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Abstract

It is well known that functional diversity strongly affects ecosystem function-
ing. However, even in rather simple model communities consisting of only two or, at
best, three trophic levels, the relationship between multitrophic functional diversity
and ecosystem functioning appears difficult to generalize, due to its high contex-
tuality. In this study, we considered several differently structured tritrophic food
webs, in which the amount of functional diversity was varied independently on each
trophic level. To achieve generalizable results, largely independent of parametriza-
tion, we examined the outcomes of 128,000 parameter combinations sampled from
ecologically plausible intervals, with each tested for 200 randomly sampled initial
conditions. Analysis of our data was done by training a Random Forest model.
This method enables the identification of complex patterns in the data through
partial dependence graphs, and the comparison of the relative influence of model
parameters, including the degree of diversity, on food web properties. We found
that the effects of functional diversity on any trophic level are intimately linked to
the amount of diversity on other trophic levels, which may explain the difficulty in
unifying results from previous studies. Strikingly, with high diversity throughout
the whole food web, different interactions synergize to ensure efficient exploitation
of the available nutrients and efficient biomass transfer, ultimately leading to a high
biomass and production on the top level. The temporal variation of biomass showed
a more complex pattern with increasing multitrophic diversity: while the system
initially became less variable, eventually the temporal variation rose again due to
the increasingly complex dynamical patterns. Importantly, top diversity and food
web parameters affecting the top level were of highest importance to determine the
biomass and temporal variability of any trophic level. Therefore, given its high
ecological importance and vulnerability to global change, it is essential to preserve
diversity on the top trophic level.

Introduction

In the face of rapid global biodiversity loss (Pimm et al., 2014), investigating the influence
of biodiversity on ecosystem functioning is a highly important area of research. It has
become clear that biodiversity is a predominant factor in determining relevant functions
of ecosystems such as biomass production, resource use efficiency, and stability (Hooper
et al., 2005; Tilman et al., 2006; Worm et al., 2006). A major factor affecting the link
between biodiversity and these ecosystem functions is functional diversity, i.e., the range
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of differences between the functions of species contained within the ecosystem (Petchey
and Gaston, 2006).

Mechanistically motivated studies into the role of functional diversity have mainly
been performed in the context of simple communities consisting only of one or, at best,
two trophic levels. Many of these studies restricted their focus to primary producer di-
versity, and were able to show its correlation with relevant ecosystem functions (reviewed
by Cardinale et al. (2011)). However, during the last two decades, more sophisticated
theoretical and experimental studies linking both plant and consumer diversity to these
ecosystem functions were conducted (see Tirok and Gaedke (2010); Borer et al. (2012);
Filip et al. (2014); Klauschies et al. (2016); Schneider et al. (2016); Flöder et al. (2018),
and reviews by Duffy et al. (2007) and Griffin et al. (2013)). In a recent experimen-
tal study, Wohlgemuth et al. (2017) demonstrated that producer diversity effects on the
biomass distribution and production at higher trophic levels crucially depends on par-
ticular traits of the consumer level, such as specialisation and selectivity. Such studies
highlight how the links between multitrophic functional diversity and ecosystem func-
tioning are difficult to generalize, due to their high contextuality. The specific food webs
that are studied, and the theoretical models used to study them, are often too different
to enable meaningful attempt at syntheses of their findings.

For this reason there is a clear need to understand the effects of diversity on ecosystem
functions in a setting that is as general and context-free as possible. In addition, the
high degree of interplay already observed between diversity on the primary producer and
herbivore consumer level underlines the importance of including diversity on even higher
trophic levels. In this study, we want to advance our understanding of how functional
diversity affects ecosystem functioning in model communities by including a diverse third
trophic level. While it has often been highlighted how important the effects of the third
trophic level on ecosystem functions are (Bruno and O’Connor, 2005; Duffy et al., 2007;
Daam et al., 2019; Abdala-Roberts et al., 2019; Ehrlich and Gaedke, 2020), relatively
few studies have attempted to explicitly take these effects into account. Ceulemans
et al. (2019) showed that functional diversity increases the biomass production, temporal
stability, and biomass transfer efficiency to higher trophic levels of a tritrophic food
web, when diversity is increased simultaneously at all three trophic levels. This model
analyzed one particular food web structure in detail, which raises the question whether
the observed trends are to be expected in general, or whether they are context-dependent
as well. Our study tackles this issue by investigating several different tritrophic food web
configurations with respect to the same ecosystem functions. Such a method has been
applied successfully in the past (Gilman et al., 2010; Kovach-Orr and Fussmann, 2013),
but this study is the first to explicitly incorporate a potentially diverse third trophic level
in the comparisons. We investigated eight different food web configurations (Figure 1),
which differ in the trophic location at which functional diversity may be present. For
each of these eight food webs, the amount of functional diversity on the relevant trophic
levels varied independently. We measured functional diversity on a trophic level by the
difference between the functional traits of the two species residing there: when the trait
difference between the species is large, so is the functional diversity, and vice-versa. In this
way, we were able to change the functional diversity of a trophic level without changing
the number of species.

Importantly, food web dynamics do not only depend on the topology of the food web,
but also on the specific parametrization used, regarding both external environmental pa-
rameters as well as internal parameters such as growth rates, attacks rates, and handling
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times. To sufficiently capture the potentially high variation in biomass dynamics, we
randomly selected 128,000 parameter values from ecologically plausible intervals for each
of the eight different food webs, as well as tested 200 initial conditions per parameter
combination. This procedure allows us to obtain results of high generality, as they apply
to the average behavior of tritrophic systems, independent of its parametrization. Analy-
sis and presentation of our results was made possible by training a Random Forest Model
on our dataset.

Methods

The numerical data used in our study was obtained by storing the mean biomasses and
coefficients of variation (CV s) of the following ordinary differential equation model:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ṅ = δ (N0 −N) −
cN
cC
∑
i

riBi

Ḃi = riBi −∑
j

gjiIj − dBi
Bi

İi = e∑
j

gijIi −∑
i

γjiTj − dIi Ii

Ṫi = e∑
j

γijTi − dTi Ti,

(1)

where the indices i, j ∈ {1,2}. N describes the free inorganic nutrients in the system,
with the inflow concentration N0, inflow rate δ, and nutrient-to-carbon ratio cN

cC
. The loss

rates dBi
, dIi , and dTi represent losses proportional to the biomass present, such as basal

respiration, sedimentation, or wash-out. The basal species’ Bi uptake rate ri is described
by their maximal growth rate r′i and nutrient uptake half-saturation constant hN :

ri = r
′

i

N

N + hN
. (2)

The interaction between the intermediate species Ii and the basal species Bj is de-
scribed by a Holling-Type-III functional response which is determined by the attack rate
aij, handling time hij and the Hill exponent n:

gij = aij
Bn
j

∑j′ aij′hij′B
n
j′ + 1

. (3)

In the same way, the interaction between top species Ti and intermediate species Ij is
given by:

γij = αij
Iνj

∑j′ αij′ηij′I
ν
j′ + 1

, (4)

with attack rate αij, handling time ηij, and Hill exponent ν. Finally, dBi
, dIi and dTi

determine the death rates of Bi, Ii, and Ti, respectively.

Influence of trait differences on trait parameters

The parameters r′i, hij, aij, ηij, αij, and all death rates are determined by the trait differ-
ences ∆B,∆I , and ∆T , which each can vary from 0 (the two species at each trophic level
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are equal) to 1 (maximal trait differences). As trait differences increase, the species B1,
I1, and T1 will be metabolically more active, whereas B2, I2, and T2 will be less active
through modifying their maximal feeding rates (which equal the inverse of the handling
times hij and ηij for the intermediate and top species).

In our model, trait differences affect the relevant species’ parameters symmetrically,
such that an increase for species 1 leads to a decrease for species 2 by the same factor.
Explicitly:

r′1 = r
′

0 ⋅Binc

r′2 =
r′0
Binc

h1i ∼
h0
Iinc

h2i ∼ h0 ⋅ Iinc

η1i ∼
η0
Tinc

η2i ∼ η0 ⋅ Tinc,
(5)

with
Binc = 1 +∆B ⋅ τinc Iinc = 1 +∆I ⋅ τinc Tinc = 1 +∆T ⋅ τinc, (6)

so that they are unity for ∆i = 0, leaving the species’ parameters unaffected, and maximal
for ∆i = 1, where τinc determines their maximal increase. In this text, we fixed τinc = 1/2.

The universality of trade-offs in natural systems (Kneitel and Chase, 2004; Ehrlich
et al., 2017) implies that for any increase or decrease in growth rates, the species’ loss
rates must change correspondingly. Time and/or energy that is invested towards a certain
defense strategy cannot be used for resource uptake, and thus, comes at the cost of a
lower growth rate (and thus a higher handling time). Conversely, investing in a higher
growth rate (lower handling time) tends to make a species more vulnerable to predation
as it leaves less time and/or energy for employing defense strategies. For simplicity, the
loss rates are affected in the same way as the growth rates. Thus, Binc affects the handling
times hij as well as the death rates dBi

, Iinc affects ηij and dIi , and Tinc affects dTi , in the
following way:

hi1 ∼
h0
Binc

hi2 ∼ h0 ⋅Binc

ηi1 ∼
η0
Iinc

ηi2 ∼ η0 ⋅ Iinc,
(7)

and,

dB1 = δ ⋅Binc

dB2 =
δ

Binc

dI1 = δ ⋅ Iinc

dI2 =
δ

Iinc

dT1 = δ ⋅ Tinc

dT2 =
δ

Tinc

(8)

The handling times hij and ηij are thus dependent on both Binc & Iinc, or Iinc &Tinc,
respectively. Summarizing:

h = h0
⎛

⎝

1
BincIinc

Binc

Iinc

Iinc
Binc

BincIinc

⎞

⎠
, η = η0

⎛

⎝

1
IincTinc

Iinc
Tinc

Tinc
Iinc

IincTinc

⎞

⎠
. (9)

Finally, the links between predator-prey pairs in our modules are not only determined
by the differences between the prey and/or predator traits. There may be important
dynamical differences between a tightly linked food web (such as the BIT web shown
in Figure 1), and two weakly coupled food chains. In the latter, the ratio between the
strength of the “cross” links (e.g. B1 → I2) and the “parallel” links (e.g. B1 → I1) is
determined by the cross link scaling parameter ascale, such that a larger ascale reduces the
cross link strength as ∆B,∆I ,∆T increase. For details see Appendix S1.
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Parameter selection

In order to capture a high diversity of dynamical outcomes, within a plausible ecological
setting, the parameters of the food web were sampled uniformly from certain intervals
determined by a standard value from which the boundaries are calculated (Table 1).
In order to maximize the number of possible dynamical outcomes, the set of standard
values was chosen such that two alternative stable states exist for the tritrophic linear
chain (Ceulemans et al., 2019). The maximal growth rates (r′0, e/h0, & e/η0) were set
to correspond to an allometrically scaled food chain with the body mass ratios between
adjacent trophic levels of 103, with an allometric scaling exponent of −0.15. However,
due to the spread of the intervals the actual ratio between body masses (assuming the
same scaling exponent λ) can vary between approximately 1 and 10,000,000 (for details,
see Appendix S2).

The remaining parameters are given by e = 0.33, cNcC = 0.175, and any of the following:

∆B ∈ {0,0.25, 0.5, 0.75, 1},

∆I ∈ {0,0.25, 0.5, 0.75, 1}, (10)

∆T ∈ {0,0.25, 0.5, 0.75, 1},

so that there are 125 combinations possible. The values of the different ∆i determine
both the specific food web topology and the amount of functional diversity present. For
example, ∆B = 1,∆I = 0.25, and ∆T = 0 implies that we are investigating the BI food web
(Figure 1), where the basal level is highly diverse, but the species on the intermediate
level are still relatively similar.

In order to sample a large part of all the possible dynamical outcomes that can be
exhibited by our model, we randomly sampled 1024 different parameter combinations, for
each selection of ∆B,∆I , and ∆T (Eq. 10). Moreover, for every parameter combination,
200 different initial conditions were tested to capture potential alternative stable states.
These initial values were randomly sampled such that the total amount of biomass in the
initial state did not exceed 2 ⋅N0. The system was allowed to relax to its attractor for 105

time units before the mean biomasses and the CV of each species, and of each trophic
level, were recorded for 3 ⋅ 104 time units. When all of the different species’ means and
CV s were sufficiently close to each other (absolute tolerance of 5 for the means, 0.01 for
the CV s, and relative tolerance of 0.1), we assumed the initial conditions to relax to the
same attractor and grouped them together. For each attractor found, we recorded the
mean biomasses and CV of all species, as well as the CV of each trophic level as a whole.
Numerical integration of the ordinary differential equations in Eq. (1) was done in C
with the SUNDIALS CVODE solver version 2.7.0 (Hindmarsh et al., 2005). Subsequent
analysis of the food web data was performed in Python 3.6 using NumPy (Van Der Walt
et al., 2011), pandas (McKinney, 2010), and Matplotlib (Hunter, 2007). Further details on
our computational procedure, as well as the code itself and the data required to produce
Figures 3-6 and various Appendix Figures can be found as an electronic supplement.

Random Forest Model

In order to simplify the presentation of our results, and to easily extract additional
relevant information, we trained a Random Forest model on our dataset. A detailed
description of how this works can be found in Appendix S3. Essentially, Random Forests
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are a class of machine learning models which are popularly used due to their relatively
simple structure and high versatility (Breiman, 2001; Cutler et al., 2007; Thomas et al.,
2018).

For each quantity of interest (see Results), an Extremely Random Forest consisting
of 2000 trees was trained and analyzed using the Scikit-learn (Pedregosa et al., 2011) and
pdpbox packages in Python. The training dataset consisted of the 14 different parameters
(see Table 1 and Eqs. 10) as input values, and the mean biomass and CV s of each trophic
level as output values. During training, the random forest algorithm performed cross-
validation by calculating the Out-Of-Bag (OOB) score, to estimate its accuracy. After
training the random forest model, we used it to investigate how the basal, intermediate,
and top diversity (∆B,∆I , and ∆T ) affect the quantities of interest, independently of
all other parameters, by examining the partial dependency graphs. Finally, the random
forest also provided us with a measure of the importance of each of the input parameters
in determining the desired outcome (relative importance).

Results

Based on the data collected by simulating the dynamics of the different food webs (Figure
1) for 128,000 different parameter combinations, we investigated the following quantities
using a Random Forest Model:

• nutrient density N and biomass per trophic level BB,BI ,BT (see Figure 3);

• CV of the nutrient density and biomass per trophic level CVN ,CVB,CVI ,CVT (see
Figure 4); and

• top biomass production PT , basal production efficiency (P /B)B, amount of basal
biomass flowing upward Bup, and food web efficiency PT /PB (Figure 5).

Figures 3-5 are partial dependence graphs revealing how trait differences on the basal
(∆B), intermediate (∆I), and top (∆T ) level affect the quantity of interest. Such partial
dependence graphs are calculated from the Random Forest model trained on the food
web data, and show the average value of the quantity of interest, independent of all
other model parameters (see Methods). This presentation allows us to concisely capture
the full behavior of all food webs, as they each occupy a certain location in the partial
dependency graphs (Figure 2).

In most cases the OOB scores, which measure the accuracy of the Random Forest
models, were above 0.60, with some exceptions (Table 2). Such scores indicate a sufficient
model accuracy as we focus on the average trends in the predicted quantity as a function
of the functional diversity at different trophic levels, rather than on predictions for specific
parameter values.

The quantities of interest were only examined for those initial conditions and param-
eter combinations that actually led to coexistence of all species originally present (see
Figure 1). Interestingly, there were only very few parameter combinations that led to
coexistence for the T (1 combination) and BT (8 combinations) food webs (see Appendix
S4). One of the two top species almost always outcompeted the other in these webs.
As we cannot reliably investigate the behavior of these food webs in general, we did not
include these parameter combinations in our dataset. This implies that our dataset con-
tains no data points with ∆T > 0,∆I = 0, and therefore the region below ∆I = 0.25 for
∆T > 0 in Figures 3-5 remains empty.
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Nutrient concentration and biomasses

The partial dependency graphs of the free nutrient concentration and the biomasses
on each trophic level on the trait differences ∆B,∆I , and ∆T (Figure 3) reveal strong
differences between the simple chain without any diversity (∆B = ∆I = ∆T = 0), and the
food web with high trait differences at every trophic level (∆B = ∆I = 1, and ∆T = high).
Comparing these two points shows that the linear chain has a higher average free nutrient
concentration and a lower intermediate and top biomass than the diverse food web.

In between these two extremes, the tritrophic structure of our model gives rise to
several interesting patterns. Comparing the chain and the B, I and BI food webs (i.e.
∆T = 0, Figure 3, left panels) shows that when ∆I is 0 or low, increasing ∆B leads to
a decrease in basal biomass, whereas if ∆I is high, this pattern reverses as the basal
biomass increases with ∆B. In other words, if functional diversity is only present on the
basal level, basal biomass tends to decrease with ∆B. However, taking consumer diversity
into consideration in the BI food web shows that this pattern is not general and strongly
depends on the actual level of consumer diversity (∆I).

Investigating the effect of ∆I and ∆T on the intermediate and top level biomasses
shows exactly the same pattern. When ∆T is 0, intermediate biomass tends to decrease
as ∆I increases, whereas when ∆T is high, it increases with ∆I (independently of ∆B).
Additionally, it is clear that top biomass increases with ∆T in a gradual fashion.

The location and strength of trophic cascading in the food web is also affected by
the amount of functional diversity present on the different trophic levels. For example,
when ∆T is zero, an inverse relationship between the biomass on the intermediate and
basal level can be observed, whereas the top level biomass seems hardly affected by
∆B and ∆I (Figure 3). When ∆T is low, biomasses at the top and intermediate level
are strongly negatively correlated, indicating that a diverse top level is able to exert a
stronger influence on the whole food web as compared to a non-diverse top level. This
negative relationship does not cascade downwards to the basal level, potentially due to
the buffering properties of a diverse intermediate level. However, for ∆T = high, the
strong inverse relationship between top and intermediate biomass is replaced by a rather
positive one, due to the sharp increase in intermediate biomass as ∆I is increased.

Temporal variation

We also examined how the functional diversity at each trophic level (∆B,∆I , and ∆T )
influences the temporal variation of the nutrients and biomasses per trophic level, by
calculating the coefficient of variation (CV ) (Figure 4). One clear overarching pattern is
the covariation of the CV s along the different trophic levels. Temporal fluctuations at
any trophic level propagate through the whole food web, affecting all other levels.

The left column shows how ∆B and ∆I affect the CV s of the food webs without top
diversity (∆T = 0). In this case, the CV of any trophic level depends almost solely on
∆I . Only the CV of the nutrient concentration depends strongly on ∆B.

These results are strongly affected by the top diversity. By increasing ∆T from 0 to
low, all CV s are considerably dampened. However, this trend reverses as ∆T is increased
further, as all CV s tend to increase again (∆T = high). Hence, while comparing the simple
chain (∆B = ∆I = ∆T = 0) to the food web with high trait differences (∆B = ∆I = 1, and
∆T = high) does not immediately show any notable differences, it is clear that temporal
variability is strongly affected in an intricate way by the amount of functional diversity
at the different trophic levels.
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Additionally, there is a strong correlation between the CV of the basal trophic level,
and the mean free nutrient concentration (Figure 3, bottom row). A low temporal vari-
ability on the basal level leads to a strong increase in nutrient exploitation efficiency, and
therefore low nutrient concentrations.

Biomass production and food web energetics

We also analyzed metrics related to biomass production and food web energetics: top
biomass production PT , basal biomass flowing to the intermediate level Bup, basal biomass
to production ratio (P /B)B, and the food web efficiency PT/PB (Figure 5). Examining
these (and related, see Appendix S5) quantities helped us to understand why the biomass
at the top level is highest when functional diversity everywhere is high (top right corner
in Figure 3 for ∆T = high). Importantly, we can infer the quantities PI (total biomass
production of the intermediate level) and Iup (biomass flowing from the intermediate to
the top level) from Bup and PT : PI = e ⋅Bup, and Iup = PT /ε (see also Appendix S5).

The biomass production by the basal level PB varies only little, as this quantity is
completely determined by the interaction with the free nutrients (see Appendix S6). This
property lies at the basis for explaining the increase in top biomass and food web efficiency
as functional diversity increases everywhere.

When ∆T = 0, the absence of a diverse top trophic level creates a slight relative
advantage for the fast growing species I1 (see Appendix Figure S7.1) . Its effects on the
basal level strongly depend on ∆I . For high ∆I , the fast growing B1 is heavily suppressed
and the basal biomass is concentrated in B2, which is less edible for the prominent I1. For
low ∆I (i.e., I1 and I2 are functionally similar and less specialized), the dominant I1 can
also graze significantly on the slow growing B2, which strongly promotes the fast-growing
B1. The higher growth rate of B1 causes strong fluctuations of the basal biomass (Figure
4), which, in turn, leads to less efficient nutrient exploitation (Figure 3). Thus, for both
low and high intermediate diversity, the basal level is unevenly exploited, which leads to
a relatively high proportion of basal biomass being lost from the system, instead of being
transferred up the food web (see also Appendix S5). The rather low basal biomass that
is transferred to the intermediate level supports only a modest amount of intermediate
biomass, and hence, a low biomass and biomass production on the top level, and a low
food web efficiency.

In contrast, when the top level is highly diverse (∆T = high), the intermediate level
is more evenly exploited, leading to a balanced presence of both intermediate species. In
turn, this leads to an efficient exploitation of the basal level, especially when ∆I is also
high, which is reflected by high values of (P /B)B (Figure 5). Even though PB remains
roughly the same (Appendix Figure S5.2, and Appendix S6), Bup is increased (Figure
5) which leads to a significantly higher intermediate biomass and biomass production
(Figures 3, S5.2), and, ultimately an increase in biomass on the top level. This increase
subsequently explains the increase in food web efficiency through an increased top biomass
production (Figure 5).

Relative importance of parameters

The Random Forest model provides an estimate for the importance of each of the food
web parameters in predicting the outcome (see Methods). Figure 6 shows them for
the different biomasses and CV s for each of the 14 model parameters (for the relative
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importance of the different production metrics, see Appendix Figure S5.4).
The parameters in each graph are grouped by their mean importance in descend-

ing order. For example, the Hill-exponent of the functional response describing the
intermediate-top interaction (ν) has the highest mean relative importance for predict-
ing the biomasses on each trophic level (Figure 6, top). In particular, it is very important
for predicting the biomass on the top and intermediate level. On the other hand, the
nutrient-uptake half saturation constant hN is the least important.

One important observation in all three panels is that while the three possible trait
differences ∆B,∆I , and ∆T have a strong influence on all the different quantities we have
investigated (see Figs. 3-5), they are never amongst the most important parameters.
However, this is not very surprising given the nature of the other parameters in our
model: for example, it is very natural that increasing the nutrient inflow concentration
N0 has a very strong influence on species’ biomasses.

Our results also show a balance between the relative importance of parameters af-
fecting the external environment (such as the nutrient inflow rate N0 and the outflow
rate δ), and internal parameters affecting the ecological dynamics within the food web
(such as the handling times h0, η0, and Hill-exponents n, ν). Remarkably, parameters
affecting the intermediate-top interaction (ν, η0, α0) are of higher importance than their
intermediate-basal analogues (n, h0, a0). In particular, the importance of the different
diversity measures ∆T ,∆I , ∆B is ranked by trophic level. In this way, it is clear that
food web parameters affecting the top level of are of highest importance.

Discussion

The food web model analyzed in this manuscript was built with the aim of being as
general as possible, while still being ecologically realistic. Given the expansive range
of different environmental and ecological situations that are effectively covered by the
model, we did not intend to answer research questions about specific environmental or
ecological conditions. Rather, we focused on how the average behavior of tritrophic
systems depends on the diversity on each trophic level separately. In particular, we
studied how functional diversity in tritrophic food webs affects the biomass distributions,
temporal variability, and production, on average. The partial dependence graphs provided
by training a Random Forest model on our data served as ideal tools to answer these
questions. Given the large amount of parameters that were randomly sampled, it is to
be expected that the output data contains a large amount of variation. For example,
parameters like the inflow nutrient concentration N0, or the flow-through rate δ naturally
have a very strong influence on the trophic level biomasses and temporal variation. Partial
dependence graphs revealed how the predicted outcome changes as a function of one
particular parameter, on average, i.e., independently of all other model parameters.

Motivating the generality of the model

In order to find out how the behavior of tritrophic systems typically depends on the
diversity at each trophic level, it is important to build a model that is as general as possi-
ble. Adopting a trait-based rather than species-specific approach by analyzing functional
diversity through trait differences, instead of using non-functional metrics of biodiversity
such as species number, allows us to produce results of high generality (McGill et al.,
2006; Hillebrand and Matthiessen, 2009; Krause et al., 2014).
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Our model rests on few very general assumptions. The first is allometry, which states
that larger organisms tend to grow slower than smaller ones (Kalinkat et al., 2013).
Combined with the assumption that consumers tend to be larger than their prey we
obtain the general property that the mean growth rate should decrease as the trophic
level increases. This strictly holds for pelagic systems (Gaedke and Kamjunke, 2006),
but also for other ones, except for the plant-herbivore interface (Brose et al., 2006). The
third basic assumption is the frequently established trade-off between growth rate and
defense (Herms and Mattson, 1992; Hillebrand et al., 2000; Kneitel and Chase, 2004;
Ehrlich et al., 2017). It implies that slow growing species are generally less affected
by grazing than faster growing species, which invest less in defense mechanisms due to
energetic limitations. In addition, the non-grazing mortality terms (see Eq. (8)) are of
general nature and may be due to several different processes, such as basal respiration,
the influence of parasites and viruses, or outflow in an experimental microcosm.

Based on this structure, we attempted to capture all possible dynamical outcomes
by analyzing a large amount of potential parameter combinations and initial conditions.
These parameter values were drawn from intervals geometrically centered around values
which are particularly relevant for planktonic systems (Ceulemans et al., 2019), but are
sufficiently wide to capture the behavior of many different types of food webs (see Table
1). Furthermore, the relatively simple and general structure of our food webs (see Figure
1) makes our results accessible for verification by experimental studies, as they are often
limited in how much complexity can be included.

Absence of coexistence in some webs

In two of the food webs we investigated, T and BT (see Figure 1), coexistence of all
species was extremely rare (see Appendix S4). In almost every case, one of the two
top species outcompeted by the other one, as expected when applying the competitive
exclusion principle (Hardin, 1960; Klauschies and Gaedke, 2019). For less than 0.1% of
parameter combinations, both top species still co-occurred at the end of the simulation
time. The structure of these two food webs entails that the two top species are competing
with each other for only one resource, I, with no other density dependent interaction.

In contrast, coexistence of all species is very likely in the I and IT food webs, even
though the two intermediate species also share a single resource, B. This is due to
an additional density dependent interaction acting on the intermediate species, by the
presence of the top level (which may or may not be diverse). Therefore, more than
one species can exist at the intermediate level without the necessity of fine-tuning their
interaction parameters (Huntly, 1991; van Velzen, 2020).

Viewed in this way, it is clear that the amount of functional diversity at one trophic
level can drastically influence that at other trophic levels: a loss of functional diversity
at the intermediate level in the IT or BIT food webs leads to a loss of functional diversity
at the top level as well. It is therefore crucial to safeguard functional diversity on lower
trophic levels to enable a diverse top predator community.

Relative parameter importance

The random forest model trained on the output data of our simulations (see Methods)
provides information on which of the input parameters (see Table 1) are most important
for estimating the predicted biomasses, CVs, and production metrics. In short, a param-
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eter is of high importance when it tends to appear high up in many different trees in the
forest. Conversely, when a parameter only appears near the end of the trees, it is of low
importance in estimating the desired outcome. These relative importances are ranked
from highest to lowest in Figure 6.

Remarkably, parameters directly affecting the top trophic level tend to be of high
importance, whereas parameters influencing the nutrient uptake by the basal species are
all situated near the bottom end. The different diversity indices ∆B,∆I , and ∆T are also
ranked by trophic level. This hierarchy shows how important the higher trophic levels
are in determining the biomass distributions, temporal variation of biomass dynamics,
and energetics of whole food webs.

In addition to most of the parameters governing the properties of the top trophic
level, the throughflow rate δ and the nutrient inflow concentration N0 are also of high
importance. As δ determines the death rates of all the species in the model (see Eq. 8),
and in particular those of the top level, it has a strong influence on the quantities we
have investigated (Kath et al., 2018). The nutrient inflow concentration is unsurprisingly
also of high importance in estimating these quantities. In particular, when N0 is high,
the total biomass carrying capacity of our system is effectively increased, and vice-versa.

This analysis shows that the relative importance measures provided by the random
forest model provide useful information to uncover the underlying mechanisms that govern
the dynamics of more complex models. Our results clearly show how external and internal
food web parameters do not overpower each other. Information on both types is required
for accurately predicting biomasses, biomass variability and food web energetics.

The complex relationships between diversity and ecosystem func-
tioning

Our results show that functional diversity robustly increases biomass and production
efficiency (Figure 5) at high trophic levels (Figure 3), and generally decreases temporal
variation (Figure 4). In addition, we reveal intricate and complicated interactions between
the degree of diversity at different trophic levels and these ecosystem functions. These
interactions complicate comparison of the numerous studies on the links between diversity
and functioning to each other (Filip et al., 2014; Wohlgemuth et al., 2017; Flöder et al.,
2018; Daam et al., 2019).

For instance, our model shows that the effect of increasing producer diversity on the
biomasses of each trophic level highly depends on the amount of functional diversity
on the other trophic levels (Figure 3). When the top level is not functionally diverse
(∆T = 0), the direction of the effect of ∆B on the basal biomass is determined by the
amount of functional diversity on the intermediate level (∆I). When ∆I is low (low
functional diversity), basal and intermediate biomass tend to decrease with increasing
∆B, whereas this trend reverses as ∆I becomes higher. A recent experimental study
revealed that the effects of producer diversity on food web functioning also depend on
the trait values on the consumer level in a bitrophic system (Wohlgemuth et al., 2017).
Our results indicate that this interdependency is of a very general nature, and moreover,
is expected to hold for higher trophic levels as well, which are less manageable in experi-
mental settings. Indeed, our model shows a similar pattern when investigating the effect
of ∆I and ∆T on the intermediate and top biomasses. Starting from ∆T = 0, increasing
∆I leads to a reduction in intermediate biomass, compared to an increase in intermediate
biomass when ∆T is high. Our tritrophic food web comparison also shows that, when
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functional diversity is increased everywhere, the biomass of the intermediate and top
species increases significantly, whereas the basal biomass stays roughly constant. The
same pattern was found in a modeling study comparing food webs of up to 100 animal
species (Schneider et al., 2016). This correspondency gives credibility to considering the
effects of biodiversity on food web functioning through changing the functional diversity
in simpler food webs, instead of changing the species number which significantly increases
food web complexity.

The effect of functional diversity on the temporal variability (CV ) of the biomasses
at the different trophic levels also exhibited a complex dependency on the functional
diversity of every single trophic level (Figure 4). One particularly robust result, however,
is the non-monotonous relationship between top diversity (∆T ) and the CV of any trophic
level. When ∆T is increased from 0 to low, the CV s tended to strongly decrease. Such
a reduction in the CV of a community as diversity increases has often been observed
(Tilman, 1996), and can often be attributed to the presence of compensatory dynamical
patterns (Gonzalez and Loreau, 2009; Bauer et al., 2014). However, as ∆T is increased
further from low to high, the CV of each trophic level increased again. Hence, additional
mechanisms governing the dynamics must also have a strong influence of the trophic
level CV s. In Ceulemans et al. (2019), we observed a similar pattern in the trophic level
CV s, which could be explained by the increased relevance of an additional dynamical
timescale at high ∆T : the biomasses not only varied rapidly within predator-prey cycles,
but also due to slower trait changes. As this slower timescale became more dominant,
the CV increased again. Due to the similar model structure, this mechanism may be
responsible for the increase in CV here as well. This result suggests that mechanisms
for dampening community temporal variability established for simple but functionally
diverse systems, such as compensatory dynamics arising from competition for a joint
resource, may be counteracted by destabilizing effects in more complex—and thus more
realistic—systems.

Examining how the functional composition at each trophic level and ecosystem func-
tions are linked allows us to mechanistically understand why the biomass and biomass
production on higher trophic levels is maximal when every trophic level is diverse, and
why the diversity on the top level plays such a crucial role. This becomes particularly
obvious when comparing the trends of the different metrics related to biomass production
within the food web (see Results, Figure 5, and Appendix Figure S5.4).

A functionally diverse consumer community leads to an efficient exploitation of the
production at the prey level (Gamfeldt et al., 2005). In our model, this mechanism
is present between both the top and intermediate, as well as between the intermediate
and basal level: a diverse top community efficiently exploits the intermediate production,
which in turn results in the basal production being efficiently exploited. In contrast, when
the top community is not functionally diverse, potentially functionally diverse interme-
diate and basal communities adjust in species composition so that they escape efficient
predation. As a consequence, a higher proportion of the production is lost from the sys-
tem rather than transferred up to the level above. In this way, the effects of functional
diversity on different trophic levels synergize to make the food web with diversity every-
where the most efficient configuration in transferring biomass from the basal to the top
level (Figure 5, PT /PB).

The importance of considering multitrophic diversity has been emphasized before
(Gamfeldt et al., 2005; Soliveres et al., 2016; Ceulemans et al., 2019). With these com-
plex interactions between functional diversity on different trophic levels clearly exhibited
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by our model, it is not surprising that studies focusing on a single food web structure or a
single parametrization sometimes find incommensurable results. For example, increased
primary producer diversity had often been linked to an increased producer biomass and
production (Tilman et al., 1997; Cardinale et al., 2011). Our results show that this
relationship not only depends on the trait values of the consumer level, as also found em-
pirically by Wohlgemuth et al. (2017), but crucially also on the top level. Hence, we reveal
considerable variation in the behavior of differently structured food webs with respect to
the relationship between diversity and ecosystem functioning. Nevertheless, we are able
to identify clear trends and uncover mechanisms governing the behavior of tritrophic
systems, even when considering a large range of different parameter combinations.

Concluding remarks

Understanding the link between functional diversity and the functioning of complex food
webs is crucial to accurately predict how losses in functional diversity will affect the
functions of natural food webs everywhere around us. Considerable detailed knowledge
about this link has been gained in communities of one or two trophic levels. The present
comparison of several different food webs consisting of three trophic levels (see Figure 1)
reveals how the effects of functional diversity at any trophic level are intimately linked to
the amount of functional diversity at other trophic levels. Our results reveal that at high
functional diversity throughout the whole food web, functional shifts within the individual
trophic levels result in a high food web efficiency and biomass on higher trophic levels, and
a high degree of nutrient exploitation. Additionally, we show that the functional diversity
on the top level is a strongly regulating factor for the biomass, temporal variability,
and biomass production efficiency of any trophic level. Therefore, to prevent drastic
reduction of important functions, as well as potentially irreversible transitions, it is of
crucial importance to increase our efforts in conserving diversity of higher trophic levels,
despite the often large operational problems involved.
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Parameter Meaning Range
N0 nutrient inflow concentration [1/2,2] ⋅ 1120µgN/l
hN nutrient uptake half-saturation const. [1/2,2] ⋅ 10µgN/l
r′0 basal growth rate [1/2,2] ⋅ 1/day
a0 B-I attack rate [1/2,2] ⋅ 1.04 ⋅ 10−3/(day ⋅ µgC/l)
h0 B-I handling time [1/2,2] ⋅ 1.15 ⋅ day
α0 I-T attack rate [1/2,2] ⋅ 4.48 ⋅ 10−4/(day ⋅ µgC/l)
η0 I-T handling time rate [1/2,2] ⋅ 2.62 ⋅ day
δ outflow rate [0.03,0.06] ⋅ 1/day

ascale cross link scaling factor [1,500]
n B-I Hill exponent [1,2]
η I-T Hill exponent [1,2]

Table 1: Name and meaning of the parameters that were randomly varied in the study,
along with the range from which they were sampled. For example, the nutrient inflow con-
centration N0 was randomly sampled from the interval [1/2,2] ⋅1120 ≈ [560,2240]µgN/l.
In this table, B-I refers to the functional response between the Basal (B) and the Inter-
mediate (I) trophic level, and I-T to the Intermediate and Top (T) level.
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Outcome variable OOB score
Nutrient density 0.44
Basal biomass 0.65
Intermediate biomass 0.92
Top biomass 0.77
Nutrient CV 0.26
Basal CV 0.73
Intermediate CV 0.68
Top CV 0.70
PT/PB 0.83
Bup 0.86
(P /B)B 0.34
PT 0.78

Table 2: OOB scores estimating the accuracy of the random forest model, for all outcome
quantities. An OOB score of 1 represents a perfect model prediction, whereas an OOB
score of 0 means that the model is as accurate as simply predicting the mean outcome
value every time.
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Figure 1: Schematic overview of the 8 different food webs compared in this study, which
differ by the trophic levels (B for basal, I for intermediate, and T for top) on which
diversity is possible (indicated above). In this way, chain refers to the linear chain which
contains no diversity, B to the food web on which only the basal level is diverse, etc.,
and finally BIT denotes the food web which contains diversity on all trophic levels. The
thickness of the connections between the nodes illustrates the comparative intensity of
the trophic interaction, which is determined by the amount of diversity, or the trait
difference, between the species on each trophic level (∆B, ∆I , and ∆T ). Each of these
food webs are analyzed as general as possible, with varying amounts of trait differences
and parameters drawn randomly from biologically plausible intervals.
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IT

BT

BIT

T

Figure 2: Pictorial representation of the location of the different food webs (Figure 1) in
the partial dependence graphs in Figures 3-5. On the left-side graph (∆T = 0, i.e., no
diversity at the top level), the chain is on the point (0,0) (∆B = ∆I = 0), the B food web
is located on the line ∆I = 0, the I food web is located on the line ∆B = 0, and the BI web
is located in the plane where both ∆B and ∆I are non-zero. Similarly, on the right-side
graph where ∆T > 0 (either low or high in Figs. 3-5), the T web is located on the point
(0,0) (∆B = ∆I = 0), the BT food web is located on the line ∆I = 0, the IT food web is
located on the line ∆B = 0, and finally the BIT web is located in the plane where ∆B,
∆I , and ∆T are non-zero.
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Figure 3: Partial dependence graphs of the trait differences ∆B and ∆I , for ∆T = 0,
low ∆T , and high ∆T = 1 (for more information see Methods), on the free nutrient
concentration (blue), and the biomasses on the basal (green), intermediate (orange), and
top (red) trophic levels. When ∆T is nonzero, the region below ∆I = 0.25 (T and BT
webs) cannot be shown as no coexisting parameter combination exists here due to the
two distinct top species sharing only one resource. More information on the location of
the different food webs in these graphs is given in Figure 2. To simplify the presentation
trait differences on the top level (∆T ) have been split into three groups: ∆T = 0, ∆T = low
(0.25 or 0.5), and ∆T = high (0.75 or 1).
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Figure 4: Partial dependence graphs of the trait differences ∆B and ∆I , for ∆T = 0, low
∆T , and high ∆T = 1 (for more information see Methods), on the free nutrient coefficient
of variation (CV ) (blue), basal (green), intermediate (orange), and top (red) trophic
levels. When ∆T is nonzero, the region below ∆I = 0.25 (T and BT webs) cannot be
shown as no coexisting parameter combination exists here due to the two distinct top
species sharing only one resource. More information on the location of the different food
webs in these graphs is given in Figure 2. To simplify the presentation trait differences
on the top level (∆T ) have been split into three groups: ∆T = 0, ∆T = low (0.25 or 0.5),
and ∆T = high (0.75 or 1).
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Figure 5: Partial dependence graphs of the trait differences ∆B and ∆I , for ∆T = 0 (a),
∆T = 0.5 (b), and ∆T = 1 (c), on several different metrics related to biomass production
(from top to bottom: top production, basal biomass flowing to I, basal production effi-
ciency, and the food web efficiency) in the food webs. When ∆T is nonzero, the region
below ∆I = 0.25 (T and BT webs) cannot be shown as no coexisting parameter combi-
nation exists here due to the two distinct top species sharing only one resource. More
information on the location of the different food webs in these graphs is given in Figure
2. To simplify the presentation trait differences on the top level (∆T ) have been split into
three groups: ∆T = 0, ∆T = low (0.25 or 0.5), and ∆T = high (0.75 or 1).
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Figure 6: Relative importance of the different model parameters (see Table 1 on deter-
mining the biomasses and CVs of the different trophic levels. The relative importance
quantifies how important the value of a certain parameter is to accurately predict the de-
sired quantity, and they sum up to 1. The higher the relative importance of a parameter,
the more relevant it is to make a prediction. In these graphs, the model parameters are
ordered by their mean importance for each group of quantities (biomasses and CVs).
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2007. The functional role of biodiversity in ecosystems: Incorporating trophic com-
plexity. Ecology Letters 10:522–538. doi:10.1111/j.1461-0248.2007.01037.x.

Ehrlich, E., and U. Gaedke. 2020. Coupled changes in traits and biomasses cascading
through a tritrophic plankton food web. Limnology and Oceanography page lno.11466.
doi:10.1002/lno.11466.

Ehrlich, E., L. Becks, and U. Gaedke. 2017. Trait-fitness relationships determine how
trade-off shapes affect species coexistence. Ecology 98:3188–3198. doi:10.1002/ecy.2047.

22

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 3, 2020. ; https://doi.org/10.1101/2020.07.31.230375doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.31.230375
http://creativecommons.org/licenses/by/4.0/


Filip, J., B. Bauer, H. Hillebrand, A. Beniermann, U. Gaedke, and S. D. Moorthi. 2014.
Multitrophic diversity effects depend on consumer specialization and species-specific
growth and grazing rates. Oikos 123:912–922. doi:10.1111/oik.01219.
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