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Seasonal influenza viruses repeatedly infect humans in part because they rapidly change their
antigenic properties and evade host immune responses, necessitating frequent updates of the vaccine
composition. Accurate predictions of strains circulating in the future could therefore improve the
vaccine match. Here, we studied the predictability of frequency dynamics and fixation of amino
acid substitutions. Current frequency was the strongest predictor of eventual fixation, as expected
in neutral evolution. Other properties, such as occurrence in previously characterized epitopes or
high Local Branching Index (LBI) had little predictive power. Parallel evolution was found to be
moderately predictive of fixation. While the LBI had little power to predict frequency dynamics, it
was still successful at picking strains representative of future populations. The latter is due to a
tendency of the LBI to be high for consensus-like sequences that are closer to the future than the
average sequence. Simulations of models of adapting populations, in contrast, show clear signals of
predictability. This indicates that the evolution of influenza HA and NA, while driven by strong
selection pressure to change, is poorly described by common models of directional selection such as

travelling fitness waves.

INTRODUCTION 51

52

Seasonal influenza A viruses (IAV) infect about 10% of
the global population every year, resulting in hundreds *
of thousands of deaths [1, 2]. Vaccination is the primary
measure to reduce influenza morbidity. However, the 5
surface proteins hemagglutinin (HA) and neuraminidase
(NA) continuously accumulate mutations at a high rate, s
leading to frequent antigenic changes [2-5]. While a vac-s
cine targeting a particular strain may be efficient for some o
time, antigenic drift will sooner or later render it obsolete.q
The World Health Organization (WHO) regularly updates
influenza vaccine recommendations to best match the cir-¢;
culating strains. Since developing, manufacturing, and ¢,
distributing the vaccine takes many months, forecasting e
the evolution of influenza is of essential interest to public e
health [6, 7]. o

The number of available high quality HA and NA se-4
quences has increased rapidly over the last 20 years [8, 9] o
and virus evolution and dynamics can be now be tracked
at high temporal and spatial resolution [10]. This wealth ,,
of data has given rise to an active field of predicting -,
influenza virus evolution [6, 7]. These models predict -
the future population of influenza viruses by estimating
strain fitness or proxies of fitness. Luksza and Léssig [11],+
for example, train a fitness model to capture antigenic -
drift and protein stability on patterns of epitope and
non-epitope mutations. Other approaches by Steinbriick "
et al. [12], Neher et al. [13] predict fitness by using hemag- "
glutination inhibition (HI) data to determine possible ;z
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antigenic drift of clades in the genealogy of the HA pro-
tein. Finally, Neher et al. [14] use branching patterns of
HA phylogenies as a proxy for fitness. These branching
patterns are summarized by the Local Branching Index
(LBI), which was shown to be a proxy of relative fitness
in mathematical models of rapidly adapting populations
[14].

The underlying assumption of all these methods is
that (i) differences in growth rate between strains can
be estimated from sequence or antigenic data and (ii)
that these growth rate differences persist for long enough
to be predictive of future success. Specific positions in
surface proteins are of particular interest in this context.
The surface proteins are under a strong positive selection
and change their amino acid sequence much more rapidly
than other IAV proteins or than expected under neutral
evolution [4, 15]. Epitope positions, i.e., positions targeted
by human antibodies, are expected to change particularly
often since viruses with altered epitopes can evade existing
immune responses [3, 5, 16]. It therefore seems plausible
that mutations at these positions have a tendency to
increase fitness and a higher probability of fixation [15].
But one has to be careful to account for the fact that
these positions are often ascertained post-hoc [3] and
human immune responses are diverse with substantial
inter-individual variation [17].

In this work, we use HA and NA sequences of A/H3N2
and A/H1Nl1pdm influenza from year 2000 to 2019 to
perform a retrospective analysis of frequency trajecto-
ries of amino acid mutations. We quantify how rapidly
mutations at different frequencies are lost or fixed and
how rapidly they spread through the population. We
further investigate whether any properties or statistics
are predictive of whether a particular mutation fixes or
not. To our surprise, we find that the predictability of


https://doi.org/10.1101/2020.07.31.231100
http://creativecommons.org/licenses/by/4.0/

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.31.231100; this version posted July 31, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

these trajectories is very limited: The probability that aia
mutation fixes differs little from its current frequency, asis
would be expected if fixation happened purely by chanceiss
This observation holds for many different categories ofia
mutations, including mutations at epitope positions. Thisss
weak predictability is not attributable solely to clonalis
interference and genetic linkage, as simulation of modelsis
including even strong interference retain clear signaturesiss
of predictability. Consistent with these observations, weuo
show that a simple predictor uninformed by fitness, theiso
consensus sequence, performs as the well as the Localis:
Branching Index (LBI), the growth measure based on theis
genealogy used in [14]. This suggests that although LBl
has predictive power, the reason for its success may notis
be related to it approximating fitness of strains. 155
156

157

RESULTS 158

159

The main underlying question asked in this work is the'®

following: given a mutation X in the genome of influenza'®
that we observe at a frequency f in the population at a'®
given date, what can we say about the future of X? The'®
trajectory of a mutation will depend on its own effect'
on fitness, the contribution of the genetic background'®
on the same segment, and the effect of the remaining'®
seven segments. Here, we investigate properties of broad'”
categories of mutations effectively averaging over different'®
genetic backgrounds to isolate the effects intrinsic to the
mutation.

First, we ask whether we can quantitatively predict'™
the frequency of X at future times f(¢). In other words,”
having observed a mutation at frequencies (fi, fa,..., fu)"
at dates (t1,t,...,t,), what can we say about its fre™
quency at future dates (t,41,tn12,...)? A simpler, more'”
qualitative question, is to ask whether X will fix in the'”
population, will disappear, or whether the site will stay
polymorphic.

We use amino-acid sequences of the HA and NA genes'”
of A/H3N2 (since the year 2000) and A/HINIpdm (since
the year 2009) influenza available in GISAID [9] (seews
supplementary materials for an acknowledgment of allin
data contributors). This amounts to 44 976 HA and 36 3001s0
NA sequences for A/H3N2 and 45350 HA and 40412
NA sequences for A/HIN1, with a minimum of 100 pers
year. These sequences are binned in non-overlapping:ss
intervals of one month. Each single-month time bin andiss
the sequences that it contains represent a (noisy) snapshotuss
of the influenza population at a given date. The number ofiss
sequences per time bin varies strongly both with year andiss
according to the season, with earlier time bins containingiss
around 10 sequences while more recent bins contain severaliso
hundreds (see figures S5 and S6 in SM for details). 190

The central quantities that we derived from this data
are frequency trajectories of amino acids at each positionis
in the sequences. If an amino acid X; is found at positionies
i at a frequency between 5% and 95% in the populationie
of a given time bin ¢, then the population is consideredioss

169

170

polymorphic at position ¢ and at time ¢. This polymor-
phism is characterized by the frequency of X;, fx,(t), and
also by frequencies of other amino acids at i. The series
of values fx,(t) for contiguous time bins constitutes the
frequency trajectory of X;. A trajectory is terminated
if the corresponding frequency is measured above 95%
(resp. below 5%) for two time bins in a row, in which case
amino acid X; is considered as fized (resp. absent) in the
population. Otherwise, the trajectory is considered active.
Examples of trajectories can be seen in figure S7 of the
Supplement.

In the rest of this work, we will focus on frequency
trajectories that are starting at a zero (low) frequency,
i.e. f(t =0) = 0. These represent new amino acid vari-
ants which were absent in the population at the time bin
when the trajectory started and are currently rising in the
population (see Methods). Such distinction in novel and
ancestral variants is necessary to meaningfully interrogate
predictability. Each rising trajectory of a new mutation
implies the existence of another decreasing one at the
same position, since frequencies of all amino acids at a
given position must sum to one. If novel variants arise by
selection, we expect to see a stronger signal of selection
after conditioning on these novel variants. In classic mod-
els of population genetics, strongly advantageous variants
undergo rapid selective sweeps, i.e., the rapid rise and
fixation. The sweep of a mutation can be due to its own
fitness effect, to the genetic background or to the effect of
the seven other segments. By considering the ensemble of
novel variants that are rising in frequency, we effectively
average over backgrounds, obtaining a set of mutations
that we expect to be beneficial on average. If such sweeps
are common in the evolution of HA and NA, the restric-
tion to trajectories that start at low frequency should
thus enrich for mutations that are positively selected and
on their way to fixation.

Predicting future frequencies

Having observed the frequency trajectory f(¢) of a
mutation until a given date ty, how much can we say
about the future values of f after ty? We consider the
idealized case sketched in panel A of figure 1: given
the trajectory of a new mutation, i.e. that started at a
frequency of 0, and that we observe at frequency f, at
time to, what is the probability Pa.(f) of observing it at
a value f at time tg + At?

To answer this question retrospectively, we use all fre-
quency trajectories extracted from HA and NA sequences
that satisfy these conditions for a given fy;. The num-
ber of trajectories is limited and the frequency estimates
themselves are based on a finite sample and are hence im-
precise. Therefore, we consider trajectories in an interval
[fo — 0f, fo + 6] with 6f = 0.05.

For fy = 0.3, we found 120 such trajectories in the
case of A/H3N2 influenza, represented on the panel B
of figure 1, where time is shifted such that ¢y = 0. The
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same analysis was performed for A/H1N1pdm, with the 89
found trajectories displayed in figure S9. Some trajectories

fall in the frequency bin around fo while decreasing, even,,
though they crossed that bin at an earlier time. This
is due to the fact that some trajectories “skipped” the,
interval fo in question on their initial rise due to sparse,
sampling. These trajectories are nevertheless rising in,
the sense that they start at frequency 0 for t — —oo,
Removing them does not change results significantly.

5

6

261
Since rapid sequence evolution of influenza HA and,,

NA mediates immune evasion, one could expect that,,
a significant fraction of new amino acid mutations on,,,
rising trajectories in figure 1 are adaptive. We could thus,,
expect that most of these trajectories continue to rise after,,
reaching frequency fo, at least for some time. A fraction,,
of those would then sweep through the population and,
fix. 260

To quantify the extent to which this preconception of,,
sweeping adaptive mutations is true, we estimated they,
probability distribution Pa:(f| fo) of finding a trajectory,.
at frequency f after a time At given that it was observed,,,
at fo at time 0. The results for different At are shown in,,
figure 1C. Initially, i.e. at time tq = 0, this distribution is,,
by construction peaked around fy. If a large fraction of,,
the trajectories keep increasing after this time, we should,,,
see the “mass” of Pa;(f| fo) move to the right towards,,
higher frequencies as time progresses. 270

However, future distributions for At > 0 do not seemug
to follow a pattern compatible with selective sweeps. Thesg
thick black line in Figure 1B shows the average frequencyas.
of all trajectories. This average makes a sharp turn atss
t = 0 and is essentially flat for ¢ > 0 in the case ofxs
A/H3N2, and slightly increasing for A/H1NIpdm (seess
supplement). Hence, the fact that this average rose forss
t < 0 gives little information for ¢ > 0, and is due to thes
conditions by which these trajectories were selected. Thiszes
shows that sweep-like trajectories rising steadily fromose
frequency 0 to 1 are not common enough to dominate thessp
average trajectory. 201

Consistent with the average, the frequency distributionas
of the selected trajectories broadens in time without aes
significant shift of the mean as time passes. After 60 daysze
the distribution is rather symmetrical around the initialees
fo = 0.3 value, suggesting that the knowledge that thezss
trajectories were rising is lost after two months. On azr
timescale of 60 to 120 days, the only possible predictionzes
is that trajectories are likely to be found in a broadass
interval around the initial frequency fy. After one yearso
the distribution becomes almost flat (excluding mutationssn
that have disappeared or fixed), and the initial peak at fose
is not visible anymore. The only information remainingsos
from the initial frequency is the fraction that fixed or wassom
lost (see below). This behavior is expected in neutralsos
models of evolution [18] but incompatible with a dynamicsoe
dominated by sweeps taking over the population. 307

While this observation does not rule out that signa-sos
tures exist that predict future frequency dynamics, pastsos
dynamics alone is weakly informative. 310

Prediction of fixation or loss

Instead of predicting future frequency, let’s consider
the long-term goal of predicting the probability that a
mutation fixes in the population. We first estimate the
fraction of frequency trajectories that either fix in the
population or are lost, as well as the time it takes for
one or the other to happen. Panels A and B of figure 2
shows the fraction of frequency trajectories in HA and
NA that either have fixed, were lost or remained active as
a function of the time elapsed since they were first seen
above 25% frequency. Most mutations are either lost or
become fixed after 2-3 years, with very few trajectories
remaining active after 5 years. This time scale of 2-3 years
is consistent with the typical coalescence time observed in
phylogenetic trees of A/H3N2 influenza [10, 19]. We also
note that the fraction of lost trajectories increases sharply
at small times with 40% of mutations observed above 25%
frequency being lost within one year for A/H3N2, while
it takes longer to fix a mutation in the whole population.

We then examined the probability of mutations to fix
in the population as a function of the frequency at which
they are seen. For different values of frequency f, we
consider all trajectories that started at a null frequency
and are seen in the interval [f — 7.5%, f + 7.5%)] at any
given time. The probability of a mutation fixing given
that it is seen at frequency f, Py (f), is then estimated
by the fraction of those trajectories which terminate at
a frequency larger than 95%, i.e. our fixation threshold.
Panels C and D of figure 2 show Py;,(f) as a function
of f for NA and HA. For both proteins, the probability
of fixation of a new mutation at frequency f is close to
f itself, that is Py, (f) =~ f. This result is exactly what
is expected in a population evolving in the absence of
selection. A mutation or trait appearing at frequency f
is shared by f - N individuals, and the probability for
one of them to become the ancestor of all the future
population is f - N/N = f. Thus, the probability of this
mutation or trait to fix in the population is equal to its
current frequency, a case which we will refer to as the
neutral expectation. Panel C of figure 2 indicates that
mutations in the surface proteins of A/H3N2 influenza
are in good agreement with the neutral expectation, while
those in A/H1N1pdm show only small deviations from
it. In both cases, the probability of fixation seems to be
mainly dictated by the current frequency f at which the
mutation is observed.

This dynamics is in apparent contradiction with evi-
dence that influenza surface proteins are under strong
selective pressure to evade human immune responses [4].
If strong selection was present, we would expect rising
amino acid mutations to fix at a distinctively higher fre-
quency than the one at which they are measured. In
an extreme case where most trajectories would be clean
sweeps, Ppiz(f) should be close to 1 for all but very small
values of f.

Next, we searched for features of mutations that al-
low prediction of fixation beyond frequency by dividing
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FIG. 1. A: Sketch of the idea behind the short term prediction of frequency trajectories. Given a mutation that we have
seen increasing in frequency and that we “catch” at frequency fo at time to, what can we say about the distribution of future
frequencies Pa:(f| fo)? B: All frequency trajectories of amino acid mutations in the A/H3N2 HA and NA genes that were
absent in the past, are seen around fo = 30% frequency at time top = 0, and are based on more than 10 sequences at each time
point. Red curves represent mutations that will ultimately fix, blue the ones that will be lost, and black the ones for which we
do not know the final status. Dashed horizontal lines (blue and red) represent loss and fixation thresholds. The thick black line
is the average of all trajectories, counting those that fix (resp. disappear) as being at frequency 1 (resp. 0). Figure S8 shows
equivalent figures for other values of f0. C: Distribution of future frequencies Pa:(f]| fo) for the trajectories shown in panel B

and for specific values of At.

frequencies into categories that deviate from the diagss
onal in panels C and D of figure 2. We first turn tosw
the Local Branching Index (LBI), a quantity calculatedsxo
for each node in a phylogenetic tree that indicates howsx
dense the branching of the tree is around that node. LBIs
has previously been successfully used as a predictor ofss
the future population of influenza [14], and was shownsz

to be a proxy for fitness of leaves or ancestral nodes in
mathematical models of evolution. Here, we define the
LBI of a mutation at date ¢t as the average LBI of strains
that carry this mutation and that were sampled in the
time bin corresponding to ¢t. Panel A of figure 3 shows
fixation probability for HA mutations with LBI in the
top or bottom half of the distribution. Both groups have
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FIG. 2. A: Activity of all rising frequency trajectories seen above 25% frequency for A/H3N2 HA and NA. B: Same as A for
A/HIN1. C: Probability of fixation of a mutation (amino acid or synonymous) Pyi,(f) as a function of the frequency f at
which it is measured, for A/H3N2 HA and NA. Only new mutations are considered, i.e. mutations that were absent in the past.
The diagonal dashed line is the expectation from a neutrally evolving population. Colored dashed lines represent synonymous
mutations. Colored solid lines represent amino acid mutations. Error bars represent a 95% confidence interval. D: Same as C

for A/HINI.

identical probability of fixation, suggesting that LBI carss
ries very little information on the probability of fixationsss
of a mutation. 34

345
Next, we focused on previously reported antigenic sites

in the A/H3N2 HA protein, referred to as epitope posiss
tions. Mutations at these position might mediate immuness
escape and are therefore likely under strong selectionsss
and show sweep-like behavior. We used four lists of reless
vant epitope positions from different sources comprisingsso
from 7 to 129 positions in the sequence of the HA1 pross
tein [3, 5, 11, 16]. Panel Fig. 3B shows fixation probabilityss:
as a function of frequency for the four lists of epitopesass
Only mutations at the 7 epitope sites reported in [5] havess
higher chances of fixation than expected by chance. Nosss
clear difference is found for the lists by Luksza and Lassigsss
[11], Wolf et al. [16], while positions from Shih et al. [3]ss
show lower chances of fixation. One should also note thatsss

many of these positions were determined post-hoc and
might be enriched for positions that experienced rapid
substitutions before the publication of the respective stud-
ies.

Two ways of categorising mutations, however, suggest
some power to predict fixation. In panel Fig. 3C, we split
trajectories into those occurring at binary positions where
only two amino acid variants co-circulate and non-binary
positions with more than two variants. Novel variants
at non-binary positions, i.e. ones for which competition
between three amino acids or more has occurred at least
once, have a higher chance of fixation. In panel D, we
separated mutations that appear more than once or only
once in the reconstructed tree (see methods), and found
that the former fix more often. Panels C and D show
that it is possible to gain some information on the chance
of fixation of a particular mutation, as was done in panel
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B. However, the predictive power remains small, withas
the “top” curves in panels C&D being very close to theas
diagonal. a16
We conduct the same analysis on A/HI1N1pdmav
influenza, with results shown in figure S11. Results areas
qualitatively similar to those obtained for A /H3N2, withawo
LBI giving little information and mutations at non-binaryso
positions having a higher chance of fixation. Panels
D differs between figures 3 and S11, with convergente
evolution giving less information on fixation in the latterss
case. However, this could be due to the shorter timess
period over which A/H1N1pdm evolved, resulting in ass
shorter tree and less possibilities of convergent evolutionazs
Indeed, error bars for mutations appearing multiple timessr
in D of figure S11 are relatively large, indicating a lower,
amount of trajectories. 420
430
Since influenza is seasonal in temperate regions, geo-s
graphic spread and persistence might be predictive of the,s
success of mutations. We quantify geographic spread ofys;
a mutation by the entropy of its frequency distribution,s,
across regions (see methods) and its persistence by thess
age of the trajectory by the time it reaches frequency f s
Figures S12 and S13 show the fixation probabilities as.;
a function of observed frequency for mutations classified.s
according to these scores. The two scores also allow as
quantitatively moderate distinction between mutationsus
for a given frequency f, mutations found in many regionsu
or those that are older (in the sense that they have taken,s,
more time to reach frequency f) tend to fix more oftens;
than geographically localized mutations or more recentss,
ones, but the effect is small. These two scores are inus
fact correlated, with older trajectories representing mu-,,
tations that are more geographically spread, as can be,,,
seen in figure S14 of SM. However, it is important to note,,,
that sampling biases and heterogeneity across time and,,,
space (see supplementary figures S5 and S6) make answer-,,
ing such specific hypothesis challenging. Frequency of,,,
mutations might thus be amplified through different sam-,,
pling biases, making the connection between geographic,,,
spread, seasonality and mutation frequency non-trivial to,,
measure.

4
455
456
457
Simulations of models of adaptation 458

459

The results shown in figures 2 and 3 are difficult to%°
reconcile with the idea that seasonal influenza virus evo-t
lution is driven by rapid directed positive selection. Ones¢?
possible explanation for the weakly predictable behaviour+es
of mutations (beyond their current frequency) might bes
tight genetic linkage inside each segment and strong com-46s
petition between different adaptive mutations [15, 20]4ss
We design a simple model of population evolution based4s?
on the ffpopsim simulation software to test this hypoth-ss
esis [21]. The model represents a population of binaryas
genomes of length L = 200 evolving in a fitness landscapesno
that changes through time. an

First, we use an additive fitness function, with sequence
(x1...2r) having a fitness ), hyx;. This implies that for
a given genome position ¢, the trait xz; = 1 is favored if
h; > 0 whereas z; = —1 is favored if h; < 0. All h;’s
have the same magnitude, and only their signs matter.
Every At generations, we randomly choose a position i
and flip the sign of h;, effectively changing the fitness
landscape. Individuals in the population now have the
opportunity to make an adaptive mutation at site ¢ giving
them a fitness advantage 2|h|. A “flip” at position i of the
fitness landscape will decrease fitness of all individuals
that carried the adapted variant at position ¢ and increases
the fitness of those that happened to carry a deleterious
variant.

To increase competition between genomes, we designed
a second model that includes epistasis. Once again, the
baseline fitness of a genome is an additive function, this
time with values of h; that do not change through time.
In addition, we added a component that mimics immune
selection. Every At generation, we now introduce “an-
tibodies” that target a specific sub-sequence of length
I =5, noted (2¢°,...,x¢"). The positions (i1...4;) are
chosen at random, while the targeted sub-sequence is the
dominant state at each position. Genomes that include
the exact sub-sequence targeted by the antibody suffer a
strong fitness penalty. However, a single mutation away
from that sub-sequence removes this penalty completely,
resulting in a fitness landscape with very strong epista-
sis. This has the effect of triggering a strong competition
between adaptive mutations: for a given antibody, [ = 5
possible mutations are now adaptive, but combinations
of these mutations do not bring any fitness advantage.

Having simulated populations in these two fitness land-
scapes, we perform the same analysis of frequency trajec-
tories as for the real influenza data. Figure S16 of the SM
shows the Py, (f) as a function of f for the two models
and for different values of the inverse rate of change At
of the fitness landscape. For all models, this curve devi-
ates significantly from the diagonal. This is most evident
for the case of a simple additive fitness landscape that
changes rarely At = 1000: rising mutations almost always
fix in the population, with Py;(f) ~ 1 for any f larger
than a few percent. This is corroborated by visual inspec-
tion of the trajectories, which shows that evolution in this
regime is driven by regular selective sweeps that take a
typical time of ~ 400 generations. In other regimes, with
smaller At or with strong epistatic competition, Py, (f)
is reduced and closer to the diagonal. However, it takes
an extremely fast changing fitness landscape to push Py,
close to the diagonal: with At = 10, that is about 40
changes to the fitness landscape in the time it would take
a selective sweep to go from 0% to fixation, Py, (f) differs
from f in a way that is comparable to what is observed
in A/HIN1pdm influenza.

These models are not meant to be accurate models of in-
fluenza viruses evolution. But figure S16 does show is that
the patterns observed in influenza virus evolution are only
reproduced by models of adapting populations when push-
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FIG. 3. Fixation probability P, (f) as a function of frequency, for A/H3N2 influenza. Figure S11 shows the same analysis for
A/HINI. A: HA mutations with higher or lower LBI values, based on their position with respect to the median LBI value. B:
Different lists of epitope positions in the HA protein. The authors and the number of positions is indicated in the legend. C:
HA and NA mutations for binary positions, i.e. positions for which we never see more than two amino acids in the same time
bin. D: HA and NA mutations that appear once or more than once in the tree for a given time bin.

ing clonal competition to extreme values. We concludesn
that the pattern in figure 2 may not be a straightforwardsn
manifestation of genetic linkage and clonal interference 4o
but that some more intricate interplay of epidemiologyes
seasonality, human immunity and chance gives rise t0s.
the weakly predictable yet strongly selected evolutionaryaes
dynamics of TAVs. 296
497

498

Why do predictions work? 100

500

The statistics of frequency trajectories seem to be inso
conflict with the notion that influenza evolution is pre-so
dictable. Likewise, the LBI, a quantity that correlatessos
with fitness in mathematical models and is used to predictsos
future influenza populations [14], does not seem to containsos
any information on whether a specific mutation is goingsos
to fix or not, see figure 3. To resolve this conundrum, wesor
first note that the criterion by which predictive power forsos
influenza was measured in [14] was the distance betweenso
the strain with the highest LBI and the future populasiwo

tion, not the ability of the LBI to predict dynamics. The
distance was compared to the average distance between
the present and future population, as well as the post-hoc
optimal representative and the future.

To quantify the ability of the LBI and other measures
to pick good representatives of the future, we construct
a large tree of HA sequences with 100 sequences in non-
overlapping time bins of 4 months from year 2003 to 2019
(a total of 4402 as some 4 month intervals contain less
than 100 sequences). Each time bin is considered as a
snapshot of the A/H3N2 influenza population and we will
refer to sequences in time bin ¢ as the population of the
present. From this present population, we predict future
populations in time bin ¢ + At, using only sequences in
time bin ¢ and before.

To assess the ability of the LBI to pick a close represen-
tative of the future, we compute the LBI of each node of
one time bin in the tree using only the leaves that belong
to that time bin. The top panel in figure 4 shows the
hamming distance of the strain with the highest LBI to
future populations at different At along with the same
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distance for a randomly chosen strain. The figure showsses
the distance averaged over all possible values of ¢ for Atser
between 0 and 32 months, giving us an average efficiencyses
of a predictor over 16 years of influenza evolution. 560

The strain with the highest LBI is consistently closers;
to the future than the average strain by about 1-2 aminos,
acids, while the overall distance increases linearly due tos:,
the continuous evolution of the population. We hencess
reproduce previous results showing that the LBI pickss.
closer than average representatives [14]. To investigatess
whether this apparent success is due to the ability of thess
LBI to predict fitness or not, we explored a different pre,,,
dictor: the amino acid consensus sequence of the present,,,
population (see Methods for a definition of the consensus,.,
sequence). The choice is motivated by the fact that it
can be shown to be the best possible long term predictor,,
for a neutrally evolving population in terms of Hamming,,,
distance (see SM section 1). Figure 4 shows that the con,,
sensus sequence is in fact a equally good or even slightly,,,
better representative of the future than the sequence with,,,
highest LBI (note that the consensus sequence does not,,
necessarily exist in the population). .

This near equivalence of the consensus and the straing,
with highest LBI can be explained as follows: The LBI,,
tends to be high for nodes in a tree that are close to,
the root of a dense and large clade. A typical sample,,
of influenza HA sequences fall into a small number of_,
recognizable clades, and the strains with maximal LBI__
will often be close to the root of the largest of those clades, ,
This root of the largest clade will often be close to the
consensus of the whole population, explaining the similar,_
distance patterns. To test that hypothesis, we measure the_
hamming distance from the sequence of the top LBI strain,
to the consensus sequence for populations of all time bins.
Panel B of figure 4 shows these distances, scaled with™
respect to an average strain (details in caption). It cle;aurly600
shows that the top-LBI strain and the consensus sequence601
are indeed quite similar: out of 48 time bins, only once’
is the sequence of the top-LBI strain farther away from”
the consensus than the average sequence is. Moreover,6 o
the sequence of the top-LBI strain exactly matches the
consensus in 19 cases. o

5

7

8

607

608

609

DISCUSSION 610

611

Predicting the trajectory of a mutation requires (ikw
significant fitness difference between genomes carryinges
different variants at the site and (ii) a selection pressures
that changes slowly over time. Under such conditions, it ises
expected that frequency trajectories will show a persistenteis
behavior which would make them predictable for somee
time. However, we could find only limited evidence fores
such persistent behavior in the past 19 years of TAVeo
evolution. This lead us to conclude that (i) influenzaso
virus evolution is qualitatively different from models ofe
rapidly adapting population (despite clear evidence fors
frequent positive selection), and (ii) previous methods toss

predict influenza evolution work primarily because they
pick strains that represent the future well, not because
they predict future dynamics.

The primary focus in this work was the investigation
of frequency trajectories of new amino acid mutations. In
the short term, we found that on average the direction of
trajectory does not persist for longer than a few months.
Indeed, the average trajectory in figure 1 takes a sharp
turn when going from ¢ < 0 to t > 0, instead of showing
“inertia”. This suggests that selective sweeps are not
representative of typical trajectories.

On a longer timescale, we investigated the probability
that a novel mutation observed at frequency f fixes. In
neutral models of evolution this probability equals f, while
it should be higher or lower than f for mutations with
a beneficial or deleterious effect on fitness, respectively.
However, in the case of influenza, this probability differs
little from f, making current frequency the best predictor
for fixation. In figure 3, we split trajectories into groups
for which we expected Py, to deviate from f. Many of
these splits, such as high/low LBI or epitope/non-epitope
positions, did not result in an increased predictability,
while others gave limited information on fixation. Despite
the lack of predictability of mutation frequency trajecto-
ries, influenza surface proteins show strong signatures of
selection [4, 15].

Methods for predicting the future evolution of influenza
either construct explicit fitness models [11, 22|, use his-
torical patterns of evolution [11, 23], phenotypic assays
[13, 24], or dynamic or phylogenetic patterns [14, 25]. The
goal of these methods is to pick strains that are good
representatives of future populations and could serve as
vaccine candidates [6].

The low power to predict frequency dynamics or fixation
naturally triggers the question why the above methods
have been found to work. Picking representatives of the
future and predicting frequency dynamics are distinct
objectives and success at the former (as compared to ran-
dom picks) is not necessarily inconsistent with a lack of
predictable dynamics. In fact, [22] reports that the rate
at which the frequency of a strain changes is often a poor
predictor — consistent with our observations here. But
despite the fact that future frequencies are not predicted
by the LBI, the strain with the highest LBI in the popu-
lation is a better predictor of the future population than
a randomly picked one. While the LBI was shown to be a
correlate of relative fitness and be predictive of fixation in
mathematical models of evolution [14], it does not seem
to be predict influenza evolution because it measures fit-
ness from genealogical structure. Instead, we believe it
picks closer than average strains simply because it has the
tendency to be maximal at the base of large and dense
clades. These basal genotypes are closer to the future
populations than the current tips of the tree and hence
a better predictor on average. The consensus sequence
of all present strains performs slightly but consistently
better than picking the strain with the highest LBI. The
consensus sequence is the best possible predictor for a
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FIG. 4. A: Average Hamming distance of the sequences of different predictors to HA sequences of future influenza populations,
themselves averaged over all “present” populations from year 2003 to 2019. Predictors are: a randomly picked sequence in
the present population; the sequence of the strain with the highest LBI in the present population; the consensus sequence of
the present population. B: Scaled Hamming distance between the sequence of the top LBI strain and the consensus sequence
for populations at different dates. The scaling is such that for each date, the Hamming distance between a strain from the
population and the consensus is on average 1. The strain with the highest LBI is almost always closer to the consensus sequence

than the average strain.

neutrally evolving population, and does not attempt toess
model fitness in any way. 64

At the same time, influenza virus phylogenies show clears
deviations from those expected from the neutral Kingmans+
coalescent, similar to those expected under Bolthausen-s+
Sznitman coalescent (BSC) processes that are generatedss
by traveling wave models of rapid evolution [26, 27]. Thess
correspondence between the BSC and traveling wave mod-ss
els comes from transient exponential amplification of fites
strains before these fitness differences are wiped out byss
further mutation. This exponential amplification gen-ss
erates long-tailed effective offspring distributions whiches
in turn can leads to genealogies described by the BSCess
[26, 28]. Many processes other than selection, includ-se
ing seasonality and spatio-temporal heterogeneity, can
generate effective long tailed offspring distributions even
in absence of bona-fide fitness differences, which might
explain ladder-like non-Kingman phylogenetic trees.

A recent preprint proposed that influenza virus evo-

lution is primarily limited by an asynchrony between
population level selection and generation of new variants
within infected hosts [29]. Along these lines, it is possi-
ble that the A/H3N2 population readily responds once
population level selection is high enough by giving rise
to essentially equivalent variants. Furthermore, selection
might cause the rapid rise of a novel variant to macro-
scopic frequencies (observable in a global sample) but
its benefit rapidly “expires” because competing variants
catch up and/or it mediates immune escape only to a
small fraction of the population. These considerations
might explain the disconnect between models of rapid
adaptation and the frequency dynamics observed in in-
fluenza virus populations.
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METHODS 706

707

Data and code availability 708
709

710

The sequences used are obtained from the GISAID
database [9]. Strain names and accession numbers are’
given as tables in two supplementary files. Outliers””
strains listed at https://github.com/PierreBarrat/
FluPredictibility/src/config were removed. m
The code used to generate the figures presented here”
is available at h‘c‘cps://github.com/PierreBarrat/716
FluPredictibility. "

5

718

719

720
Frequency trajectories .
722

For a set of sequences in a given time bin, we com-zs

pute frequencies of amino acids at each position by simplers
counting. We make the choice of not applying any smooth-zs
ing method in an attempt to be as close to the data andzs
“model-less” as possible. This is especially important forzs
the short term prediction of frequency trajectories, as es-
timations of the “persistence time” of a trajectory might
be biased by a smoothing method. 1
We compute frequency trajectories based on the frequen-
cies of amino acids. A trajectory begins at time ¢ if an
amino acid is seen under the lower frequency threshold
of 5% (resp. above the higher threshold of 95%) for the
two time bins preceding ¢, and above this lower threshold
(resp. below the higher threshold) for time bin ¢. It ends
in the reciprocal situation, that is when the frequency
is measured below the lower threshold (resp. above the
higher threshold) for two time bins in a row.
In order to avoid estimates of frequencies that are too
noisy, we only keep trajectories that are based on a pop-
ulation of at least 10 sequences for each time bin. As
said in the Results section, we also restrict the analysis to
trajectories that begin at a 0 frequency, in part to avoid
double counting. We find a total of 460 such trajectories.
However, only 106 reach a frequency of 20%, on which
figure 2 is based for instance.
Note that the fact that we use samples of relatively small’
sizes — at least for some time bins — leads to biases in™°
the estimation of frequencies. We show in Supplementary™
Material that these biases are generally small and do not™?

induce any qualitative changes to results presented here’
734

735

Local Branching Index

LBI was introduced in [14] as an approximation of fit-

ness in populations evolving under persistent selective
pressure that is fully based on a phylogenetic tree. It™
relies on the intuition that the tree below high-fitness
individuals will show dense branching events, whereas
absence of branching is a sign of low-fitness individuals.
Quantitatively, the LBI \;(7) of a node i is the integral

10

of all of the tree’s branch length around 4, with an expo-
nentially decreasing weight e~*/7 with ¢ being the branch
length. When considering a time binned population, the
LBI is computed once for each time bin by considering
only the leaves of the tree that belong to the time bin.
This means that only branches that ultimately lead to
a leaf that belongs to the time bin are considered in the
integration.

7 is the time scale for which the tree is informative of
the fitness of a particular node. Here, we use a value of
T equal to a tenth of T ~ 6 years, the coalescence time
for influenza A/H3N2 strains, converted to units of tree
branch length through the average nucleotide substitution
rate (~ 4 - 1073 substitutions per site per year for HA).
We have observed that given our method to predict the
future from present populations corresponding to time
bins of 4 months, changing the value of 7 has little effect
on the pick of the top LBI strain. By retrospectively
optimizing its value, it is possible to reduce the average
distance to the population 2 years ahead by ~ 0.25 amino
acids on average, making the LBI method almost as good
as the consensus on figure 4.

Measuring the geographical spread of a mutation

For a mutation X we define its regional distribution
using the numbers n,.(X) that represent the number of
sequences sampled in region r that carry X. Regional
weights are then defined as

n(X)
> ne(X)
We can then measure the geographical spread G(X) of X

by using the Shannon entropy of the probability distribu-
tion w,(X):

wr(X) =

G(X) =Y w,(X)log(w,(X)).

G(X) is a positive quantity that is larger when X is
equally present in many regions, and equal to zero when
X is concentrated in only one region.

Region used are the ones defined in the Nextstrain
tool [30]. Those are North America, South America,
Europe, China, Oceania, Southeast Asia, Japan & Korea,
South Asia, West Asia, and Africa.

Assigning a fitness to trajectories
Consensus sequence

Given a set of N sequences (o',...,0") based on an
alphabet A (e.g. A has 20 elements for amino acids, 4
for nucleotides), we can define a profile distribution p;(a)
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by the following expression:

N
pi(a) = Z 50;"711
n=1

where ¢ is a position in the sequence, o' the character
appearing at position ¢ in sequence ¢”, a a character of
the alphabet and § the Kronecker delta. The profile p;(a)
simply represents the fraction of sequences which have
character a at position 1.

We then simply define the consensus sequence o
that

cons SuCh

cons

0" = argmax, p;(a).

In other words, the consensus sequence is the one that
has the dominant character of the initial set of sequences
at each position.

42

Earth Mover’s Distance :43

744

In order to measure the distance of several predictorrs
sequences to the future population, we rely on the Farthrs
Mover’s Distance (EMD), a metric commonly appliedrr
in machine learning to compare collections of pixels orrs
words [31, 32]. Here, we apply it to compute the diso
tance between the sequences of two populations, noted asrso

11

X ={(",p")} and Y = {(y",¢™)} withn € {1...N}
and m € {1...M}. In this notation, ™ and y™ are
sequences, and p™ and ¢ are the frequencies at which
these sequences are found in their respective populations.
For convenience, we also define d,,, = H(z",y™) as the
Hamming distance between pairs of sequences in the two
populations.

We now introduce the following functional

with w = {wy,,,} being a matrix of positive weights. The
EMD between the two populations X and Y is now defined
as the minimum value of function F' under the conditions

N M
E Wpm = q", 5 Wpm = p", and Wy, > 0
n=1 m=1

Intuitively, the weight w,,, tells us how much of sequence
" is “moved” to sequence y". The functional F' sums
all of these moves and attributes them a cost equal to
the Hamming distance d,,,,. The conditions on weights
in w ensure that all the weight p™ of z™ is “moved” to
elements in ) and vice versa.

The minimization is easily performed by standard linear
optimization libraries. Here, we use the Julia library
JuMP [33].
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SUPPLEMENTARY MATERIAL
1. Consensus sequence as a predictor for neutrally evolving populations

We consider the case of a neutrally evolving and structure-less population, such as the one in the Wright-Fisher
model of evolution [34]. At an initial time ¢ = 0, the population consists of N individuals with genomes (¢ ...o") of
length L (not necessarily distinct).

We make two hypotheses about this population. We first suppose that no mutations occur during the evolution of this
population. This may seem surprising and is of course not true in the case of influenza. This assumption is however in
line with the fact that the object of this work is to predict the outcome of already existing mutations in the influenza
population. The prediction of mutations that we have not yet seen is not in its scope. Thus, assuming that no new
mutations take place can be seen as a simple way to model the fact that we have no information about such events.

The second assumption is that the population evolves in a completely neutral way, meaning that the average number
of descendants of each genome ¢” is the same. Let us now consider the population after it has evolved for a long time
t > T where T is the typical coalescence time (for the Wright-Fisher model, T'= 2N). At this point, all individuals in
the future population will descend from a unique individual ng in the t = 0 population. Our two hypotheses now allow
us to make two statements. First, since no new mutations are allowed, the population at ¢ > T will be clonal, with all
individuals having genome ¢™°. Second, since the evolution is neutral and does not favour any genome in particular,
the probability that o™ is equal to a given genome o is 1/N. In other words, the probability that a genome at t =0
ultimately becomes the ancestor of all the future population is equal to its frequency in the ¢ = 0 population.

We now try to find the genome ¢ that best predicts the future population on the long run, that is for ¢ > T. Here,
we take best to mean that the predictor minimizes H (o, 0™ ) where H is the Hamming distance defined by

L

H(o% 0" =3 (1= 6,0 ), (1)

i=1

with ¢; being the character appearing at position ¢ of genome ¢ and § the Kronecker delta. Since we do not know ng,
we have to average over all its possible values. ¢ must thus minimize the following quantity:

N
(H(0,0"))ng = Y H(o,0")
n=1 (2)

N
E - 01,0'

by using the definition of the Hamming distance. We now assume that characters at each positions of the genomes can
be indexed by an integer a running from 1 to ¢. For instance, if these were amino acid sequences, we could index the
20 amino acids by a running from 1 to ¢ = 20. We rewrite the Kronecker delta in the previous expression using this
indexation:

IIMh

q

601-,0'? = § 505,,(150'?,(1'

a=1

We also introduce the profile frequencies p;(a) of the population at time ¢ = 0:

N
a) =Y bora- (3)
n=1
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pi(a) represents the frequency at which character a appears at position i in genomes of the initial population.
Equation 2 now becomes

L N q
LCEIED ) 91 (B oATEN
i=1 n=1 a=1
N q
3 (1 St a
i=1 a=1

L
= Z (1 —pi(oi))

This means that the genome o = (07 ...0) which best predicts the future population according to our definition is
the one that minimizes the quantity (1 — p;(0;)) for all positions i. This obviously implies that each o; must be chosen
as to maximize p;(a), that is o; must be the character that appears the most frequently at position 4. Thus, o must be
the consensus sequence of the initial population.

2. Predictor based on the local LBI maxima

In figure 15, we use several sequences as a predictor of the future population. Distance between two sets of sequences,

i.e. the predictor sequences and the ones of the future population, is defined as the Earth Mover’s Distance (EMD).
Here, we show that for a population evolving under the same hypotheses as in section 1, the best multiple sequence
long term predictor is again the consensus sequence with weight 1.
Let the predictor be a set of weighted sequences {(s*,¢,)}. We again use the fact that in the long term, a unique
sequence o™ from the present will be the ancestor of the entire population. We want to compute the EMD from the
predictor to ™, that is the EMD between the sets X = {(5%,¢,)} and Y = {¢™,1}. Applying the definition of the
Methods section, it follows that the weights w are in this case equal to the g,s. By averaging over all values of ng, we
now obtain

N
(EMD ({(s*,qa)))ny = D D H(5%,0") - da

n=1 «
By the same calculation procedure as in the previous section, this expression simplifies to

L

(EMD ({(s*,4a) D)y = D (1 - Zpi(a)qi(a)> ;

i=1

where the profile of the present population p;(a) has already been defined, and ¢;(a) stands for the profile of the
predictor, that is

qi ((l) = 55‘*,0,Qoz~

i
[

To minimize this distance, we find a profile ¢;(a) that maximizes the quantity ) ds» oqa for each position 4. It is
clear that this is done by assigning a value ¢;(a) = 1 if @ maximizes p;(a), and ¢;(a) = 0 otherwise. Thus, the profile of
the predictor must be that of the consensus sequence, which is only possible if the predictor becomes {o°°"* 1}.

3. Biases in frequency estimations
The frequency of mutations in a given time-bin is simply performed by computing their frequency in sequences
sampled in that time bin. This leads to potential biases in estimating frequencies, that arise for two reasons:

(i) A mutation present at frequency p in the population might be observed at another frequency f # p if f is
estimated using a sub-sample of the population.

(ii) For a neutrally evolving population, the distribution of frequencies of alleles is of the form P(p) o 1/p. This
means that the amount of alleles at frequency p is lower when p is higher.
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Figure S 1. Left: For a mutation present at frequency p in the population, probability of being observed in the frequency bin
[0.1,0.2] as a function of p and for different sample sizes n. The dashed black line sketches the (non-normalized) background
distribution P,(p). Right: Expected “real” average frequency of mutations found in frequency bin [f1, f2] as a function of the
centre of the bin (f1 + f2)/2, for different sample sizes.

To illustrate (4), let us compute the probability that a mutation present at “real” frequency p in the population is
found to be in a given frequency bin [f1, f2] when p is estimated from a sample of size n. The sample consists of n
observations {z;} with 1 <14 <n, with z; = 1 if sequence sequence i of the sample bears the mutation, and z; = 0 if
not. If n is small with regard to the total population size, we can consider the x; as random variables with a binomial
distribution, meaning that P(x; = 1) = p and P(z; = 0) = 1 — p. The empirical frequency f is then estimated by
taking the average of the x; variables, that is f = (x1 + ...+ x,)/n. If those are independently sampled and n is large
enough, the probability of measuring value f is given by the Central Limit Theorem:
P, p(f) eF=P)*/2%  here 02 = w

(5)
To compute the probability that this mutation is found in a given frequency bin [f1, f2], we integrate this distribution:

f2
Pf17f2 (pv n) = den,P(x)' (6)

Function Py, r,(p,n) is shown as a function of p for a fixed interval and for different values of n in the first panel of

figure S1. Note the asymmetry of it: the variance of a binomial distribution of parameter p is small when p is close to
0 or 1, and goes through a maximum at p = 0.5. For this reason, mutations present at frequency p close to 0.5 have a
higher probability of being observed in other frequency bins. On the contrary, this is unlikely for very rare or very
frequent mutations.
We now try to estimate biases in frequency estimation due this phenomenon. Given a set of mutations that have
been measured in frequency bin [f1, f2], what is the average real frequency of these mutations? To compute this, we
need to sum Py, ¢, (p,n) over all possible real frequencies p, giving us the amount of mutations that are observed in
interval [f1, fa], and weigh this sum by the frequency value p as well as by the background distribution of frequencies
Py(p) o< 1/p. This last quantity represents the expected amount of mutations that are present at frequency p in the
population. Note that there is no divergence problem as the smallest non zero frequency is 1/N, where N is the
population size. This leads us to the following expression for the average of “real” frequencies:

1-1/N
D) (f1, form) = / o WPREERE

1-1/N
:/ dppfhfz(pvn)'
1N
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We have not made normalization explicit in these equations. It is simply achieved by dividing the above expression by
f dp Py, g, (p,n)Py(p).

In the second panel of figure S1, (p)(f1, f2,n) is plotted as a function of the centre of the interval [f1, f2] and for
different values of n. For sample sizes n > 100, the biases due to this effect are almost non existent. For smaller
samples, for instance n = 10, they are small but non negligible. However, we argue that this is not a significant problem
with respect to the main results presented in this article. First, figure S6 shows that sample sizes of the order of n = 10
are only the case for a few months in the period going from year 2000 to 2018. From 2010 and onwards, more than a
hundred sequences are available per month for most months. Secondly, even if most samples were in the n = 10 case,
deviations shown in figure S1 are small enough that results shown in figures 2 and 3 would be qualitatively unchanged.
Note that using the centre of the interval as a reference in figure S1, i.e. (f1 + f2)/2, would be correct in the case of
a very large n and a flat background distribution Py(p). For figures 2 and 3 of the main text however, the average
frequency of mutations found in an interval [f1, fo] is computed by taking the average of the observed frequencies, and
not the centre of the interval. This partially takes into account biases considered here, as the background distribution
Py(p) is then accounted for, even though it is equivalent to assuming infinite sample sizes.
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4. Cutting off the HA1 159S branch

Genotype at HA1 site 159~
oy Mo
N S

Br

2000 2002 2004 2006 2008 2010 2012 2014 2016 2018

Figure S 2. Tree used for this study, based on a random selection of 100 strains per month from year 2002 to 2018. Nodes and
branches are colored according to the amino acid found at position HA1:159. The HA1 159S mutation is visible as a thin but
long light-greened color branch, coalescing with the “trunk” around year 2013.

The analysis of the main text is in a large part based on the probability of fixation of mutations. The motivation
underlying this choice is the relatively short coalescence time of the A/H3N2 influenza population, typically around
three years. This can be seen in figure 2 of the main text, which shows the typical lifetime of frequency trajectories,
ending in fixation or loss after at most 3 years in most cases. The tree in figure S2 is another illustration of this: for
the most part of it, a “trunk” is clearly identifiable, and lineages that depart from it have a relatively short lifetime.
This is no longer the case since the year ~ 2013: two clades have been competing since then, with no definite way to
identify a trunk in the tree. The clade defined by the HA1159S mutation, colored in light green on figure S2, is one of
these two competing lineages. Because of this particular situation, the number of mutations fixating in the population
is strongly reduced, as a mutation must appear in both clades to reach a frequency of 1. This is a potential flaw in our
analysis, which concentrates on mutations fixating.

For this reason, we decided to re-run our analysis after having cut off the HA1159S clade. In other words, we remove
from the set of sequences those that carry the HA1159S mutation. Results are shown in figures , equivalent to figures 2
and 3 of the main text. It is clear that qualitative results are left unchanged when this competing clade is removed.
This can be surprising, as almost no complete fixation of an amino acid mutation has occurred since 2013. Cutting off
the HA1 159S branch should thus result in many new fixations, changing the analysis. The reason for the similarity
of results can be explained: fixation (resp. loss) of a mutation are defined here as the frequency of this mutation
being measured above 95% (resp. 5%) frequency for two months in a row. As the HA1 159S clade is rather sparsely
populated, it reaches frequencies lower than 5% two times (in 2015 and 2017), allowing mutations in the competing
clade to “fix” as defined here. Thus, removing strains carrying HA1 159S does not introduce a significant amount of
“new” fixation events.
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5. Probability of fixation in single locus model of evolution

In [18], Kimura investigates a simple model of evolution with a single locus and a population of size N. In this
framework, a mutation at this locus with fitness effect s and observed at frequency f has the following probability of
fixation:

1— efst
Priz(fls,N) = TN (8)

Expanding this formula for sIV < 1, that is in the weak selection regime, yields at the first order

sN
Equation 9 tells us two things. First, when the mutation is neutral, that is s = 0, we have Py;;(f) = f. This naturally
confirms the result obtained for a neutral model of evolution. Seconds, when sN ## 0, we can expect deviations from
the diagonal in a Py;, against f plot. The sign of these deviations is determined by the sign of s, with beneficial
mutations being found above diagonal while deleterious one are found below. The amplitude of these deviations

depends on the strength of selection sN, as well as on the frequency through the f(1 — f) term, making them larger
for f ~0.5.
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6. Mutation tables

Gene|Position|AA | Start date | End date |Shih|Luksza|Koel|Tree counts
HA1 144 D |2001-06-09|2002-02-04 | true | true |false 0
HA1| 189 N [2003-07-29(2004-05-24 |false| true |true 2
HA1| 159 F |2003-08-28|2004-05-24 |false| true |true 2
HA1| 226 I [2003-09-27{2004-09-21 | true| true |false 3
HA1| 145 N |2003-12-26|2004-11-20|false| true |true 2
HA1| 227 P [2003-05-30|2005-04-19 |false| true |false 2
HA2 32 I |2004-06-23|2005-07-18 |false| false |false 1
HA1| 193 F [2004-12-20{2006-03-15|false| true |true 1
HA2 46 D [2006-06-13{2007-05-09 |false| false |false 2
HA2| 121 K |2006-06-13|2007-06-08 | false| false |false 1
HA1 50 E |2006-09-11{2007-06-08 |false| true |false 2
HA1| 140 I [2006-11-10{2007-11-05|true| false |false 1
HA1| 173 Q [2007-07-08|2009-01-28 | true| true |false 2
HA2 32 R [2007-07-082009-01-28 |false| false |false 1
HA1| 158 N [2009-01-28|2009-07-27| true| true |true 2
HA1| 189 K [2009-01-28(2009-07-27 |false| true |true 2
HA1| 212 A [2009-03-29(2011-01-18 |false| false |false 2
HA1 45 N |2010-03-24|2013-02-06 |false| false |false 3
HA1| 223 T [2010-12-19{2013-02-06 |false| false |false 2
HA1 48 I |2011-03-19|2013-02-06 |false| false |false 1
HA1| 198 S [2011-03-19|2013-02-06 |false| false |false 1
HA1| 312 S [2009-08-26|2013-03-08 |false| false |false 3
HA1| 278 K [2011-06-17{2013-03-08 |false| true |false 1
HA1 145 S [2011-04-18|2013-04-07 |false| true |true 4
HA1 33 R |2011-06-17|2013-06-06 |false| false |false 2
HA2| 160 N [2012-07-11{2015-09-24 |false| false |false 3
HA1| 225 D |2013-08-05|2015-09-24 |false| false |false 3
HA1 3 I |2013-08-05|2016-11-17 |false| false |false 2
HA1| 159 Y |2014-02-01]2016-11-17|false| true |true 2
HA1| 160 T |2014-01-02|2017-07-15|false| true |false 2

Table S 1. The 30 trajectories that took place between year 2000 and year 2018 and resulted in fixation. Columns Shih, Luksza
and Koel respectively indicate whether the position is found in the epitopes lists in (respectively) [3], [11] and [5]. The Tree
counts column indicates the number of times the mutation corresponding to the trajectory can be found in the phylogenetic
tree. Note that a trajectory is only shown in the table if the sequenced population counts more than 10 strains at its time of
fixation. This explains that only 30 trajectories are displayed, whereas more mutations did fix in this period of time.
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Gene|Position| AA | Start date | End date |Fixation|Max. freq.
HA1| 106 A |2001-02-09|2002-02-04| lost 1.0
HA1| 144 D [2001-06-09{2002-02-04| fixed 1.0
HA1| 105 H [2003-04-30{2003-10-27| lost 1.0
HA1| 126 D ]2003-04-30{2004-05-24| lost 1.0
HA1| 140 Q [2004-01-25{2004-06-23| lost 0.31
HA1| 226 I [2003-09-27(2004-09-21| fixed 1.0
HA1| 173 E [2004-12-20|2006-03-15| lost 0.63
HA1| 142 G |2006-06-13{2007-05-09| lost 0.71
HA1| 144 D |2006-07-13|2007-05-09| lost 0.67
HA1| 128 A [2006-09-11{2007-05-09| lost 0.25
HA1| 157 S [2006-09-11|2007-05-09| lost 0.59
HA1| 140 I [2006-11-10{2007-11-05| fixed 1.0
HA1| 173 N [2007-12-05]2008-07-02| lost 0.3
HA1| 157 S [2007-12-05|2008-09-30| lost 0.31
HA1| 173 E |2006-06-13|2008-12-29| lost 0.67
HA1| 173 Q [2007-07-08|2009-01-28| fixed 0.96
HA1| 158 N [2009-01-28{2009-07-27| fixed 0.96
HA1 62 K [2009-01-28|2011-05-18| lost 0.73
HA1| 144 K [2009-01-28|2011-05-18| lost 0.75
HA1 62 V 12011-04-18{2011-09-15| lost 0.34
HA1| 157 S [2013-05-07|2015-09-24| lost 0.35
HA1| 128 A |2012-08-10|2016-11-17| lost 0.81
HA1 197 K |2015-11-23(2016-11-17| lost 0.27
HA1| 142 R [2018-05-11{2018-10-08| lost 0.38
HA1| 142 G [2012-03-13 poly 0.86
HAL| 144 | S |2013-12-03 poly 0.96
HA1| 121 K 12015-12-23 poly 0.82
HA1| 142 K 12016-05-21 poly 0.77
HA1l| 62 G |2017-03-17 poly 0.75
HA1| 128 A [2018-01-11 poly 0.56

21

Table S II. Trajectories of mutations at epitope positions in [3] (Shih et. al.) that have been observed at least once above
frequency 0.25. The Fixation column indicates whether the mutation has fixed, disappeared, or is still polymorphic as of
October 2018. The Max.freq. column indicates the maximum frequency reached by the trajectory. A maximum frequency of 1
for mutations that finally disappear is explained by trajectories reaching frequency 1 for one time bin and going back to lower
values for following ones (a frequency above 0.95 for two time bins in a row defines fixation).
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Gene|Position| AA | Start date | End date |Fixation|Max. freq.
HA1 50 G [2001-02-09|2002-02-04| lost 1.0
HA1| 144 D [2001-06-09{2002-02-04| fixed 1.0
HA1| 126 D [2003-04-30{2004-05-24| lost 1.0
HA1| 189 N |2003-07-29|2004-05-24| fixed 1.0
HA1| 159 F 12003-08-28|2004-05-24| fixed 1.0
HA1| 226 I [2003-09-27(2004-09-21| fixed 1.0
HA1| 145 N [2003-12-26{2004-11-20| fixed 1.0
HA1| 188 N 12004-07-23]2005-02-18| lost 0.36
HA1| 227 P {2003-05-30{2005-04-19| fixed 1.0
HA1| 173 E [2004-12-20|2006-03-15| lost 0.63
HA1| 193 F |2004-12-20{2006-03-15| fixed 0.97
HA1| 142 G |2006-06-13{2007-05-09| lost 0.71
HA1| 144 D [2006-07-13]2007-05-09| lost 0.67
HA1| 157 S [2006-09-11|2007-05-09| lost 0.59
HA1| 50 E [2006-09-11|2007-06-08| fixed 0.95
HA1| 173 N |2007-12-05[2008-07-02| lost 0.3
HA1| 157 S [2007-12-05|2008-09-30| lost 0.31
HA1| 173 E |2006-06-13|2008-12-29| lost 0.67
HA1| 173 Q [2007-07-08|2009-01-28| fixed 0.96
HA1| 158 N [2009-01-28{2009-07-27| fixed 0.96
HA1| 189 K |2009-01-28|2009-07-27| fixed 0.96
HA1| 213 A |2009-01-28|2010-02-22| lost 0.68
HA1| 144 K [2009-01-28{2011-05-18| lost 0.75
HA1 53 N [2009-11-24{2013-02-06| lost 0.72
HA1| 278 K [2011-06-17|2013-03-08| fixed 0.98
HA1| 145 S 2011-04-18|2013-04-07| fixed 0.99
HA1| 159 S |2013-11-03|2015-08-25| lost 0.46
HA1| 157 S [2013-05-07|2015-09-24| lost 0.35
HA1| 159 Y [2014-02-01{2016-11-17| fixed 0.97
HA1| 159 S |2015-10-24|2016-11-17| lost 0.4
HA1| 197 K [2015-11-23|2016-11-17| lost 0.27
HA1| 160 T [2014-01-02(2017-07-15| fixed 0.96
HA1| 142 R [2018-05-11{2018-10-08| lost 0.38
HA1|] 135 N [2018-06-10{2018-10-08| lost 0.38
HA1| 142 G [2012-03-13 poly 0.86
HAL| 144 | S |2013-12-03 poly 0.96
HA1| 121 K 12015-12-23 poly 0.82
HA1| 142 K 12016-05-21 poly 0.77
HA1| 131 K 12016-09-18 poly 0.77
HAL| 135 | K |2016-11-17 poly 0.47

Table S III. Same as table SII, for [11] (Luksza et. al.).
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Gene|Position| AA | Start date | End date |Fixation|Max. freq.
HA1| 189 N [2003-07-29|2004-05-24| fixed 1.0
HA1| 159 F |2003-08-28|2004-05-24| fixed 1.0
HA1 145 N |2003-12-26{2004-11-20| fixed 1.0
HA1| 193 F |2004-12-20{2006-03-15| fixed 0.97
HA1| 158 N |2009-01-28|2009-07-27| fixed 0.96
HA1| 189 K |2009-01-28|2009-07-27| fixed 0.96
HA1| 145 S |2011-04-18|2013-04-07| fixed 0.99
HA1| 159 S |2013-11-03|2015-08-25| lost 0.46
HA1| 159 Y [2014-02-01{2016-11-17| fixed 0.97
HA1| 159 S |2015-10-24|2016-11-17| lost 0.4

Table S IV. Same as table SII, for [5] (Koel et. al.).
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1063 7. Supplementary figures
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Figure S 5. Number of A/H3N2 HA sequences per year from year 1990.
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Figure S 6. Number of H3N2 HA and NA sequences per month from year 2000.
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Figure S 7. Frequency trajectories for the 9 most entropic positions in the A/H3N2 HA protein.
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Figure S 8. Equivalent to panel B of figure 1 of the main text for A/H3N2, with fo equal 0.5 in A (76 trajectories), and 0.7 in
B (63 trajectories).


https://doi.org/10.1101/2020.07.31.231100
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.31.231100; this version posted July 31, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

27

500 days 1000 days
1.0f
|- 120 days ]
0.5}
ool NN
1.0f
|- 360 days ]
0.5} -
0.0L : ) , : :
1.0f
|- 720 days ]
0.0 . . . . ‘ 0.0L : ‘ ‘ , :
0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9
Frequency of mutation Frequency of mutation

Figure S 9. Equivalent to panels B and C of figure 1 of the main text for A/HI1N1pdm influenza. 89 trajectories are shown and
participate to the mean (thick black line).
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Figure S 10. Equivalent to panel B of figure 1 of the main text for A/HI1N1pdm, with fo equal 0.5 in A (50 trajectories), and
0.7 in B (41 trajectories).
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Figure S 11. Equivalent of figure 3 of the main text for the HA gene of A/HIN1pdm influenza. Fixation probability Py, (f) as
a function of frequency. A: Mutation with higher or lower LBI values, based on their position with respect to the median LBI
value. B: Different lists of epitope positions in the HA protein. The authors and the number of positions is indicated in the
legend. C: Mutations for binary positions, i.e. positions for which we never see more than two amino acids in the same time bin.
D: Mutations that appear once or more than once in the tree for a given time bin.
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Figure S 12. Based on A/H3N2 HA and NA. A: Mutations with a higher or lower geographical spread, based on the median
value of the score used (see Methods). Note: the words local and global only reflect the position of the geographic spread of the
mutation relative to the median value computed for all mutations found at this frequency. As this median value may change
with the considered frequency bin, so does the definition of local and global mutations. B: Mutations whose trajectories are
older or more recent, based on the median age of trajectories when reaching the considered frequency f.
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Figure S 13. Based on A/H1NI1pdm HA and NA. A: Mutations with a higher or lower geographical spread, based on the median
value of the score used (see Methods). Note: the words local and global only reflect the position of the geographic spread of the
mutation relative to the median value computed for all mutations found at this frequency. As this median value may change
with the considered frequency bin, so does the definition of local and global mutations. B: Mutations whose trajectories are
older or more recent, based on the median age of trajectories when reaching the considered frequency f.
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Figure S 14. Geographic spread of mutations as a function of the time for which they have been present in the population above
a frequency of 5%. Points represent individual mutations and for a population in a given time bin. The line is the average of
dots for a given value on the z-axis. Based on data for A/H3N2 HA.
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Figure S 15. Earth mover’s distance to the future population for different predictors. A present population consists of all
A/H3N2 HA sequences sampled in a 4 months time window. Quantities are averaged over all possible “present” populations from
the year 2002. Predictors are: Global consensus: Consensus sequence of the present population. Best long-term predictor
for a structure-less neutrally evolving population. All present population: All sequences in the present population. Perfect
predictor if the population does not change at all through time. Cluster-wise consensus: Consensus sequence for each cluster
in the present population. Clusters are based on local maxima of the LBI. Sequences are assigned to a given cluster based on
their tree branch-length distance to the corresponding local maximum.
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Figure S 16. Fixation probability as a function of frequency for the simulations discussed in the main text. Top: Simulation
without antibodies. The three colored curves reflect different rate of change for the fitness landscape. Visual inspection of the
frequency trajectories indicates a typical sweep time of ~ 400 generations. Bottom: Simulation with antibodies. The different
colored curves indicate the rate at which antibodies are introduced.
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Figure S 17. Fixation probability as a function of frequency for the simulations discussed in the main text, with trajectories
stratified according to real fitness values. “High” and “low” fitness classes are defined with respect to the median value. Top:
Simulation without antibodies and with changes to the fitness landscape every dt = 10 generations. Bottom: Simulation with
antibodies, with a new antibody every dt = 10 generations.
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