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Seasonal influenza viruses repeatedly infect humans in part because they rapidly change their8

antigenic properties and evade host immune responses, necessitating frequent updates of the vaccine9

composition. Accurate predictions of strains circulating in the future could therefore improve the10

vaccine match. Here, we studied the predictability of frequency dynamics and fixation of amino11

acid substitutions. Current frequency was the strongest predictor of eventual fixation, as expected12

in neutral evolution. Other properties, such as occurrence in previously characterized epitopes or13

high Local Branching Index (LBI) had little predictive power. Parallel evolution was found to be14

moderately predictive of fixation. While the LBI had little power to predict frequency dynamics, it15

was still successful at picking strains representative of future populations. The latter is due to a16

tendency of the LBI to be high for consensus-like sequences that are closer to the future than the17

average sequence. Simulations of models of adapting populations, in contrast, show clear signals of18

predictability. This indicates that the evolution of influenza HA and NA, while driven by strong19

selection pressure to change, is poorly described by common models of directional selection such as20

travelling fitness waves.21

INTRODUCTION22

Seasonal influenza A viruses (IAV) infect about 10% of23

the global population every year, resulting in hundreds24

of thousands of deaths [1, 2]. Vaccination is the primary25

measure to reduce influenza morbidity. However, the26

surface proteins hemagglutinin (HA) and neuraminidase27

(NA) continuously accumulate mutations at a high rate,28

leading to frequent antigenic changes [2–5]. While a vac-29

cine targeting a particular strain may be efficient for some30

time, antigenic drift will sooner or later render it obsolete.31

The World Health Organization (WHO) regularly updates32

influenza vaccine recommendations to best match the cir-33

culating strains. Since developing, manufacturing, and34

distributing the vaccine takes many months, forecasting35

the evolution of influenza is of essential interest to public36

health [6, 7].37

The number of available high quality HA and NA se-38

quences has increased rapidly over the last 20 years [8, 9]39

and virus evolution and dynamics can be now be tracked40

at high temporal and spatial resolution [10]. This wealth41

of data has given rise to an active field of predicting42

influenza virus evolution [6, 7]. These models predict43

the future population of influenza viruses by estimating44

strain fitness or proxies of fitness.  Luksza and Lässig [11],45

for example, train a fitness model to capture antigenic46

drift and protein stability on patterns of epitope and47

non-epitope mutations. Other approaches by Steinbrück48

et al. [12], Neher et al. [13] predict fitness by using hemag-49

glutination inhibition (HI) data to determine possible50
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antigenic drift of clades in the genealogy of the HA pro-51

tein. Finally, Neher et al. [14] use branching patterns of52

HA phylogenies as a proxy for fitness. These branching53

patterns are summarized by the Local Branching Index54

(LBI), which was shown to be a proxy of relative fitness55

in mathematical models of rapidly adapting populations56

[14].57

The underlying assumption of all these methods is58

that (i) differences in growth rate between strains can59

be estimated from sequence or antigenic data and (ii)60

that these growth rate differences persist for long enough61

to be predictive of future success. Specific positions in62

surface proteins are of particular interest in this context.63

The surface proteins are under a strong positive selection64

and change their amino acid sequence much more rapidly65

than other IAV proteins or than expected under neutral66

evolution [4, 15]. Epitope positions, i.e., positions targeted67

by human antibodies, are expected to change particularly68

often since viruses with altered epitopes can evade existing69

immune responses [3, 5, 16]. It therefore seems plausible70

that mutations at these positions have a tendency to71

increase fitness and a higher probability of fixation [15].72

But one has to be careful to account for the fact that73

these positions are often ascertained post-hoc [3] and74

human immune responses are diverse with substantial75

inter-individual variation [17].76

In this work, we use HA and NA sequences of A/H3N277

and A/H1N1pdm influenza from year 2000 to 2019 to78

perform a retrospective analysis of frequency trajecto-79

ries of amino acid mutations. We quantify how rapidly80

mutations at different frequencies are lost or fixed and81

how rapidly they spread through the population. We82

further investigate whether any properties or statistics83

are predictive of whether a particular mutation fixes or84

not. To our surprise, we find that the predictability of85
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these trajectories is very limited: The probability that a86

mutation fixes differs little from its current frequency, as87

would be expected if fixation happened purely by chance.88

This observation holds for many different categories of89

mutations, including mutations at epitope positions. This90

weak predictability is not attributable solely to clonal91

interference and genetic linkage, as simulation of models92

including even strong interference retain clear signatures93

of predictability. Consistent with these observations, we94

show that a simple predictor uninformed by fitness, the95

consensus sequence, performs as the well as the Local96

Branching Index (LBI), the growth measure based on the97

genealogy used in [14]. This suggests that although LBI98

has predictive power, the reason for its success may not99

be related to it approximating fitness of strains.100

RESULTS101

The main underlying question asked in this work is the102

following: given a mutation X in the genome of influenza103

that we observe at a frequency f in the population at a104

given date, what can we say about the future of X? The105

trajectory of a mutation will depend on its own effect106

on fitness, the contribution of the genetic background107

on the same segment, and the effect of the remaining108

seven segments. Here, we investigate properties of broad109

categories of mutations effectively averaging over different110

genetic backgrounds to isolate the effects intrinsic to the111

mutation.112

First, we ask whether we can quantitatively predict113

the frequency of X at future times f(t). In other words,114

having observed a mutation at frequencies (f1, f2, . . . , fn)115

at dates (t1, t2, . . . , tn), what can we say about its fre-116

quency at future dates (tn+1, tn+2, . . .)? A simpler, more117

qualitative question, is to ask whether X will fix in the118

population, will disappear, or whether the site will stay119

polymorphic.120

We use amino-acid sequences of the HA and NA genes121

of A/H3N2 (since the year 2000) and A/H1N1pdm (since122

the year 2009) influenza available in GISAID [9] (see123

supplementary materials for an acknowledgment of all124

data contributors). This amounts to 44 976 HA and 36 300125

NA sequences for A/H3N2 and 45 350 HA and 40 412126

NA sequences for A/H1N1, with a minimum of 100 per127

year. These sequences are binned in non-overlapping128

intervals of one month. Each single-month time bin and129

the sequences that it contains represent a (noisy) snapshot130

of the influenza population at a given date. The number of131

sequences per time bin varies strongly both with year and132

according to the season, with earlier time bins containing133

around 10 sequences while more recent bins contain several134

hundreds (see figures S5 and S6 in SM for details).135

The central quantities that we derived from this data136

are frequency trajectories of amino acids at each position137

in the sequences. If an amino acid Xi is found at position138

i at a frequency between 5% and 95% in the population139

of a given time bin t, then the population is considered140

polymorphic at position i and at time t. This polymor-141

phism is characterized by the frequency of Xi, fXi(t), and142

also by frequencies of other amino acids at i. The series143

of values fXi(t) for contiguous time bins constitutes the144

frequency trajectory of Xi. A trajectory is terminated145

if the corresponding frequency is measured above 95%146

(resp. below 5%) for two time bins in a row, in which case147

amino acid Xi is considered as fixed (resp. absent) in the148

population. Otherwise, the trajectory is considered active.149

Examples of trajectories can be seen in figure S7 of the150

Supplement.151

In the rest of this work, we will focus on frequency152

trajectories that are starting at a zero (low) frequency,153

i.e. f(t = 0) = 0. These represent new amino acid vari-154

ants which were absent in the population at the time bin155

when the trajectory started and are currently rising in the156

population (see Methods). Such distinction in novel and157

ancestral variants is necessary to meaningfully interrogate158

predictability. Each rising trajectory of a new mutation159

implies the existence of another decreasing one at the160

same position, since frequencies of all amino acids at a161

given position must sum to one. If novel variants arise by162

selection, we expect to see a stronger signal of selection163

after conditioning on these novel variants. In classic mod-164

els of population genetics, strongly advantageous variants165

undergo rapid selective sweeps, i.e., the rapid rise and166

fixation. The sweep of a mutation can be due to its own167

fitness effect, to the genetic background or to the effect of168

the seven other segments. By considering the ensemble of169

novel variants that are rising in frequency, we effectively170

average over backgrounds, obtaining a set of mutations171

that we expect to be beneficial on average. If such sweeps172

are common in the evolution of HA and NA, the restric-173

tion to trajectories that start at low frequency should174

thus enrich for mutations that are positively selected and175

on their way to fixation.176

Predicting future frequencies177

Having observed the frequency trajectory f(t) of a178

mutation until a given date t0, how much can we say179

about the future values of f after t0? We consider the180

idealized case sketched in panel A of figure 1: given181

the trajectory of a new mutation, i.e. that started at a182

frequency of 0, and that we observe at frequency f0 at183

time t0, what is the probability P∆t(f) of observing it at184

a value f at time t0 + ∆t?185

To answer this question retrospectively, we use all fre-186

quency trajectories extracted from HA and NA sequences187

that satisfy these conditions for a given f0. The num-188

ber of trajectories is limited and the frequency estimates189

themselves are based on a finite sample and are hence im-190

precise. Therefore, we consider trajectories in an interval191

[f0 − δf, f0 + δf ] with δf = 0.05.192

For f0 = 0.3, we found 120 such trajectories in the193

case of A/H3N2 influenza, represented on the panel B194

of figure 1, where time is shifted such that t0 = 0. The195
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same analysis was performed for A/H1N1pdm, with the 89196

found trajectories displayed in figure S9. Some trajectories197

fall in the frequency bin around f0 while decreasing, even198

though they crossed that bin at an earlier time. This199

is due to the fact that some trajectories “skipped” the200

interval f0 in question on their initial rise due to sparse201

sampling. These trajectories are nevertheless rising in202

the sense that they start at frequency 0 for t → −∞.203

Removing them does not change results significantly.204

Since rapid sequence evolution of influenza HA and205

NA mediates immune evasion, one could expect that206

a significant fraction of new amino acid mutations on207

rising trajectories in figure 1 are adaptive. We could thus208

expect that most of these trajectories continue to rise after209

reaching frequency f0, at least for some time. A fraction210

of those would then sweep through the population and211

fix.212

To quantify the extent to which this preconception of213

sweeping adaptive mutations is true, we estimated the214

probability distribution P∆t(f | f0) of finding a trajectory215

at frequency f after a time ∆t given that it was observed216

at f0 at time 0. The results for different ∆t are shown in217

figure 1C. Initially, i.e. at time t0 = 0, this distribution is218

by construction peaked around f0. If a large fraction of219

the trajectories keep increasing after this time, we should220

see the “mass” of P∆t(f | f0) move to the right towards221

higher frequencies as time progresses.222

However, future distributions for ∆t > 0 do not seem223

to follow a pattern compatible with selective sweeps. The224

thick black line in Figure 1B shows the average frequency225

of all trajectories. This average makes a sharp turn at226

t = 0 and is essentially flat for t > 0 in the case of227

A/H3N2, and slightly increasing for A/H1N1pdm (see228

supplement). Hence, the fact that this average rose for229

t < 0 gives little information for t > 0, and is due to the230

conditions by which these trajectories were selected. This231

shows that sweep-like trajectories rising steadily from232

frequency 0 to 1 are not common enough to dominate the233

average trajectory.234

Consistent with the average, the frequency distribution235

of the selected trajectories broadens in time without a236

significant shift of the mean as time passes. After 60 days,237

the distribution is rather symmetrical around the initial238

f0 = 0.3 value, suggesting that the knowledge that the239

trajectories were rising is lost after two months. On a240

timescale of 60 to 120 days, the only possible prediction241

is that trajectories are likely to be found in a broad242

interval around the initial frequency f0. After one year243

the distribution becomes almost flat (excluding mutations244

that have disappeared or fixed), and the initial peak at f0245

is not visible anymore. The only information remaining246

from the initial frequency is the fraction that fixed or was247

lost (see below). This behavior is expected in neutral248

models of evolution [18] but incompatible with a dynamic249

dominated by sweeps taking over the population.250

While this observation does not rule out that signa-251

tures exist that predict future frequency dynamics, past252

dynamics alone is weakly informative.253

Prediction of fixation or loss254

Instead of predicting future frequency, let’s consider255

the long-term goal of predicting the probability that a256

mutation fixes in the population. We first estimate the257

fraction of frequency trajectories that either fix in the258

population or are lost, as well as the time it takes for259

one or the other to happen. Panels A and B of figure 2260

shows the fraction of frequency trajectories in HA and261

NA that either have fixed, were lost or remained active as262

a function of the time elapsed since they were first seen263

above 25% frequency. Most mutations are either lost or264

become fixed after 2-3 years, with very few trajectories265

remaining active after 5 years. This time scale of 2-3 years266

is consistent with the typical coalescence time observed in267

phylogenetic trees of A/H3N2 influenza [10, 19]. We also268

note that the fraction of lost trajectories increases sharply269

at small times with 40% of mutations observed above 25%270

frequency being lost within one year for A/H3N2, while271

it takes longer to fix a mutation in the whole population.272

We then examined the probability of mutations to fix273

in the population as a function of the frequency at which274

they are seen. For different values of frequency f , we275

consider all trajectories that started at a null frequency276

and are seen in the interval [f − 7.5%, f + 7.5%] at any277

given time. The probability of a mutation fixing given278

that it is seen at frequency f , Pfix(f), is then estimated279

by the fraction of those trajectories which terminate at280

a frequency larger than 95%, i.e. our fixation threshold.281

Panels C and D of figure 2 show Pfix(f) as a function282

of f for NA and HA. For both proteins, the probability283

of fixation of a new mutation at frequency f is close to284

f itself, that is Pfix(f) ' f . This result is exactly what285

is expected in a population evolving in the absence of286

selection. A mutation or trait appearing at frequency f287

is shared by f · N individuals, and the probability for288

one of them to become the ancestor of all the future289

population is f ·N/N = f . Thus, the probability of this290

mutation or trait to fix in the population is equal to its291

current frequency, a case which we will refer to as the292

neutral expectation. Panel C of figure 2 indicates that293

mutations in the surface proteins of A/H3N2 influenza294

are in good agreement with the neutral expectation, while295

those in A/H1N1pdm show only small deviations from296

it. In both cases, the probability of fixation seems to be297

mainly dictated by the current frequency f at which the298

mutation is observed.299

This dynamics is in apparent contradiction with evi-300

dence that influenza surface proteins are under strong301

selective pressure to evade human immune responses [4].302

If strong selection was present, we would expect rising303

amino acid mutations to fix at a distinctively higher fre-304

quency than the one at which they are measured. In305

an extreme case where most trajectories would be clean306

sweeps, Pfix(f) should be close to 1 for all but very small307

values of f .308

Next, we searched for features of mutations that al-309

low prediction of fixation beyond frequency by dividing310
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FIG. 1. A: Sketch of the idea behind the short term prediction of frequency trajectories. Given a mutation that we have
seen increasing in frequency and that we “catch” at frequency f0 at time t0, what can we say about the distribution of future
frequencies P∆t(f | f0)? B: All frequency trajectories of amino acid mutations in the A/H3N2 HA and NA genes that were
absent in the past, are seen around f0 = 30% frequency at time t0 = 0, and are based on more than 10 sequences at each time
point. Red curves represent mutations that will ultimately fix, blue the ones that will be lost, and black the ones for which we
do not know the final status. Dashed horizontal lines (blue and red) represent loss and fixation thresholds. The thick black line
is the average of all trajectories, counting those that fix (resp. disappear) as being at frequency 1 (resp. 0). Figure S8 shows
equivalent figures for other values of f0. C: Distribution of future frequencies P∆t(f | f0) for the trajectories shown in panel B
and for specific values of ∆t.

frequencies into categories that deviate from the diag-311

onal in panels C and D of figure 2. We first turn to312

the Local Branching Index (LBI), a quantity calculated313

for each node in a phylogenetic tree that indicates how314

dense the branching of the tree is around that node. LBI315

has previously been successfully used as a predictor of316

the future population of influenza [14], and was shown317

to be a proxy for fitness of leaves or ancestral nodes in318

mathematical models of evolution. Here, we define the319

LBI of a mutation at date t as the average LBI of strains320

that carry this mutation and that were sampled in the321

time bin corresponding to t. Panel A of figure 3 shows322

fixation probability for HA mutations with LBI in the323

top or bottom half of the distribution. Both groups have324
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FIG. 2. A: Activity of all rising frequency trajectories seen above 25% frequency for A/H3N2 HA and NA. B: Same as A for
A/H1N1. C: Probability of fixation of a mutation (amino acid or synonymous) Pfix(f) as a function of the frequency f at
which it is measured, for A/H3N2 HA and NA. Only new mutations are considered, i.e. mutations that were absent in the past.
The diagonal dashed line is the expectation from a neutrally evolving population. Colored dashed lines represent synonymous
mutations. Colored solid lines represent amino acid mutations. Error bars represent a 95% confidence interval. D: Same as C
for A/H1N1.

identical probability of fixation, suggesting that LBI car-325

ries very little information on the probability of fixation326

of a mutation.327

Next, we focused on previously reported antigenic sites328

in the A/H3N2 HA protein, referred to as epitope posi-329

tions. Mutations at these position might mediate immune330

escape and are therefore likely under strong selection331

and show sweep-like behavior. We used four lists of rele-332

vant epitope positions from different sources comprising333

from 7 to 129 positions in the sequence of the HA1 pro-334

tein [3, 5, 11, 16]. Panel Fig. 3B shows fixation probability335

as a function of frequency for the four lists of epitopes.336

Only mutations at the 7 epitope sites reported in [5] have337

higher chances of fixation than expected by chance. No338

clear difference is found for the lists by  Luksza and Lässig339

[11], Wolf et al. [16], while positions from Shih et al. [3]340

show lower chances of fixation. One should also note that341

many of these positions were determined post-hoc and342

might be enriched for positions that experienced rapid343

substitutions before the publication of the respective stud-344

ies.345

Two ways of categorising mutations, however, suggest346

some power to predict fixation. In panel Fig. 3C, we split347

trajectories into those occurring at binary positions where348

only two amino acid variants co-circulate and non-binary349

positions with more than two variants. Novel variants350

at non-binary positions, i.e. ones for which competition351

between three amino acids or more has occurred at least352

once, have a higher chance of fixation. In panel D, we353

separated mutations that appear more than once or only354

once in the reconstructed tree (see methods), and found355

that the former fix more often. Panels C and D show356

that it is possible to gain some information on the chance357

of fixation of a particular mutation, as was done in panel358
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B. However, the predictive power remains small, with359

the “top” curves in panels C&D being very close to the360

diagonal.361

We conduct the same analysis on A/H1N1pdm362

influenza, with results shown in figure S11. Results are363

qualitatively similar to those obtained for A/H3N2, with364

LBI giving little information and mutations at non-binary365

positions having a higher chance of fixation. Panel366

D differs between figures 3 and S11, with convergent367

evolution giving less information on fixation in the latter368

case. However, this could be due to the shorter time369

period over which A/H1N1pdm evolved, resulting in a370

shorter tree and less possibilities of convergent evolution.371

Indeed, error bars for mutations appearing multiple times372

in D of figure S11 are relatively large, indicating a lower373

amount of trajectories.374

375

Since influenza is seasonal in temperate regions, geo-376

graphic spread and persistence might be predictive of the377

success of mutations. We quantify geographic spread of378

a mutation by the entropy of its frequency distribution379

across regions (see methods) and its persistence by the380

age of the trajectory by the time it reaches frequency f .381

Figures S12 and S13 show the fixation probabilities as382

a function of observed frequency for mutations classified383

according to these scores. The two scores also allow a384

quantitatively moderate distinction between mutations:385

for a given frequency f , mutations found in many regions386

or those that are older (in the sense that they have taken387

more time to reach frequency f) tend to fix more often388

than geographically localized mutations or more recent389

ones, but the effect is small. These two scores are in390

fact correlated, with older trajectories representing mu-391

tations that are more geographically spread, as can be392

seen in figure S14 of SM. However, it is important to note393

that sampling biases and heterogeneity across time and394

space (see supplementary figures S5 and S6) make answer-395

ing such specific hypothesis challenging. Frequency of396

mutations might thus be amplified through different sam-397

pling biases, making the connection between geographic398

spread, seasonality and mutation frequency non-trivial to399

measure.400

Simulations of models of adaptation401

The results shown in figures 2 and 3 are difficult to402

reconcile with the idea that seasonal influenza virus evo-403

lution is driven by rapid directed positive selection. One404

possible explanation for the weakly predictable behaviour405

of mutations (beyond their current frequency) might be406

tight genetic linkage inside each segment and strong com-407

petition between different adaptive mutations [15, 20].408

We design a simple model of population evolution based409

on the ffpopsim simulation software to test this hypoth-410

esis [21]. The model represents a population of binary411

genomes of length L = 200 evolving in a fitness landscape412

that changes through time.413

First, we use an additive fitness function, with sequence414

(x1 . . . xL) having a fitness
∑
i hixi. This implies that for415

a given genome position i, the trait xi = 1 is favored if416

hi > 0 whereas xi = −1 is favored if hi < 0. All hi’s417

have the same magnitude, and only their signs matter.418

Every ∆t generations, we randomly choose a position i419

and flip the sign of hi, effectively changing the fitness420

landscape. Individuals in the population now have the421

opportunity to make an adaptive mutation at site i giving422

them a fitness advantage 2|h|. A “flip” at position i of the423

fitness landscape will decrease fitness of all individuals424

that carried the adapted variant at position i and increases425

the fitness of those that happened to carry a deleterious426

variant.427

To increase competition between genomes, we designed428

a second model that includes epistasis. Once again, the429

baseline fitness of a genome is an additive function, this430

time with values of hi that do not change through time.431

In addition, we added a component that mimics immune432

selection. Every ∆t generation, we now introduce “an-433

tibodies” that target a specific sub-sequence of length434

l = 5, noted (xabi1 , . . . , x
ab
il

). The positions (i1 . . . il) are435

chosen at random, while the targeted sub-sequence is the436

dominant state at each position. Genomes that include437

the exact sub-sequence targeted by the antibody suffer a438

strong fitness penalty. However, a single mutation away439

from that sub-sequence removes this penalty completely,440

resulting in a fitness landscape with very strong epista-441

sis. This has the effect of triggering a strong competition442

between adaptive mutations: for a given antibody, l = 5443

possible mutations are now adaptive, but combinations444

of these mutations do not bring any fitness advantage.445

Having simulated populations in these two fitness land-446

scapes, we perform the same analysis of frequency trajec-447

tories as for the real influenza data. Figure S16 of the SM448

shows the Pfix(f) as a function of f for the two models449

and for different values of the inverse rate of change ∆t450

of the fitness landscape. For all models, this curve devi-451

ates significantly from the diagonal. This is most evident452

for the case of a simple additive fitness landscape that453

changes rarely ∆t = 1000: rising mutations almost always454

fix in the population, with Pfix(f) ' 1 for any f larger455

than a few percent. This is corroborated by visual inspec-456

tion of the trajectories, which shows that evolution in this457

regime is driven by regular selective sweeps that take a458

typical time of ∼ 400 generations. In other regimes, with459

smaller ∆t or with strong epistatic competition, Pfix(f)460

is reduced and closer to the diagonal. However, it takes461

an extremely fast changing fitness landscape to push Pfix462

close to the diagonal: with ∆t = 10, that is about 40463

changes to the fitness landscape in the time it would take464

a selective sweep to go from 0% to fixation, Pfix(f) differs465

from f in a way that is comparable to what is observed466

in A/H1N1pdm influenza.467

These models are not meant to be accurate models of in-468

fluenza viruses evolution. But figure S16 does show is that469

the patterns observed in influenza virus evolution are only470

reproduced by models of adapting populations when push-471
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FIG. 3. Fixation probability Pfix(f) as a function of frequency, for A/H3N2 influenza. Figure S11 shows the same analysis for
A/H1N1. A: HA mutations with higher or lower LBI values, based on their position with respect to the median LBI value. B:
Different lists of epitope positions in the HA protein. The authors and the number of positions is indicated in the legend. C:
HA and NA mutations for binary positions, i.e. positions for which we never see more than two amino acids in the same time
bin. D: HA and NA mutations that appear once or more than once in the tree for a given time bin.

ing clonal competition to extreme values. We conclude472

that the pattern in figure 2 may not be a straightforward473

manifestation of genetic linkage and clonal interference,474

but that some more intricate interplay of epidemiology,475

seasonality, human immunity and chance gives rise to476

the weakly predictable yet strongly selected evolutionary477

dynamics of IAVs.478

Why do predictions work?479

The statistics of frequency trajectories seem to be in480

conflict with the notion that influenza evolution is pre-481

dictable. Likewise, the LBI, a quantity that correlates482

with fitness in mathematical models and is used to predict483

future influenza populations [14], does not seem to contain484

any information on whether a specific mutation is going485

to fix or not, see figure 3. To resolve this conundrum, we486

first note that the criterion by which predictive power for487

influenza was measured in [14] was the distance between488

the strain with the highest LBI and the future popula-489

tion, not the ability of the LBI to predict dynamics. The490

distance was compared to the average distance between491

the present and future population, as well as the post-hoc492

optimal representative and the future.493

To quantify the ability of the LBI and other measures494

to pick good representatives of the future, we construct495

a large tree of HA sequences with 100 sequences in non-496

overlapping time bins of 4 months from year 2003 to 2019497

(a total of 4402 as some 4 month intervals contain less498

than 100 sequences). Each time bin is considered as a499

snapshot of the A/H3N2 influenza population and we will500

refer to sequences in time bin t as the population of the501

present. From this present population, we predict future502

populations in time bin t+ ∆t, using only sequences in503

time bin t and before.504

To assess the ability of the LBI to pick a close represen-505

tative of the future, we compute the LBI of each node of506

one time bin in the tree using only the leaves that belong507

to that time bin. The top panel in figure 4 shows the508

hamming distance of the strain with the highest LBI to509

future populations at different ∆t along with the same510
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distance for a randomly chosen strain. The figure shows511

the distance averaged over all possible values of t for ∆t512

between 0 and 32 months, giving us an average efficiency513

of a predictor over 16 years of influenza evolution.514

The strain with the highest LBI is consistently closer515

to the future than the average strain by about 1-2 amino516

acids, while the overall distance increases linearly due to517

the continuous evolution of the population. We hence518

reproduce previous results showing that the LBI picks519

closer than average representatives [14]. To investigate520

whether this apparent success is due to the ability of the521

LBI to predict fitness or not, we explored a different pre-522

dictor: the amino acid consensus sequence of the present523

population (see Methods for a definition of the consensus524

sequence). The choice is motivated by the fact that it525

can be shown to be the best possible long term predictor526

for a neutrally evolving population in terms of Hamming527

distance (see SM section 1). Figure 4 shows that the con-528

sensus sequence is in fact a equally good or even slightly529

better representative of the future than the sequence with530

highest LBI (note that the consensus sequence does not531

necessarily exist in the population).532

This near equivalence of the consensus and the strain533

with highest LBI can be explained as follows: The LBI534

tends to be high for nodes in a tree that are close to535

the root of a dense and large clade. A typical sample536

of influenza HA sequences fall into a small number of537

recognizable clades, and the strains with maximal LBI538

will often be close to the root of the largest of those clades.539

This root of the largest clade will often be close to the540

consensus of the whole population, explaining the similar541

distance patterns. To test that hypothesis, we measure the542

hamming distance from the sequence of the top LBI strain543

to the consensus sequence for populations of all time bins.544

Panel B of figure 4 shows these distances, scaled with545

respect to an average strain (details in caption). It clearly546

shows that the top-LBI strain and the consensus sequence547

are indeed quite similar: out of 48 time bins, only once548

is the sequence of the top-LBI strain farther away from549

the consensus than the average sequence is. Moreover,550

the sequence of the top-LBI strain exactly matches the551

consensus in 19 cases.552

DISCUSSION553

Predicting the trajectory of a mutation requires (i)554

significant fitness difference between genomes carrying555

different variants at the site and (ii) a selection pressure556

that changes slowly over time. Under such conditions, it is557

expected that frequency trajectories will show a persistent558

behavior which would make them predictable for some559

time. However, we could find only limited evidence for560

such persistent behavior in the past 19 years of IAV561

evolution. This lead us to conclude that (i) influenza562

virus evolution is qualitatively different from models of563

rapidly adapting population (despite clear evidence for564

frequent positive selection), and (ii) previous methods to565

predict influenza evolution work primarily because they566

pick strains that represent the future well, not because567

they predict future dynamics.568

The primary focus in this work was the investigation569

of frequency trajectories of new amino acid mutations. In570

the short term, we found that on average the direction of571

trajectory does not persist for longer than a few months.572

Indeed, the average trajectory in figure 1 takes a sharp573

turn when going from t < 0 to t > 0, instead of showing574

“inertia”. This suggests that selective sweeps are not575

representative of typical trajectories.576

On a longer timescale, we investigated the probability577

that a novel mutation observed at frequency f fixes. In578

neutral models of evolution this probability equals f , while579

it should be higher or lower than f for mutations with580

a beneficial or deleterious effect on fitness, respectively.581

However, in the case of influenza, this probability differs582

little from f , making current frequency the best predictor583

for fixation. In figure 3, we split trajectories into groups584

for which we expected Pfix to deviate from f . Many of585

these splits, such as high/low LBI or epitope/non-epitope586

positions, did not result in an increased predictability,587

while others gave limited information on fixation. Despite588

the lack of predictability of mutation frequency trajecto-589

ries, influenza surface proteins show strong signatures of590

selection [4, 15].591

Methods for predicting the future evolution of influenza592

either construct explicit fitness models [11, 22], use his-593

torical patterns of evolution [11, 23], phenotypic assays594

[13, 24], or dynamic or phylogenetic patterns [14, 25]. The595

goal of these methods is to pick strains that are good596

representatives of future populations and could serve as597

vaccine candidates [6].598

The low power to predict frequency dynamics or fixation599

naturally triggers the question why the above methods600

have been found to work. Picking representatives of the601

future and predicting frequency dynamics are distinct602

objectives and success at the former (as compared to ran-603

dom picks) is not necessarily inconsistent with a lack of604

predictable dynamics. In fact, [22] reports that the rate605

at which the frequency of a strain changes is often a poor606

predictor – consistent with our observations here. But607

despite the fact that future frequencies are not predicted608

by the LBI, the strain with the highest LBI in the popu-609

lation is a better predictor of the future population than610

a randomly picked one. While the LBI was shown to be a611

correlate of relative fitness and be predictive of fixation in612

mathematical models of evolution [14], it does not seem613

to be predict influenza evolution because it measures fit-614

ness from genealogical structure. Instead, we believe it615

picks closer than average strains simply because it has the616

tendency to be maximal at the base of large and dense617

clades. These basal genotypes are closer to the future618

populations than the current tips of the tree and hence619

a better predictor on average. The consensus sequence620

of all present strains performs slightly but consistently621

better than picking the strain with the highest LBI. The622

consensus sequence is the best possible predictor for a623
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FIG. 4. A: Average Hamming distance of the sequences of different predictors to HA sequences of future influenza populations,
themselves averaged over all “present” populations from year 2003 to 2019. Predictors are: a randomly picked sequence in
the present population; the sequence of the strain with the highest LBI in the present population; the consensus sequence of
the present population. B: Scaled Hamming distance between the sequence of the top LBI strain and the consensus sequence
for populations at different dates. The scaling is such that for each date, the Hamming distance between a strain from the
population and the consensus is on average 1. The strain with the highest LBI is almost always closer to the consensus sequence
than the average strain.

neutrally evolving population, and does not attempt to624

model fitness in any way.625

At the same time, influenza virus phylogenies show clear626

deviations from those expected from the neutral Kingman627

coalescent, similar to those expected under Bolthausen-628

Sznitman coalescent (BSC) processes that are generated629

by traveling wave models of rapid evolution [26, 27]. The630

correspondence between the BSC and traveling wave mod-631

els comes from transient exponential amplification of fit632

strains before these fitness differences are wiped out by633

further mutation. This exponential amplification gen-634

erates long-tailed effective offspring distributions which635

in turn can leads to genealogies described by the BSC636

[26, 28]. Many processes other than selection, includ-637

ing seasonality and spatio-temporal heterogeneity, can638

generate effective long tailed offspring distributions even639

in absence of bona-fide fitness differences, which might640

explain ladder-like non-Kingman phylogenetic trees.641

A recent preprint proposed that influenza virus evo-642

lution is primarily limited by an asynchrony between643

population level selection and generation of new variants644

within infected hosts [29]. Along these lines, it is possi-645

ble that the A/H3N2 population readily responds once646

population level selection is high enough by giving rise647

to essentially equivalent variants. Furthermore, selection648

might cause the rapid rise of a novel variant to macro-649

scopic frequencies (observable in a global sample) but650

its benefit rapidly “expires” because competing variants651

catch up and/or it mediates immune escape only to a652

small fraction of the population. These considerations653

might explain the disconnect between models of rapid654

adaptation and the frequency dynamics observed in in-655

fluenza virus populations.656
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METHODS657

Data and code availability658

The sequences used are obtained from the GISAID659

database [9]. Strain names and accession numbers are660

given as tables in two supplementary files. Outliers661

strains listed at https://github.com/PierreBarrat/662

FluPredictibility/src/config were removed.663

The code used to generate the figures presented here664

is available at https://github.com/PierreBarrat/665

FluPredictibility.666

Frequency trajectories667

For a set of sequences in a given time bin, we com-668

pute frequencies of amino acids at each position by simple669

counting. We make the choice of not applying any smooth-670

ing method in an attempt to be as close to the data and671

“model-less” as possible. This is especially important for672

the short term prediction of frequency trajectories, as es-673

timations of the “persistence time” of a trajectory might674

be biased by a smoothing method.675

We compute frequency trajectories based on the frequen-676

cies of amino acids. A trajectory begins at time t if an677

amino acid is seen under the lower frequency threshold678

of 5% (resp. above the higher threshold of 95%) for the679

two time bins preceding t, and above this lower threshold680

(resp. below the higher threshold) for time bin t. It ends681

in the reciprocal situation, that is when the frequency682

is measured below the lower threshold (resp. above the683

higher threshold) for two time bins in a row.684

In order to avoid estimates of frequencies that are too685

noisy, we only keep trajectories that are based on a pop-686

ulation of at least 10 sequences for each time bin. As687

said in the Results section, we also restrict the analysis to688

trajectories that begin at a 0 frequency, in part to avoid689

double counting. We find a total of 460 such trajectories.690

However, only 106 reach a frequency of 20%, on which691

figure 2 is based for instance.692

Note that the fact that we use samples of relatively small693

sizes – at least for some time bins – leads to biases in694

the estimation of frequencies. We show in Supplementary695

Material that these biases are generally small and do not696

induce any qualitative changes to results presented here.697

Local Branching Index698

LBI was introduced in [14] as an approximation of fit-699

ness in populations evolving under persistent selective700

pressure that is fully based on a phylogenetic tree. It701

relies on the intuition that the tree below high-fitness702

individuals will show dense branching events, whereas703

absence of branching is a sign of low-fitness individuals.704

Quantitatively, the LBI λi(τ) of a node i is the integral705

of all of the tree’s branch length around i, with an expo-706

nentially decreasing weight e−t/τ with t being the branch707

length. When considering a time binned population, the708

LBI is computed once for each time bin by considering709

only the leaves of the tree that belong to the time bin.710

This means that only branches that ultimately lead to711

a leaf that belongs to the time bin are considered in the712

integration.713

τ is the time scale for which the tree is informative of714

the fitness of a particular node. Here, we use a value of715

τ equal to a tenth of TC ' 6 years, the coalescence time716

for influenza A/H3N2 strains, converted to units of tree717

branch length through the average nucleotide substitution718

rate (' 4 · 10−3 substitutions per site per year for HA).719

We have observed that given our method to predict the720

future from present populations corresponding to time721

bins of 4 months, changing the value of τ has little effect722

on the pick of the top LBI strain. By retrospectively723

optimizing its value, it is possible to reduce the average724

distance to the population 2 years ahead by ∼ 0.25 amino725

acids on average, making the LBI method almost as good726

as the consensus on figure 4.727

Measuring the geographical spread of a mutation728

For a mutation X we define its regional distribution
using the numbers nr(X) that represent the number of
sequences sampled in region r that carry X. Regional
weights are then defined as

wr(X) =
nr(X)∑
r nr(X)

.

We can then measure the geographical spread G(X) of X
by using the Shannon entropy of the probability distribu-
tion wr(X):

G(X) =
∑
r

wr(X) log(wr(X)).

G(X) is a positive quantity that is larger when X is729

equally present in many regions, and equal to zero when730

X is concentrated in only one region.731

Region used are the ones defined in the Nextstrain732

tool [30]. Those are North America, South America,733

Europe, China, Oceania, Southeast Asia, Japan & Korea,734

South Asia, West Asia, and Africa.735

Assigning a fitness to trajectories736

Consensus sequence737

Given a set of N sequences (σ1, . . . , σN ) based on an
alphabet A (e.g. A has 20 elements for amino acids, 4
for nucleotides), we can define a profile distribution pi(a)
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by the following expression:

pi(a) =
N∑
n=1

δσni ,a

where i is a position in the sequence, σni the character
appearing at position i in sequence σn, a a character of
the alphabet and δ the Kronecker delta. The profile pi(a)
simply represents the fraction of sequences which have
character a at position i.
We then simply define the consensus sequence σcons such
that

σconsi = argmaxa pi(a).

In other words, the consensus sequence is the one that738

has the dominant character of the initial set of sequences739

at each position.740

Earth Mover’s Distance741

In order to measure the distance of several predictor
sequences to the future population, we rely on the Earth
Mover’s Distance (EMD), a metric commonly applied
in machine learning to compare collections of pixels or
words [31, 32]. Here, we apply it to compute the dis-
tance between the sequences of two populations, noted as

X = {(xn, pn)} and Y = {(ym, qm)} with n ∈ {1 . . . N}
and m ∈ {1 . . .M}. In this notation, xn and ym are
sequences, and pn and qm are the frequencies at which
these sequences are found in their respective populations.
For convenience, we also define dmn = H(xn, ym) as the
Hamming distance between pairs of sequences in the two
populations.
We now introduce the following functional

F (w) =
∑
n,m

dnmwnm,

with w = {wnm} being a matrix of positive weights. The
EMD between the two populations X and Y is now defined
as the minimum value of function F under the conditions

N∑
n=1

wnm = qm,
M∑
m=1

wnm = pn, and wnm ≥ 0

Intuitively, the weight wnm tells us how much of sequence742

xn is “moved” to sequence ym. The functional F sums743

all of these moves and attributes them a cost equal to744

the Hamming distance dnm. The conditions on weights745

in w ensure that all the weight pn of xn is “moved” to746

elements in Y and vice versa.747

The minimization is easily performed by standard linear748

optimization libraries. Here, we use the Julia library749

JuMP [33].750
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SUPPLEMENTARY MATERIAL953

1. Consensus sequence as a predictor for neutrally evolving populations954

We consider the case of a neutrally evolving and structure-less population, such as the one in the Wright-Fisher955

model of evolution [34]. At an initial time t = 0, the population consists of N individuals with genomes (σ1 . . . σN ) of956

length L (not necessarily distinct).957

We make two hypotheses about this population. We first suppose that no mutations occur during the evolution of this958

population. This may seem surprising and is of course not true in the case of influenza. This assumption is however in959

line with the fact that the object of this work is to predict the outcome of already existing mutations in the influenza960

population. The prediction of mutations that we have not yet seen is not in its scope. Thus, assuming that no new961

mutations take place can be seen as a simple way to model the fact that we have no information about such events.962

The second assumption is that the population evolves in a completely neutral way, meaning that the average number963

of descendants of each genome σn is the same. Let us now consider the population after it has evolved for a long time964

t� T where T is the typical coalescence time (for the Wright-Fisher model, T = 2N). At this point, all individuals in965

the future population will descend from a unique individual n0 in the t = 0 population. Our two hypotheses now allow966

us to make two statements. First, since no new mutations are allowed, the population at t� T will be clonal, with all967

individuals having genome σn0 . Second, since the evolution is neutral and does not favour any genome in particular,968

the probability that σn0 is equal to a given genome σ is 1/N . In other words, the probability that a genome at t = 0969

ultimately becomes the ancestor of all the future population is equal to its frequency in the t = 0 population.970

971

We now try to find the genome σ that best predicts the future population on the long run, that is for t� T . Here,972

we take best to mean that the predictor minimizes H(σ, σn0) where H is the Hamming distance defined by973

H(σa, σb) =
L∑
i=1

(1− δσai ,σbi ), (1)

with σi being the character appearing at position i of genome σ and δ the Kronecker delta. Since we do not know n0,974

we have to average over all its possible values. σ must thus minimize the following quantity:975

〈H(σ, σn0)〉n0 =
N∑
n=1

H(σ, σn)

=
L∑
i=1

N∑
n=1

(1− δσi,σni )

(2)

by using the definition of the Hamming distance. We now assume that characters at each positions of the genomes can
be indexed by an integer a running from 1 to q. For instance, if these were amino acid sequences, we could index the
20 amino acids by a running from 1 to q = 20. We rewrite the Kronecker delta in the previous expression using this
indexation:

δσi,σni =

q∑
a=1

δσi,aδσni ,a.

We also introduce the profile frequencies pi(a) of the population at time t = 0:976

pi(a) =

N∑
n=1

δσni ,a. (3)
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pi(a) represents the frequency at which character a appears at position i in genomes of the initial population.977

Equation 2 now becomes978

〈H(σ, σn0)〉n0
=

L∑
i=1

N∑
n=1

(
1−

q∑
a=1

δσi,aδσni ,a

)

=
N∑
i=1

(
1−

q∑
a=1

δσi,api(a)

)

=
L∑
i=1

(1− pi(σi))

(4)

This means that the genome σ = (σ1 . . . σL) which best predicts the future population according to our definition is979

the one that minimizes the quantity (1− pi(σi)) for all positions i. This obviously implies that each σi must be chosen980

as to maximize pi(a), that is σi must be the character that appears the most frequently at position i. Thus, σ must be981

the consensus sequence of the initial population.982

2. Predictor based on the local LBI maxima983

In figure 15, we use several sequences as a predictor of the future population. Distance between two sets of sequences,
i.e. the predictor sequences and the ones of the future population, is defined as the Earth Mover’s Distance (EMD).
Here, we show that for a population evolving under the same hypotheses as in section 1, the best multiple sequence
long term predictor is again the consensus sequence with weight 1.
Let the predictor be a set of weighted sequences {(sα, qα)}. We again use the fact that in the long term, a unique
sequence σn0 from the present will be the ancestor of the entire population. We want to compute the EMD from the
predictor to σn0 , that is the EMD between the sets X = {(sα, qα)} and Y = {σn0 , 1}. Applying the definition of the
Methods section, it follows that the weights w are in this case equal to the qαs. By averaging over all values of n0, we
now obtain

〈EMD ({(sα, qα)})〉n0
=

N∑
n=1

∑
α

H(sα, σn) · qα.

By the same calculation procedure as in the previous section, this expression simplifies to

〈EMD ({(sα, qα)})〉n0
=

L∑
i=1

(
1−

q∑
a=1

pi(a)qi(a)

)
,

where the profile of the present population pi(a) has already been defined, and qi(a) stands for the profile of the
predictor, that is

qi(a) =
∑
α

δsαi ,aqα.

To minimize this distance, we find a profile qi(a) that maximizes the quantity
∑
α δsαi ,aqα for each position i. It is984

clear that this is done by assigning a value qi(a) = 1 if a maximizes pi(a), and qi(a) = 0 otherwise. Thus, the profile of985

the predictor must be that of the consensus sequence, which is only possible if the predictor becomes {σcons, 1}.986

3. Biases in frequency estimations987

The frequency of mutations in a given time-bin is simply performed by computing their frequency in sequences988

sampled in that time bin. This leads to potential biases in estimating frequencies, that arise for two reasons:989

(i) A mutation present at frequency p in the population might be observed at another frequency f 6= p if f is990

estimated using a sub-sample of the population.991

(ii) For a neutrally evolving population, the distribution of frequencies of alleles is of the form P (p) ∝ 1/p. This992

means that the amount of alleles at frequency p is lower when p is higher.993
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Figure S 1. Left: For a mutation present at frequency p in the population, probability of being observed in the frequency bin
[0.1, 0.2] as a function of p and for different sample sizes n. The dashed black line sketches the (non-normalized) background
distribution Pb(p). Right: Expected “real” average frequency of mutations found in frequency bin [f1, f2] as a function of the
centre of the bin (f1 + f2)/2, for different sample sizes.

To illustrate (i), let us compute the probability that a mutation present at “real” frequency p in the population is994

found to be in a given frequency bin [f1, f2] when p is estimated from a sample of size n. The sample consists of n995

observations {xi} with 1 ≤ i ≤ n, with xi = 1 if sequence sequence i of the sample bears the mutation, and xi = 0 if996

not. If n is small with regard to the total population size, we can consider the xi as random variables with a binomial997

distribution, meaning that P (xi = 1) = p and P (xi = 0) = 1 − p. The empirical frequency f is then estimated by998

taking the average of the xi variables, that is f = (x1 + . . .+ xn)/n. If those are independently sampled and n is large999

enough, the probability of measuring value f is given by the Central Limit Theorem:1000

Pn,p(f) ∝ e(f−p)2/2σ2

, where σ2 =
p(1− p)

n
. (5)

To compute the probability that this mutation is found in a given frequency bin [f1, f2], we integrate this distribution:1001

Pf1,f2(p, n) =

∫ f2

f1

dxPn,p(x). (6)

10021003

Function Pf1,f2(p, n) is shown as a function of p for a fixed interval and for different values of n in the first panel of1004

figure S1. Note the asymmetry of it: the variance of a binomial distribution of parameter p is small when p is close to1005

0 or 1, and goes through a maximum at p = 0.5. For this reason, mutations present at frequency p close to 0.5 have a1006

higher probability of being observed in other frequency bins. On the contrary, this is unlikely for very rare or very1007

frequent mutations.1008

We now try to estimate biases in frequency estimation due this phenomenon. Given a set of mutations that have1009

been measured in frequency bin [f1, f2], what is the average real frequency of these mutations? To compute this, we1010

need to sum Pf1,f2(p, n) over all possible real frequencies p, giving us the amount of mutations that are observed in1011

interval [f1, f2], and weigh this sum by the frequency value p as well as by the background distribution of frequencies1012

Pb(p) ∝ 1/p. This last quantity represents the expected amount of mutations that are present at frequency p in the1013

population. Note that there is no divergence problem as the smallest non zero frequency is 1/N , where N is the1014

population size. This leads us to the following expression for the average of “real” frequencies:1015

〈p〉(f1, f2, n) =

∫ 1−1/N

1/N

dpPf1,f2(p, n)Pb(p) p

=

∫ 1−1/N

1/N

dpPf1,f2(p, n).

(7)
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We have not made normalization explicit in these equations. It is simply achieved by dividing the above expression by1016 ∫
dpPf1,f2(p, n)Pb(p).1017

In the second panel of figure S1, 〈p〉(f1, f2, n) is plotted as a function of the centre of the interval [f1, f2] and for1018

different values of n. For sample sizes n > 100, the biases due to this effect are almost non existent. For smaller1019

samples, for instance n = 10, they are small but non negligible. However, we argue that this is not a significant problem1020

with respect to the main results presented in this article. First, figure S6 shows that sample sizes of the order of n = 101021

are only the case for a few months in the period going from year 2000 to 2018. From 2010 and onwards, more than a1022

hundred sequences are available per month for most months. Secondly, even if most samples were in the n = 10 case,1023

deviations shown in figure S1 are small enough that results shown in figures 2 and 3 would be qualitatively unchanged.1024

Note that using the centre of the interval as a reference in figure S1, i.e. (f1 + f2)/2, would be correct in the case of1025

a very large n and a flat background distribution Pb(p). For figures 2 and 3 of the main text however, the average1026

frequency of mutations found in an interval [f1, f2] is computed by taking the average of the observed frequencies, and1027

not the centre of the interval. This partially takes into account biases considered here, as the background distribution1028

Pb(p) is then accounted for, even though it is equivalent to assuming infinite sample sizes.1029
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4. Cutting off the HA1 159S branch1030

Figure S 2. Tree used for this study, based on a random selection of 100 strains per month from year 2002 to 2018. Nodes and
branches are colored according to the amino acid found at position HA1:159. The HA1 159S mutation is visible as a thin but
long light-greened color branch, coalescing with the “trunk” around year 2013.

The analysis of the main text is in a large part based on the probability of fixation of mutations. The motivation1031

underlying this choice is the relatively short coalescence time of the A/H3N2 influenza population, typically around1032

three years. This can be seen in figure 2 of the main text, which shows the typical lifetime of frequency trajectories,1033

ending in fixation or loss after at most 3 years in most cases. The tree in figure S2 is another illustration of this: for1034

the most part of it, a “trunk” is clearly identifiable, and lineages that depart from it have a relatively short lifetime.1035

This is no longer the case since the year ∼ 2013: two clades have been competing since then, with no definite way to1036

identify a trunk in the tree. The clade defined by the HA1 159S mutation, colored in light green on figure S2, is one of1037

these two competing lineages. Because of this particular situation, the number of mutations fixating in the population1038

is strongly reduced, as a mutation must appear in both clades to reach a frequency of 1. This is a potential flaw in our1039

analysis, which concentrates on mutations fixating.1040

For this reason, we decided to re-run our analysis after having cut off the HA1 159S clade. In other words, we remove1041

from the set of sequences those that carry the HA1 159S mutation. Results are shown in figures , equivalent to figures 21042

and 3 of the main text. It is clear that qualitative results are left unchanged when this competing clade is removed.1043

This can be surprising, as almost no complete fixation of an amino acid mutation has occurred since 2013. Cutting off1044

the HA1 159S branch should thus result in many new fixations, changing the analysis. The reason for the similarity1045

of results can be explained: fixation (resp. loss) of a mutation are defined here as the frequency of this mutation1046

being measured above 95% (resp. 5%) frequency for two months in a row. As the HA1 159S clade is rather sparsely1047

populated, it reaches frequencies lower than 5% two times (in 2015 and 2017), allowing mutations in the competing1048

clade to “fix” as defined here. Thus, removing strains carrying HA1 159S does not introduce a significant amount of1049

“new” fixation events.1050
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Figure S 3. Equivalent to figure 2 of the main text, but with strains carrying the HA1 159S mutation removed.

Figure S 4. Equivalent to figure 3 of the main text, but with strains carrying the HA1 159S mutation removed.
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5. Probability of fixation in single locus model of evolution1051

In [18], Kimura investigates a simple model of evolution with a single locus and a population of size N . In this1052

framework, a mutation at this locus with fitness effect s and observed at frequency f has the following probability of1053

fixation:1054

Pfix(f |s,N) =
1− e−sNf

1− e−sN
. (8)

Expanding this formula for sN � 1, that is in the weak selection regime, yields at the first order1055

Pfix(f |s,N) = f + f(1− f)
sN

2
. (9)

Equation 9 tells us two things. First, when the mutation is neutral, that is s = 0, we have Pfix(f) = f . This naturally1056

confirms the result obtained for a neutral model of evolution. Seconds, when sN 6= 0, we can expect deviations from1057

the diagonal in a Pfix against f plot. The sign of these deviations is determined by the sign of s, with beneficial1058

mutations being found above diagonal while deleterious one are found below. The amplitude of these deviations1059

depends on the strength of selection sN , as well as on the frequency through the f(1− f) term, making them larger1060

for f ∼ 0.5.1061
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6. Mutation tables1062

Gene Position AA Start date End date Shih Luksza Koel Tree counts

HA1 144 D 2001-06-09 2002-02-04 true true false 0

HA1 189 N 2003-07-29 2004-05-24 false true true 2

HA1 159 F 2003-08-28 2004-05-24 false true true 2

HA1 226 I 2003-09-27 2004-09-21 true true false 3

HA1 145 N 2003-12-26 2004-11-20 false true true 2

HA1 227 P 2003-05-30 2005-04-19 false true false 2

HA2 32 I 2004-06-23 2005-07-18 false false false 1

HA1 193 F 2004-12-20 2006-03-15 false true true 1

HA2 46 D 2006-06-13 2007-05-09 false false false 2

HA2 121 K 2006-06-13 2007-06-08 false false false 1

HA1 50 E 2006-09-11 2007-06-08 false true false 2

HA1 140 I 2006-11-10 2007-11-05 true false false 1

HA1 173 Q 2007-07-08 2009-01-28 true true false 2

HA2 32 R 2007-07-08 2009-01-28 false false false 1

HA1 158 N 2009-01-28 2009-07-27 true true true 2

HA1 189 K 2009-01-28 2009-07-27 false true true 2

HA1 212 A 2009-03-29 2011-01-18 false false false 2

HA1 45 N 2010-03-24 2013-02-06 false false false 3

HA1 223 I 2010-12-19 2013-02-06 false false false 2

HA1 48 I 2011-03-19 2013-02-06 false false false 1

HA1 198 S 2011-03-19 2013-02-06 false false false 1

HA1 312 S 2009-08-26 2013-03-08 false false false 3

HA1 278 K 2011-06-17 2013-03-08 false true false 1

HA1 145 S 2011-04-18 2013-04-07 false true true 4

HA1 33 R 2011-06-17 2013-06-06 false false false 2

HA2 160 N 2012-07-11 2015-09-24 false false false 3

HA1 225 D 2013-08-05 2015-09-24 false false false 3

HA1 3 I 2013-08-05 2016-11-17 false false false 2

HA1 159 Y 2014-02-01 2016-11-17 false true true 2

HA1 160 T 2014-01-02 2017-07-15 false true false 2

Table S I. The 30 trajectories that took place between year 2000 and year 2018 and resulted in fixation. Columns Shih, Luksza
and Koel respectively indicate whether the position is found in the epitopes lists in (respectively) [3], [11] and [5]. The Tree

counts column indicates the number of times the mutation corresponding to the trajectory can be found in the phylogenetic
tree. Note that a trajectory is only shown in the table if the sequenced population counts more than 10 strains at its time of
fixation. This explains that only 30 trajectories are displayed, whereas more mutations did fix in this period of time.
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Gene Position AA Start date End date Fixation Max. freq.

HA1 106 A 2001-02-09 2002-02-04 lost 1.0

HA1 144 D 2001-06-09 2002-02-04 fixed 1.0

HA1 105 H 2003-04-30 2003-10-27 lost 1.0

HA1 126 D 2003-04-30 2004-05-24 lost 1.0

HA1 140 Q 2004-01-25 2004-06-23 lost 0.31

HA1 226 I 2003-09-27 2004-09-21 fixed 1.0

HA1 173 E 2004-12-20 2006-03-15 lost 0.63

HA1 142 G 2006-06-13 2007-05-09 lost 0.71

HA1 144 D 2006-07-13 2007-05-09 lost 0.67

HA1 128 A 2006-09-11 2007-05-09 lost 0.25

HA1 157 S 2006-09-11 2007-05-09 lost 0.59

HA1 140 I 2006-11-10 2007-11-05 fixed 1.0

HA1 173 N 2007-12-05 2008-07-02 lost 0.3

HA1 157 S 2007-12-05 2008-09-30 lost 0.31

HA1 173 E 2006-06-13 2008-12-29 lost 0.67

HA1 173 Q 2007-07-08 2009-01-28 fixed 0.96

HA1 158 N 2009-01-28 2009-07-27 fixed 0.96

HA1 62 K 2009-01-28 2011-05-18 lost 0.73

HA1 144 K 2009-01-28 2011-05-18 lost 0.75

HA1 62 V 2011-04-18 2011-09-15 lost 0.34

HA1 157 S 2013-05-07 2015-09-24 lost 0.35

HA1 128 A 2012-08-10 2016-11-17 lost 0.81

HA1 197 K 2015-11-23 2016-11-17 lost 0.27

HA1 142 R 2018-05-11 2018-10-08 lost 0.38

HA1 142 G 2012-03-13 poly 0.86

HA1 144 S 2013-12-03 poly 0.96

HA1 121 K 2015-12-23 poly 0.82

HA1 142 K 2016-05-21 poly 0.77

HA1 62 G 2017-03-17 poly 0.75

HA1 128 A 2018-01-11 poly 0.56

Table S II. Trajectories of mutations at epitope positions in [3] (Shih et. al.) that have been observed at least once above
frequency 0.25. The Fixation column indicates whether the mutation has fixed, disappeared, or is still polymorphic as of
October 2018. The Max.freq. column indicates the maximum frequency reached by the trajectory. A maximum frequency of 1
for mutations that finally disappear is explained by trajectories reaching frequency 1 for one time bin and going back to lower
values for following ones (a frequency above 0.95 for two time bins in a row defines fixation).
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Gene Position AA Start date End date Fixation Max. freq.

HA1 50 G 2001-02-09 2002-02-04 lost 1.0

HA1 144 D 2001-06-09 2002-02-04 fixed 1.0

HA1 126 D 2003-04-30 2004-05-24 lost 1.0

HA1 189 N 2003-07-29 2004-05-24 fixed 1.0

HA1 159 F 2003-08-28 2004-05-24 fixed 1.0

HA1 226 I 2003-09-27 2004-09-21 fixed 1.0

HA1 145 N 2003-12-26 2004-11-20 fixed 1.0

HA1 188 N 2004-07-23 2005-02-18 lost 0.36

HA1 227 P 2003-05-30 2005-04-19 fixed 1.0

HA1 173 E 2004-12-20 2006-03-15 lost 0.63

HA1 193 F 2004-12-20 2006-03-15 fixed 0.97

HA1 142 G 2006-06-13 2007-05-09 lost 0.71

HA1 144 D 2006-07-13 2007-05-09 lost 0.67

HA1 157 S 2006-09-11 2007-05-09 lost 0.59

HA1 50 E 2006-09-11 2007-06-08 fixed 0.95

HA1 173 N 2007-12-05 2008-07-02 lost 0.3

HA1 157 S 2007-12-05 2008-09-30 lost 0.31

HA1 173 E 2006-06-13 2008-12-29 lost 0.67

HA1 173 Q 2007-07-08 2009-01-28 fixed 0.96

HA1 158 N 2009-01-28 2009-07-27 fixed 0.96

HA1 189 K 2009-01-28 2009-07-27 fixed 0.96

HA1 213 A 2009-01-28 2010-02-22 lost 0.68

HA1 144 K 2009-01-28 2011-05-18 lost 0.75

HA1 53 N 2009-11-24 2013-02-06 lost 0.72

HA1 278 K 2011-06-17 2013-03-08 fixed 0.98

HA1 145 S 2011-04-18 2013-04-07 fixed 0.99

HA1 159 S 2013-11-03 2015-08-25 lost 0.46

HA1 157 S 2013-05-07 2015-09-24 lost 0.35

HA1 159 Y 2014-02-01 2016-11-17 fixed 0.97

HA1 159 S 2015-10-24 2016-11-17 lost 0.4

HA1 197 K 2015-11-23 2016-11-17 lost 0.27

HA1 160 T 2014-01-02 2017-07-15 fixed 0.96

HA1 142 R 2018-05-11 2018-10-08 lost 0.38

HA1 135 N 2018-06-10 2018-10-08 lost 0.38

HA1 142 G 2012-03-13 poly 0.86

HA1 144 S 2013-12-03 poly 0.96

HA1 121 K 2015-12-23 poly 0.82

HA1 142 K 2016-05-21 poly 0.77

HA1 131 K 2016-09-18 poly 0.77

HA1 135 K 2016-11-17 poly 0.47

Table S III. Same as table SII, for [11] (Luksza et. al.).
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Gene Position AA Start date End date Fixation Max. freq.

HA1 189 N 2003-07-29 2004-05-24 fixed 1.0

HA1 159 F 2003-08-28 2004-05-24 fixed 1.0

HA1 145 N 2003-12-26 2004-11-20 fixed 1.0

HA1 193 F 2004-12-20 2006-03-15 fixed 0.97

HA1 158 N 2009-01-28 2009-07-27 fixed 0.96

HA1 189 K 2009-01-28 2009-07-27 fixed 0.96

HA1 145 S 2011-04-18 2013-04-07 fixed 0.99

HA1 159 S 2013-11-03 2015-08-25 lost 0.46

HA1 159 Y 2014-02-01 2016-11-17 fixed 0.97

HA1 159 S 2015-10-24 2016-11-17 lost 0.4

Table S IV. Same as table SII, for [5] (Koel et. al.).
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7. Supplementary figures1063

Figure S 5. Number of A/H3N2 HA sequences per year from year 1990.
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Figure S 6. Number of H3N2 HA and NA sequences per month from year 2000.
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Figure S 7. Frequency trajectories for the 9 most entropic positions in the A/H3N2 HA protein.

Figure S 8. Equivalent to panel B of figure 1 of the main text for A/H3N2, with f0 equal 0.5 in A (76 trajectories), and 0.7 in
B (63 trajectories).
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Figure S 9. Equivalent to panels B and C of figure 1 of the main text for A/H1N1pdm influenza. 89 trajectories are shown and
participate to the mean (thick black line).
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Figure S 10. Equivalent to panel B of figure 1 of the main text for A/H1N1pdm, with f0 equal 0.5 in A (50 trajectories), and
0.7 in B (41 trajectories).
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Figure S 11. Equivalent of figure 3 of the main text for the HA gene of A/H1N1pdm influenza. Fixation probability Pfix(f) as
a function of frequency. A: Mutation with higher or lower LBI values, based on their position with respect to the median LBI
value. B: Different lists of epitope positions in the HA protein. The authors and the number of positions is indicated in the
legend. C: Mutations for binary positions, i.e. positions for which we never see more than two amino acids in the same time bin.
D: Mutations that appear once or more than once in the tree for a given time bin.
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Figure S 12. Based on A/H3N2 HA and NA. A: Mutations with a higher or lower geographical spread, based on the median
value of the score used (see Methods). Note: the words local and global only reflect the position of the geographic spread of the
mutation relative to the median value computed for all mutations found at this frequency. As this median value may change
with the considered frequency bin, so does the definition of local and global mutations. B: Mutations whose trajectories are
older or more recent, based on the median age of trajectories when reaching the considered frequency f .

Figure S 13. Based on A/H1N1pdm HA and NA. A: Mutations with a higher or lower geographical spread, based on the median
value of the score used (see Methods). Note: the words local and global only reflect the position of the geographic spread of the
mutation relative to the median value computed for all mutations found at this frequency. As this median value may change
with the considered frequency bin, so does the definition of local and global mutations. B: Mutations whose trajectories are
older or more recent, based on the median age of trajectories when reaching the considered frequency f .
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Figure S 14. Geographic spread of mutations as a function of the time for which they have been present in the population above
a frequency of 5%. Points represent individual mutations and for a population in a given time bin. The line is the average of
dots for a given value on the x-axis. Based on data for A/H3N2 HA.
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Figure S 15. Earth mover’s distance to the future population for different predictors. A present population consists of all
A/H3N2 HA sequences sampled in a 4 months time window. Quantities are averaged over all possible “present” populations from
the year 2002. Predictors are: Global consensus: Consensus sequence of the present population. Best long-term predictor
for a structure-less neutrally evolving population. All present population: All sequences in the present population. Perfect
predictor if the population does not change at all through time. Cluster-wise consensus: Consensus sequence for each cluster
in the present population. Clusters are based on local maxima of the LBI. Sequences are assigned to a given cluster based on
their tree branch-length distance to the corresponding local maximum.
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Figure S 16. Fixation probability as a function of frequency for the simulations discussed in the main text. Top: Simulation
without antibodies. The three colored curves reflect different rate of change for the fitness landscape. Visual inspection of the
frequency trajectories indicates a typical sweep time of ∼ 400 generations. Bottom: Simulation with antibodies. The different
colored curves indicate the rate at which antibodies are introduced.
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Figure S 17. Fixation probability as a function of frequency for the simulations discussed in the main text, with trajectories
stratified according to real fitness values. “High” and “low” fitness classes are defined with respect to the median value. Top:
Simulation without antibodies and with changes to the fitness landscape every dt = 10 generations. Bottom: Simulation with
antibodies, with a new antibody every dt = 10 generations.
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