Limited predictability of amino acid substitutions in seasonal influenza viruses Pierre Barrat-Charlaix,^{1,2} John Huddleston,³ Trevor Bedford,⁴ and Richard A. Neher^{1,2,*} ¹ Biozentrum, Universität Basel, Switzerland ² Swiss Institute of Bioinformatics, Basel, Switzerland ³ Molecular Cell Biology, University of Washington, Seattle, WA, USA ⁴ Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA (Dated: July 31, 2020) Seasonal influenza viruses repeatedly infect humans in part because they rapidly change their antigenic properties and evade host immune responses, necessitating frequent updates of the vaccine composition. Accurate predictions of strains circulating in the future could therefore improve the vaccine match. Here, we studied the predictability of frequency dynamics and fixation of amino acid substitutions. Current frequency was the strongest predictor of eventual fixation, as expected in neutral evolution. Other properties, such as occurrence in previously characterized epitopes or high *Local Branching Index* (LBI) had little predictive power. Parallel evolution was found to be moderately predictive of fixation. While the LBI had little power to predict frequency dynamics, it was still successful at picking strains representative of future populations. The latter is due to a tendency of the LBI to be high for consensus-like sequences that are closer to the future than the average sequence. Simulations of models of adapting populations, in contrast, show clear signals of predictability. This indicates that the evolution of influenza HA and NA, while driven by strong selection pressure to change, is poorly described by common models of directional selection such as travelling fitness waves. #### INTRODUCTION 10 11 12 13 14 15 16 17 22 23 24 25 26 27 28 29 30 31 32 34 35 36 37 40 41 42 43 44 47 49 Seasonal influenza A viruses (IAV) infect about 10% of ⁵³ the global population every year, resulting in hundreds ⁵⁴ of thousands of deaths [1, 2]. Vaccination is the primary ⁵⁵ measure to reduce influenza morbidity. However, the ⁵⁶ surface proteins hemagglutinin (HA) and neuraminidase ⁵⁷ (NA) continuously accumulate mutations at a high rate, ⁵⁸ leading to frequent antigenic changes [2–5]. While a vac-⁵⁹ cine targeting a particular strain may be efficient for some ⁶⁰ time, antigenic drift will sooner or later render it obsolete. ⁶¹ The World Health Organization (WHO) regularly updates ⁶² influenza vaccine recommendations to best match the cir-⁶³ culating strains. Since developing, manufacturing, and ⁶⁴ distributing the vaccine takes many months, forecasting ⁶⁵ the evolution of influenza is of essential interest to public ⁶⁶ health [6, 7]. The number of available high quality HA and NA se-68 quences has increased rapidly over the last 20 years [8, 9] 69 and virus evolution and dynamics can be now be tracked 70 at high temporal and spatial resolution [10]. This wealth 71 of data has given rise to an active field of predicting 72 influenza virus evolution [6, 7]. These models predict 73 the future population of influenza viruses by estimating 74 strain fitness or proxies of fitness. Luksza and Lässig [11], 75 for example, train a fitness model to capture antigenic 76 drift and protein stability on patterns of epitope and non-epitope mutations. Other approaches by Steinbrück et al. [12], Neher et al. [13] predict fitness by using hemagglutination inhibition (HI) data to determine possible antigenic drift of clades in the genealogy of the HA protein. Finally, Neher et al. [14] use branching patterns of HA phylogenies as a proxy for fitness. These branching patterns are summarized by the Local Branching Index (LBI), which was shown to be a proxy of relative fitness in mathematical models of rapidly adapting populations [14]. The underlying assumption of all these methods is that (i) differences in growth rate between strains can be estimated from sequence or antigenic data and (ii) that these growth rate differences persist for long enough to be predictive of future success. Specific positions in surface proteins are of particular interest in this context. The surface proteins are under a strong positive selection and change their amino acid sequence much more rapidly than other IAV proteins or than expected under neutral evolution [4, 15]. Epitope positions, i.e., positions targeted by human antibodies, are expected to change particularly often since viruses with altered epitopes can evade existing immune responses [3, 5, 16]. It therefore seems plausible that mutations at these positions have a tendency to increase fitness and a higher probability of fixation [15]. But one has to be careful to account for the fact that these positions are often ascertained post-hoc [3] and human immune responses are diverse with substantial inter-individual variation [17]. In this work, we use HA and NA sequences of A/H3N2 and A/H1N1pdm influenza from year 2000 to 2019 to perform a retrospective analysis of frequency trajectories of amino acid mutations. We quantify how rapidly mutations at different frequencies are lost or fixed and how rapidly they spread through the population. We further investigate whether any properties or statistics are predictive of whether a particular mutation fixes or not. To our surprise, we find that the predictability of ^{*} Correspondence to: Richard Neher, Biozentrum, 83 Klingelbergstrasse 70, 4056, Basel, Switzerland. 84 richard.neher@unibas.ch 158 159 these trajectories is very limited: The probability that a₁₄₁ mutation fixes differs little from its current frequency, as₁₄₂ would be expected if fixation happened purely by chance₁₄₃ This observation holds for many different categories of₁₄₄ mutations, including mutations at epitope positions. This₁₄₅ weak predictability is not attributable solely to clonal₁₄₆ interference and genetic linkage, as simulation of models₁₄₇ including even strong interference retain clear signatures₁₄₈ of predictability. Consistent with these observations, we₁₄₉ show that a simple predictor uninformed by fitness, the₁₅₀ consensus sequence, performs as the well as the Local₁₅₁ Branching Index (LBI), the growth measure based on the₁₅₂ genealogy used in [14]. This suggests that although LBI₁₅₃ has predictive power, the reason for its success may not₁₅₄ be related to it approximating fitness of strains. 87 88 91 92 93 94 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 122 123 125 126 127 128 129 130 131 132 133 134 135 136 137 139 #### RESULTS The main underlying question asked in this work is the ¹⁶⁰ following: given a mutation X in the genome of influenza ¹⁶¹ that we observe at a frequency f in the population at a ¹⁶² given date, what can we say about the future of X? The ¹⁶³ trajectory of a mutation will depend on its own effect ¹⁶⁴ on fitness, the contribution of the genetic background ¹⁶⁵ on the same segment, and the effect of the remaining ¹⁶⁶ seven segments. Here, we investigate properties of broad ¹⁶⁷ categories of mutations effectively averaging over different ¹⁶⁸ genetic backgrounds to isolate the effects intrinsic to the ¹⁶⁹ mutation. First, we ask whether we can quantitatively predict¹⁷¹ the frequency of X at future times f(t). In other words, having observed a mutation at frequencies $(f_1, f_2, \ldots, f_n)^{173}$ at dates (t_1, t_2, \ldots, t_n) , what can we say about its fre-174 quency at future dates $(t_{n+1}, t_{n+2}, \ldots)$? A simpler, more 175 qualitative question, is to ask whether X will fix in the 176 population, will disappear, or whether the site will stay polymorphic. We use amino-acid sequences of the HA and NA genes¹⁷⁷ of A/H3N2 (since the year 2000) and A/H1N1pdm (since the year 2009) influenza available in GISAID [9] (see₁₇₈ supplementary materials for an acknowledgment of all₁₇₉ data contributors). This amounts to 44 976 HA and 36 300₁₈₀ NA sequences for A/H3N2 and 45 350 HA and 40 412₁₈₁ NA sequences for A/H1N1, with a minimum of 100 per¹⁸² year. These sequences are binned in non-overlapping¹⁸³ intervals of one month. Each single-month time bin and¹⁸⁴ the sequences that it contains represent a (noisy) snapshot¹⁸⁵ of the influenza population at a given date. The number of₁₈₆ sequences per time bin varies strongly both with year and¹⁸⁷ according to the season, with earlier time bins containing¹⁸⁸ around 10 sequences while more recent bins contain several¹⁸⁹ hundreds (see figures S5 and S6 in SM for details). The central quantities that we derived from this data¹⁹¹ are frequency trajectories of amino acids at each position¹⁹² in the sequences. If an amino acid X_i is found at position¹⁹³ i at a frequency between 5% and 95% in the population¹⁹⁴ of a given time bin t, then the population is considered¹⁹⁵ polymorphic at position i and at time t. This polymorphism is characterized by the frequency of X_i , $f_{X_i}(t)$, and also by frequencies of other amino acids at i. The series of values $f_{X_i}(t)$ for contiguous time bins constitutes the frequency trajectory of X_i . A trajectory is terminated if the corresponding frequency is measured above 95% (resp. below 5%) for two time bins in a row, in which case amino acid X_i is considered as fixed (resp. absent) in the population. Otherwise, the trajectory is considered active. Examples of trajectories can be seen in figure S7 of the Supplement. In the rest of this work, we will focus on frequency trajectories that are starting at a zero (low) frequency, i.e. f(t=0)=0. These represent new amino acid variants which were absent in the population at the time bin when the trajectory started and are currently rising in the population (see Methods). Such distinction in novel and ancestral variants is necessary to meaningfully interrogate predictability. Each rising trajectory of a new mutation implies the existence of another decreasing one at the same position, since frequencies of all amino
acids at a given position must sum to one. If novel variants arise by selection, we expect to see a stronger signal of selection after conditioning on these novel variants. In classic models of population genetics, strongly advantageous variants undergo rapid selective sweeps, i.e., the rapid rise and fixation. The sweep of a mutation can be due to its own fitness effect, to the genetic background or to the effect of the seven other segments. By considering the ensemble of novel variants that are rising in frequency, we effectively average over backgrounds, obtaining a set of mutations that we expect to be beneficial on average. If such sweeps are common in the evolution of HA and NA, the restriction to trajectories that start at low frequency should thus enrich for mutations that are positively selected and on their way to fixation. ## Predicting future frequencies Having observed the frequency trajectory f(t) of a mutation until a given date t_0 , how much can we say about the future values of f after t_0 ? We consider the idealized case sketched in panel \mathbf{A} of figure 1: given the trajectory of a *new* mutation, *i.e.* that started at a frequency of 0, and that we observe at frequency f_0 at time t_0 , what is the probability $P_{\Delta t}(f)$ of observing it at a value f at time $t_0 + \Delta t$? To answer this question retrospectively, we use all frequency trajectories extracted from HA and NA sequences that satisfy these conditions for a given f_0 . The number of trajectories is limited and the frequency estimates themselves are based on a finite sample and are hence imprecise. Therefore, we consider trajectories in an interval $[f_0 - \delta f, f_0 + \delta f]$ with $\delta f = 0.05$. For $f_0 = 0.3$, we found 120 such trajectories in the case of A/H3N2 influenza, represented on the panel **B** of figure 1, where time is shifted such that $t_0 = 0$. The same analysis was performed for A/H1N1pdm, with the 89_{254} found trajectories displayed in figure S9. Some trajectories fall in the frequency bin around f_0 while decreasing, even₂₅₅ though they crossed that bin at an earlier time. This is due to the fact that some trajectories "skipped" the₂₅₇ interval f_0 in question on their initial rise due to sparse₂₅₈ sampling. These trajectories are nevertheless rising in₂₅₉ the sense that they start at frequency 0 for $t \to -\infty$ ₂₆₀ Removing them does not change results significantly. 197 198 200 201 202 203 204 205 206 207 208 209 210 211 212 213 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 231 232 233 234 235 236 237 239 240 242 243 244 245 247 248 249 250 252 Since rapid sequence evolution of influenza HA and $_{262}$ NA mediates immune evasion, one could expect that $_{263}$ a significant fraction of new amino acid mutations on $_{264}$ rising trajectories in figure 1 are *adaptive*. We could thus $_{265}$ expect that most of these trajectories continue to rise after $_{266}$ reaching frequency f_0 , at least for some time. A fraction $_{267}$ of those would then sweep through the population and $_{268}$ fix To quantify the extent to which this preconception of $_{270}$ sweeping adaptive mutations is true, we estimated the $_{271}$ probability distribution $P_{\Delta t}(f|f_0)$ of finding a trajectory $_{272}$ at frequency f after a time Δt given that it was observed $_{273}$ at f_0 at time 0. The results for different Δt are shown in $_{274}$ figure 1C. Initially, *i.e.* at time $t_0=0$, this distribution is $_{275}$ by construction peaked around f_0 . If a large fraction of $_{276}$ the trajectories keep increasing after this time, we should $_{277}$ see the "mass" of $P_{\Delta t}(f|f_0)$ move to the right towards $_{278}$ higher frequencies as time progresses. However, future distributions for $\Delta t > 0$ do not seem₂₈₀ to follow a pattern compatible with selective sweeps. The₂₈₁ thick black line in Figure 1B shows the average frequency₂₈₂ of all trajectories. This average makes a sharp turn at₂₈₃ t=0 and is essentially flat for t>0 in the case of₂₈₄ A/H3N2, and slightly increasing for A/H1N1pdm (see₂₈₅ supplement). Hence, the fact that this average rose for₂₈₆ t<0 gives little information for t>0, and is due to the₂₈₇ conditions by which these trajectories were selected. This₂₈₈ shows that sweep-like trajectories rising steadily from₂₈₉ frequency 0 to 1 are not common enough to dominate the₂₉₀ average trajectory. Consistent with the average, the frequency distribution²⁹² of the selected trajectories broadens in time without a²⁹³ significant shift of the mean as time passes. After 60 days,294 the distribution is rather symmetrical around the initial²⁹⁵ $f_0 = 0.3$ value, suggesting that the knowledge that the trajectories were rising is lost after two months. On a²⁹⁷ timescale of 60 to 120 days, the only possible prediction²⁹⁸ is that trajectories are likely to be found in a broad²⁹⁹ interval around the initial frequency f_0 . After one year₃₀₀ the distribution becomes almost flat (excluding mutations₃₀₁ that have disappeared or fixed), and the initial peak at $f_{0^{302}}$ is not visible anymore. The only information remaining 303 from the initial frequency is the fraction that fixed or was 304 lost (see below). This behavior is expected in neutral₃₀₅ models of evolution [18] but incompatible with a dynamic₃₀₆ dominated by sweeps taking over the population. While this observation does not rule out that signa-308 tures exist that predict future frequency dynamics, past309 dynamics alone is weakly informative. #### Prediction of fixation or loss Instead of predicting future frequency, let's consider the long-term goal of predicting the probability that a mutation fixes in the population. We first estimate the fraction of frequency trajectories that either fix in the population or are lost, as well as the time it takes for one or the other to happen. Panels A and B of figure 2 shows the fraction of frequency trajectories in HA and NA that either have fixed, were lost or remained active as a function of the time elapsed since they were first seen above 25% frequency. Most mutations are either lost or become fixed after 2-3 years, with very few trajectories remaining active after 5 years. This time scale of 2-3 years is consistent with the typical coalescence time observed in phylogenetic trees of A/H3N2 influenza [10, 19]. We also note that the fraction of lost trajectories increases sharply at small times with 40% of mutations observed above 25% frequency being lost within one year for A/H3N2, while it takes longer to fix a mutation in the whole population. We then examined the probability of mutations to fix in the population as a function of the frequency at which they are seen. For different values of frequency f, we consider all trajectories that started at a null frequency and are seen in the interval [f - 7.5%, f + 7.5%] at any given time. The probability of a mutation fixing given that it is seen at frequency f, $P_{fix}(f)$, is then estimated by the fraction of those trajectories which terminate at a frequency larger than 95%, i.e. our fixation threshold. Panels C and D of figure 2 show $P_{fix}(f)$ as a function of f for NA and HA. For both proteins, the probability of fixation of a new mutation at frequency f is close to f itself, that is $P_{fix}(f) \simeq f$. This result is exactly what is expected in a population evolving in the absence of selection. A mutation or trait appearing at frequency f is shared by $f \cdot N$ individuals, and the probability for one of them to become the ancestor of all the future population is $f \cdot N/N = f$. Thus, the probability of this mutation or trait to fix in the population is equal to its current frequency, a case which we will refer to as the neutral expectation. Panel C of figure 2 indicates that mutations in the surface proteins of A/H3N2 influenza are in good agreement with the neutral expectation, while those in A/H1N1pdm show only small deviations from it. In both cases, the probability of fixation seems to be mainly dictated by the current frequency f at which the mutation is observed. This dynamics is in apparent contradiction with evidence that influenza surface proteins are under strong selective pressure to evade human immune responses [4]. If strong selection was present, we would expect rising amino acid mutations to fix at a distinctively higher frequency than the one at which they are measured. In an extreme case where most trajectories would be clean sweeps, $P_{fix}(f)$ should be close to 1 for all but very small values of f. Next, we searched for features of mutations that allow prediction of fixation beyond frequency by dividing FIG. 1. **A**: Sketch of the idea behind the short term prediction of frequency trajectories. Given a mutation that we have seen increasing in frequency and that we "catch" at frequency f_0 at time t_0 , what can we say about the distribution of future frequencies $P_{\Delta t}(f|f_0)$? **B**: All frequency trajectories of amino acid mutations in the A/H3N2 HA and NA genes that were absent in the past, are seen around $f_0 = 30\%$ frequency at time $t_0 = 0$, and are based on more than 10 sequences at each time point. Red curves represent mutations that will ultimately fix, blue the ones that will be lost, and black the ones for which we do not know the final status. Dashed horizontal lines (blue and red) represent loss and fixation thresholds. The thick black line is the average of all trajectories, counting those that fix (resp. disappear) as being at frequency 1 (resp. 0). Figure S8 shows equivalent figures for other values of f_0 . **C**: Distribution of future frequencies $P_{\Delta t}(f|f_0)$ for the trajectories shown in panel **B** and for specific values of Δt . frequencies into categories that deviate from the diag-318 onal in panels **C** and **D** of figure 2. We first turn to319 the *Local Branching
Index* (LBI), a quantity calculated 320 for each node in a phylogenetic tree that indicates how321 dense the branching of the tree is around that node. LBI322 has previously been successfully used as a predictor of 323 the future population of influenza [14], and was shown324 311 312 313 314 315 316 317 to be a proxy for fitness of leaves or ancestral nodes in mathematical models of evolution. Here, we define the LBI of a mutation at date t as the average LBI of strains that carry this mutation and that were sampled in the time bin corresponding to t. Panel A of figure 3 shows fixation probability for HA mutations with LBI in the top or bottom half of the distribution. Both groups have FIG. 2. **A**: Activity of all rising frequency trajectories seen above 25% frequency for A/H3N2 HA and NA. **B**: Same as **A** for A/H1N1. **C**: Probability of fixation of a mutation (amino acid or synonymous) $P_{fix}(f)$ as a function of the frequency f at which it is measured, for A/H3N2 HA and NA. Only new mutations are considered, *i.e.* mutations that were absent in the past. The diagonal dashed line is the expectation from a neutrally evolving population. Colored dashed lines represent synonymous mutations. Colored solid lines represent amino acid mutations. Error bars represent a 95% confidence interval. **D**: Same as **C** for A/H1N1. identical probability of fixation, suggesting that LBI car-342 ries very little information on the probability of fixation343 of a mutation. 325 326 327 328 329 330 331 332 334 335 337 338 340 Next, we focused on previously reported antigenic sites in the A/H3N2 HA protein, referred to as *epitope* posi-346 tions. Mutations at these position might mediate immune-347 escape and are therefore likely under strong selection-348 and show sweep-like behavior. We used four lists of rele-349 vant epitope positions from different sources comprising-350 from 7 to 129 positions in the sequence of the HA1 pro-351 tein [3, 5, 11, 16]. Panel Fig. 3B shows fixation probability-352 as a function of frequency for the four lists of epitopes-353 Only mutations at the 7 epitope sites reported in [5] have-354 higher chances of fixation than expected by chance. No-355 clear difference is found for the lists by Łuksza and Lässig-356 [11], Wolf et al. [16], while positions from Shih et al. [3]-357 show lower chances of fixation. One should also note that-358 many of these positions were determined post-hoc and might be enriched for positions that experienced rapid substitutions before the publication of the respective studies. Two ways of categorising mutations, however, suggest some power to predict fixation. In panel Fig. 3 \mathbf{C} , we split trajectories into those occurring at binary positions where only two amino acid variants co-circulate and non-binary positions with more than two variants. Novel variants at non-binary positions, *i.e.* ones for which competition between three amino acids or more has occurred at least once, have a higher chance of fixation. In panel \mathbf{D} , we separated mutations that appear more than once or only once in the reconstructed tree (see methods), and found that the former fix more often. Panels \mathbf{C} and \mathbf{D} show that it is possible to gain some information on the chance of fixation of a particular mutation, as was done in panel 458 **B**. However, the predictive power remains small, with 414 the "top" curves in panels **C&D** being very close to the 415 diagonal. 359 360 361 362 363 364 366 367 368 369 370 371 372 374 375 377 378 379 380 381 382 383 384 385 386 387 388 389 391 392 393 394 395 397 398 400 402 403 404 406 407 408 409 410 412 413 We conduct the same analysis on A/H1N1pdm⁴¹⁷ influenza, with results shown in figure S11. Results are⁴¹⁸ qualitatively similar to those obtained for A/H3N2, with⁴¹⁹ LBI giving little information and mutations at non-binary⁴²⁰ positions having a higher chance of fixation. Panel⁴²¹ **D** differs between figures 3 and S11, with convergent⁴²² evolution giving less information on fixation in the latter⁴²³ case. However, this could be due to the shorter time⁴²⁴ period over which A/H1N1pdm evolved, resulting in a⁴²⁵ shorter tree and less possibilities of convergent evolution⁴²⁶ Indeed, error bars for mutations appearing multiple times⁴²⁷ in **D** of figure S11 are relatively large, indicating a lower⁴²⁸ amount of trajectories. Since influenza is seasonal in temperate regions, geo-431 graphic spread and persistence might be predictive of the 432 success of mutations. We quantify geographic spread of₄₃₃ a mutation by the entropy of its frequency distribution₄₃₄ across regions (see methods) and its persistence by the 435 age of the trajectory by the time it reaches frequency f_{436} Figures S12 and S13 show the fixation probabilities as₄₃₇ a function of observed frequency for mutations classified₄₃₈ according to these scores. The two scores also allow a_{439} quantitatively moderate distinction between mutations:440 for a given frequency f, mutations found in many regions₄₄₁ or those that are older (in the sense that they have taken₄₄₂ more time to reach frequency f) tend to fix more often₄₄₃ than geographically localized mutations or more recent₄₄₄ ones, but the effect is small. These two scores are in₄₄₅ fact correlated, with older trajectories representing mu-446 tations that are more geographically spread, as can be₄₄₇ seen in figure S14 of SM. However, it is important to note $_{\mbox{\tiny 448}}$ that sampling biases and heterogeneity across time and $_{449}$ space (see supplementary figures S5 and S6) make answer- $_{450}$ ing such specific hypothesis challenging. Frequency of $_{451}$ mutations might thus be amplified through different sam-452 pling biases, making the connection between geographic $_{453}$ spread, seasonality and mutation frequency non-trivial ${\rm to}_{_{454}}$ measure. ## Simulations of models of adaptation The results shown in figures 2 and 3 are difficult to⁴⁶⁰ reconcile with the idea that seasonal influenza virus evo⁴⁶¹ lution is driven by rapid directed positive selection. One⁴⁶² possible explanation for the weakly predictable behaviour⁴⁶³ of mutations (beyond their current frequency) might be⁴⁶⁴ tight genetic linkage inside each segment and strong com⁴⁶⁵ petition between different adaptive mutations [15, 20]⁴⁶⁶ We design a simple model of population evolution based⁴⁶⁷ on the ffpopsim simulation software to test this hypoth⁴⁶⁸ esis [21]. The model represents a population of binary⁴⁶⁹ genomes of length L=200 evolving in a fitness landscape⁴⁷⁰ that changes through time. First, we use an additive fitness function, with sequence $(x_1 ldots x_L)$ having a fitness $\sum_i h_i x_i$. This implies that for a given genome position i, the trait $x_i = 1$ is favored if $h_i > 0$ whereas $x_i = -1$ is favored if $h_i < 0$. All h_i 's have the same magnitude, and only their signs matter. Every Δt generations, we randomly choose a position i and flip the sign of h_i , effectively changing the fitness landscape. Individuals in the population now have the opportunity to make an adaptive mutation at site i giving them a fitness advantage 2|h|. A "flip" at position i of the fitness landscape will decrease fitness of all individuals that carried the adapted variant at position i and increases the fitness of those that happened to carry a deleterious variant. To increase competition between genomes, we designed a second model that includes epistasis. Once again, the baseline fitness of a genome is an additive function, this time with values of h_i that do not change through time. In addition, we added a component that mimics immune selection. Every Δt generation, we now introduce "antibodies" that target a specific sub-sequence of length l = 5, noted $(x_{i_1}^{ab}, \ldots, x_{i_l}^{ab})$. The positions $(i_1 \ldots i_l)$ are chosen at random, while the targeted sub-sequence is the dominant state at each position. Genomes that include the exact sub-sequence targeted by the antibody suffer a strong fitness penalty. However, a single mutation away from that sub-sequence removes this penalty completely. resulting in a fitness landscape with very strong epistasis. This has the effect of triggering a strong competition between adaptive mutations: for a given antibody, l=5possible mutations are now adaptive, but combinations of these mutations do not bring any fitness advantage. Having simulated populations in these two fitness landscapes, we perform the same analysis of frequency trajectories as for the real influenza data. Figure S16 of the SM shows the $P_{fix}(f)$ as a function of f for the two models and for different values of the inverse rate of change Δt of the fitness landscape. For all models, this curve deviates significantly from the diagonal. This is most evident for the case of a simple additive fitness landscape that changes rarely $\Delta t = 1000$: rising mutations almost always fix in the population, with $P_{fix}(f) \simeq 1$ for any f larger than a few percent. This is corroborated by visual inspection of the trajectories, which shows that evolution in this regime is driven by regular selective sweeps that take a typical time of ~ 400 generations. In other regimes, with smaller Δt or with strong epistatic competition, $P_{fix}(f)$ is reduced and closer to the diagonal. However, it takes an extremely fast changing fitness landscape to push P_{fix} close to the diagonal: with $\Delta t = 10$, that is about 40 changes to the fitness landscape in the time it would take a selective sweep to go from 0% to fixation, $P_{fix}(f)$ differs from f in a way that is comparable to what is observed in A/H1N1pdm influenza. These models are not meant to be accurate models of influenza viruses evolution. But figure S16 does show is that the patterns observed in influenza virus evolution are only reproduced by models of adapting populations when push-
FIG. 3. Fixation probability $P_{fix}(f)$ as a function of frequency, for A/H3N2 influenza. Figure S11 shows the same analysis for A/H1N1. A: HA mutations with higher or lower LBI values, based on their position with respect to the median LBI value. B: Different lists of epitope positions in the HA protein. The authors and the number of positions is indicated in the legend. C: HA and NA mutations for binary positions, *i.e.* positions for which we never see more than two amino acids in the same time bin. D: HA and NA mutations that appear once or more than once in the tree for a given time bin. ing clonal competition to extreme values. We conclude⁴⁹⁰ that the pattern in figure 2 may not be a straightforward⁴⁹¹ manifestation of genetic linkage and clonal interference,⁴⁹² but that some more intricate interplay of epidemiology,⁴⁹³ seasonality, human immunity and chance gives rise to⁴⁹⁴ the weakly predictable yet strongly selected evolutionary,⁴⁹⁵ dynamics of IAVs. ## Why do predictions work? The statistics of frequency trajectories seem to be in⁵⁰¹ conflict with the notion that influenza evolution is pre-⁵⁰² dictable. Likewise, the LBI, a quantity that correlates⁵⁰³ with fitness in mathematical models and is used to predict⁵⁰⁴ future influenza populations [14], does not seem to contain⁵⁰⁵ any information on whether a specific mutation is going⁵⁰⁶ to fix or not, see figure 3. To resolve this conundrum, we⁵⁰⁷ first note that the criterion by which predictive power for⁵⁰⁸ influenza was measured in [14] was the distance between⁵⁰⁹ the strain with the highest LBI and the future popula-⁵¹⁰ tion, not the ability of the LBI to predict dynamics. The distance was compared to the average distance between the present and future population, as well as the post-hoc optimal representative and the future. To quantify the ability of the LBI and other measures to pick good representatives of the future, we construct a large tree of HA sequences with 100 sequences in non-overlapping time bins of 4 months from year 2003 to 2019 (a total of 4402 as some 4 month intervals contain less than 100 sequences). Each time bin is considered as a snapshot of the A/H3N2 influenza population and we will refer to sequences in time bin t as the population of the present. From this present population, we predict future populations in time bin $t + \Delta t$, using only sequences in time bin t and before. To assess the ability of the LBI to pick a close representative of the future, we compute the LBI of each node of one time bin in the tree using only the leaves that belong to that time bin. The top panel in figure 4 shows the hamming distance of the strain with the highest LBI to future populations at different Δt along with the same 610 distance for a randomly chosen strain. The figure shows 566 the distance averaged over all possible values of t for Δt 567 between 0 and 32 months, giving us an average efficiency 568 of a predictor over 16 years of influenza evolution. 511 512 513 514 515 516 517 518 519 520 521 522 523 524 526 527 528 529 530 531 532 533 534 535 537 538 539 540 541 542 543 544 545 546 547 549 550 552 554 555 556 558 559 560 561 562 564 The strain with the highest LBI is consistently closer₅₇₀ to the future than the average strain by about 1-2 amino₅₇₁ acids, while the overall distance increases linearly due to₅₇₂ the continuous evolution of the population. We hence₅₇₃ reproduce previous results showing that the LBI picks₅₇₄ closer than average representatives [14]. To investigate₅₇₅ whether this apparent success is due to the ability of the 576 LBI to predict fitness or not, we explored a different predictor: the amino acid consensus sequence of the present $_{578}$ population (see Methods for a definition of the consensus $_{579}$ sequence). The choice is motivated by the fact that it $_{580}$ can be shown to be the best possible long term predictor₅₈₁ for a neutrally evolving population in terms of Hamming₅₈₂ distance (see SM section 1). Figure 4 shows that the consensus sequence is in fact a equally good or even slightly, $_{584}$ better representative of the future than the sequence with $_{585}$ highest LBI (note that the consensus sequence does not_{586} necessarily exist in the population). This near equivalence of the consensus and the strain₅₈₈ with highest LBI can be explained as follows: The LBI_{589} tends to be high for nodes in a tree that are close to $_{590}$ the root of a dense and large clade. A typical sample₅₉₁ of influenza HA sequences fall into a small number of $_{\scriptscriptstyle{592}}$ recognizable clades, and the strains with maximal LBI_{593} will often be close to the root of the largest of those clades, This root of the largest clade will often be close to the $_{505}$ consensus of the whole population, explaining the similar 506 distance patterns. To test that hypothesis, we measure the $_{\scriptscriptstyle{597}}$ hamming distance from the sequence of the top LBI strain $_{\scriptscriptstyle{598}}$ to the consensus sequence for populations of all time bins. Panel B of figure 4 shows these distances, scaled with respect to an average strain (details in caption). It clearly shows that the top-LBI strain and the consensus sequence are indeed quite similar: out of 48 time bins, only once is the sequence of the top-LBI strain farther away from 603 the consensus than the average sequence is. Moreover, the sequence of the top-LBI strain exactly matches the consensus in 19 cases. ## DISCUSSION Predicting the trajectory of a mutation requires (i)₆₁₂ significant fitness difference between genomes carrying₆₁₃ different variants at the site and (ii) a selection pressure₆₁₄ that changes slowly over time. Under such conditions, it is₆₁₅ expected that frequency trajectories will show a persistent₆₁₆ behavior which would make them predictable for some₆₁₇ time. However, we could find only limited evidence for₆₁₈ such persistent behavior in the past 19 years of IAV₆₁₉ evolution. This lead us to conclude that (i) influenza₆₂₀ virus evolution is qualitatively different from models of₆₂₁ rapidly adapting population (despite clear evidence for₆₂₂ frequent positive selection), and (ii) previous methods to₆₂₃ predict influenza evolution work primarily because they pick strains that represent the future well, not because they predict future dynamics. The primary focus in this work was the investigation of frequency trajectories of new amino acid mutations. In the short term, we found that on average the direction of trajectory does not persist for longer than a few months. Indeed, the average trajectory in figure 1 takes a sharp turn when going from t < 0 to t > 0, instead of showing "inertia". This suggests that selective sweeps are not representative of typical trajectories. On a longer timescale, we investigated the probability that a novel mutation observed at frequency f fixes. In neutral models of evolution this probability equals f, while it should be higher or lower than f for mutations with a beneficial or deleterious effect on fitness, respectively. However, in the case of influenza, this probability differs little from f, making current frequency the best predictor for fixation. In figure 3, we split trajectories into groups for which we expected P_{fix} to deviate from f. Many of these splits, such as high/low LBI or epitope/non-epitope positions, did not result in an increased predictability, while others gave limited information on fixation. Despite the lack of predictability of mutation frequency trajectories, influenza surface proteins show strong signatures of selection [4, 15]. Methods for predicting the future evolution of influenza either construct explicit fitness models [11, 22], use historical patterns of evolution [11, 23], phenotypic assays [13, 24], or dynamic or phylogenetic patterns [14, 25]. The goal of these methods is to pick strains that are good representatives of future populations and could serve as vaccine candidates [6]. The low power to predict frequency dynamics or fixation naturally triggers the question why the above methods have been found to work. Picking representatives of the future and predicting frequency dynamics are distinct objectives and success at the former (as compared to random picks) is not necessarily inconsistent with a lack of predictable dynamics. In fact, [22] reports that the rate at which the frequency of a strain changes is often a poor predictor – consistent with our observations here. But despite the fact that future frequencies are not predicted by the LBI, the strain with the highest LBI in the population is a better predictor of the future population than a randomly picked one. While the LBI was shown to be a correlate of relative fitness and be predictive of fixation in mathematical models of evolution [14], it does not seem to be predict influenza evolution because it measures fitness from genealogical structure. Instead, we believe it picks closer than average strains simply because it has the tendency to be maximal at the base of large and dense clades. These basal genotypes are closer to the future populations than the current tips of the tree and hence a better predictor on average. The consensus sequence of all present strains performs slightly but consistently better than picking the strain with the highest LBI. The consensus sequence is the best possible predictor for a FIG. 4. A: Average Hamming distance of the sequences of different predictors to HA sequences of future influenza populations, themselves averaged over all "present" populations from year 2003 to 2019. Predictors are: a randomly picked sequence in the present population; the sequence of the strain with the highest LBI in the present population; the consensus sequence of the present population. B: Scaled Hamming distance between the sequence of the top LBI strain and the consensus sequence for populations at different dates. The scaling is such that for
each date, the Hamming distance between a strain from the population and the consensus is on average 1. The strain with the highest LBI is almost always closer to the consensus sequence than the average strain. neutrally evolving population, and does not attempt to⁶⁴³ model fitness in any wav. 624 625 626 628 629 631 632 633 634 635 637 638 640 641 642 At the same time, influenza virus phylogenies show clear⁶⁴⁵ deviations from those expected from the neutral Kingman⁶⁴⁶ coalescent, similar to those expected under Bolthausen-647 Sznitman coalescent (BSC) processes that are generated⁶⁴⁸ by traveling wave models of rapid evolution [26, 27]. The⁶⁴⁹ correspondence between the BSC and traveling wave mod-650 els comes from transient exponential amplification of fit⁶⁵¹ strains before these fitness differences are wiped out by652 further mutation. This exponential amplification gen-653 erates long-tailed effective offspring distributions which 654 in turn can leads to genealogies described by the BSC₆₅₅ [26, 28]. Many processes other than selection, includ-656 ing seasonality and spatio-temporal heterogeneity, can generate effective long tailed offspring distributions even in absence of bona-fide fitness differences, which might explain ladder-like non-Kingman phylogenetic trees. A recent preprint proposed that influenza virus evo- lution is primarily limited by an asynchrony between population level selection and generation of new variants within infected hosts [29]. Along these lines, it is possible that the A/H3N2 population readily responds once population level selection is high enough by giving rise to essentially equivalent variants. Furthermore, selection might cause the rapid rise of a novel variant to macroscopic frequencies (observable in a global sample) but its benefit rapidly "expires" because competing variants catch up and/or it mediates immune escape only to a small fraction of the population. These considerations might explain the disconnect between models of rapid adaptation and the frequency dynamics observed in influenza virus populations. 719 720 721 #### **METHODS** 657 658 659 660 662 665 668 669 670 671 672 673 674 675 676 678 679 681 682 684 685 687 690 691 693 694 696 697 698 699 701 702 704 705 ### Data and code availability The sequences used are obtained from the GISAID⁷¹⁰ database [9]. Strain names and accession numbers are given as tables in two supplementary files. Outliers strains listed at https://github.com/PierreBarrat/⁷¹³ FluPredictibility/src/config were removed. The code used to generate the figures presented here is available at https://github.com/PierreBarrat/⁷¹⁶ FluPredictibility. #### Frequency trajectories For a set of sequences in a given time bin, we com-723 pute frequencies of amino acids at each position by simple 724 counting. We make the choice of not applying any smooth-725 ing method in an attempt to be as close to the data and 726 "model-less" as possible. This is especially important for 727 the short term prediction of frequency trajectories, as estimations of the "persistence time" of a trajectory might be biased by a smoothing method. We compute frequency trajectories based on the frequencies of amino acids. A trajectory begins at time t if an amino acid is seen under the lower frequency threshold of 5% (resp. above the higher threshold of 95%) for the two time bins preceding t, and above this lower threshold (resp. below the higher threshold) for time bin t. It ends in the reciprocal situation, that is when the frequency is measured below the lower threshold (resp. above the higher threshold) for two time bins in a row. In order to avoid estimates of frequencies that are too noisy, we only keep trajectories that are based on a population of at least 10 sequences for *each* time bin. As said in the Results section, we also restrict the analysis to trajectories that begin at a 0 frequency, in part to avoid double counting. We find a total of 460 such trajectories. However, only 106 reach a frequency of 20%, on which figure 2 is based for instance. Note that the fact that we use samples of relatively small⁷²⁹ sizes – at least for some time bins – leads to biases in⁷³⁰ the estimation of frequencies. We show in Supplementary⁷³¹ Material that these biases are generally small and do not⁷³² induce any qualitative changes to results presented here.⁷³³ ## **Local Branching Index** LBI was introduced in [14] as an approximation of fitness in populations evolving under persistent selective pressure that is fully based on a phylogenetic tree. It⁷³⁷ relies on the intuition that the tree below high-fitness individuals will show dense branching events, whereas absence of branching is a sign of low-fitness individuals. Quantitatively, the LBI $\lambda_i(\tau)$ of a node i is the integral of all of the tree's branch length around i, with an exponentially decreasing weight $e^{-t/\tau}$ with t being the branch length. When considering a time binned population, the LBI is computed once for each time bin by considering only the leaves of the tree that belong to the time bin. This means that only branches that ultimately lead to a leaf that belongs to the time bin are considered in the integration. au is the time scale for which the tree is informative of the fitness of a particular node. Here, we use a value of au equal to a tenth of $T_C \simeq 6$ years, the coalescence time for influenza A/H3N2 strains, converted to units of tree branch length through the average nucleotide substitution rate ($\simeq 4 \cdot 10^{-3}$ substitutions per site per year for HA). We have observed that given our method to predict the future from present populations corresponding to time bins of 4 months, changing the value of au has little effect on the pick of the top LBI strain. By retrospectively optimizing its value, it is possible to reduce the average distance to the population 2 years ahead by ~ 0.25 amino acids on average, making the LBI method almost as good as the consensus on figure 4. #### Measuring the geographical spread of a mutation For a mutation X we define its regional distribution using the numbers $n_r(X)$ that represent the number of sequences sampled in region r that carry X. Regional weights are then defined as $$w_r(X) = \frac{n_r(X)}{\sum_r n_r(X)}.$$ We can then measure the geographical spread G(X) of X by using the Shannon entropy of the probability distribution $w_r(X)$: $$G(X) = \sum_{r} w_r(X) \log(w_r(X)).$$ G(X) is a positive quantity that is larger when X is equally present in many regions, and equal to zero when X is concentrated in only one region. Region used are the ones defined in the Nextstrain tool [30]. Those are North America, South America, Europe, China, Oceania, Southeast Asia, Japan & Korea, South Asia, West Asia, and Africa. ### Assigning a fitness to trajectories ## Consensus sequence Given a set of N sequences $(\sigma^1, \ldots, \sigma^N)$ based on an alphabet \mathcal{A} (e.g. \mathcal{A} has 20 elements for amino acids, 4 for nucleotides), we can define a *profile* distribution $p_i(a)$ by the following expression: 739 741 751 752 753 754 755 756 757 758 759 760 761 762 763 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 $$p_i(a) = \sum_{n=1}^{N} \delta_{\sigma_i^n, a}$$ where i is a position in the sequence, σ_i^n the character appearing at position i in sequence σ^n , a a character of the alphabet and δ the Kronecker delta. The profile $p_i(a)$ simply represents the fraction of sequences which have character a at position i. We then simply define the consensus sequence σ^{cons} such that $$\sigma_i^{cons} = \operatorname{argmax}_a p_i(a).$$ In other words, the consensus sequence is the one that has the dominant character of the initial set of sequences at each position. ## Earth Mover's Distance In order to measure the distance of several predictor⁷⁴⁵ sequences to the future population, we rely on the *Earth*⁷⁴⁶ *Mover's Distance* (EMD), a metric commonly applied⁷⁴⁷ in machine learning to compare collections of pixels or⁷⁴⁸ words [31, 32]. Here, we apply it to compute the dis⁷⁴⁹ tance between the sequences of two populations, noted as⁷⁵⁰ $\mathcal{X} = \{(x^n, p^n)\}$ and $\mathcal{Y} = \{(y^m, q^m)\}$ with $n \in \{1 \dots N\}$ and $m \in \{1 \dots M\}$. In this notation, x^n and y^m are sequences, and p^n and q^m are the frequencies at which these sequences are found in their respective populations. For convenience, we also define $d_{mn} = H(x^n, y^m)$ as the Hamming distance between pairs of sequences in the two populations. We now introduce the following functional $$F(\mathbf{w}) = \sum_{n,m} d_{nm} w_{nm},$$ with $\mathbf{w} = \{w_{nm}\}$ being a matrix of positive weights. The EMD between the two populations \mathcal{X} and \mathcal{Y} is now defined as the minimum value of function F under the conditions $$\sum_{n=1}^{N} w_{nm} = q^{m}, \quad \sum_{m=1}^{M} w_{nm} = p^{n}, \text{ and } w_{nm} \ge 0$$ Intuitively, the weight w_{nm} tells us how much of sequence x^n is "moved" to sequence y^m . The functional F sums all of these moves and attributes them a cost equal to the Hamming distance d_{nm} . The conditions on weights in \mathbf{w} ensure that all the weight p^n of x^n is "moved" to elements in \mathcal{Y} and vice versa. The minimization is easily performed by standard linear optimization libraries. Here, we use the Julia library JuMP [33]. - [1] World Health Organization, 2018. URL https://www.who.int/fr/news-room/fact-sheets/detail/ 78 influenza-(seasonal). 78 - [2] Velislava N. Petrova and Colin A. Russell. The evolution₇₈₃ of seasonal influenza viruses. *Nature Reviews Microbiology*₇₈₄ 16(1):47-60, October 2017. ISSN 1740-1526, 1740-1534₇₈₅ doi:10.1038/nrmicro.2017.118. URL http://www.nature₇₈₆ com/doifinder/10.1038/nrmicro.2017.118. - [3] Arthur Chun-Chieh Shih, Tzu-Chang Hsiao, Mei-Shang⁷⁸⁸ Ho, and Wen-Hsiung Li. Simultaneous amino acid sub-⁷⁸⁹
stitutions at antigenic sites drive influenza a hemagglu-⁷⁹⁰ tinin evolution. *Proceedings of the National Academyr*⁹¹ of Sciences, 104(15):6283–6288, 2007. ISSN 0027-8424⁷⁹² doi:10.1073/pnas.0701396104. URL https://www.pnas⁷⁹³ org/content/104/15/6283. - [4] Samir Bhatt, Edward C. Holmes, and Oliver G. Pybus795 The Genomic Rate of Molecular Adaptation of the Human796 Influenza A Virus. Molecular Biology and Evolution, 28797 (9):2443-2451, September 2011. ISSN 0737-4038. doi:798 10.1093/molbev/msr044. URL https://academic.oup799com/mbe/article/28/9/2443/1007907. - [5] Björn F. Koel, David F. Burke, Theo M. Bestebroer, 501 Stefan van der Vliet, Gerben C. M. Zondag, Gaby Vervaet, 502 Eugene Skepner, Nicola S. Lewis, Monique I. J. Spronken, 503 Colin A. Russell, Mikhail Y. Eropkin, Aeron C. Hurt, 504 Ian G. Barr, Jan C. de Jong, Guus F. Rimmelzwaan, 505 Albert D. M. E. Osterhaus, Ron A. M. Fouchier, and 506 Derek J. Smith. Substitutions near the receptor binding 507 site determine major antigenic change during influenza - virus evolution. *Science*, 342(6161):976-979, 2013. ISSN 0036-8075. doi:10.1126/science.1244730. URL https://science.sciencemag.org/content/342/6161/976. - [6] Dylan H Morris, Katelyn M Gostic, Simone Pompei, Trevor Bedford, Marta Luksza, Richard A Neher, Bryan T Grenfell, Michael Lässig, and John W McCauley. Predictive modeling of influenza shows the promise of applied evolutionary biology. Trends in microbiology, 26(2):102– 118, 2018. - [7] Thorsten R. Klingen, Susanne Reimering, Carlos A. Guzmán, and Alice C. McHardy. In Silico Vaccine Strain Prediction for Human Influenza Viruses. Trends in Microbiology, 26(2):119-131, February 2018. ISSN 0966-842X. doi:10.1016/j.tim.2017.09.001. URL http://www.sciencedirect.com/science/article/pii/S0966842X17302068. - [8] Peter Bogner, Ilaria Capua, David J Lipman, and Nancy J Cox. A global initiative on sharing avian flu data. *Nature*, 442(7106):981–981, 2006. - [9] Yuelong Shu and John McCauley. Gisaid: Global initiative on sharing all influenza data—from vision to reality. Eurosurveillance, 22(13), 2017. - [10] Andrew Rambaut, Oliver G. Pybus, Martha I. Nelson, Cecile Viboud, Jeffery K. Taubenberger, and Edward C. Holmes. The genomic and epidemiological dynamics of human influenza A virus. *Nature*, 453(7195):615-619, May 2008. ISSN 1476-4687. doi:10.1038/nature06945. URL https://www.nature.com/articles/nature06945. [11] Marta Luksza and Michael Lässig. A predictive fitness872 model for influenza. Nature, 507(7490):57-61, March 2014873 ISSN 1476-4687. doi:10.1038/nature13087. URL https://874 www.nature.com/articles/nature13087. Number: 7490875 Publisher: Nature Publishing Group. 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 - [12] L. Steinbrück, T. R. Klingen, and A. C. McHardy. Compu. tational prediction of vaccine strains for human influenzas78 a (h3n2) viruses. *Journal of Virology*, 88(20):12123-12132,879 2014. ISSN 0022-538X. doi:10.1128/JVI.01861-14. URL880 https://jvi.asm.org/content/88/20/12123. - [13] Richard A. Neher, Trevor Bedford, Rodney S. Daniels, 882 Colin A. Russell, and Boris I. Shraiman. Prediction, 883 dynamics, and visualization of antigenic phenotypes of 884 seasonal influenza viruses. Proceedings of the National 885 Academy of Sciences of the United States of America, 113886 (12):E1701-1709, March 2016. ISSN 1091-6490 0027-8424887 doi:10.1073/pnas.1525578113. - [14] Richard A Neher, Colin A Russell, and Boris I Shraimansss Predicting evolution from the shape of genealogicalsso trees. *eLife*, 3, November 2014. ISSN 2050-084X. doi:s01 10.7554/eLife.03568. URL https://www.ncbi.nlm.nih.s02 gov/pmc/articles/PMC4227306/. - [15] Natalja Strelkowa and Michael Lässig. Clonal Inter-694 ference in the Evolution of Influenza. Genetics, 192895 (2):671-682, October 2012. ISSN 0016-6731, 1943-696 2631. doi:10.1534/genetics.112.143396. URL http://897 www.genetics.org/content/192/2/671. - [16] Yuri I Wolf, Cecile Viboud, Edward C Holmes, Eugene V899 Koonin, and David J Lipman. Long intervals of stasis900 punctuated by bursts of positive selection in the sea-901 sonal evolution of influenza A virus. Biology Direct, 1202 34, October 2006. ISSN 1745-6150. doi:10.1186/1745-903 6150-1-34. URL https://www.ncbi.nlm.nih.gov/pmc/904 articles/PMC1647279/. - [17] Juhye M Lee, Rachel Eguia, Seth J Zost, Saket Choud-906 hary, Patrick C Wilson, Trevor Bedford, Terry Stevens-907 Ayers, Michael Boeckh, Aeron C Hurt, Seema S Lak-908 dawala, Scott E Hensley, and Jesse D Bloom. Mapping-909 person-to-person variation in viral mutations that es-910 cape polyclonal serum targeting influenza hemagglutinin-911 eLife, 8:e49324, August 2019. ISSN 2050-084X. doi:912 10.7554/eLife.49324. URL https://doi.org/10.7554/913 eLife.49324. Publisher: eLife Sciences Publications, Ltd-914 - [18] Motoo Kimura. Diffusion Models in Population Ge-915 netics. Journal of Applied Probability, 1(2):177-232,916 1964. ISSN 0021-9002. doi:10.2307/3211856. URL917 http://www.jstor.org/stable/3211856. - [19] Le Yan, Richard A Neher, and Boris I Shraiman. Phylody-919 namic theory of persistence, extinction and speciation of 920 rapidly adapting pathogens. eLife, 8:e44205, Septem-921 ber 2019. ISSN 2050-084X. doi:10.7554/eLife.44205.922 URL https://doi.org/10.7554/eLife.44205. Pub-923 lisher: eLife Sciences Publications, Ltd. - [20] R. A. Neher and B. I. Shraiman. Genetic draft and 925 quasi-neutrality in large facultatively sexual populations 926 Genetics, 188(4):975–996, August 2011. ISSN 1943-2631927 0016-6731. doi:10.1534/genetics.111.128876. - [21] Fabio Zanini and Richard A. Neher. FFPopSim: an effi-929 cient forward simulation package for the evolution of large930 populations. *Bioinformatics*, 28(24):3332-3333, 10 2012931 ISSN 1367-4803. doi:10.1093/bioinformatics/bts633. URL932 https://doi.org/10.1093/bioinformatics/bts633. - [22] John Huddleston, John R. Barnes, Thomas Rowe, Re-934 becca Kondor, David E. Wentworth, Lynne Whittaker, 935 - Burcu Ermetal, Rodney S. Daniels, John W. Mc-Cauley, Seiichiro Fujisaki, Kazuya Nakamura, Noriko Kishida, Shinji Watanabe, Hideki Hasegawa, Ian Barr, Kanta Subbarao, Richard Neher, and Trevor Bedford. Integrating genotypes and phenotypes improves long-term forecasts of seasonal influenza A/H3N2 evolution. bioRxiv, page 2020.06.12.145151, June 2020. doi: 10.1101/2020.06.12.145151. URL https://www.biorxiv.org/content/10.1101/2020.06.12.145151v1. Publisher: Cold Spring Harbor Laboratory Section: New Results. - [23] R. M. Bush, C. A. Bender, K. Subbarao, N. J. Cox, and W. M. Fitch. Predicting the evolution of human influenza A. Science (New York, N.Y.), 286(5446):1921–1925, December 1999. ISSN 0036-8075. - [24] Lars Steinbrück and Alice Carolyn McHardy. Inference of Genotype—Phenotype Relationships in the Antigenic Evolution of Human Influenza A (H3N2) Viruses. *PLOS Computational Biology*, 8(4):e1002492, April 2012. ISSN 1553-7358. doi:10.1371/journal.pcbi.1002492. URL http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002492. - [25] Thorsten R. Klingen, Susanne Reimering, Jens Loers, Kyra Mooren, Frank Klawonn, Thomas Krey, Gülsah Gabriel, and Alice C. McHardy. Sweep Dynamics (SD) plots: Computational identification of selective sweeps to monitor the adaptation of influenza A viruses. Scientific Reports, 8(1):373, January 2018. ISSN 2045-2322. doi: 10.1038/s41598-017-18791-z. URL https://www.nature. com/articles/s41598-017-18791-z. - [26] Richard A. Neher and Oskar Hallatschek. Genealogies of rapidly adapting populations. Proceedings of the National Academy of Sciences of the United States of America, 110 (2):437-442, January 2013. ISSN 1091-6490 0027-8424. doi:10.1073/pnas.1213113110. - [27] Michael M. Desai, Aleksandra M. Walczak, and Daniel S. Fisher. Genetic Diversity and the Structure of Genealogies in Rapidly Adapting Populations. Genetics, 193(2):565-585, February 2013. ISSN 0016-6731, 1943-2631. doi:10.1534/genetics.112.147157. URL http://www.genetics.org/content/193/2/565. - [28] Jason Schweinsberg. Coalescent processes obtained from supercritical Galton-Watson processes. Stochastic Processes and their Applications, 106(1):107-139, July 2003. ISSN 0304-4149. doi:10.1016/S0304-4149(03)00028-0. URL http://www.sciencedirect.com/ science/article/pii/S0304414903000280. - [29] Dylan H. Morris, Velislava Petrova, Fernando W. Rossine, Edyth Parker, Bryan Grenfell, Richard Neher, Simon Levin, and Colin Russell. Asynchrony between virus diversity and antibody selection limits influenza virus evolution. preprint, Open Science Framework, April 2020. URL https://osf.io/847p2. - [30] James Hadfield, Colin Megill, Sidney M Bell, John Huddleston, Barney Potter, Charlton Callender, Pavel Sagulenko, Trevor Bedford, and Richard A Neher. Nextstrain: real-time tracking of pathogen evolution. Bioinformatics, 34(23):4121-4123, 05 2018. ISSN 1367-4803. doi: 10.1093/bioinformatics/bty407. URL https://doi.org/10.1093/bioinformatics/bty407. - [31] Y. Rubner, C. Tomasi, and L. J. Guibas. A metric for distributions with applications to image databases. In Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271), pages 59–66, Jan 1998. doi: 10.1109/ICCV.1998.710701. 936 937 938 939 940 941 942 943 954 956 957 959 962 963 964 965 968 969 970 971 972 - [32] Matt J. Kusner, Yu Sun, Nicholas I. Kolkin, and Kil-945 ian Q. Weinberger. From word embeddings to document distances. In Proceedings of the 32nd International Con-947 ference on International Conference on Machine Learning Volume 37, ICML'15, page 957-966. JMLR.org, 2015. 949 - [33] Iain Dunning, Joey Huchette, and Miles Lubin. Jump: A_{950} modeling language for mathematical optimization. $SIAM_{951}$ - Review, 59(2):295–320, 2017. doi:10.1137/15M1020575. [34] Julia Sigwart. Gene
Genealogies, Variation and Evolution: A Primer in Coalescent Theory.—Jotun Hein, Mikkel H. Schierup, and Carsten Wiuf. 2004. Oxford University Press, Oxford. xiii + 276 pp. ISBN 0-19-852996-1, £29.95 (paperback); ISBN 0-19-852995-3, £65.00 (hardback). Systematic Biology, 54(6):986–987, 12 2005. ISSN 1063-5157. doi:10.1080/10635150500354860. URL https://doi.org/10.1080/10635150500354860. ## SUPPLEMENTARY MATERIAL #### 1. Consensus sequence as a predictor for neutrally evolving populations We consider the case of a neutrally evolving and structure-less population, such as the one in the Wright-Fisher model of evolution [34]. At an initial time t=0, the population consists of N individuals with genomes $(\sigma^1 \dots \sigma^N)$ of length L (not necessarily distinct). We make two hypotheses about this population. We first suppose that no mutations occur during the evolution of this population. This may seem surprising and is of course not true in the case of influenza. This assumption is however in line with the fact that the object of this work is to predict the outcome of already existing mutations in the influenza population. The prediction of mutations that we have not yet seen is not in its scope. Thus, assuming that no new mutations take place can be seen as a simple way to model the fact that we have no information about such events. The second assumption is that the population evolves in a completely neutral way, meaning that the average number of descendants of each genome σ^n is the same. Let us now consider the population after it has evolved for a long time $t \gg T$ where T is the typical coalescence time (for the Wright-Fisher model, T = 2N). At this point, all individuals in the future population will descend from a unique individual n_0 in the t = 0 population. Our two hypotheses now allow us to make two statements. First, since no new mutations are allowed, the population at $t \gg T$ will be clonal, with all individuals having genome σ^{n_0} . Second, since the evolution is neutral and does not favour any genome in particular, the probability that σ^{n_0} is equal to a given genome σ is 1/N. In other words, the probability that a genome at t = 0 ultimately becomes the ancestor of all the future population is equal to its frequency in the t = 0 population. We now try to find the genome σ that best predicts the future population on the long run, that is for $t \gg T$. Here, we take best to mean that the predictor minimizes $H(\sigma, \sigma^{n_0})$ where H is the Hamming distance defined by $$H(\sigma^a, \sigma^b) = \sum_{i=1}^{L} (1 - \delta_{\sigma_i^a, \sigma_i^b}), \tag{1}$$ with σ_i being the character appearing at position *i* of genome σ and δ the Kronecker delta. Since we do not know n_0 , we have to average over all its possible values. σ must thus minimize the following quantity: $$\langle H(\sigma, \sigma^{n_0}) \rangle_{n_0} = \sum_{n=1}^{N} H(\sigma, \sigma^n)$$ $$= \sum_{i=1}^{L} \sum_{n=1}^{N} (1 - \delta_{\sigma_i, \sigma_i^n})$$ (2) by using the definition of the Hamming distance. We now assume that characters at each positions of the genomes can be indexed by an integer a running from 1 to q. For instance, if these were amino acid sequences, we could index the 20 amino acids by a running from 1 to q = 20. We rewrite the Kronecker delta in the previous expression using this indexation: $$\delta_{\sigma_i,\sigma_i^n} = \sum_{a=1}^q \delta_{\sigma_i,a} \delta_{\sigma_i^n,a}.$$ We also introduce the *profile* frequencies $p_i(a)$ of the population at time t=0: $$p_i(a) = \sum_{n=1}^{N} \delta_{\sigma_i^n, a}.$$ (3) $p_i(a)$ represents the frequency at which character a appears at position i in genomes of the initial population. Equation 2 now becomes $$\langle H(\sigma, \sigma^{n_0}) \rangle_{n_0} = \sum_{i=1}^L \sum_{n=1}^N \left(1 - \sum_{a=1}^q \delta_{\sigma_i, a} \delta_{\sigma_i^n, a} \right)$$ $$= \sum_{i=1}^N \left(1 - \sum_{a=1}^q \delta_{\sigma_i, a} p_i(a) \right)$$ $$= \sum_{i=1}^L \left(1 - p_i(\sigma_i) \right)$$ (4) This means that the genome $\sigma = (\sigma_1 \dots \sigma_L)$ which best predicts the future population according to our definition is the one that minimizes the quantity $(1 - p_i(\sigma_i))$ for all positions i. This obviously implies that each σ_i must be chosen as to maximize $p_i(a)$, that is σ_i must be the character that appears the most frequently at position i. Thus, σ must be the *consensus* sequence of the initial population. #### 2. Predictor based on the local LBI maxima In figure 15, we use several sequences as a predictor of the future population. Distance between two sets of sequences, *i.e.* the predictor sequences and the ones of the future population, is defined as the Earth Mover's Distance (EMD). Here, we show that for a population evolving under the same hypotheses as in section 1, the best *multiple* sequence long term predictor is again the consensus sequence with weight 1. Let the predictor be a set of weighted sequences $\{(s^{\alpha}, q_{\alpha})\}$. We again use the fact that in the long term, a unique sequence σ^{n_0} from the present will be the ancestor of the entire population. We want to compute the EMD from the predictor to σ^{n_0} , that is the EMD between the sets $\mathcal{X} = \{(s^{\alpha}, q_{\alpha})\}$ and $\mathcal{Y} = \{\sigma^{n_0}, 1\}$. Applying the definition of the Methods section, it follows that the weights \mathbf{w} are in this case equal to the q_{α} s. By averaging over all values of n_0 , we now obtain $$\langle \text{EMD} (\{(s^{\alpha}, q_{\alpha})\}) \rangle_{n_0} = \sum_{n=1}^{N} \sum_{\alpha} H(s^{\alpha}, \sigma^n) \cdot q_{\alpha}.$$ By the same calculation procedure as in the previous section, this expression simplifies to 983 987 988 991 992 993 $$\langle \text{EMD}\left(\{(s^{\alpha}, q_{\alpha})\}\right)\rangle_{n_0} = \sum_{i=1}^{L} \left(1 - \sum_{a=1}^{q} p_i(a)q_i(a)\right),$$ where the profile of the present population $p_i(a)$ has already been defined, and $q_i(a)$ stands for the profile of the predictor, that is $$q_i(a) = \sum_{\alpha} \delta_{s_i^{\alpha}, a} q_{\alpha}.$$ To minimize this distance, we find a profile $q_i(a)$ that maximizes the quantity $\sum_{\alpha} \delta_{s_i^{\alpha}, a} q_{\alpha}$ for each position i. It is clear that this is done by assigning a value $q_i(a) = 1$ if a maximizes $p_i(a)$, and $q_i(a) = 0$ otherwise. Thus, the profile of the predictor must be that of the consensus sequence, which is only possible if the predictor becomes $\{\sigma^{cons}, 1\}$. ## 3. Biases in frequency estimations The frequency of mutations in a given time-bin is simply performed by computing their frequency in sequences sampled in that time bin. This leads to potential biases in estimating frequencies, that arise for two reasons: - (i) A mutation present at frequency p in the population might be observed at another frequency $f \neq p$ if f is estimated using a sub-sample of the population. - (ii) For a neutrally evolving population, the distribution of frequencies of alleles is of the form $P(p) \propto 1/p$. This means that the amount of alleles at frequency p is lower when p is higher. Figure S 1. Left: For a mutation present at frequency p in the population, probability of being observed in the frequency bin [0.1, 0.2] as a function of p and for different sample sizes n. The dashed black line sketches the (non-normalized) background distribution $P_b(p)$. Right: Expected "real" average frequency of mutations found in frequency bin $[f_1, f_2]$ as a function of the centre of the bin $(f_1 + f_2)/2$, for different sample sizes. To illustrate (i), let us compute the probability that a mutation present at "real" frequency p in the population is found to be in a given frequency bin $[f_1, f_2]$ when p is estimated from a sample of size n. The sample consists of n observations $\{x_i\}$ with $1 \le i \le n$, with $x_i = 1$ if sequence sequence i of the sample bears the mutation, and $x_i = 0$ if not. If n is small with regard to the total population size, we can consider the x_i as random variables with a binomial distribution, meaning that $P(x_i = 1) = p$ and $P(x_i = 0) = 1 - p$. The empirical frequency f is then estimated by taking the average of the x_i variables, that is $f = (x_1 + \ldots + x_n)/n$. If those are independently sampled and n is large enough, the probability of measuring value f is given by the Central Limit Theorem: $$P_{n,p}(f) \propto e^{(f-p)^2/2\sigma^2}, \text{ where } \sigma^2 = \frac{p(1-p)}{n}.$$ (5) To compute the probability that this mutation is found in a given frequency bin $[f_1, f_2]$, we integrate this distribution: $$P_{f_1, f_2}(p, n) = \int_{f_1}^{f_2} \mathrm{d}x P_{n, p}(x). \tag{6}$$ Function $P_{f_1,f_2}(p,n)$ is shown as a function of p for a fixed interval and for different values of n in the first panel of figure S1. Note the asymmetry of it: the variance of a binomial distribution of parameter p is small when p is close to 0 or 1, and goes through a maximum at p=0.5. For this reason, mutations present at frequency p close to 0.5 have a higher probability of being observed in other frequency bins. On the contrary, this is unlikely for very rare or very frequent mutations. We now try to estimate biases in frequency estimation due this phenomenon. Given a set of mutations that have been measured in frequency bin $[f_1, f_2]$, what is the average real frequency of these mutations? To compute this, we need to sum $P_{f_1,f_2}(p,n)$ over all possible real frequencies p, giving us the amount of mutations that are observed in interval $[f_1, f_2]$, and weigh this sum by the frequency value p as well as by the background distribution of frequencies $P_b(p) \propto 1/p$. This last quantity represents the expected amount of mutations that are present at frequency p in the population. Note that there
is no divergence problem as the smallest non zero frequency is 1/N, where N is the population size. This leads us to the following expression for the average of "real" frequencies: $$\langle p \rangle (f_1, f_2, n) = \int_{1/N}^{1 - 1/N} dp \, P_{f_1, f_2}(p, n) P_b(p) \, p$$ $$= \int_{1/N}^{1 - 1/N} dp \, P_{f_1, f_2}(p, n). \tag{7}$$ We have not made normalization explicit in these equations. It is simply achieved by dividing the above expression by $\int dp \, P_{f_1,f_2}(p,n) P_b(p)$. In the second panel of figure S1, $\langle p \rangle (f_1, f_2, n)$ is plotted as a function of the centre of the interval $[f_1, f_2]$ and for different values of n. For sample sizes n > 100, the biases due to this effect are almost non existent. For smaller samples, for instance n = 10, they are small but non negligible. However, we argue that this is not a significant problem with respect to the main results presented in this article. First, figure S6 shows that sample sizes of the order of n = 10 are only the case for a few months in the period going from year 2000 to 2018. From 2010 and onwards, more than a hundred sequences are available per month for most months. Secondly, even if most samples were in the n = 10 case, deviations shown in figure S1 are small enough that results shown in figures 2 and 3 would be qualitatively unchanged. Note that using the centre of the interval as a reference in figure S1, i.e. $(f_1 + f_2)/2$, would be correct in the case of a very large n and a flat background distribution $P_b(p)$. For figures 2 and 3 of the main text however, the average frequency of mutations found in an interval $[f_1, f_2]$ is computed by taking the average of the observed frequencies, and not the centre of the interval. This partially takes into account biases considered here, as the background distribution $P_b(p)$ is then accounted for, even though it is equivalent to assuming infinite sample sizes. ### 4. Cutting off the HA1 159S branch Figure S 2. Tree used for this study, based on a random selection of 100 strains per month from year 2002 to 2018. Nodes and branches are colored according to the amino acid found at position HA1:159. The HA1 159S mutation is visible as a thin but long light-greened color branch, coalescing with the "trunk" around year 2013. The analysis of the main text is in a large part based on the probability of fixation of mutations. The motivation underlying this choice is the relatively short coalescence time of the A/H3N2 influenza population, typically around three years. This can be seen in figure 2 of the main text, which shows the typical lifetime of frequency trajectories, ending in fixation or loss after at most 3 years in most cases. The tree in figure S2 is another illustration of this: for the most part of it, a "trunk" is clearly identifiable, and lineages that depart from it have a relatively short lifetime. This is no longer the case since the year ~ 2013 : two clades have been competing since then, with no definite way to identify a trunk in the tree. The clade defined by the HA1159S mutation, colored in light green on figure S2, is one of these two competing lineages. Because of this particular situation, the number of mutations fixating in the population is strongly reduced, as a mutation must appear in both clades to reach a frequency of 1. This is a potential flaw in our analysis, which concentrates on mutations fixating. For this reason, we decided to re-run our analysis after having cut off the HA1159S clade. In other words, we remove from the set of sequences those that carry the HA1159S mutation. Results are shown in figures, equivalent to figures 2 and 3 of the main text. It is clear that qualitative results are left unchanged when this competing clade is removed. This can be surprising, as almost no complete fixation of an amino acid mutation has occurred since 2013. Cutting off the HA1 159S branch should thus result in many new fixations, changing the analysis. The reason for the similarity of results can be explained: fixation (resp. loss) of a mutation are defined here as the frequency of this mutation being measured above 95% (resp. 5%) frequency for two months in a row. As the HA1 159S clade is rather sparsely populated, it reaches frequencies lower than 5% two times (in 2015 and 2017), allowing mutations in the competing clade to "fix" as defined here. Thus, removing strains carrying HA1 159S does not introduce a significant amount of "new" fixation events. Figure S 3. Equivalent to figure 2 of the main text, but with strains carrying the HA1 159S mutation removed. Figure S 4. Equivalent to figure 3 of the main text, but with strains carrying the HA1 159S mutation removed. ## 5. Probability of fixation in single locus model of evolution In [18], Kimura investigates a simple model of evolution with a single locus and a population of size N. In this framework, a mutation at this locus with fitness effect s and observed at frequency f has the following probability of fixation: $$P_{fix}(f|s,N) = \frac{1 - e^{-sNf}}{1 - e^{-sN}}.$$ (8) Expanding this formula for $sN \ll 1$, that is in the weak selection regime, yields at the first order 1051 1052 1053 1054 1056 1057 1058 1059 $$P_{fix}(f|s,N) = f + f(1-f)\frac{sN}{2}. (9)$$ Equation 9 tells us two things. First, when the mutation is neutral, that is s = 0, we have $P_{fix}(f) = f$. This naturally confirms the result obtained for a neutral model of evolution. Seconds, when $sN \neq 0$, we can expect deviations from the diagonal in a P_{fix} against f plot. The sign of these deviations is determined by the sign of s, with beneficial mutations being found above diagonal while deleterious one are found below. The amplitude of these deviations depends on the strength of selection sN, as well as on the frequency through the f(1-f) term, making them larger for $f \sim 0.5$. | ٠ | |---| | Gene | Position | AA | Start date | End date | Shih | Luksza | Koel | Tree counts | |------|----------|----|------------|------------|-------|--------|-------|-------------| | HA1 | 144 | D | 2001-06-09 | 2002-02-04 | true | true | false | 0 | | HA1 | 189 | N | 2003-07-29 | 2004-05-24 | false | true | true | 2 | | HA1 | 159 | F | 2003-08-28 | 2004-05-24 | false | true | true | 2 | | HA1 | 226 | I | 2003-09-27 | 2004-09-21 | true | true | false | 3 | | HA1 | 145 | N | 2003-12-26 | 2004-11-20 | false | true | true | 2 | | HA1 | 227 | Р | 2003-05-30 | 2005-04-19 | false | true | false | 2 | | HA2 | 32 | I | 2004-06-23 | 2005-07-18 | false | false | false | 1 | | HA1 | 193 | F | 2004-12-20 | 2006-03-15 | false | true | true | 1 | | HA2 | 46 | D | 2006-06-13 | 2007-05-09 | false | false | false | 2 | | HA2 | 121 | K | 2006-06-13 | 2007-06-08 | false | false | false | 1 | | HA1 | 50 | Е | 2006-09-11 | 2007-06-08 | false | true | false | 2 | | HA1 | 140 | I | 2006-11-10 | 2007-11-05 | true | false | false | 1 | | HA1 | 173 | Q | 2007-07-08 | 2009-01-28 | true | true | false | 2 | | HA2 | 32 | R | 2007-07-08 | 2009-01-28 | false | false | false | 1 | | HA1 | 158 | N | 2009-01-28 | 2009-07-27 | true | true | true | 2 | | HA1 | 189 | K | 2009-01-28 | 2009-07-27 | false | true | true | 2 | | HA1 | 212 | Α | 2009-03-29 | 2011-01-18 | false | false | false | 2 | | HA1 | 45 | N | 2010-03-24 | 2013-02-06 | false | false | false | 3 | | HA1 | 223 | I | 2010-12-19 | 2013-02-06 | false | false | false | 2 | | HA1 | 48 | I | 2011-03-19 | 2013-02-06 | false | false | false | 1 | | HA1 | 198 | S | 2011-03-19 | 2013-02-06 | false | false | false | 1 | | HA1 | 312 | S | 2009-08-26 | 2013-03-08 | false | false | false | 3 | | HA1 | 278 | K | 2011-06-17 | 2013-03-08 | false | true | false | 1 | | HA1 | 145 | S | 2011-04-18 | 2013-04-07 | false | true | true | 4 | | HA1 | 33 | R | 2011-06-17 | 2013-06-06 | false | false | false | 2 | | HA2 | 160 | N | 2012-07-11 | 2015-09-24 | false | false | false | 3 | | HA1 | 225 | D | 2013-08-05 | 2015-09-24 | false | false | false | 3 | | HA1 | 3 | Ι | 2013-08-05 | 2016-11-17 | false | false | false | 2 | | HA1 | 159 | Y | 2014-02-01 | 2016-11-17 | false | true | true | 2 | | HA1 | 160 | Т | 2014-01-02 | 2017-07-15 | false | true | false | 2 | Table S I. The 30 trajectories that took place between year 2000 and year 2018 and resulted in fixation. Columns Shih, Luksza and Koel respectively indicate whether the position is found in the epitopes lists in (respectively) [3], [11] and [5]. The Tree counts column indicates the number of times the mutation corresponding to the trajectory can be found in the phylogenetic tree. Note that a trajectory is only shown in the table if the sequenced population counts more than 10 strains at its time of fixation. This explains that only 30 trajectories are displayed, whereas more mutations did fix in this period of time. | - | Position | | | End date | | Max. freq. | |-----|----------|--------------|------------|------------|-------|------------| | HA1 | 106 | Α | 2001-02-09 | 2002-02-04 | lost | 1.0 | | HA1 | 144 | D | 2001-06-09 | 2002-02-04 | fixed | 1.0 | | HA1 | 105 | Н | 2003-04-30 | 2003-10-27 | lost | 1.0 | | HA1 | 126 | D | 2003-04-30 | 2004-05-24 | lost | 1.0 | | HA1 | 140 | Q | 2004-01-25 | 2004-06-23 | lost | 0.31 | | HA1 | 226 | I | 2003-09-27 | 2004-09-21 | fixed | 1.0 | | HA1 | 173 | \mathbf{E} | 2004-12-20 | 2006-03-15 | lost | 0.63 | | HA1 | 142 | G | 2006-06-13 | 2007-05-09 | lost | 0.71 | | HA1 | 144 | D | 2006-07-13 | 2007-05-09 | lost | 0.67 | | HA1 | 128 | Α | 2006-09-11 | 2007-05-09 | lost | 0.25 | | HA1 | 157 | S | 2006-09-11 | 2007-05-09 | lost | 0.59 | | HA1 | 140 | I | 2006-11-10 | 2007-11-05 | fixed | 1.0 | | HA1 | 173 | N | 2007-12-05 | 2008-07-02 | lost | 0.3 | | HA1 | 157 | S | 2007-12-05 | 2008-09-30 | lost | 0.31 | | HA1 | 173 | E | 2006-06-13 | 2008-12-29 | lost | 0.67 | | HA1 | 173 | Q | 2007-07-08 | 2009-01-28 | fixed | 0.96 | | HA1 | 158 | N | 2009-01-28 | 2009-07-27 | fixed | 0.96 | | HA1 | 62 | K | 2009-01-28 | 2011-05-18 | lost |
0.73 | | HA1 | 144 | K | 2009-01-28 | 2011-05-18 | lost | 0.75 | | HA1 | 62 | V | 2011-04-18 | 2011-09-15 | lost | 0.34 | | HA1 | 157 | \mathbf{S} | 2013-05-07 | 2015-09-24 | lost | 0.35 | | HA1 | 128 | Α | 2012-08-10 | 2016-11-17 | lost | 0.81 | | HA1 | 197 | K | 2015-11-23 | 2016-11-17 | lost | 0.27 | | HA1 | 142 | R | 2018-05-11 | 2018-10-08 | lost | 0.38 | | HA1 | 142 | G | 2012-03-13 | | poly | 0.86 | | HA1 | 144 | S | 2013-12-03 | | poly | 0.96 | | HA1 | 121 | K | 2015-12-23 | | poly | 0.82 | | HA1 | 142 | K | 2016-05-21 | | poly | 0.77 | | HA1 | 62 | G | 2017-03-17 | | poly | 0.75 | | HA1 | 128 | A | 2018-01-11 | | poly | 0.56 | Table S II. Trajectories of mutations at epitope positions in [3] (Shih et. al.) that have been observed at least once above frequency 0.25. The Fixation column indicates whether the mutation has fixed, disappeared, or is still polymorphic as of October 2018. The Max.freq. column indicates the maximum frequency reached by the trajectory. A maximum frequency of 1 for mutations that finally disappear is explained by trajectories reaching frequency 1 for one time bin and going back to lower values for following ones (a frequency above 0.95 for two time bins in a row defines fixation). | - | Position | | Start date | End date | Fixation | Max. freq. | |-----|----------|--------------|------------|------------|----------|------------| | HA1 | 50 | G | 2001-02-09 | | lost | 1.0 | | HA1 | 144 | D | 2001-06-09 | | fixed | 1.0 | | HA1 | 126 | D | 2003-04-30 | | lost | 1.0 | | HA1 | 189 | N | 2003-07-29 | 2004-05-24 | fixed | 1.0 | | HA1 | 159 | F | 2003-08-28 | 2004-05-24 | fixed | 1.0 | | HA1 | 226 | Ι | 2003-09-27 | 2004-09-21 | fixed | 1.0 | | HA1 | 145 | Ν | 2003-12-26 | 2004-11-20 | fixed | 1.0 | | HA1 | 188 | N | 2004-07-23 | 2005-02-18 | lost | 0.36 | | HA1 | 227 | Ρ | 2003-05-30 | 2005-04-19 | fixed | 1.0 | | HA1 | 173 | Ε | 2004-12-20 | 2006-03-15 | lost | 0.63 | | HA1 | 193 | F | 2004-12-20 | 2006-03-15 | fixed | 0.97 | | HA1 | 142 | G | 2006-06-13 | 2007-05-09 | lost | 0.71 | | HA1 | 144 | D | 2006-07-13 | 2007-05-09 | lost | 0.67 | | HA1 | 157 | \mathbf{S} | 2006-09-11 | 2007-05-09 | lost | 0.59 | | HA1 | 50 | Ε | 2006-09-11 | 2007-06-08 | fixed | 0.95 | | HA1 | 173 | N | 2007-12-05 | 2008-07-02 | lost | 0.3 | | HA1 | 157 | S | 2007-12-05 | 2008-09-30 | lost | 0.31 | | HA1 | 173 | E | 2006-06-13 | 2008-12-29 | lost | 0.67 | | HA1 | 173 | Q | 2007-07-08 | 2009-01-28 | fixed | 0.96 | | HA1 | 158 | N | 2009-01-28 | 2009-07-27 | fixed | 0.96 | | HA1 | 189 | K | 2009-01-28 | 2009-07-27 | fixed | 0.96 | | HA1 | 213 | Α | 2009-01-28 | 2010-02-22 | lost | 0.68 | | HA1 | 144 | K | 2009-01-28 | 2011-05-18 | lost | 0.75 | | HA1 | 53 | Ν | 2009-11-24 | 2013-02-06 | lost | 0.72 | | HA1 | 278 | K | 2011-06-17 | 2013-03-08 | fixed | 0.98 | | HA1 | 145 | S | 2011-04-18 | 2013-04-07 | fixed | 0.99 | | HA1 | 159 | S | 2013-11-03 | 2015-08-25 | lost | 0.46 | | HA1 | 157 | S | 2013-05-07 | 2015-09-24 | lost | 0.35 | | HA1 | 159 | Y | 2014-02-01 | 2016-11-17 | fixed | 0.97 | | HA1 | 159 | S | 2015-10-24 | 2016-11-17 | lost | 0.4 | | HA1 | 197 | K | 2015-11-23 | 2016-11-17 | lost | 0.27 | | HA1 | 160 | Т | 2014-01-02 | | fixed | 0.96 | | HA1 | 142 | R | l | 2018-10-08 | lost | 0.38 | | HA1 | 135 | N | | 2018-10-08 | lost | 0.38 | | HA1 | 142 | G | 2012-03-13 | | poly | 0.86 | | HA1 | 144 | S | 2013-12-03 | | poly | 0.96 | | HA1 | 121 | K | 2015-12-23 | | poly | 0.82 | | HA1 | 142 | K | 2016-05-21 | | poly | 0.77 | | HA1 | 131 | K | 2016-09-18 | | poly | 0.77 | | HA1 | 135 | K | 2016-11-17 | | poly | 0.47 | Table S III. Same as table SII, for [11] (Luksza et. al.). | Gene | Position | AA | Start date | End date | Fixation | Max. freq. | |------|----------|--------------|------------|------------|----------|------------| | HA1 | 189 | Ν | 2003-07-29 | 2004-05-24 | fixed | 1.0 | | HA1 | 159 | F | 2003-08-28 | 2004-05-24 | fixed | 1.0 | | HA1 | 145 | Ν | 2003-12-26 | 2004-11-20 | fixed | 1.0 | | HA1 | 193 | F | 2004-12-20 | 2006-03-15 | fixed | 0.97 | | HA1 | 158 | N | 2009-01-28 | 2009-07-27 | fixed | 0.96 | | HA1 | 189 | K | 2009-01-28 | 2009-07-27 | fixed | 0.96 | | HA1 | 145 | \mathbf{S} | 2011-04-18 | 2013-04-07 | fixed | 0.99 | | HA1 | 159 | \mathbf{S} | 2013-11-03 | 2015-08-25 | lost | 0.46 | | HA1 | 159 | Y | 2014-02-01 | 2016-11-17 | fixed | 0.97 | | HA1 | 159 | S | 2015-10-24 | 2016-11-17 | lost | 0.4 | Table S IV. Same as table SII, for [5] (Koel et. al.). # 7. Supplementary figures 1063 Figure S 5. Number of A/H3N2 HA sequences per year from year 1990. Figure S 6. Number of H3N2 HA and NA sequences per month from year 2000. Figure S 7. Frequency trajectories for the 9 most entropic positions in the A/H3N2~HA protein. Figure S 8. Equivalent to panel **B** of figure 1 of the main text for A/H3N2, with f_0 equal 0.5 in **A** (76 trajectories), and 0.7 in **B** (63 trajectories). Figure S 9. Equivalent to panels $\bf B$ and $\bf C$ of figure 1 of the main text for A/H1N1pdm influenza. 89 trajectories are shown and participate to the mean (thick black line). Figure S 10. Equivalent to panel **B** of figure 1 of the main text for A/H1N1pdm, with f_0 equal 0.5 in **A** (50 trajectories), and 0.7 in **B** (41 trajectories). Figure S 11. Equivalent of figure 3 of the main text for the HA gene of A/H1N1pdm influenza. Fixation probability $P_{fix}(f)$ as a function of frequency. **A**: Mutation with higher or lower LBI values, based on their position with respect to the median LBI value. **B**: Different lists of epitope positions in the HA protein. The authors and the number of positions is indicated in the legend. **C**: Mutations for binary positions, *i.e.* positions for which we never see more than two amino acids in the same time bin. **D**: Mutations that appear once or more than once in the tree for a given time bin. Figure S 12. Based on A/H3N2 HA and NA. A: Mutations with a higher or lower geographical spread, based on the median value of the score used (see Methods). Note: the words local and global only reflect the position of the geographic spread of the mutation relative to the median value computed for all mutations found at this frequency. As this median value may change with the considered frequency bin, so does the definition of local and global mutations. B: Mutations whose trajectories are older or more recent, based on the median age of trajectories when reaching the considered frequency f. Figure S 13. Based on A/H1N1pdm HA and NA. A: Mutations with a higher or lower geographical spread, based on the median value of the score used (see Methods). Note: the words local and global only reflect the position of the geographic spread of the mutation relative to the median value computed for all mutations found at this frequency. As this median value may change with the considered frequency bin, so does the definition of local and global mutations. B: Mutations whose trajectories are older or more recent, based on the median age of trajectories when reaching the considered frequency f. Figure S 14. Geographic spread of mutations as a function of the time for which they have been present in the population above a frequency of 5%. Points represent individual mutations and for a population in a given time bin. The line is the average of dots for a given value on the x-axis. Based on data for A/H3N2 HA. Figure S 15. Earth mover's distance to the future population for different predictors. A present population consists of all A/H3N2 HA sequences sampled in a 4 months time window. Quantities are averaged over all possible "present" populations from the year 2002. Predictors are: **Global consensus**: Consensus sequence of the present population. Best long-term predictor for a structure-less neutrally evolving population. **All present population**: All sequences in the present population. Perfect predictor if the population does not change at all through time. **Cluster-wise consensus**: Consensus sequence for each cluster in the present population. Clusters are based on local maxima of the LBI. Sequences are assigned to a given cluster based on their tree branch-length distance to the corresponding local maximum. Figure S 16. Fixation probability as a function of frequency for the simulations discussed in the main text. **Top:** Simulation without antibodies. The three colored curves reflect different rate of change for the fitness landscape. Visual inspection of the frequency trajectories indicates a typical sweep time of ~ 400 generations. **Bottom:** Simulation with antibodies. The different colored curves indicate the rate at which antibodies are introduced. Figure S 17. Fixation probability as a function of frequency for the simulations discussed in the main text, with trajectories stratified according to real fitness values. "High" and "low" fitness classes are defined with respect to the median value. **Top:** Simulation without antibodies and with changes to the fitness landscape every dt = 10 generations. **Bottom:** Simulation with antibodies, with a new antibody every dt = 10 generations.