Proteins are intrinsically flexible molecules. While structural 
flexibility is a property of regular (e.g. helices, strands) or irregular (e.g. loops) structure that is 
necessary for the establishment of molecular functions, proteins can also exhibit disorder, lack 
of significant constraints on internal degrees of freedom of the polypeptide chain. Intrinsically 
disordered regions are flexible regions of proteins that lack a fixed 3-dimensional (3D) structure 
under native cellular conditions but are generally involved in a variety of molecular functions53. 
These regions usually apply to protein backbones that lack consistent Ramachandran dihedral 
angles, i.e. they are dynamic and exhibit conformations that resemble either random-coils, 
molten globules or flexible linkers. We mapped intrinsic disorder and gain-loss of binding energy 
along the sequence of the protein 3a viroprotein (Figure 6D). Intrinsic disorder levels classified 
the protein as ‘moderately disordered’ according to the fraction of residues that were 
unstructured34. However, the analysis revealed highly significant intrinsic disorder (scores ≥ 0.5) 
were present in the C-terminal and to a lesser degree in the N-terminal regions of the molecule, 
supporting the hypothesis that these regions are not resolved in the cryo-EM density map because 
of disorder. In addition, a comparison of mutants V13L, Q57H, G196V and G251V and the 
reference viral strain with delta scores of disorder and binding revealed interesting patterns. 
Mutations in the N-terminus and the pore did not alter significantly both disorder or binding. In 
contrast, G196V in the loop region of CD and G251V in the C-terminus region induced 
significant decreases in disorder and increases in binding potential in regions as far away as 30-
50 amino acids from the mutated residue. The long-range effect and magnitude of these 
mutations is significant, especially G251V, which is present in 13.8% of all proteomes examined 
and its entropic incidence is growing. 
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(ii) N-protein: We also identified pathways of mutational change in the N-protein that enhance 
protein intrinsic disorder and affect viral spread. The N-protein plays critical roles in maintaining 
viral structure and viability once the virus has entered the cell, including replication and 
transcription, and packaging of the virus RNA23. The N-protein has two major RNA-binding 
domains, an N-terminal domain (NTD) and a C-terminal domain (CTD), both connected to a 
central linker and flanked by terminal sequences, all of which have been reported to be 
intrinsically disordered regions (IDRs). Crystal structures of the SARS-CoV-2 NTD [PDB 
entries 6M3M54 and 6WKP55] and CTD [6WJI56] have been recently deposited. The two domains 
align well to a complete SARS-CoV-2 N-protein structure modeled with I-Tasser (data not 
shown), enabling its use to trace mutations in the IDRs of the model (Figure 7A and B). A DALI 
structural neighborhood analysis against the modeled structure (88 structural neighbors, 
including many from SARS-CoV-2) showed two clusters in the RMSD versus Z-score plot, one 
reflecting structural match to the NTD domain and the other to the CTD domain. Structural 
alignment plots supported the veracity of the two modeled RNA-binding domains and revealed 
that the NTD is more conserved at sequence and structure levels. The two domains of the N-
protein are heavily phosphorylated, which favors binding to the viral RNA genome in a beads-
on-a-string type conformation but with different mechanisms57. Indeed, we find that Anchor2 
binding propensity is significant at the N-terminal regions of the NTD and CTD regions (Figure 
7C). The N protein also binds the NSP3 component of the replicase-transcriptase complex and 
the M-protein. These multiple interactions likely help package the encapsidated genome into 
viral particles. Intrinsic disorder levels classified the N-protein protein as ‘highly disordered’ 
and this property manifested in the panel of mutations identified. Mutations occurred in position 
13 of the N-terminal IDR and mutations in positions 193, 197, 203 and 204 occurred on the 
central linker IDR, all of them in loop regions of the molecule (Figure 7A). Mutations 203 and 
204 were the only sites that were buried in the molecule. We identified significant increases in 
the entropy of residues 203 and 204 of the N-protein, which reached Shannon entropy values of 
~0.8 (Figure 3). This finding suggests an active and ongoing quasispecies exploration for novel 
genotypes. The coordinated rates of increase of the R203K and G204R mutations indicated 
mutations did not occur randomly. Instead, functional constraints appear to act on the mutation 
process suggesting entropic trends will continue until dominant genotypes become fixed in the 
viral population. The fact that all significant mutations occurred in IDRs of the N-protein 
suggests intrinsic disorder plays a biological role in the spread of these mutations. This is not 
surprising since intrinsic disorder mediates coronavirus transmission. The unstructured disorder 
of M and E proteins appear responsible for the rigidity of the coronavirus shell and the 
transmission mode (respiratory or orofecal tropism) of the virus58. SARS-CoV-2 retains the 
flexibility of the respiratory mode while enhancing the environmental resilience of the virion for 
efficient dispersion59. To confirm the role of intrinsic disorder, we mapped disorder (UIPred2, 
red line) and gain-loss of binding energy (Anchor2, blue line) along the sequence (Figure 7A). 
Indeed, significant disorder and binding levels (scores ≥ 0.5) existed in linker and terminal 
regions. The R203K and G204R mutations spanned regions of high disorder and high binding 
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ability. Both mutations increased intrinsic disorder relative to the reference Wuhan strain (Figure 
7C). A functional role of this highly disordered binding region is expected, including the 
interaction with a wide variety of targets that is considered a hallmark of intrinsic disorder60. 
While the role of the amino acid changes within the N-protein region remains biologically 
uncharacterized in our investigations, mutations suggest the virus is attempting to optimize 
replication inside the host cells by tuning both flexibility and binding. 

Our study explores pathways of mutational change in highly entropic sites of the SARS-CoV-2 
proteome, quantifying diversity and fixation of variants with the two-state variable strategy we 
modified from Pan and Deem38. The analysis does not explore phylogenetic relationships at 
genomic level with distance or parsimony-based reconstruction methods, which for example are 
systematically pursued in the Nextstrain portal27. Instead, we recognize the difficulties of studying 
the multidimensional landscape of rapidly evolving and recombinogenic coronavirus genomes 
with tree-based approaches that do not dissect processes of horizontal exchange of genetic 
information, do not model the short-timescale accumulation of mutations, and are poorly powered 
to resolve the existence of positive selection. Instead, we trace mutation accumulation in the 
expanding SARS-CoV-2 population of the pandemic to uncover significant pathways of proteome 
diversification. A conventional PCA analysis conducted on a distance matrix comprised of distinct 
amino acid sequences, excluding duplicates, revealed a complex data structure with two distinct 
diversification clouds unfolding fundamentally on the first dimension as new proteome sequence 
variants depart from the makeup of the original Wuhan reference virus. These two clouds reflected 
the two mayor entropic pathways of change we uncovered in our analysis.  

Conclusions 
 
A number of important mutations that foster viral spread, such as the haplotype that affects the S-
protein, follow an entropic reversal mode that suggest they are being actively fixed in the 
expanding viral population of the pandemic. Here, we describe new pathways of entropic 
expansion of mutations involving intrinsically disordered regions of the SARS-CoV-2 proteome 
and interactions with replicating genomes and endoplasmic membranes that are needed for virus 
assembly and release from infected cells. Pathways involve intrinsically disordered regions of the 
N-protein, a structural protein that forms complexes with genomic RNA, interacts with the M-
protein during virus assembly, enhances the efficiency of virus transcription and assembly, and 
help overcome the host innate immune response61. Pathways also involve viroporins. Viroporins 
of enveloped viruses such as SARS-CoV-2 insert into membranes to break chemoelectrical 
barriers by channeling ions across membranes and dissipating membrane potential, a property that 
stimulates budding and resembles that of depolarization-dependent exocytosis49. The close 
homology of SARS-CoV-2 protein 3a to the Orai proteins suggests membrane potential dissipation 
involves store-operated channeling mechanisms that control Ca2+ cellular levels. These new 
mutational pathways may be responsible for new symptomatic manifestations of the COVID-19 
disease. For example, asymptomatic SARS-CoV-2 infection has been reported to account for 
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~50% of total coronavirus cases and the majority of the patients with mild infection symptoms can 
recover by themselves62,63. In turn, the COVID-19 disease mechanism suggests that the severe 
symptoms of COVID-19 involve the uncontrolled immune response of the host64. Indeed, 
mutational pathways involve virus molecules that can subvert the immune response, specifically 
the interferon response. For example, the N-protein, protein 3a and accessory protein 6 are the 
three b-interferon antagonists operating in coronavirus disease65. Mutations in two of these 
molecules are high entropy in our mutational set. In addition, the SARS-CoV-2 new virus tends to 
be more rapidly spreading and less lethal than SARS-CoV and MERS-CoV, a fact that demands 
explanation. As predicted by the director of Centers for Disease Control and Prevention of the 
USA on March 25, “This virus is going to be with us. I am hopeful that we will get through this 
first wave and have some time to prepare for the second wave.” We hope the exploration of 
mutational pathways can anticipate moving targets for speedy therapeutics and vaccine 
development as we prepare for the next wave of the pandemic. 
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Table 1. Amino acid sites with major entropy changes between the months of March and 
April. Site numbers labeled in blue indicate locations where an amino acid variant is currently 
dominant but differs from the RefSeq entry. Site numbers labeled in red indicate locations where 
a variant is currently non-dominant but is ascendant by >1% between March and April. Relative 
entropic delta values in bold indicate entropic decreases. 
 
 
 
 

ORF Protein Site 

Refseq  
Amino 
Acid 
(aa) 

March April March-to-April change 
Dominant 
Variant 
(April) aa  %  aa  %  aa  % 

Relative 
Entropic 
Delta 

Struc-
tural 
protein 
ORF 

M 
(Membrane) 

175 T 
T 97.22 T 99.51 T  2.288 

-0.136 T 
M 2.78 M 0.46 M  -2.321 

N 
(Nucleo-
capsid) 

13 P 

P 98.42 P 97.56 P  -0.855 

0.050 P 

L 1.53 L 2.37 L  0.840 

T 0.02 T 0.07 S  0.050 

R 0.01 R   T  -0.009 

S 0.03 S   R  -0.026 

193 S 
S 98.13 S 99.29 S  1.161 

-0.074 S 
I 1.87 I 0.71 I  -1.161 

197 S 
S 98.32 S 99.39 S  1.069 

-0.064 S 
L 1.68 L 0.57 L  -1.103 

203 R 

R 81.87 R 73.54 R  -8.327 

0.157 R 
K 18.12 K 26.32 K  8.201 

M 0.01 M 0.07 M  0.059 

S   S 0.07 S  0.067 

204 G 
G 81.92 G 73.75 G  -8.164 

0.143 G 
R 18.08 R 26.25 R  8.164 

S 
(Surface / 

Spike) 
614 D 

G 63.60 G 79.33 G  15.726 
-0.220 G 

D 36.40 D 20.67 
D  -

15.726 
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ORF1a 

NSP1 
(Blocker) 75 D 

D 98.71 D 99.00 D  0.289 
-0.016 D 

E 1.28 E 0.97 E  -0.315 

NSP2 
(Protease 

Regulator) 

85 
(265) T 

T 77.95 T 74.97 T  -2.980 
0.055 T 

I 22.05 I 25.03 I  2.980 

212 
(392) G 

G 97.51 G 99.11 G  1.605 

-0.120 G D 2.47 D 0.89 D  -1.587 

C 0.02 C   C  -0.019 

559 
(739) 

I 
I 95.00 I 98.16 I  3.159 

-0.151 I 
V 5.00 V 1.84 V  -3.159 

585 
(765) 

P 
P 94.59 P 98.06 P  3.473 

-0.163 P 
S 5.41 S 1.94 S  -3.473 

NSP3 
(Protease, 
multiple 

functions) 

58 
(876) 

A 

A 97.37 A 98.91 A  1.534 

-0.101 A T 2.62 T 1.09 T  -1.525 

S 0.01 S   S  -0.009 

153 
(971) 

P 

P 
98.63
% P 98.94 P  0.311 

-0.020 P 
L 

1.33
% L 0.99 L  -0.336 

S 
0.03
% S 0.07 

S  0.042 

H 
0.02
% H   H  -0.018 

NSP4 
(Scaffold) 

308 
(3071) 

F 
F 98.29 F 99.41 F  1.113 

-0.0711 F 
Y 1.71 Y 0.59 Y  -1.113 

NSP5 
(Protease) 

15 
(3278) 

G 

G 98.76 G 97.86 G  -0.893 

0.1148 G S 1.23 S 2.14 S  0.902 

D 0.01 D   D  -0.009 

NSP6 
(Scaffold) 

37 
(3606) L 

L 86.16 L 90.40 L  4.232 
-0.122 L 

F 13.84 F 9.60 F  -4.232 

ORF1b 
NSP12 

(Polymerase) 
323 

(314) P 

L 63.80 L 82.44 L  18.635 

-0.222 L P 36.17 P 17.53 
P  -

18.644 

F 0.02 F 0.04 F  0.018 

T 0.01 T   T  -0.009 
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NSP13 
(Helicase) 

504 
(1427) P 

P 91.08 P 96.71 P  5.633 

-0.226 P L 8.88 L 3.25 L  -5.631 

S 0.03 S 0.03 S  -0.002 

541 
(1476) 

Y 
Y 90.90 Y 96.72 Y  5.819 

-0.231 Y 
C 9.10 C 3.28 C  -5.819 

ORF3a 
Accessory 
Protein 3a 

(Viroporin) 

13 V 

V 98.28 V 96.76 V  -1.515 

0.082 V L 1.72 L 3.24 L  1.523 

A 0.01 A   A  -0.009 

57 Q 
Q 75.30 Q 70.80 Q  -4.497 

0.066 Q 
H 24.70 H 29.20 H  4.497 

196 G 
G 98.61 G 99.80 G  1.187 

-0.072 G 
V 1.39 V 0.20 V  -1.187 

251 G 

G 88.75 G 94.88 G  6.121 

-0.217 G V 11.22 V 5.12 V  -6.095 

C 0.03 C   C  -0.026 

ORF8 
Accessory 
Protein 8 

(Viroporin) 

24 S 
S 97.94 S 95.80 S  -2.144 

0.106 S 
L 2.05 L 4.20 L  2.152 

62 V 

V 98.54 V 98.76 V  0.220 

-0.015 V L 1.44 L 1.24 L  -0.202 

A 0.02 A   A  -0.017 

84 L 
L 86.78 L 94.55 L  7.767 

-0.259 L 
S 13.22 S 5.45 S  -7.767 
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Figure 1. General data workflow of the analysis of SARS-CoV-2 genomes, including a breakdown 
of details that occur during each step. Main steps are indicated in blue, while details per step are 
indicated in gray. 
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Figure 2. Analysis of mutational entropy at nucleotide (A) and amino acid (B) levels defines an 
evolving SARS-CoV-2 proteome of 13 proteins with significant mutational change (C). Amino 
acid locations are only labeled for sites with mutational entropic levels above 0.1 bits in the month 
of March. Molecules that exhibit significant entropic levels have their atomic 3-dimensional 
models unshaded in panel C. 
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Figure 3. Pathways of mutational change involve mutational entropy reversals and expansions. 
Entropy reversals occur when entropy increases and then decreases in the timeline of pandemic. 
Entropy expansions occur when there is only a pattern of increase, which signals continued 
diversification of amino acid sequences.   
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Figure 4. Principal component analysis of SARS-CoV-2 genomes with original and variant sites 
in the S- and N-proteins.  
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Figure 5. Major SARS-CoV-2 protein molecules experiencing mutational entropic reversals. A. 
The coronavirus spike is a trimer of S-protein protomers, each harboring an N-terminal S1 subunit 
sequence with an N-terminal domain (NTD) and a receptor-binding domain (RBD) and a C-
terminal S2 subunit holding a ‘fusion’ region with fusion peptide (FD) and internal fusion peptide 
sequences, two heptad repeat (HR) sequences, and a transmembrane (TM) domain. The subunits 
are processed by host proteases upon viral entry. The SARS-CoV-2 atomic model of a dimer (PDB 
entry 6VXX) shows the D614G mutation of the S1 domain eliminates a hydrogen bonding 
interaction with site 859 of the S2 domain of another protomer (colored in orange in the inset).  An 
RMSD versus Z-score plot describes the DALI structural neighborhood of 6VXX, which contains 
2,310 structures. Alignments of multiple random samples of 10 structures along a transect from 
6VXX to the main cloud with low Z-scores of structural similarity (colored red in the plots) 
consistently show 614 is part of a loop that falls in molecular regions that are poorly conserved at 
both sequence (Seq) and structural (Str) levels. Blue hues indicate larger conservation than green-
to-red hues in the protomer cartoon models of the alignment example. B.  The NSP12 is the main 
RNA dependent RNA polymerase of the virus. It is encoded by ORF1b and is responsible for the 
synthesis of viral RNA. Examining the SARS-CoV-2 structure in complex with NSP7 and 8 
cofactors (PDB entry 6M71) revealed that the P323L mutation sits in an ‘interface’ region 
(spanning residues 250-365) between the N-terminal nidovirus-unique NiRAN domain with 
nucleotidyltransferase activity and the C-terminal polymerase domain that harbors the fingers, 
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palm and thumb subdomains. The mutation is in a helical region at the surface of a pocket formed 
by the NiRAN, interface and fingers structures (inset). DALI structural neighborhood analysis 
(1,157 structures) confirmed the site is in a region that is poorly conserved at sequence and 
structure levels, but borderline with the highly conserved regions that harbor polymerase activity. 
C. The NSP13 is the helicase of the viral replication complex. NSP13 has an N-terminal Zn binding 
domain (ZBD) followed by a stalk domain and three Rec-A domain structures 1A, 2A and 2B, 
which form the triangular base of a pyramid. L504P and C541Y are in loop regions located on the 
surface of the middle of the 2B domain. DALI structural neighborhood analysis of PDB entry 
6JYT (1,356 structures) showed C541Y is in regions of the molecule that are structurally 
conserved, while the L504P region was variable at both sequence and structure levels. 
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Figure 6. The mutational diversification of SARS-CoV-2 viroporin encoded by ORF3a. A. The 
structure of the protein 3a molecule (PDB entry 6XDC) has two domains, a N-terminal 
transmembrane domain (TD) and a C-terminal cytosolic domain (CM). Mutation Q57H is located 
in the first of the three transmembrane helices at the major hydrophilic constriction of the pore 
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important for channel activity. Mutation G197V forms part of a loop at the surface of the CD. 
Terminal amino acids 1-38 and 239-275 and a 175-180 in CD could not be modeled because they 
were weakly resolved. They hold mutations 13 and 251. B. View from the lumen side of the 
channel pore (P) in ribbon and atom stick representation. Note that the pore is only 1 Å wide.  C. 
A DALI structural neighborhood analysis (10,088 structural neighbors) returned significant hits to 
small fragments (Z ≤ 9.2; RMSD ≥ 1.3) that formed a single cluster in the RMSD versus Z-score 
plot. Structural alignment of the 92 hits with Z ≥ 7 (red dots) revealed that all hits matched the TD 
structures and were well conserved at structure (Str) but less at sequence (Seq) levels. The best 
structural match to the TD was the Orai protein channel (PDB entry 6BBG) responsible for Ca2+ 
influx pathways in metazoan cells and involved in immune responses and cancer. D. The mapping 
of intrinsic disorder (UIPred2, red line) and gain-loss of binding energy (Anchor2, blue line) along 
the sequence confirmed the significant intrinsic disorder (scores ≥ 0.5) of the C-terminal linker. A 
comparison of the different mutants and reference viral strain with a delta score revealed that 
mutations G196V and G251V decreased disorder. 
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Figure 7. Pathways of mutational diversification of SARS-CoV-2 involve intrinsic disordered 
regions of the nucleocapsid (N) protein. A. The N-protein has two major RNA-binding domains, 
an N-terminal domain (NTD) and a C-terminal domain (CTD), both connected to a central linker 
and flanked by terminal sequences, all of which have been reported to be intrinsically disordered 
regions (IDRs). Mutations were traced onto a SARS-CoV-2 N-protein structure modeled with I-
Tasser. They occurred in position 13 of the N-terminal IDR and positions 193, 197, 203 and 204 
of the linker IDR, all of them in loop regions of the molecule. Mutations 203 and 204 were the 
only sites that were buried in the molecule. B. A DALI structural neighborhood analysis against 
the modeled structure (88 structural neighbors, including many from SARS-CoV-2) showed two 
clusters in the RMSD versus Z-score plot, one reflecting structural match to the NTD domain and 
the other to the CTD domain. Structural alignment plots of the 88 structures supported the veracity 
of the modeled RNA-binding domains and revealed that the NTD is more conserved at sequence 
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(Seq) and structure (Str) levels. C. The mapping of intrinsic disorder (UIPred2, red line) and gain-
loss of binding energy (Anchor2, blue line) along the sequence confirmed the significant intrinsic 
disorder and binding (scores ≥ 0.5) of linker and terminal regions. A comparison of the R203K 
mutant and reference viral strain with a delta score revealed that the mutation increased disorder. 
A similar outcome was obtained with the G204R mutant. 
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Figure S1. Structural analysis of the SARS-CoV-2 proteome with significant mutational hits. A. 
An examination of the structure (Str: loop, helix, strand), location (surface, buried, pore) and 
region [ordered, disordered, transmembrane (TM)] of the mutation sites are provided together with 
scores of intrinsic disorder and binding propensity. B. Intrinsic disorder and binding propensity 
analysis along the sequence of individual proteins with significant entropic sites. C. Structural 
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models show structure and location of mutation sites highlighted in red. Missing proteins can be 
found in Figures 5. 6, 7 and S2.  

 

 
 
Figure S2. The mutational diversification of SARS-CoV-2 NSP3 involves the only intrinsic 
disordered domain of the large multidomain scaffold–protease protein. A. Mutations at positions 
58 and 153 were traced onto the SARS-CoV-2 NSP3 structure modeled with I-Tasser and depicted 
as surface representation in Chimera. Both were located in crevices of the surface. The large 
protein contains 16 domains, including the ubiquitin-like domain 1 (Ubl1), the hypervariable 
region (HVR) acidic domain, macrodomain 1 (Mac1), a SARS-unique domain (SUD) composed 
or two macrodomains and DPUP, ubiquitin-like domain 2 (Ubl2) and the papain-like protease 2 
domain (Pl2) that cleaves the protease from ORF1a/ORF1ab, the nucleic acid-binding domain 
(Nab), the b-coronavirus-specific marker domain (bSM), a transmembrane (TM) region and a C-
terminal multidomain region. B. Structural alignment of the Ubl1 domain (PDB entry 2IDY) to 
the modeled structure reveals statistical significant structural matches. Mutation 58 is highlighted 
in red on the aligned structures and on the 2IDY model. C. A ribbon representation of the modeled 
structure shows that mutation 58 is located in a helical region of Ubl1 and mutation 153 in a loop 
region of HVR, which is known to be intrinsically disordered. D. The mapping of intrinsic disorder 
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(UIPred2, red line) and gain-loss of binding energy (Anchor2, blue line) along the NSP3 sequence 
confirmed the significant intrinsic disorder and binding (scores ≥ 0.5) of the HVR region. No 
intrinsic disorder was observed in the bSM region, despite reports of its intrinsic disorder in other 
the b-coronavirus sequences. A comparison of the L153P mutant and reference viral strain with a 
delta score revealed that the mutation decreased disorder. 
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