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Abstract
Different models have been proposed to explain how the human brain derives
an accurate sense of time. One specific class of models, intrinsic models, state
that temporal information of a stimulus is represented much like other fea-
tures such as color and location, bound together to form a coherent percept.
Here we explored to what extent this holds for temporal information after it
has been perceived and is held in working memory for subsequent compar-
ison. We recorded EEG of participants who were asked to time stimuli at
lateral positions of the screen followed by comparison stimuli presented in
the center. Using well-established markers of working memory maintenance,
we investigated whether the usage of temporal information evoked neural
signatures that were indicative of the location where the stimuli had been
presented, both during maintenance and during comparison . Neural and
behavioral measures, including the contralateral delay activity, lateralized al-
pha suppression and decoding analyses through time, all supported the same
conclusion: while the representation of location was strongly involved during
the perception of temporal information, once temporal information was com-
mitted to memory it no longer showed any relation to spatial information
during maintenance or during comparisons. These results support a model
where the initial perception of a stimulus involves intrinsic computations, but
that this information is subsequently translated to a stimulus-independent
format to be used to further guide behavior.

Introduction

Most of our behavior benefits from an accurate sense of time, from holding a fluent
conversation with well-timed pauses, to playing music or sports, to navigating traffic. Tim-
ing is crucial to determine when to act or when to expect an upcoming event. Therefore,
understanding the mechanisms, processes and representations of time and durations in the
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brain are essential aspects of understanding human cognition and behavior as a whole. To
this end, a wide array of competing models and theories have been proposed: One of the
most recent review articles lists eighteen different models (Addyman, French, & Thomas,
2016; see also Hass & Durstewitz, 2014), each relying on different assumptions and compu-
tations.

Models of timing are typically evaluated and constrained on the basis of errors and
biases in time perception displayed by both humans and other animals. For example,
the ‘scalar property’ describes that variability in perceived duration is proportional to the
objective duration (Gibbon, 1977; Hass & Herrmann, 2012; Kacelnik, Brunner, & Gibbon,
1990; Malapani & Fairhurst, 2002). As this is so commonly found in both human and
nonhuman timers this has been described as a hallmark of interval timing models (Buhusi
& Meck, 2005; Okamoto & Fukai, 2001). Other factors that are typically considered include
how time perception is affected by the physical properties of the timed stimulus (Eagleman,
2008; Schlichting, de Jong, & van Rijn, 2018; Walsh, 2003), the contextual or emotional
salience of the stimulus (Allman, Teki, Griffiths, & Meck, 2014; Droit-Volet & Meck, 2007;
Ernst et al., 2017; Halbertsma & Rijn, 2016; Matthews, 2011), the influence of past timing
experiences (Jazayeri & Shadlen, 2010; Lejeune & Wearden, 2009; Maaß, Schlichting, & van
Rijn, 2019; Roach, McGraw, Whitaker, & Heron, 2017; Schlichting, Damsma, et al., 2018;
Taatgen & van Rijn, 2011), and how temporal percepts are affected by neuropharmacological
substances (Coull, Cheng, & Meck, 2011; Meck, 1996; Soares, Atallah, & Paton, 2016) or
aging processes (Lustig & Meck, 2001; Maaß, Riemer, Wolbers, & van Rijn, 2019; Turgeon,
Lustig, & Meck, 2016).

While such studies have yielded important constraints on the dynamic computations
that underlie a temporal percept, much fewer studies have directly investigated the actual
representation of this percept. Consider, for example, the simple task of sequentially per-
ceiving two intervals of different durations, followed by the question: “which interval lasted
longer?” Such a task will not only involve the perception of time, but also requires one to
commit some representation of the first duration to memory in a manner that it is then
usable for comparison with the second interval. The present study aims to investigate the
nature of this representation.

With respect to this representation, the wealth of models and theories on timing
can be coarsely divided into two classes. In dedicated clock models (e.g. Gibbon, 1977;
Gu, van Rijn, & Meck, 2015; Matell & Meck, 2004; van Rijn, Gu, & Meck, 2014), the
representation of time is functionally decoupled from the imperative stimulus. These models
assume that sensory events are processed and subsequently fed into a largely independent
timing system. Sensory information serves to signal the onset or offset of an interval, and
might in some models, trigger or modulate internal dynamics that give rise to the temporal
percept. However, the end result of timing is represented by a dedicated circuit and is in
itself not linked to the presented stimulus or any of its features. For example, the Striatal
Beat Frequency model assumes that the representation of time derives from a concert of
oscillatory activity at slightly different frequencies, which are reset by the perceived onset of
an interval. Whenever time is to be read out and committed to memory, it is represented by
the state of the peaks and troughs in each frequency band. This representation is completely
independent from the stimulus that initially triggered the oscillations.

By contrast, intrinsic clock models (e.g. Finnerty, Shadlen, Jazayeri, Nobre, & Buono-
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mano, 2015; French, Addyman, Mareschal, & Thomas, 2014; Mauk & Buonomano, 2004;
Paton & Buonomano, 2018) assume that the representation of time is a product of the
stimulus percept itself. In these models, perceiving the stimulus triggers dynamics that
are intrinsically part of a stimulus representation, just like features such as location and
shape, but that can be used to infer time. In some models, such as the Temporal Context
Model (Shankar & Howard, 2010; and its successors Shankar & Howard, 2011, 2013) and
the Gaussian Activation Model of Interval Timing (French et al., 2014), the perceived time
of an interval is directly derived from its representation in memory. These models typically
assume that the stimulus representation is not static but gradually changes as a function
of time, which endows these representations with the capabilities of an intrinsic clock.

While dedicated and intrinsic clock models differ in their assumptions regarding the
representations and dynamics involved in the perception of duration, models of both classes
assume that in a comparison task, the duration percept must somehow be committed to
memory. As such, the nature of working memory for time poses important implementation
constraints for all models of timing. Nevertheless, models typically make no claims about
how temporal information is represented in working memory. Therefore, here we attempt
to map this representation by means of electroencephalography (EEG). In particular, we
will measure lateralized signals that are ubiquitously studied in visual working memory
research and which suggest that space might be a crucial dimension to bind features of
representations in memory. Here, we investigate whether these spatial signatures can also
be observed when durations are to be maintained.

The first of these signatures is the Contralateral Delay Activity (CDA), a component
in the event-related potential (ERP) that was originally identified in change detection ex-
periments (Eimer & Kiss, 2010; Ikkai, McCollough, & Vogel, 2010; Luria, Balaban, Awh, &
Vogel, 2016; Vogel & Machizawa, 2004). When participants are required to remember items
presented on one side of the screen, then a sustained occipital contralateral negativity is
observed. The amplitude of this component can be related to the memory load on the trial,
and to the memory capacity of the participant. Interestingly, a CDA is also found in stud-
ies where the location of the remembered stimulus is irrelevant for the upcoming task, for
example when the stimulus is to be used in visual search (Carlisle, Arita, Pardo, & Wood-
man, 2011; Woodman, Carlisle, & Reinhart, 2013) or merely has to be recognized in the
center of the screen (Gunseli, Olivers, & Meeter, 2014). Together with the CDA-component
found in the ERP, working memory for laterally presented items is often found to yield a
contralateral suppression of frequency power in the alpha band (Klimesch, 2012; Mazaheri,
2010; Van Driel, Gunseli, Meeter, & Olivers, 2017). Such lateralized alpha suppression has
been linked to both maintenance of items in working memory, as well as covertly attending
a location in space (Diepen, Miller, Mazaheri, & Geng, 2016; Foster, Sutterer, Serences,
Vogel, & Awh, 2017; Sauseng et al., 2005; van Moorselaar et al., 2018).

Lateralized neural signatures have not only been found for memory maintenance but
similarly for when visual information is retrieved from memory. The N2pc is an occipital
contralateral negative inflection of the ERP typically found 200–350ms after a stimulus, that
is assumed to reflect attentional orienting (Eimer, 1993; Eimer & Grubert, 2014; Luck, Fan,
& Hillyard, 1993; Luck & Hillyard, 1994; Tan & Wyble, 2015). While the N2pc is classically
studied in the context of visual search, various studies have reported that retrieving later-
alized stimuli from working memory similarly evokes an N2pc (Dell’Acqua, Sessa, Toffanin,
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Luria, & Jolicœur, 2010; Kuo, Rao, Lepsien, & Nobre, 2009; Leszczyński, Myers, Akyürek,
& Schubö, 2011). Much like these effects on the ERP, orienting to endogenous representa-
tions in working memory has been found to produce lateralized suppression of alpha-band
power. In these cases, alpha power is found to be suppressed, contralateral to the side that
an item that was presented that either has just become relevant or is expected to become
relevant. In most studies such orienting is explicitly triggered by means of retro-cues (Poch,
Campo, & Barnes, 2014; van Ede, 2018; Wolff, Jochim, Akyürek, & Stokes, 2017), but
it is also observed in experiments where a sequence of subtasks sequentially requires the
activation of a different item from memory (de Vries, Van Driel, & Olivers, 2017, 2019).
Particularly relevant to the present research, orienting responses in the alpha band have
also been found in a task where no explicit cues for retrieval are given, but where instead
the duration of the memory delay itself informed participants which of two memory items
is more likely to be tested (van Ede, Niklaus, & Nobre, 2017).

These findings constitute lateralized signatures of maintenance and retrieval of work-
ing memory items. Crucially, in many if not most of these studies, lateralized EEG-responses
were found despite the fact that spatial information was itself irrelevant for the task: often
only non-spatial features of these items, such as color or orientation needed to be main-
tained. These findings suggest that the memory representation of visual features inherently
includes spatial information, which is subsequently detected in the EEG. The visual cortex
inherently has a spatiotopic organization, and space is a primary binding dimension in many
computational models of working memory storage (Oberauer & Lin, 2017; Schneegans &
Bays, 2017; Swan & Wyble, 2014). Therefore, we reason that if the working memory repre-
sentation of time is similarly bound to sensory information, these spatial neural signatures
would be the most likely markers to detect such binding.

Specifically, participants were sequentially presented with two intervals (Interval 1
and Interval 2), separated by a memory delay. Participants subsequently had to determine
which of the intervals was longer. Each interval was presented by means of visual markers:
stimuli that were briefly presented to indicate the start- and the end-signal for timing.
Critically, for Interval 1 these markers were lateralized, that is, presented on either the left
or right side of the display, whereas the markers for Interval 2 were both presented in the
center. If temporal information uses a representation that is bound to spatial information,
then we should be able to find lateralized EEG-signals indicative of maintenance, retrieval
or anticipation during the centrally presented second interval. In that case, their dynamics
and their timing could be informative of how such a comparison task is solved: for example,
temporal information might be retrieved either only at the start or end of Interval 2, or
might be held active throughout comparison. Furthermore, signals of retrieval might reflect
anticipation of the start- or end of Interval 2 (cf. van Ede et al., 2017), or they might be
evoked in response to the stimuli marking its duration (cf. Kuo et al., 2009).

To further disentangle the precise role of memory representations in such a comparison
task, we additionally manipulated the manner in which Interval 1 was presented. In blocks
with ‘Same’ trials , the start- and end-marker were presented in the same location, whereas
in ‘Opposite’ blocks, they were on opposite sides. If we observe lateralized neural responses
in both of these block types, then the direction of such lateralization could help us identify
whether this reflects retrieval of the start-moment, the end-moment or both. Should we only
observe lateralization in the EEG in ‘Same’ blocks, then this might point to a representation
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where the interval duration as a whole is bound to one location in space, and retrieved during
comparison. Additionally, we sought to relate neural responses to behavior, and contrast
correct- and incorrect trials. If the representations underlying lateralized neural signatures
are a functional aspect of memory for time, then we expect these neural responses to be
weaker or absent on incorrect trials.

Method

Participants. We collected data from 24 healthy participants with normal or
corrected-to-normal vision, who were recruited through the participant pool of the Faculty
of Behavioral and Movements Sciences of the Vrije Universiteit Amsterdam. All partici-
pated for course credits or monetary compensation (€10/hour). Data of four participants
were discarded after EEG data preprocessing (described below), two of which due to the
number of noisy channels (8 and 10 electrodes) and two due to the high percentage of
discarded data segments (38% and 52%) due to contamination from muscle artefacts or
horizontal eye movements. No participants were excluded based on behavior. We inspected
behavioral performance, we fit an individual logistic regression model to the proportion of
‘longer’ responses as a function of ∆t = (Interval 2 - Interval 1), and all slope coefficients
were less than 2 SD away from the group mean. The final sample contained 20 participants
(ages 19–26, Mean age 21.9, 10 female). For all participants, informed consent was obtained
before participation, and all procedures during the experiment were in accordance with the
Helsinki declaration. The protocol was approved by the ethical review board of the Faculty
of Behavioral and Movement sciences of the Vrije Universiteit Amsterdam.

Procedure and stimulus presentation. Participants were seated in a darkened,
sound-attenuated room at 75cm viewing distance from a 22 inch screen (Samsung Syncmas-
ter 2233, 1680 × 1050 resolution, 120 Hz refresh rate). The experiment was programmed
and presented using OpenSesame (Mathôt, Schreij, & Theeuwes, 2012), using the Psy-
choPy back-end (Peirce, 2007). The stimulus sequence of a trial is schematically depicted
in Figure 1 (with gray and black colors inverted for visibility). Trials started with a gray
fixation cross (0.2°), on on a black background for 1000ms, followed by the onset of three,
horizontally aligned gray placeholder circles (radius 1.97°, one in the center and two at
9.83° eccentricity) around a central gray fixation dot (0.2°). The placeholders and fixation
dot stayed on screen until the end of the trial.

The presentation of Interval 1, the ‘standard interval’, started 500ms after placeholder
onset, and was indicated by an onset- and offset marker flashing (125ms) in either the left
or right placeholder. Both markers were red diamonds (3.94° width and height). Their
SOA defined the standard interval, and was a value randomly sampled from a uniform
distribution U(1250 − 2250ms). After the offset marker was presented, a 1250ms memory
delay followed. Interval 2, the ‘comparison interval’, was similarly indicated by means of
an onset- and offset marker, each a green square (sides 2.79°; 125ms) presented in the
central placeholder circle. Interval 2 was either shorter or longer than Interval 1, by either
10% or 20%. The offset marker of Interval 2 was followed by a 1250ms response delay.
The shape and color of the interval markers were chosen so that Interval 1 and Interval 2
would not share any non-temporal features that might automatically trigger the retrieval
of spatial information. The minimum duration between stimuli, 1250ms, was chosen to
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Figure 1 . Schematic representation of the design. The general trial structure is depicted on
the left, from top to bottom. The middle column depicts the presentation of Interval 1 and
Interval 2 by means of their onset- and offset markers. This example illustrates an ‘Opposite’
trial. For Interval 2, both markers were in the center. The rightmost figures depict the
interval distributions: Interval 1 was sampled from a uniform distribution ranging from 1250
to 2250ms; Interval 2 was derived from Interval 1. Note that in the experiment, fixation-
and placeholder stimuli were gray on a black background (here inverted for legibility)

be long enough for the relatively sluggish lateralized alpha response to emerge and resolve
completely (de Vries, Van Driel, Karacaoglu, & Olivers, 2018; Van Driel et al., 2017).

Participants were instructed to maintain fixation on the center of the screen through-
out the trial and not to move their eyes towards the peripheral stimuli. They were asked
to compare the duration of the stimuli and determine whether the second interval was
shorter or longer than the first. Once the response screen appeared, they could indicate
their answer by pressing ‘Z’ or ‘M’ on a standard QWERTY keyboard with their left or
right index finger. On each trial, the mapping of these keys varied unpredictably and was
unknown to the participant until the response screen appeared. This was done to prevent
any (lateralized) motor preparation signals contaminating the EEG. On the response screen,
the options (Z and M) were presented centrally above or below fixation accompanied by
the words “shorter” (above fixation) or “longer” (below). Participants were instructed to
prioritize accuracy over response speed.

Participants completed eight blocks of 40 trials each. Before each block, partici-
pants were informed whether Interval 1 would be presented via markers on the ‘Same’ or
‘Opposite’ sides. Note that regardless of block type, participants could not predict the
location of the onset marker, but after its presentation, the location of the offset marker
was fully predictable. All combinations of the percentage change and the onset location
of Interval 1 were presented five times per block in a random order. The order of Block
types (Same/Opposite) alternated and their order was counterbalanced across participants.
Before starting the experiment, participants completed practice blocks with Same and Op-
posite marker presentations, ten trials each. Practice trials were not considered in any of
the analyses.
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EEG acquisition and data cleaning. EEG data were recorded at 512Hz from
64 channels (BioSemi, Amsterdam, The Netherlands; ActiveTwo system, 10–20 placement;
biosemi.com), with two additional electrodes placed at the earlobes, two placed 2cm above
and below the right eye, and two electrodes placed 1cm lateral to the external canthi. All
offline analyses and data cleaning steps were performed using MNE-python (Gramfort et al.,
2013; Gramfort et al., 2014) and R (R Core Team, 2018). EEG data were re-referenced to
the average of the data from the earlobes, and V/HEOG traces were created by subtracting
data from the opposing channels around the eyes.

For data cleaning, three filtered versions of the raw dataset were created by means
of zero-phase FIR filters: band-passed at at 110–140Hz to highlight muscle artefacts; high-
passed at 1Hz, removing medium-slow drifts to be used for independent component analysis
(ICA); and one high-pass filtered at 0.1Hz to be used for the main analyses. Most algorithms
that were used for data cleaning assume epochs of equal length reflecting “trials” as their
input. Unless otherwise specified, we used “preprocessing epochs” for these algorithms
based on the shortest possible interval durations (1250ms and 1000ms for Interval 1 and 2
respectively) and the fixed 1250ms memory delay between them. These epoch thus spanned
-2500ms – 2250ms around the onset of Interval 2. Thresholds and filters that were derived
based on these preprocessing epochs were then applied to the entire dataset.

Following the PREP-pipeline (Bigdely-Shamlo, Mullen, Kothe, Su, & Robbins, 2015)
we first identified excessively noisy channels by means of the RANSAC algorithm, as imple-
mented by the ‘autoreject’ package (Jas, Engemann, Bekhti, Raimondo, & Gramfort, 2017).
This procedure generates permutations of the epoched data, and predicts full channel activ-
ity by interpolating data from a subset (25%) of the channels. If the correlation between the
observed and interpolated data is less than a threshold value (r < 0.75) in more than 40%
of the epochs, the channel is classified as ‘bad’. In our dataset, the algorithm identified 6
(n=1), 4 (n=1), 2 (n=2), and 1 (n=3) faulty channels per participant, which were found to
be in agreement with visual identification. Faulty channels were primarily located on more
peripheral electrode sites, and did not overlap with the preselected electrodes of interest at
parieto-occipital sites. We excluded these channels from all other preprocessing steps.

To identify data contaminated by muscle artefacts, we used a procedure adopted from
the PREP-pipeline (Bigdely-Shamlo et al., 2015) also offered by FieldTrip (Oostenveld,
Fries, Maris, & Schoffelen, 2011). Using the 110–140Hz band-passed dataset, we computed
its Hilbert envelope and convolved the result with a 200ms boxcar averaging window. This
yielded a per-channel time course estimate of high-frequency power in the original signal.
Across all data in the preprocessing epochs, we computed a per-channel median and median
absolute deviation, and used these to compute a robust Z-score for all data inside and outside
these epochs. Data at time points where the Z-score averaged across channels exceeded 5.0
were marked as contaminated and were not considered in future analyses.

ICA was used to identify and remove artefacts in the data caused by eye blinks. We
first subsampled the high-pass filtered (at 1Hz) dataset at 102.4Hz (=512

5 ), and computed
independent components (using extended-infomax ICA, the default in EEGLAB; Delorme
& Makeig, 2004). From the resulting spatial components, we visually identified those cor-
responding to blinks. To confirm the validity of this approach, we defined ‘blink epochs’, as
1000ms windows around local maxima in the 1–10Hz band-passed VEOG signal. The time
course of the selected ICA components, and only these components, had a high correlation
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with the VEOG signal in these epochs (r2 > .5).
To identify horizontal eye movements, we used a procedure inspired by methods from

ERPLAB (Lopez-Calderon & Luck, 2014): Data from the HEOG signal were high-pass
filtered at 1Hz, and convolved with a stepwise kernel, defined by 150ms each of -1 and +1
values, with a 25ms linear ramp between them. In the resulting signal, local maxima that
exceeded the 99th percentile were marked as potential horizontal saccades. Data from the
start of such a mark to the end of the current trial were excluded from further analyses.

The autoreject algorithm (Jas et al., 2017) was used on the preprocessing epochs
in order to identify trials with unreasonably high amplitude fluctuations. This algorithm
improves on typical epoch rejection methods that use a fixed threshold, and instead esti-
mates optimal channel-specific thresholds by means of cross-validation methods inspired by
RANSAC. In epochs where a channel’s peak-to-peak value exceeds its threshold, autoreject
will initially attempt to interpolate that channel’s data from neighboring channels. Only if
the number of to-be-corrected channels in an epoch is above an additionally fit integer k,
the entire epoch is rejected. We fit autoreject on the preprocessing epochs to find individual
thresholds, and report these in the Supplementary Information (https://osf.io/7gpka/)

Using the results of these preprocessing algorithms, we created ‘cleaned’ data epochs
around moments of interest. In each trial, four epochs were defined with data surrounding
the presentation of each marker: the onset/offset of Interval 1 and the onset/offset of Inter-
val 2 (Table 1; top row of Figures 3A-D). Time windows were chosen to be maximally long
without overlapping with other markers (Table 1). As a consequence, onset- and offset-
locked intervals contain partially overlapping data, with the amount of overlap dependent
on the interval duration. For each of these time windows, ‘cleaned’ epochs were created:
first, the raw dataset (high-pass filtered at 0.1Hz) was loaded after which the ICA com-
ponents related to blinks were removed. Data epochs were extracted, where epochs were
dropped if they contained muscle artefacts or if they contained data following a horizontal
eye movement on the same trial. The autoreject algorithm was then applied to interpolate
data with extreme peak-to-peak amplitudes or drop rejected epochs. Finally, data from
faulty channels as identified by RANSAC were interpolated on the basis of the neighboring
channels. The resulting number of clean epochs per participant used in all analyses is given
in online Supplementary Information.

Epoch / Event tmin tmax Includes
Onset Interval 1 -1250 1250 Placeholder onset, Onset marker, Start Interval 1
Offset Interval 1 -1250 1250 End of Interval 1, Offset marker, Memory delay
Onset Interval 2 -1250 1000 Memory delay, Onset marker, Start Interval 2
Offset Interval 2 -1000 1250 End of Interval 2, Offset marker, Response delay

Table 1
Epoch definition

Event related potentials. To construct ERPs, all epochs were baseline corrected
by subtracting the average data of each channel in the 100ms leading up to the onset of the
placeholders. 1. We then computed two average signals for the electrode clusters [P7, P5,

1Another approach would be to subtract pre-stimulus baseline activity for each marker separately. That
approach is better suited to isolate effects in the transient evoked responses post-stimulus, but is likely
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PO7, PO3, P3, P1] and [P8, P6, PO8, PO4, P4, P2] (Figure 3, insets). These electrodes were
selected on the basis of earlier work (de Vries et al., 2017, 2019; Van Driel et al., 2017), and
corresponded to the visually identified locus of peak lateralized responses. We subtracted the
two signals (contralateral-ipsilateral) on each trial to yield an occipito-parietal difference
signal. For epochs around the onset- and offset of Interval 2, with centrally presented
markers, ‘contralateral’ and ‘ipsilateral’ were defined based on the onset- and offset location
of Interval 1. Subsequently, ERPs were computed per participant per condition as averages
across trials.

Time-frequency analyses. For the same four epochs we computed time-frequency
spectra, for the frequencies F = 2 to 40Hz, in 25 geometrically spaced steps. To prevent
edge-artifacts, the spectra were computed over epochs that were 1.0s wider than the data of
interest. Before computing the spectrum, the overall evoked response was subtracted from
the individual data epochs. We used multitaper filtering , using 500ms windows tapered
with three Slepian windows and subsequently zero-meaned. Data and filters were convolved
by multiplication in frequency space after fast-fourier transformation. Time-frequency data
were cropped to align with the ERP-epochs and sub-sampled to 102.4Hz (=512

5 ). Power
was baselined and converted to decibel (dB) with respect to the per-trial average power
300-100ms before the onset of the placeholders.

As for the ERPs, spatially averaged frequency power was computed for contralateral
and ipsilateral occipito-parietal channels, and their subtraction yielded a measure for power
lateralization. In addition, we computed the time course of lateralized alpha power, by
averaging data across frequencies between 7 and 13 Hz.

Classification analyses. Using a classification analysis, we investigated whether
information regarding marker locations was maintained or retrieved in a manner that was
not reflected in lateralized parieto-occipital ERPs. To this end, we trained logistic classifiers
to predict the location of the onset- or offset marker from the 64-channel EEG data. As input
to these classifiers, we used the epoched data, low-pass filtered at 35Hz and subsampled to
64Hz. Classifiers were trained on 125ms sliding window segments of data (8 time points ×
64 channels) which were Z-scored and used as input features. This setup was constructed
to produce high classification accuracy for decoding the onset marker of Interval 1, and
was subsequently applied to the other epochs. Classifier performance was evaluated on the
basis of 10-fold stratified cross-validation, and scored using the area under the curve (AUC)
of the receiver-operator curves. A perfect classification would yield a score of 1.0, and 0.5
reflects chance-level decoding.

Statistics. Participants’ behavior on the task was characterized by means of Gen-
eral Linear Mixed-Effects regression (Baayen, Davidson, & Bates, 2008). Models were
constructed to predict which of the two intervals was perceived as longer by means of logis-
tic regression with predictors including: the length of Interval 1, the length of Interval 2,
their absolute difference (in seconds), their proportional difference (percentage change), and
block type (Same/Opposite presentation). All models with different combinations of these
predictors, with and without interactions between main effects, were compared by means
of their BIC scores. We report the resulting best model, and report statistical evidence for

to obscure potential slow-wave lateralization differences that might still be present right before stimulus
presentation (like the CDA). We have ran analyses where epochs were re-baselined as such, but these did
not lead to different conclusions
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or against effects (likelihood ratio test χ2 statistic, corresponding p-value, and ∆BIC) by
comparing nested models that either included or excluded the effect under consideration.

The ERP, time-frequency- and classification analyses on EEG data were initially
all done per-subject. The outcomes of these steps were subsequently subjected to group-
level statistical testing using cluster-based permutation tests (Maris & Oostenveld, 2007).
Clusters were defined as regions adjacent in time, frequency, and space where univariate
statistical testing yielded a p-value lower than 0.05. Low-variance t-values were corrected
for using ‘hat’ variance adjustment (Ridgway, Litvak, Flandin, Friston, & Penny, 2012)
with a correction factor δ = 0.001. Cluster size was defined as the sum of all t-values
in a cluster, and the maximum cluster sizes found in each out of 5000 permutations were
saved to construct a nonparametric null distribution. An observed cluster was considered
statistically significant with respect to this distribution at α = 0.05.

Results

Behavior
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Figure 2 . Proportion of trials where participants perceived Interval 2, the compari-
son interval, as longer. Curves reflect responses predicted by the preferred statistical
model with three predictors: the percentage change, Interval 2 duration, and block type
(Same/Opposite). For comparison, the data points reflect the proportion of ‘longer’ re-
sponses in three ‘Interval 2 duration’ bins defined separately per ‘percentage change’ con-
dition. Error bars reflect 95% within-subject confidence intervals (Cousineau, 2005; Morey,
2008).

The best model predicted ‘longer’ responses as a function of three additive main effects
(Figure 2). First, responses depended on the percentage change, included in the model as
a linear predictor (χ2(1) = 23.8, p < 0.001,∆BIC = 15.0). This captures participants’
ability to accurately perform the task: that is, a higher proportion of ‘longer’ responses was
generated for trials that were indeed longer, with more certainty for the 20% change than
the 10% change conditions.
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Second, participants were more likely to respond ‘longer’ on trials where the second
interval was physically long, regardless of how it related to Interval 1 (χ2(1) = 298.8, p <
0.001,∆BIC = 296.0). This suggests that participants at least in part made a decision
based on the absolute duration of Interval 2, regardless of Interval 1. Although this could
reflect participants’ poor memory for Interval 1 on some trials, note that it could also reflect
a strategic weighting of evidence: in the present task, the absolute duration of Interval 2
is a good heuristic to determine whether the interval is relatively longer too (see Figure 1,
‘Interval duration’).

Third, we found that participants’ judgments were modulated by the manner of pre-
sentation of Interval 1. In blocks where the markers of Interval 1 were on the same side of
the screen, participants were more likely to respond that Interval 2 was longer compared
to blocks where the markers were on opposite sides. This was an unexpected but highly
consistent finding (χ2(1) = 91.2, p < 0.001,∆BIC = 82.5). Conversely, this implies that
when Interval 1 was presented with opposite markers, its duration was perceived as longer.
In our EEG-analyses, we found that this bias was associated with differing neural responses
to the offset markers of Interval 1 between different presentation conditions. Here, we will
not explore this particular finding in-depth, as it does not immediately relate to our research
question. Instead, our analyses will focus on the neural markers for memory maintenance
and retrieval.

ERP analyses

Figure 3 depicts the ERP waveforms during the epochs surrounding the onset- and
offset markers of Interval 1 (A,B) and Interval 2 (C,D). The top row of each sub-figure
schematically illustrates the sequence of events during the epochs for an illustrative ‘Oppo-
site’ trial. Note that for the centrally presented Interval 2, ‘ipsilateral’ and ‘contralateral’
electrodes are defined with respect to the corresponding marker location during Interval 1.

Onset Interval 1. Figure 3A depicts the ERP in response to the onset of Interval
1. The top plot depicts the ERP of contralateral and ipsilateral electrodes, and their
difference. At t = −500ms, the onset of the placeholders yields a large visual response
in both hemispheres. The lateralized onset marker at t = 0ms yields an early lateralized
response, offset by an early (90-145ms) significant positivity. Interestingly, this was later
followed by another significant contralateral positive component (305–482ms). While we had
expected to find a negative component here (the N2pc), there are reported conditions where
this component reverses, which we will come back to in the Discussion. After this initial
positive inflection, however, this gradually begins to transform into a negative component
starting at approximately 400ms, yielding a sustained negativity marked by two significant
clusters (594–1076ms)2. This sustained negativity matches the typical profile of the CDA.

When the data from ‘Same’ and ‘Opposite’ blocks were separately assessed, these
conditions yielded virtually equivalent ERPs. The same held when contrasting ERPs on
correct versus incorrect trials (bottom plot).

Offset Interval 1. The grand-average ERP surrounding the offset of Interval 1
(Figure 3B, top plot) had a shape that was very similar to that of the onset, although

2in this and all subsequent descriptions, we will treat adjacent clusters as one ‘effect’ if they are less than
50ms apart and denote effects in the same direction.
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Figure 3 . Occipital, lateralized ERPs during epochs around A the onset of Interval 1; B the
offset of Interval 1; C the onset of Interval 2; andD the offset of Interval 2. Subplots from top
to bottom depict overall ERPs, in ‘Same’ or ‘Opposite’ trials, and in correct versus incorrect
trials. Data were low-pass filtered at 35Hz for visualization only. Colored horizontal line
segments indicate clusters significantly different from 0; black segments indicate clusters
with condition differences.

none of the early positive and negative inflections were found to be significant here. Again,
a sustained late contralateral negativity was found, marked by three significant clusters
between 576 and 1199ms.

Here, there were two notable differences between Same and Opposite presentation
conditions. First, we found tentative evidence that the CDA evoked at the onset persisted
throughout Interval 1. Qualitatively, the ERPs in Same and Opposite conditions emerged
as mirror images, consistent with lateralized memory representations of the onset marker.
This is supported by a significant cluster indicating a condition difference that persisted
from -1000 to -520ms, accompanied by significant clusters in either condition indicating
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opposite lateralization within that same time window. No significant differences were found
in the final 500ms of the interval, although numerically, lateralization persisted. Second, in
response to the offset marker, an early lateralized positivity was found for ‘Opposite’ but
not for ‘Same’ presentations, with a significant difference between them from 197 to 455ms.
In part, this difference might be accounted for by the CDA difference described above, which
numerically persisted up to the offset marker. However, after re-baselining the epochs with
respect to data just before the offset marker, we still found a significant difference. This
transient difference therefore probably reflects a stronger visual evoked response to the offset
marker in Opposite blocks than in Same blocks. This makes this neural response a prime
candidate neural correlate to drive the behavioral bias that intervals with opposite markers
are perceived to last longer. Note that despite this early modulation, after approximately
500ms there was no longer any apparent difference between these conditions: both showed
a sustained CDA of similar amplitude with respect to the location of the offset stimulus
which persisted persistent throughout the memory delay.

Again, no differences were found between the ERPs on correct trials compared to
incorrect trials.

Onset Interval 2. Figure 3C depicts ERP waveforms throughout the delay interval
followed by the onset of Interval 2 at t = 0ms. Note that Interval 2 markers were not
lateralized. At the start of this epoch, the grand average waveforms still reflect the responses
following the offset of Interval 1, and therefore show a significant lateralization between -
1197 and -938ms. However, for the majority of the delay, the grand average waveform does
not reveal any lateralization. The onset of Interval 1 yielded a strong visual response, but
this response was equally large for (originally) contralateral and ipsilateral sites, with no
evidence for lateralization, neither in the early evoked response nor in the form of later,
slow-wave modulations.

This interpretation is supported by the contrast between block types (Same/Opposite
presentations). Note that during the delay interval, the ERPs are virtually identical to those
in Figure 3B, but with the polarity reversed for the ‘Opposite’ condition. This results in
three significant clusters marking the difference between them, from -814 to -180ms, paired
with significant positive and negative lateralization for both conditions in that same time
range. Qualitatively, this remnant of the Interval 1 CDA appears to persist up to 500ms
into Interval 2, which resulted in a brief significant cluster for the ERP of ‘Opposite’ blocks
(365–424 ms).

The ERPs contrasting correct and incorrect trials again revealed no differences be-
tween them.

Offset Interval 2. The average ERPs surrounding the offset of Interval 2 (Fig-
ure 3D) similarly showed no evidence for memory-related lateralized responses during the
interval. One, short-lived significant cluster was found between -842 and -773 ms, which
again most likely reflects a CDA remnant of Interval 1 as depicted in Figure 3C. When sep-
arately considering ‘Same’ and ‘Opposite’ blocks, no qualitative differences were observed,
and no significant clusters were found to suggest lateralization in either condition, nor a
difference between conditions. A similar pattern was found for the ERPs on correct versus
incorrect trials, which once again revealed no significant differences between them.

To conclude, our ERP results indicate that actively timing an interval marked by
laterally presented stimuli is paired with CDA components resembling maintenance of these
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markers, suggesting that these stimuli are stored and maintained in memory. However,
the ERPs yield no evidence that this memory representation is then subsequently used at
retrieval, that is, during the centrally presented comparison interval.

Time-frequency decomposition
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Figure 4 . A Lateralized Time-frequency decomposition for the four consecutive epochs,
from left to right. B Lateralized power in the alpha band, separately for ‘Same’ and
‘Opposite’ trials. C Lateralized power in the alpha band, separately for correct and incorrect
trials.

Figure 4A depicts the full spectrum of lateralized power during each of the four
epochs. In response to the onset of Interval 1, we found a large, significant cluster indicat-
ing contralateral power suppression. This cluster was centered around the alpha band, but
extended to frequencies from approximately 5 to 20Hz. This is most likely due to the multi-
taper filtering, which typically has a high temporal accuracy, sometimes at the cost of more
spectral bleeding. The onset of the cluster was almost immediately after stimulus onset,
and it spanned approximately 750ms. Around the offset of Interval 1, similar contralateral
suppression in the alpha band was found, albeit much lower in amplitude. Here, we found
a cluster indicating significant suppression between 7 and 15Hz from -100 to +500ms. For
Interval 2, during both the onset and offset epochs, no significant lateralization was found.

In Figure 4B, we have plotted the lateralized alpha power separately for ‘Same’ and
‘Opposite’ trials. In neither of the epochs any significant differences were found between
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the two. Qualitatively, it seemed during Interval 1, ‘Same’ trials might have displayed
slightly longer-lived alpha lateralization, persisting throughout the trial similar to the CDA
component. For ‘Opposite’ trials, this was less apparent, with significant suppression only
lasting up to approximately 600ms. Consequently, it seemed that at the end of the interval,
suppression responses might be increased for ‘Same’ compared to ‘Opposite’ presentations,
with no significant suppression for ‘Opposite’ trials. In the epochs surrounding Interval 2,
no significant lateralization was found, in neither of these conditions. Figure 4C depicts the
same time courses of lateralized alpha power separately for correct and incorrect responses.
As with the ERPs, no significant differences were found in either of the epochs, and both
trial types had very similar response profiles.

To conclude, the time-frequency analyses largely aligned with the ERP analyses: we
found lateralized alpha suppression indicative of attentional orienting in response to the
onset and offset markers of Interval 1. During Interval 2, there was no indication however
that the location of these markers was attended or retrieved again.

Classification

The classification analyses explored whether marker locations were maintained or
reactivated during comparison in a manner that was not captured by the previous analyses
which focused on occipito-parietal electrodes. To this end, we trained a classifier to predict
the location of onset or offset cues of Interval 1 from the broadband signal from all 64
channels. The outcome of this analysis is in line with the findings from the ERP- and
time-frequency analyses. Figure 5 depicts, for each epoch, the performance of classifiers
trained on the overall dataset, as well classifiers trained separately on ‘Same’ or ‘Opposite’
trials. The location of the onset- and offset markers could be decoded for a sustained period
of time, with accuracies significantly above chance level from 109 to 984ms and from 109
to 1031 ms for onset and offset epochs, respectively. Separately classifying ‘Same’ and
‘Opposite’ trials yielded virtually identical results.

The decoding scores of these classifiers during the memory delay, depicted in the
middle two panels of Figure 5 suggest that as the onset of Interval 2 draws closer the
memory representation of the offset marker gradually dissipates. After the onset of the
centrally presented Interval 2, none of the classifiers were able to accurately decode the
marker locations of Interval 1. No more significant clusters of decoding performance were
found.

To conclude, neither did the classification analyses provide any indication that the
Interval 1 marker locations were memorized, retrieved, or otherwise represented during
comparison.

Discussion

Many studies exploring the dynamics of working memory representations have made
use of the finding that visual features of a stimulus appear to be bound to the location at
which that stimulus was presented. That is, maintaining or retrieving non-spatial visual
information has been found to evoke clear neural markers in the ERP and time-frequency
spectra that are reflective of the location of presentation. Here, we investigated whether
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Figure 5 . Classifier performance (Area Under the Curve) around the onset or offset of
Interval 1 and Interval 2. For Interval 2-epochs, the target of classification was the location
of the onset- or offset marker of Interval 1.

temporal information is similarly bound to spatial information during encoding, mainte-
nance and retrieval, as this would allow for exploring the dynamics of temporal memory.
Participants perceived an interval presented by means of lateralized start- and end-marker
stimuli, and we found that the encoding of the interval indeed evoked spatial neural signa-
tures typically associated with working memory retention. However, when this interval was
subsequently compared to an interval with central markers, no signs of lateralization were
found; neither in the ERP, nor in the time-frequency spectrum, nor could spatial informa-
tion otherwise be decoded using multivariate pattern analysis. These results suggest that
while memory for visual features such as location might play a role during initially timing
an interval, spatial information is not involved when the interval is subsequently used for
comparison.

The start marker of the first interval produced lateralized ERP components, lat-
eralized alpha suppression, and sustained robust classification accuracies that are highly
comparable to those found in typical studies on visual working memory encoding (Carlisle
et al., 2011; de Vries et al., 2017; Gunseli et al., 2014; Van Driel et al., 2017; Wolff et al.,
2017), which we interpret as signatures of working memory involvement in this timing task.
One notable difference in the ERP is that from 300 to 400ms, we actually found a contralat-
eral positivity where we had anticipated to find an N2pc-component. One could suspect
that this discrepancy stems from the laterally unbalanced displays used in our design: in
most working memory studies the lateralized memorandum is commonly presented along-
side a nontarget in the opposite hemifield. Indeed, unilaterally presented highly salient
stimuli have indeed sometimes been shown to evoke a so-called P2pc in this time window
(Casiraghi, Fortier-Gauthier, Sessa, Dell’Acqua, & Jolicœur, 2013). However, based on
comparisons to early investigations of the N2pc with displays that were similarly ‘unbal-
anced’ (Hickey, Di Lollo, & McDonald, 2009), we suggest that this positivity could also
reflect a component known as a distractor positivity PD (see also Burra & Kerzel, 2014;
Sawaki & Luck, 2010, 2013). This might reflect how participants actively suppressed this
salient onset in order to maintain central fixation. Critically, however, despite the initial
‘distractor status’ of the marker, the positivity still reversed into a sustained negativity that
reflected a CDA.

The neural responses elicited by the end marker of the first interval were largely
similar to those caused by its onset. Notably, the end marker resulted in a CDA-component
that lasted well into the delay period, qualitatively even seeming to persist into the second
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interval. If the CDA is caused by the working memory processes involved in timing, this
raises the question why another CDA would arise after the ‘timing work’ is already done.
One possible explanation would be that this signature reflects maintenance of the relevant
duration during the delay interval. If this were the case, however, we would have anticipated
a CDA-difference between ‘Same’ and ‘Opposite’ trials, where the former trial type would
be much stronger associated with its location than the latter. Another explanation would be
that the delay period in itself is actually an interval that is being timed, so as to optimally
anticipate the start of the comparison interval.

Despite these lateralized neural signatures found during Interval 1, our results indi-
cate that the central markers of Interval 2 did not convey any information regarding the
preceding locations of Interval 1. One theoretical account that fits these results poses that
while time perception may result from distributed intrinsic circuits, these circuits might
subsequently project to more centralized ‘readout neurons’ who allow for the comparison of
intervals across distributed clocks (Bakhurin et al., 2017; Laje & Buonomano, 2013; Paton
& Buonomano, 2018). As such, the spatial code might be used in the initial perception of
time, but not retained or retrieved when the interval is compared later on. Another, subtly
different account would state that in order for the duration maintained in memory to be
used in comparison, its representation needs to be actively transformed into a new repre-
sentation. Such transformations have been proposed be necessary for visual search (Myers,
Stokes, & Nobre, 2017), as it would allow for only the relevant items in memory to guide
attentional selection without interference from others (see also Chatham, Frank, & Badre,
2014; Olivers, Peters, Houtkamp, & Roelfsema, 2011). However, one key difference is that
for visual search there is strong evidence that transformed representations still make use of
the spatial code (de Vries et al., 2018; de Vries et al., 2017, 2019), whereas for temporal
information this association appears to be absent.

As such, our results do not unequivocally support either dedicated or intrinsic clock
models. On the one hand, the dynamics observed during Interval 1 are in line with what
one would predict following intrinsic models of time perception. However, the observation
that the spatial code appears to be abandoned during comparison largely falls in line with
dedicated models. Of note, our behavioral data yielded unexpected support for intrinsic
clock models: the shift in perceived time between ‘Same’ and ‘Opposite’ blocks indicates
that a relatively subtle difference in the manner of presentation can have a profound impact
on the temporal percept (in line with Droit-Volet & Meck, 2007; Eagleman & Pariyadath,
2009; Johnston, Arnold, & Nishida, 2006; Matthews, 2011). This behavioral bias coincided
with ERP differences in response to the offset markers of ‘Same’ and ‘Opposite’ markers,
which is a finding that warrants more thorough exploration than the scope of this study
allows. We discuss this observation in more detail in a companion article (Kruijne, Olivers
& Van Rijn, manuscript in preparation).

The mechanisms by which we perceive sensory events, and the experience of the tim-
ing of these events are intertwined by necessity. The present results offer new, important
insights into the interplay of stimulus representations and temporal representations dur-
ing perception, maintenance, and subsequent comparisons of interval durations. Despite
converging evidence that many features of visually presented stimuli are bound to spatial
information when encoded in working memory, we found no evidence that maintaining and
retrieving temporal information relied on such an associative link. These results offer criti-
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cal constraints for models that not only aim to measure time, but also to subsequently use
that measurement in upcoming goal-directed behaviors. In other words, these findings offer
important considerations for theories of temporal cognition beyond the perception of time.
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