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Abstract

Motivation: Influenza viruses are persistently threatening public health, causing annual epidemics
and sporadic pandemics. The evolution of influenza viruses remains to be the main obstacle in the
effectiveness of antiviral treatments due to rapid mutations. Previous work has been investigated to reveal
the determinants of virulence of the influenza A virus. To further facilitate flu surveillance, explicit detection
of influenza virulence is crucial to protect public health from potential future pandemics.
Results: In this paper, we propose a weighted ensemble convolutional neural network for the virulence
prediction of influenza A viruses named VirPreNet that uses all 8 segments. Firstly, mouse lethal dose 50
is exerted to label the virulence of infections into two classes, namely avirulent and virulent. A numerical
representation of amino acids named ProtVec is applied to the 8-segments in a distributed manner to
encode the biological sequences. After splittings and embeddings of influenza strains, the ensemble
convolutional neural network is constructed as the base model on the influenza dataset of each segment,
which serves as the VirPreNet’s main part. Followed by a linear layer, the initial predictive outcomes
are integrated and assigned with different weights for the final prediction. The experimental results on
the collected influenza dataset indicate that VirPreNet achieves state-of-the-art performance combining
ProtVec with our proposed architecture. It outperforms baseline methods on the independent testing data.
Moreover, our proposed model reveals the importance of PB2 and HA segments on the virulence prediction.
We believe that our model may provide new insights into the investigation of influenza virulence.
Contact: yinr0002@e.ntu.edu.sg
Availability and Implementation: Codes and data to generate the VirPreNet are publicly available at
https://github.com/Rayin-saber/VirPreNet

1 Introduction

Influenza A virus can easily infect the respiratory and cause a highly
contagious disease. It consists of 8 single-stranded, negative-sense viral
RNA segments that encode at least 12 different proteins (Bouvier and
Palese, 2008). The viruses possess mutability and high frequency of genetic
reassortment (Vijaykrishna et al., 2015; Cheung et al., 2015; Yin et al.,
2020a). Hence, they will have a great ability to be virulent and cause high
mortality and morbidity when infecting humans. In addition to seasonal
influenza epidemics, when millions of people are infected worldwide and

up to 500,000 people are killed every year according to the World Health
Organization (WHO) (Organization et al., 2009), influenza viruses are
responsible for severe outbreaks in history, e.g., the 1918 H1N1 Spanish
Flu, the 1957 H2N2 Asian Flu, the 1968 H3N2 Hong Kong Flu, the 1977
H1N1 Russia Flu and the most recent 2009 Swine-origin Flu (Saunders-
Hastings and Krewski, 2016). The pandemic strains are still circulating
among humans and continuously lead to recurrent epidemics. It is shown
that several other subtypes have also infected humans, including H5N1,
H5N6, H6N1, H7N2, H7N7, H7N9, H9N2 and H10N8 (Poovorawan et al.,
2013; Su et al., 2015). Among them, H5N1 and H7N9 have raised a major
public concern due to their ability to infect humans with a high fatality
rate (Ma et al., 2018). Overall, the detection of virulence level is critical
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to estimate the lethality of influenza viruses and facilitate flu surveillance
for better precautions.

Current systems of flu surveillance by WHO rely on empirical
determination of antigenicity through biological experiments such as
hemagglutination inhibition (HI) assays (Ndifon et al., 2009) and micro-
neutralization assays (Wu et al., 2016). However, these methods are
time-consuming and labour-intensive to determine the antigenicity of
influenza viruses. Virulence measures the degree of pathogenicity and
can reflect the capability of the virus to cause disease. It is a more accurate
correlation to the viral lethality compared with antigenicity and provides
insights for a potential epidemic or pandemic. Mutations and reassortment
in the influenza viruses will cause antigenic drift and shift that makes the
protein unrecognizable to pre-existing host immunity (Zhou et al., 2018;
Yin et al., 2020b). Previous studies mainly focused on the variations in viral
genes that influence virulence. For example, the mutations in the region
130-loop, 190-helix and 220-loop during the adaptation of influenza A
virus in mice, which surround the receptor-binding site in the HA protein,
have increased its virulence (Imai and Kawaoka, 2012). The E627K and
D701N in protein PB2 have also been considered as biological markers for
the virulence of influenza viruses in mice (Kamal et al., 2014). In addition,
Yin et al. identified several critical virulent sites that are associated with
past pandemic strains (Yin et al., 2017). Sander at al. selected mutant
A/H5N1 viruses, indicating Q222L and G224S changed the receptor
binding of H2 and H3 avian influenza binding specificity to alpha (2,6)
linked sialic acid, which contributed to the outbreak of 1957 and 1968
pandemics (Zhang et al., 2013). The dual mutation S224P and N383D
in protein PA caused the increase of polymerase activity and has been
regarded as a hallmark for natural adaptation of H1N1 and H5N1 viruses
to mammals (Song et al., 2015). Chinh et al. found Mutation R289K-
induced conformational in H7N9 suggests potential adaptions of the virus
itself for future drug-resistance (Su et al., 2013). Apart from the mutations
in proteins HA, PB2 and PA, amino acid substitutions at 223 and 275 in NA
protein (de Vries et al., 2012; LeGoff et al., 2012) and 92 in NS1 protein
(Seo et al., 2002) have also made an effect with enhanced virulence in
mammalian hosts (Yamada et al., 2010). These studies demonstrated that
the amino acid substitutions on different viral proteins could make an
impact on the degree of virulence.

With increasingly available biological sequences and advancement of
computing capacity, it is highly desired to develop computational methods
for rapidly and effectively detecting viral virulence or its associated factors.
The following list is by no means exhaustive but a small sample of
previous approaches that explore virulence detection. Garg and Gupta
illustrated a bacterial virulent protein prediction method through a bi-
layer cascade support vector machine (Garg and Gupta, 2008). Zheng
et al. showed a novel network-based for identifying the virulence factors
in the proteomes based on the protein-protein interaction networks (Zheng
et al., 2012). Moreover, Ivan et al. developed a small benchmark dataset for
the influenza A virus and explored rule-based approaches for classifying
the virulent strains (Ivan and Kwoh, 2019). Of these approaches, it
has demonstrated the feasibility of utilizing computational methods in
exploring viral virulence. The recent development of deep learning enables
enormous progress of predictive tasks in various fields.

In this article, we propose a weighted ensemble CNN named VirPreNet
that incorporates 8 different influenza segments to predict the virulence
of influenza A viruses. Specifically, we introduce ProtVec (Asgari and
Mofrad, 2015), a continuous distributed representation of amino acids, that
encodes influenza strains into numerical vectors. We combine this vector-
based space representation with a deep learning architecture, i.e. ResNeXt
(Xie et al., 2017) as the base model, which adopts the strategy of repeating
layers of ResNet for the virulence prediction on the single-segmented

dataset. The base model trained on the data of each segment is integrated
through a linear layer for the final prediction. It is shown that VirPreNet
can not only adapt to a variety of networks independently but also learn
different weights for the importance of base model on distinct influenza
segments. We conduct experiments on the collected influenza dataset. It is
empirically indicated that VirPreNet can improve the prediction accuracy
using all 8 segments. Compared with the baseline methods, our proposed
model achieves better or comparable performance on virulence prediction.
To the best of our knowledge, this is the first time that attempts to apply deep
learning techniques for virulence prediction using ensemble CNN. It also
assigns the learned weights on base models, outlining the importance of
different proteins of influenza viruses. The encouraging predictive results
suggest that our method can be potentially used for flu surveillance to
estimate the lethality of the novel emerging influenza strains.

2 Materials and Methods

2.1 Definition of virulence

The definition of virulence is generally regarded as the capability of a
pathogen or microbe to infect or damage a host (Thrall and Burdon, 2003).
More specifically in animal systems, it refers to the degree of damage
caused by a microbe to its host (Pirofski and Casadevall, 2012). In this
work, we only focus on the virulence of the influenza A virus. As far as we
know, virulence has not been clearly defined with a rigorous mathematical
definition. Here we leverage the mouse lethal dose (MLD) 50 (da Costa
et al., 2015), the time series of weight loss or percentage of survival, to
measure the virulence of infections. Hence, the degree of virulence is
categorized into two classes, namely avirulent and virulent, which are
labeled as “0" and “1", respectively. If the MLD50 is greater than 10E6.0
(regardless of its unit), we consider it as avirulent. Otherwise, it is regarded
as virulent. Besides, if the virulence level of infection cannot be determined
from the upper or lower bound of MLD50, we follow RULE 1 to 6 in (Ivan
and Kwoh, 2019) to classify the remaining samples.

2.2 Data collection and processing

The datasets contain sequence data and virulence information of influenza
A virus infections. We collect virulence information from previous
publications and experiments (Ivan and Kwoh, 2019). The MLD 50
information is recorded in each infection with specific influenza A virus
strain and mouse strain. If the information that does not contains MLD50
value, but the time series of weight loss or percentage of survival of infected
mice per infection dose could be inferred from the relevant figures, the
lower or upper bound of MLD50 values are also used to estimate the
virulence label. The sequence data in the literature information consisted
of all segments downloaded from Influenza Virus Resource (IVR) (Sayers
et al., 2012). If a genomic segment of a particular virus is incomplete,
basic local alignment search tool (BLAST) (Altschul et al., 1990) would be
applied to search the top virus whose genomes are available to extrapolate
the incomplete genome. Besides, the reassortant strains are reconstructed
using relevant viral segments. Finally, it is ended up with 489 records
of influenza A virus information with corresponding complete genome
strains.

To process the collected influenza strains from different subtypes, multiple
alignment using fast Fourier transform (MAFFT) (Katoh and Standley,
2013)) is performed for each segment along with their target virulence
class. These sequences are comprised of the alignments of all influenza
proteins. The H3 and N2 numbering system (Burke and Smith, 2014) is
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Fig. 1. The overview of the proposed framework VirPreNet. The input genome data is split and embedded based on ProtVec. The influenza data of each segment is fed to the base ResNeXt
model. Each head outputs the outcome of each class is the correct one, followed by a linear layer to determine the final label.

utilized to label the position in the alignments of HA and NA, respectively.
Apart from the 20 common amino acids that are encoded by the codons
of the universal genetic code directly, there exist several ambiguous
amino acids in some of the strains. These amino acids where chemical
or crystallographic analysis of a peptide or protein can not conclusively
determine the identity of a residue (Thrall and Burdon, 2003). They
are also adopted to summarize conserved protein sequence motifs. The
abbreviation of amino acids to indicate the sets of similar residues contains
‘B’ (‘D’, ‘N’), ‘Z’ (‘E’, ‘Q’), ‘J’ (‘I’, ‘L’) and ‘X’ (all amino acids), where
the letters in the bracket are the potential amino acids representing the
ambiguous residues. We randomly replace these four ambiguous amino
acids with substitutions by the biological embedding for the feature space
construction.

2.3 The VirPreNet framework

Fig. 1 shows an overview of VirPreNet. Briefly, we first split the raw
sequence proteins into subsequences with overlapped 3-grams, which are
embedded based on ProtVec (Asgari and Mofrad, 2015), a continuous
distributed representation of biological sequences. The embedded vectors
of each influenza segment are respectively fed into base model ResNeXt
that aggregates a set of transformations with the same topology to
independently predict virulence label. A linear layer is added that
incorporates all the predictive results from the previous layer for the final
prediction. The details of each step will be described in the following
subsections.

2.3.1 Feature space

The introduction of distributed representation has been successfully
applied in natural language processing by mapping the words or sentences
into real-value vectors. In bioinformatics tasks, it is critical to express

the biological information with a discrete model or a vector because
sequence data is not directly applicable to the existing machine learning
approaches (Chou, 2015). A recent distributed representation ProtVec
has been proposed for bioinformatics applications. Specifically, a 3-
grams (sequence of three amino acids) is represented in the size of a
100-dimension vector to encode proteins for protein family classification
(Asgari and Mofrad, 2015), which suggests state-of-the-art performance.
To convert the influenza protein sequence into feature sets that can be
managed by neural networks, we leverage ProtVec that can encode proteins
through distributed representation for the construction of the proposed
model.
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Fig. 2. The splittings of influenza sequences after multiple sequence alignment. Each
sequence is represented by 582 lists of 3-grams.
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To preserve the sequence information, the protein sequences of each
segment are split into shifted overlapping residues in the window of 3
shown in Fig. 2. We take the HA segment as an example that each HA
protein is 584 in length after alignment and is represented by 582 lists of
3-grams. Hence, each HA protein sequence is embedded in a 582*100
dimensional space based on ProtVec, where a 3-gram is denoted by a 100-
dimension numerical vector. If a subsequence contains ‘-’ at any position,
the ‘unknown’ vector will be assigned to represent the 3-grams. Similarly,
the sequences of other influenza proteins are converted into (N -2)*100
dimensional vector that N stands for the length of distinct proteins.

2.3.2 CNN architecture

Convolutional neural network (CNN) has been successfully applied to
a variety of fields for learning patterns from massive data, including
image classification (Krizhevsky et al., 2012), action recognition (Wang
et al., 2016a), protein secondary structure prediction (Wang et al., 2016b)
and speech recognition (Huang et al., 2015). Ensemble learning has
demonstrated its utility by generating multiple versions of a predictor
network and using them to make aggregated predictions. The first
revolutionary work using ensemble CNN was in computer vision for
image classification tasks over the largest ImageNet database (Deng et al.,
2009; Krizhevsky et al., 2012). After that, several other CNN architectures
were proposed including VGG16, GoogleNet and ResNet (Simonyan and
Zisserman, 2014; Szegedy et al., 2015; He et al., 2016), which exhibited
very exciting performance in various problems. Besides, Chaib et al.
improved regular VGG networks by fusing the output of the last two fully
connected layers (Chaib et al., 2017). Roy et al. proposed a fused CNN
for texture classification by merging the last representation layer of widely
adapted AlexNet and VGG16 (Roy et al., 2020).

In this work, we leverage ResNeXt as the base model which demonstrates
to achieve better performance than some similar CNN structures such as
VGG and ResNet for virulence prediction on single segment dataset. It
adopts highly modularized design following ResNets that consists of a
stack of residual blocks and these blocks are subject to two rules inspired
by ResNets with the same topology (Xie et al., 2017). The simplest
neurons in artificial neural networks perform inner product and the output
is the summation of wi times xi. This can be recast as a combination
of splitting, transformation and aggregating. The inner product can be
represented as a form of aggregating transformation

∑D
i=1 wixi, where

X = [x1, x2, ..., xD] is a D-channel input vector to the neuron andwi is
a filter’s weight for i-th channel. The elementary transformation (wi, xi)
can be replaced with a more generic function after the analysis of simple
neurons. Formally, the aggregated transformation is presented as:

F (X) =
C∑

i=1

τi(X) (1)

where τi(x) can be an arbitrary function, C is the size of the set of
transformations to be aggregated that is referred to cardinality. It is
demonstrated that the accuracy can be gained more efficiently by increasing
the cardinality than by going deeper or wider (Xie et al., 2017).

Fig. 3 shows a typical building block of ResNeXt. It is very similar
to the Inception module (Szegedy et al., 2015) that they both follow
the split-transform-merge paradigm, except in this variant, the outputs
of different paths are merged by adding them together, while they are
depth-concatenated in Inception model. In Eqn(1), a hyper-parameter
called cardinality is introduced, which is the number of independent paths
denoted as C to provide a new way of adjusting the capacity of the
model. Compared to other structures such as Inception, the architecture
of ResNeXt is easier to adapt to new datasets, as it has a simple paradigm

and only one-hyperparameter to be adjusted. In addition, the aggregated
transformation can be further served as the residue function formulated
below, where y is the output.

Y = X +

C∑
i=1

τi(X) (2)

2.3.3 Weighted ensemble CNN

To enhance the stability for the prediction of influenza virulence, a linear
layer is introduced to combine the predictive results from all heads of the
base ResNeXt model. Each head produces the prediction of virulence
labels based on a single segment that partially suggests the degree of
virulence. Assume ya is the predictive results from base model of
VirPreNet, where a ∈ S{HA, NA, NP, PA, PB1, PB2, NS1, M1}. The
final prediction can be formulated as:

Yfinal =
S∑
a

waya (3)

where wi is the learned weight on the base model of segment a and
Yfinal is the final predictive outcome. Different weights will be assigned
to the predictive results of the base ensemble model through the linear
layer. By integrating the predictive results from all segments using base
ensemble models, we can evaluate the predictions to find those that
agree by decreasing the weight of inconsistent results to obtain a more
reliable matching value. It has the ability to train on various datasets and
concatenate their predictions to a final result that would help to achieve
higher accuracy and capability for predictive tasks.

2.4 Experimental design

To evaluate the effectiveness of the proposed model, we test our model
on the collected dataset with the MLD50-based definition of virulence.
The experimental results indicate that VirPreNet obtains better predictive
performance than the compared methods. Moreover, VirPreNet can also
display the learned weights of base models built upon each segment
for the final prediction. We will describe the experimental settings and
provide a detailed performance comparison between the proposed model
and baseline approaches.
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Fig. 3. Aggregated residual transformation (Xie et al., 2017). A typical block of ResNeXt
with cardinality = 32.
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2.4.1 Baseline approaches

Three types of baselines are leveraged for influenza virulence prediction
comparison. The first baseline directly applies three rule-based methods
(Ivan and Kwoh, 2019) to detect the virulence of influenza A viruses.
The second baseline is to use traditional machine learning approaches
including logistic regression (LR), random forest (RF), neural network
(NN) and K-nearest neighbor (KNN) for the predictive tasks. The third
type of baseline comprises several CNN architectures including VGG-16,
ResNet-34 and ResNeXt-50 for the comparison with VirPreNet using the
same feature space. For all CNN-based models, the architecture is similar
to the proposed model, but without a weighted mechanism using all 8
segments.

2.4.2 Implementation

All the approaches are implemented with Rweka (Hornik et al., 2009),
Scikit-learn (Pedregosa et al., 2011) and PyTorch (Paszke et al., 2017). The
collected data is randomly divided into training and independent testing
set in a ratio of 0.8:0.2. The 5-fold cross validation is applied in the training
process while the testing set is used for validation on all approaches. We
implement three rule-based methods for virulence prediction that are the
same in (Ivan and Kwoh, 2019). For traditional machine learning methods,
the parameters for these models are set by default. For all CNN-based
models, we apply stochastic gradient descent with a minimum batch size
of 4 for optimization. The learning rate is 0.001 and we set the size of filter
window 10 with 130 filter maps. The L1 regularization and drop-out (rate
= 0.5) strategy are carried out with 100 training epochs. The predictive
performance is evaluated by accuracy, precision, recall and F-score for
comparing the performance of all the models in virulence prediction.

3 Results and Discussion

In this experiment, we have proposed a model to learn distributed
representation of amino acids from the influenza dataset. ResNeXt (Xie
et al., 2017) is leveraged as our base model to build the VirPreNet
framework. We first examine the effect of using different optimizers
including Adaptive Moment Estimation (Adam) (Kingma and Ba, 2014),
Adadelta (Zeiler, 2012), Adaptive Gradient Algorithm (AdaGrad) (Ruder,
2016), Root Mean Square Propagation (RMSProp) (Tieleman and Hinton,
2014) and Stochastic Gradient Descent (SGD) (Bottou, 2010) on our
model. Next, we describe the ability of the ensemble CNN model on
the virulence prediction over traditional approaches by exerting ProtVec.
Finally, the comparative performance between VirPreNet and other
individual segment-based ensemble CNN models is presented.

3.1 Optimizers ablation

Fig. 4 shows the predictive accuracy versus epochs with five different
optimizers on the influenza dataset of the HA segment using the base
model. The model is reinitialized after each round of optimization to
provide a fair comparison between different optimizers. Overall, it can
be observed that the model achieves a more stable result with over
0.65 in accuracy using the SGD optimizer. Though Adagrad optimizer
indicates comparative prediction performance, it presents fierce fluctuation
of predictive accuracy. The model obtains a more robust performance with
Adadelta optimizer, whereas the average accuracy is lower than on the
SGD optimizer. Similar patterns can be found when modeling on other
single segment-based data (Supplementary Materials S1). Therefore, we

have decided to choose SGD, an optimizer with superior performance to
create our final model.
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Fig. 4. The validation accuracy on virulence prediction of influenza viruses using different
optimizers on dataset of HA segment.

3.2 Comparative performance between ensemble CNN
and traditional approaches on segment-based dataset

We examine the performance of using three types of baseline methods
for virulence prediction on individual protein dataset. Table 1 shows the
predictive results on HA dataset. It is shown that traditional machine
learning classifiers outperform the rule-based methods on ProtVec-based
features in terms of most measures. Moreover, deep learning-based models
obtain competitive results compared with traditional machine learning
approaches. ResNeXt-50 achieves the highest performance that is 0.676,
0.719 and 0.814 in accuracy, precision and F-score, respectively. They
are 10.0%, 7.2% and 11.8% higher than the logistic regression model,
which exhibits the best results among all other baselines. Interestingly, the
VGG-16 model presents much better recall value over other approaches,
this probably VGG-16 architecture is more sensitive to the true positive
samples. The prediction performance using influenza datasets of other
segments can be found in Supplementary Material S2. We only show the
comparison between traditional machine learning approaches and deep
learning-based models, since the rule-based methods perform worst among

Table 1. Comparative performance between base model of VirPreNet and three
types of baselines on HA segment dataset for virulence prediction.

Model Accuracy Presicion Recall F-score

Rule-Based
OneR 0.495 0.502 0.496 0.499
JRIP 0.467 0.472 0.466 0.468
PART 0.553 0.562 0.557 0.559

Traditional
Machine
Learning

RF 0.566 0.645 0.717 0.679
LR 0.576 0.647 0.758 0.696

KNN 0.523 0.617 0.650 0.627
NN 0.539 0.636 0.667 0.644

Deep
Learning

VGG-16 0.645 0.645 1.000 0.784
ResNet-34 0.666 0.674 0.936 0.783

ResNeXt-50 0.676 0.719 0.938 0.814
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all the baselines. The results further demonstrate the advantage of ensemble
CNN models on the virulence prediction of the influenza virus, specifically
the ResNeXt-50 architecture, which will be chosen as our base model to
create the proposed framework.

3.3 Comparative performance between VirPreNet and
ensemble base model

In statistical prediction, independent testing is often utilized to examine
the capability of the predictor in practical application. To demonstrate
the effectiveness of our proposed model, we compared VirPreNet with
the single segment-based ResNeXt model on the prediction of influenza
virulence. The 5-fold cross validation is leveraged in the training process,
while the independent testing data is used to evaluate the ability of
our model to predict new sample data. The results are averaged over
10 random trials and the details are shown in Table 2. It can be seen
that VirPreNet achieves a noticeable higher performance than compared
models. In more detail, VirPreNet can obtain an average value of 0.794 in
accuracy, which is 10.8% higher than the best result of the ResNeXt-PB2
model. Regarding other evaluation metrics, the results also indicate that
VirPreNet outperforms other models on the collected influenza dataset.
Interestingly, the predictive performance based on PB2 and HA models is
higher than others, which is consistent with the outcome from (Ivan and
Kwoh, 2019).

Moreover, we plot the ROC (Receiver Operating Characteristic) curves
with a significant proportion of area under curve (AUC) of all compared
methods from Table 2. The AUC values display the matching degree with
the experiment data ranging from 0 to 1. As can be seen in Fig. 5, VirPreNet
can accurately predict the influenza virulence and outperform other single
segment-based ensemble CNN models at almost all thresholds. Overall, the
outcomes further demonstrate that our proposed model can better predict
influenza virulence on the selected dataset, as well as make comprehensive
improvement compared with baselines. It may also be applicable to predict
the virulence of a wide range of viruses and drive the development of
personalized medicine for infectious diseases.

Table 2. Comparative results between VirPreNet and base ensemble model.

Model Accuracy Presicion Recall F-score

ResNeXt-PB2
0.686

(0.029)
0.701

(0.048)
0.875

(0.151)
0.778

(0.048)

ResNeXt-PB1
0.648

(0.052)
0.666

(0.037)
0.914

(0.035)
0.770

(0.031)

ResNeXt-PA
0.648

(0.050)
0.676

(0.048)
0.889

(0.063)
0.768
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Fig. 5. The ROC curves and AUC values for virulence prediction of all compared models
generated from Table 2.

3.4 Importance of single segment-based ensemble CNN
model

Ensemble modeling implements the process where multiple diverse base
models are incorporated to perform prediction tasks using different
algorithms or datasets. In this work, the ensemble CNN models are
utilized as the base model in our proposed model. The results suggest
that VirPreNet improves the performance by aggregating the predication
of each base model. To investigate the influence of each base model for the
virulence prediction, we have visualized the learned weights shown in Fig.
5 for the contribution of individual models on the final prediction. These
weights are obtained through the testing process from Table 2. Since the
values of the learned weights may be negative, we use softmax function to
normalize the weights. It can be observed that the PB2 segment contributes
more to the final prediction outcome, followed by the HA segment.
Interestingly, the models on other segments indicate less influence on
virulence prediction. However, it does not mean that they are insignificant
in the formation of virulence. One of the possible reasons is that we do
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Fig. 6. Learned weights by VirPreNet on the prediction of influenza virulence for the base
ensemble models using single segment dataset. The X-axis represents the base models on
the individual segment. As the values of the learned weights may be negative, the weights
are normalized with softmax function. Y-axis represents the ranges of normalized weights
by ten random trials.
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not have sufficient sequence samples in the training process, which could
greatly influence the predictive results.

The determination of influenza virulence has been investigated for decades,
but it remains to be an open challenge, as the viral evolution is rapid
and the mechanism of influenza strains to be virulent is very complicated
and multi-factor associated. We utilized weight loss and survival data of
infected mice to infer MLD50 values and converted them into classification
tasks, for which our proposed method can be used for virulence prediction.
However, for the evaluation of toxicity on humans, the best test species
is human due to the interspecies variations between humans and other
animals in physiology and biochemistry, in which the extrapolation of
animal data may not be accurately applied to humans (Gallagher, 2002).
Some clinical trials do not realize regulatory and marketing approval since
it is not consistent in translating animal findings to the human situation
(Shanks et al., 2009). Even though it remained controversial in transferring
animal experiments to humans, it contributes a lot to our understanding of
disease mechanisms and providing novel insights for further study (Van der
Worp et al., 2010). For example, considering biomarkers on the influence of
virulence, we can find mutations from different viral proteins. Graef et al.
uncovered the PB2 subunit is a major virulence determinant of influenza
viruses by interacting with the mitochondrial antiviral signaling protein
and inhibiting expression of beta interferon (Graef et al., 2010). Yu et al.
found adaptive changes that confer increased virulence in mammals on
HA and PB2 segments using generated mouse-adapted viruses (Yu et al.,
2018). Our proposed model has further revealed the importance of PB2 and
HA segments on the inference of virulence compared with other segments
through computational analysis. Nevertheless, more evidence is needed to
identify what characteristics or mutations of PB2 or HA segment differ
between virulent and avirulent influenza A strains.

4 Conclusion

In this paper, we propose a general weighted ensemble CNN framework
named VirPreNet on virulence prediction of influenza A viruses using all 8
segments. Specifically, we employ MLD50 as criteria to label the virulence
level of influenza strains. A continuous distributed representation is applied
for the splittings and embeddings of genome sequences. ResNeXt is
leveraged as the base model of VirPreNet to predict virulence based on
the single viral segment. By integrating all the predictive results through
a linear layer, the proposed framework can improve the performance of
virulence prediction. We validate VirPreNet on the collected influenza
dataset. Experimental results show that it outperforms existing machine
learning methods and base ensemble CNN models. Moreover, the
proposed model can automatically learn the weights for different base
models. The analysis of the learned weights indicates the importance of
the viral segment on the virulence prediction, which can provide novel
insights into the formation of virulence and facilitate flu surveillance.

5 Supplementary Materials

The supplementary materials can be found:
https://drive.google.com/open?id=1PB6402wbtrAeGIha3kBAt-S96AGwBzYS
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