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Abstract 

αSynuclein aggregation at the synapse is an early event in Parkinson’s disease and is 

associated with impaired striatal synaptic function and dopaminergic neuronal death. The 

cysteine string protein (CSPα) and αsynuclein have partially overlapping roles in maintaining 

synaptic function and mutations in each cause neurodegenerative diseases. CSPα is a member 

of the DNAJ/HSP40 family of co-chaperones and like αsynuclein, chaperones the SNARE 

complex assembly and neurotransmitter release. αSynuclein can rescue neurodegeneration in 

CSPαKO mice. However, whether αsynuclein aggregation alters CSPα expression and 

function is unknown. Here we show that αsynuclein aggregation at the synapse induces a 

decrease in synaptic CSPα and a reduction in the complexes that CSPα forms with HSC70 

and STGa. We further show that viral delivery of CSPα rescues in vitro the impaired vesicle 

recycling in PC12 cells with αsynuclein aggregates and in vivo reduces synaptic αsynuclein 

aggregates restoring normal dopamine release in 1-120hαsyn mice. These novel findings 

reveal a mechanism by which αsynuclein aggregation alters CSPα at the synapse, and show 

that CSPα rescues αsynuclein aggregation-related phenotype in 1-120hαsyn mice similar to 

the effect of αsynuclein in CSPαKO mice. These results implicate CSPα as a potential 

therapeutic target for the treatment of early-stage PD. 
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Abbreviations: CSPα = cysteine string protein; KO = knock-out; 1-120hαSyn =1-120 

truncated human αsynuclein; PD = Parkinson’s disease; SNARE = soluble N-ethylmaleimide 

sensitive fusion attachment protein receptor  
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Introduction 

Alpha-synuclein (αsyn) is a synaptic protein involved in vesicle clustering, assembly of the 

SNARE complex and neurotransmitter release. Point mutations and duplication/triplication of 

the αsynuclein gene cause Parkinson’s disease (PD) (Lunati et al., 2018) and αsyn 

aggregates form the Lewy bodies characteristic of PD (Spillantini et al., 1998, 1997). C-

terminal truncation of αsyn, found in Lewy bodies, promotes its aggregation (Baba et al., 

1998; Crowther et al., 1998). We previously described 1-120hαsyn transgenic mice 

expressing C-terminally truncated αsyn under the control of the tyrosine hydroxylase-

promoter in the absence of the endogenous protein (Tofaris et al., 2006), where αsyn 

aggregation in the striatal terminals is associated with re-distribution of SNARE proteins and 

impairment in dopamine (DA) release, features present in PD patients (Garcia-Reitbock et 

al., 2010). Growing evidence points to presynaptic terminals as the initial site of 

neurodegeneration in PD (Nakata et al., 2012; Janezic et al., 2013; Garcia-Reitbock et al., 

2010; Wegrzynowicz et al., 2019), as shown in our transgenic MI2 mice, where synaptic 

dysfunction with αsyn accumulation preceded DA cell death, both rescued by an oligomer 

modifier (Wegrzynowicz et al., 2019). 

The cysteine string protein α (CSPα/DNAJC5) is a vesicle-associated protein that regulates 

neurotransmitter release, exocytosis/endocytosis coupling and SNARE complex assembly 

through a pathway parallel to that of αsyn (Tobaben et al., 2001; Chandra et al., 2005; Zhang 

et al., 2012), DNAJC proteins have been linked to parkinsonism (Roosen et al. 2019). CSPα 

function is mediated by the DNAJ domain which activates the ATPase activity of the Heat 

shock cognate 70kDa protein HSC70 (Braun et al., 1996; Chamberlain et al., 1997); its 

mechanism of action is functionally associated with αsyn in that overexpression of αsyn 

abolishes lethal neurodegeneration in CSPα-KO mice and ablation of all three (α,β,γ)-syn 

genes results in SNARE complex assembly deficit with an increase in CSPα (Burre et al., 

2010; Goremberg et al., 2017). However, whether CSPα levels and activity change with 

αsyn aggregation and SNARE protein redistribution or if CSPα can rescue the synaptic 

pathology associated with αsyn aggregation is not known. 

In this study we show that CSPα expression and function are impaired in the presynaptic 

terminals of 1-120hαsyn mice concomitantly with the presence of αsyn aggregates and a 

reduction in evoked DA release. We further show that expression of CSPα rescues both αsyn 
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-aggregation dependent deficit in vesicle cycle in vitro and impaired DA release in vivo. This 

effect is associated in vivo with reduction in the number of striatal synaptic αsyn aggregates 

as shown by super resolution analysis of tissue sections.  

 

Materials and Methods 

 

Mice 

Transgenic 1-120hαsyn and control mice without endogenous αsyn (C57BL/6/OlaHsd) were 

used in this study (Tofaris et al., 2006; Garcia-Reitbock et al., 2010).  

Regulated animal procedure were carried out under the Animals (Scientific Procedures) Act 

1986 Amendment Regulations 2012 following ethical review by the University of Cambridge 

Animal Welfare and Ethical Review Body (AWERB), under project license no. 7008383. 

 

Immunostaining 

Brains from paraformaldehyde-perfused 12 month-old mice were sectioned and 30 µm free-

floating sections were incubated overnight at 4ºC with primary antibodies (anti-αsyn, BD 

Transduction, 1:700), anti-DNAJC5 (Millipore, 1:500) as previously done (Garcia-Reitbock 

et al., 2010). Staining was visualised using the ABC Elite Kit (Vector Laboratories) and 3,3′-

diaminobenzidine or Alexa-labelled secondary antibodies and imaged using a Leitz DMRB 

microscope or a Leica TCS SPE confocal microscope.  

 

Co-immunoprecipitation and Immunoblotting  

Total proteins were extracted from mouse striata in PBS containing 0.1% Tween 20 and 

Protease Inhibitor cocktail (Roche) with or without 1 mM non-hydrolysable ADP (Sigma). 

Immunoprecipitation followed previous protocols (Garcia-Reitbock et al., 2010). Briefly, 

proteins (0.8-1 mg) were rotated overnight at 4°C with 5 µg of mouse anti-SGTa antibody 

(Abcam) or control mouse IgG and protein G Dynabeads (Invitrogen). Immunocomplexes 

were eluted by denaturation in NuPAGE LDS sample buffer (Invitrogen). Synaptosomal 

fractions were extracted using Syn-PER synaptic protein extraction reagent (Thermo 

Scientific). Proteins were resolved on a 4-12% gradient PAGE-SDS gel (Invitrogen), 

transferred onto nitrocellulose membranes (Bio-Rad), incubated with peroxidase-conjugated 

secondary antibodies (GE Healthcare) and visualised with chemiluminescent substrates 

(Thermo Fisher Scientific) as previously described (Wegrzynowicz et al., 2019). Antibodies 
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were: mouse anti-DNAJC5 (Millipore1:500), anti-VAMP2 (Abcam 1:500), anti-ATPase 

HSC70 (Synaptic systems, 1:500), anti-SGTa (Abcam 1:500) and rabbit anti-β-actin (Abcam, 

1:10000). 

AAV vector injections 

Human full-length CSPα cDNA, a gift from Prof RD Burgoyne (Liverpool University), was 

subcloned into a pAAV vector under the PGK promoter and packaged in serotype 6 AAV 

particles as described (Löw et al., 2013). Vector suspension was diluted to 1x1013 viral 

genome containing particles (VG)/mL and an AAV6 empty vector (EV) used as control. For 

vector injections, animals were anesthetized with 2% isoflurane, placed in a stereotaxic frame 

(David Kopf Instruments) and injected bilaterally with 2 μl of the virus (0.2 μl/min flow rate) 

in the substantia nigra (SN) at the following coordinates: AP=+0.7, L=+1.7, DV=-3.6 below 

dural surface relative to the bregma according to Paxinos and Watson (Paxinos and Franklin, 

2004).  

 

Retention of FM1-43 

PC12 cells stably expressing 1-120hαSyn were plated onto coverslips in 12 well plates at 

7x105 cells/ml (Garcia-Reitbock et al., 2010). Cells were infected with 1μl 1x1013 VG/mL 

AAV6CSPα or control AAV6EV for 24 hours, then grown for 4 days in fresh medium. To 

stimulate vesicle endocytosis of the FM1-43 dye (Invitrogen), PC12 cells were depolarised 

with KCl (Hank’s balanced salts medium with Ca2+ and Mg2+, 90 mM KCl, 63 mM NaCl) 

then incubated with 15 µM FM1-43 for 90 s at room temperature and unbound dye removed 

by 10 min wash in PBS /1mM scavenger dye ADVASEP-7 (Sigma). Cells were re-incubated 

with depolarizing solution for 90 s at room temperature (Gaffield et al., 2006; Garcia-

Reitbock et al., 2010). Only vesicles with impaired release retained the dye. Cells were then 

washed, fixed with 4% paraformaldehyde and stained (Syn1 antibody, BD Biosciences, 

1:500) overnight at 4°C. Signal was detected using a Leica SPE 4 confocal microscope. FM1-

43 positive puncta above the threshold fluorescence set by the AAV6EV transduced cells 

were counted using ImageJ analysis software. Between 700-1000 cells were counted for each 

experimental condition.  

 

In vivo microdialysis 

In vivo microdialysis was performed as previously reported (Garcia-Reitbock et al., 2010; 

Wegrzynowicz et al., 2019). A microdialysis cannula (CMA Microdialysis) was placed in 
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anesthetized mice in the right medial striatum (AP = +0.7, L = +1.7, H = −2.1 from the bone 

[31], DV = -2.1 from the skull surface). The following day, a CMA/7 microdialysis probe 

was inserted into the guide cannula and perfusion performed at a constant flow rate (2 

µl/min) with artificial cerebrospinal fluid (ACSF: 140 mM NaCl, 7.4 mM glucose, 3 mM 

KCl, 0.5 mM MgCl2, 1.2 mM CaCl2, 1.2 mM Na2HPO4, 0.3 mM NaH2PO4, pH 7.4). 

Dialysates were collected every 20 min in tubes containing 5 µl of 0.2 M perchloric acid to 

prevent dopamine oxidation and assayed for dopamine, homovanillic acid and 3,4-

dihydroxyphenylacetic acid. Two fractions (20-40 min) were collected to evaluate baseline 

release, ACSF was then replaced by ACSF containing 50 mM KCl and three more fractions 

collected (60-100 min). High KCl ACSF was then replaced by basal ACSF and two more 

fractions (120-140 min) were collected after which mice were killed, and brains used for 

immunohistochemistry or immunoblotting. Dopamine and homovanillic acid levels in the 

dialysate were measured by high-performance liquid chromatography (Garcia-Reitbock et al., 

2010; Wegrzynowicz et al., 2019).  

 

dSTORM 

Thirty-micron free-floating striatal sections were stained for αsyn (Syn1, BD, 1:300) and 

Alexa Fluor Plus 647 secondary antibody (Invitrogen, 1:2000) in the presence of Tetra Speck 

microspheres (Invitrogen) to correct for drift during imaging.  

Images were acquired with Photometrics EMCCD camera on a Nikon Ti-2E inverted 

microscope in near-TIRF mode. Image stacks consisted of 10,000 frames (50 ms/frame) on 

the field of view (FOV). A total of four-five FOVs per section and four mice per group were 

tested. 

The image stacks were drift corrected and analysed using PeakFit in the open source ImageJ 

plugin GDSC SMLM, followed by a custom script. Briefly, this grouped the fluorescence 

signals into clusters (monomers or aggregates) based on their spatiotemporal distribution to 

determine their area. The aggregate size reported is the square root of the area (Whiten et al., 

2018,b). 

 

Experimental design and statistical analysis 

Immunoblotting: relative band intensity (RI) was calculated using Image J and βActin-

normalised CSPα, HSC70, STGa and VAMP2 levels analysed with two-tailed Student’s t 

test.  
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Co-immunoprecipitation: RI of CSPα, HSC70, and SGTa alongside corresponding input 

proteins were normalised to βActin and analysed using one-way ANOVA with Bonferroni’s 

multiple comparisons test.  

FM1-43 dye retention: data were evaluated using two-way ANOVA with Bonferroni’s 

multiple comparison test.  

Microdialysis: DA release was normalized to the baseline fraction (0 min) and expressed as 

fold difference relative to the average DA release directly following K+ stimulation (60 min 

fraction) in the control group. DA release in 1-120hαSyn or control mice treated with CSPα 

or EV was analysed using two-way ANOVA with Bonferroni’s multiple comparison test.  

dSTORM: species were divided into monomer/aggregates based on their size with 
recombinant monomers having a median length < 36.5 nm (20.65+2×7.9 mean+2×SD, 
Wegrzynowicz et al., 2019). Data were analysed using the software  https://github.com/Eric-
Kobayashi/SR_toolkit. 

Median size was analysed using a two-tailed Student’s t test; size distribution differences 

between CSPα and EV-treated groups (monomers and aggregates combined) was calculated 

from a cumulative histogram using a Kolmogorov-Smirnov test. 

 

 

Results 

CSPα levels are altered in the striatum of 1-120hαSyn mice  

αSyn aggregates were present in the striatum of 1-120hαSyn 12 month-old mice, no αsyn 

staining was present in background control mice lacking the endogenous protein (Tofaris et 

al., 2006; Garcia-Reitbock et al., 2010). CSPα staining in the striatum of control mice 

revealed a punctate pattern that was less intense in 1-120hαSyn mice (Fig 1A). By 

immunoblotting no significant difference was present in CSPα amounts between controls and 

1-120hαSyn mice in total tissue homogenates, however, a significant 68.3% reduction in 

CSPα amount was present in synaptosomal protein extracts in 1-120hαSyn mice (Fig. 1B) 

(Total homogenates RI: Control 1.29±0.26; 1-120hαSyn 1.07±0.27; Synaptic fraction: control 

1.83±0.21; 1-120hαSyn 0.58±0.16). HSC70 and SGTa were not changed in the synaptic 

fraction (Supplementary Fig. 1). The level of the synaptic v-SNARE protein VAMP2 was 

also not changed as previously reported (Garcia-Reitbock et al., 2010; Supplementary Fig. 1).  
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CSPα in synaptic terminals forms a trimeric complex with HSC70 and SGTa. To test whether 

this function was perturbed in the striatum of 1-120hαSyn mice, we used 

immunoprecipitation in the presence of ADP. We found a reduction in the amount of CSPα 

and HSC70 complexes in 1-120hαSyn mice compared to controls. No changes in SGTa, 

HSC70 and CSPα expression levels were found in the total homogenate input (Fig. 1C) (RI: 

HSC70: control 93031±3690, 1-120hαSyn 53078±1726; CSPα: control 69117±3181, 1-

120hαSyn 18097±2762; SGTa: control 87661±5166, 1-120hαSyn 81385±4499). Taken 

together, these findings suggest that the presence of aggregated αsyn in 1-120hαSyn mice 

selectively reduces CSPα levels in striatal synaptic terminals hampering its chaperone 

activity.  

CSPα rescues vesicle cycling impairment in PC12 cells expressing 1-120hαSyn  

As previously reported expression of 1-120hαSyn in PC12 cells alters vesicle 

endo/exocytosis (Garcia-Reitbock et al., 2010). To determine whether CSPα could rescue the 

αsyn-related vesicle turnover impairment, PC12 cells stably expressing 1-120hαSyn were 

transduced with either an AAV6 vector encoding human CSPα (AAVCSPα), or an empty 

AAV6 control vector (AAVEV). In a control experiment, non–transfected PC12 cells were 

also treated with AAVCSPα or EV (Fig. 2).  

A cycle of vesicle uptake and release was induced by K+ in the presence of FM1-43 dye and 

the number of cells that internalised and retained the dye above a threshold value of 

fluorescence was counted. Fluorescence was increased in cells stably expressing 1-120hαSyn 

following K+ treatment, compared to un-transfected cells (endo) as previously shown 

(Garcia-Reitbock et al., 2010). Expression of CSPα in 1-120hαSyn expressing cells reduced 

the number of cells that retained FM1-43 while no effect was observed in cells treated with 

EV. Furthermore, CSPα or EV viral expression did not alter the release of FM1-43 from 

wild-type cells expressing endogenous αsyn (Fig. 2B) (cell number: 1-120hαsyn: EV 

=55±4.9, CSPα =16.6±4.6; endo: EV 16.9±3.6, CSPα 17.9±3). Thus, CSPα overexpression 

selectively rescues the synaptic vesicle cycle impairment caused by the expression of human 

truncated αsyn. 

 

CSPα delivery in vivo restores DA release  

To investigate whether the effect of CSPα observed in vitro was present in vivo, we injected 

AAVCSPα and AAVEV into the SN of transgenic 1-120hαSyn mice which have a decrease 
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in striatal DA release (Garcia-Reitbock et al, 2010) We first investigated the time-course of 

CSPα expression after injection in the SN of control mice with AAVCSPα and AAVEV and 

measured CSPα protein levels by immunoblotting in the striatum at 4, 6- and 8-weeks post-

injection. A two-fold increase in CSPα expression in the striatum was present up to eight 

weeks post-injection (4 weeks: CSPα= 1.36±0.19, EV= 0.71± 0.13, 6 weeks: CSPα= 1.25± 

0.08, EV= 0.46± 0.04; 8 weeks: CSPα= 1.22± 0.02, EV= 0.60± 0.08) (Supplementary Fig. 2).  

Therefore, AAVCSPα or AAVEV were injected in the SN of 1-120hαSyn and control 10 

month-old mice and the striatal DA release was measured at eight weeks post-injection using 

in vivo microdialysis.  

As previously shown, K+-evoked DA release was significantly reduced in untreated 1-

120hαSyn mice compared to controls (Garcia-Reitbock et al., 2010) (fractions: 60, 80, 100 

min normalised to peak control mice value (60 min); 0.47±0.045 vs 1±0.03 (60 min), 

0.21±0.03 vs 0.63±0.18 (80 min), 0.12±0.03 vs 0.42±0.18 (100 min). Notably, expression of 

CSPα restored DA release levels in 1-120hαSyn mice back to the control values (0.98±0.06 

fraction 60 min, 0.77±0.08 fraction 80 min) whereas the EV vector was ineffective 

(0.46±0.05 fraction 60 min, 0.29±0.05 fraction 80 min) (Fig. 3).  

The effect of CSPα was dependent on αsyn aggregation, because no difference was observed 

in control mice after treatment with CSPα or EV. (CSPα: 0.96±0.15 vs EV: 0.98±0.15 

fraction 60 min, CSPα: 0.67±0.14 vs EV: 0.69±0.1 fraction 80 min) (Fig. 3). 

These results show that increased expression of CSPα in vivo specifically rescues impaired 

DA release associated with 1-120 αsyn aggregation. 

 

CSPα reduces αsyn aggregates and increases αsyn monomers in the striatum of 1-120 

hαSyn mice  

To investigate whether CSPα increase had an effect on aggregation in 1-120hαSyn mice, 

immunostaining for αsyn was performed in striata of 12 months-old mice after microdialysis. 

Striata from EV-treated mice showed intensely stained αsyn aggregates in the neuropil, while 

the staining was reduced in CSPα-treated mice (Fig. 4A). To further characterise the αsyn 

species in CSPα animals, we used dSTORM and compared the number of aggregated versus 

monomeric αsyn species at the nanoscopic level in both CSPα and EV-injected mice. In 

CSPα-injected mice the number of αsyn aggregates was reduced compared to EV-treated 
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mice (aggregate number relative units (RU)=% of all species that are aggregated: CSPα= 66+ 

2%, EV=78+2%) (Fig 4B).  

We then analysed the difference in aggregate size distribution between EV- and CSPα-

injected mice. No difference in the median size of αsyn aggregates between the CSPα-

injected and EV injected group was found, however CSPα-injected mice exhibited a 

significant 16.6% reduction in αsyn aggregates (>36.5 nm) and conversely, an increase in 

monomeric species (<36.5 nm) (Fig 4C, D and Table) indicating that CSPα reduced the 

number of αsyn aggregates and increased the number of αsyn monomeric species.  

 

Discussion 

αSyn is predominantly localised at the synapse where it is involved in SNARE complex 

assembly and synaptic vesicle turnover (Iwai et al., 1995; Nemani et al., 2010; Burre et al., 

2010, 2014; Diao et al., 2013; Vargas et al., 2017; Longhena et al. 2019). CSPα is also at the 

synapse where it assists folding of client proteins involved in neurotransmitter release, 

exo/endocytosis and SNARE complex formation (Tobaben et al., 2001; Chandra et al., 2005; 

Zhang et al., 2012). αSyn is functionally interconnected with CSPα as shown by its ability to 

rescue the neurodegeneration characteristic of CSPα-KO mice (Chandra et al., 2005) but 

whether CSPα is affected by αsyn aggregation is not clear. Here we show that CSPα 

immunoreactivity is reduced in the striatum of 12 month-old 1-120hαSyn mice compared to 

controls. This decrease was specifically in the synaptosomal fraction indicating that CSPα 

reduction is localised where αsyn aggregates. As a synaptic co-chaperone, CSPα binds to 

HSC70 and the adapter protein SGTa to regulate vesicle fusion. By co-immunoprecipitation 

we found that CSPα/HSC70 complexes with SGTa are reduced in the striatum, effect that 

may be attributed to CSPα reduction. These findings indicate that αsyn synaptic aggregation 

affects CSPα levels and function. In order to determine whether an increase of CSPα could 

be beneficial and restore vesicle cycle and DA release, we tested this first in PC12 cells 

expressing 1-120hαsyn and found that indeed their abnormal vesicle cycle was restored. This 

prompted us to investigate whether an increase of CSPα in vivo in the striatum of 1-

120hαSyn mice could restore DA release. Using microdialysis we found that CSPα 

expression restored the striatal DA release reduced by synaptic αsyn aggregation, and 

dSTORM super-resolution microscopy performed in tissue after microdialysis, indicated a 

reduction in the number of αsyn aggregates and a concomitant increase in monomeric 
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species. It is unclear whether CSPα prevents monomeric αsyn aggregation or contributes to 

dissociation of the αsyn aggregates. Both HSC70 small chaperones and other DNAJs have 

been shown to affect αsyn aggregation (Pemberton et al., 2011; Whiten et al., 2018,a), in our 

model, CSPα could contribute to facilitate HSC70 ATPase activity as the burden of 

misfolded αsyn increases. Although it cannot be excluded that the increase in CSPα per se 

could improve dopamine release, the fact that no change was observed in control mice would 

support that CSPα acts by affecting αsyn-related alterations. The increase in monomeric 

αsyn is similar to what we observed in MI2 transgenic mice after anle138b treatment 

(Wegrzynowicz et al., 2019), whether CSPα beneficial effect is due the reduction of 

aggregates or the increase of monomeric αsyn remains to be determined. 

In conclusion, our data reveal for the first time that αsyn aggregation impairs expression of 

synaptic CSPα and formation of its functional complexes with HSC70 and that increase of 

CSPα reduces synaptic αsyn aggregates and increases monomeric αsyn rescuing DA release 

impairment. These results point to CSPα and related chaperones as therapeutic avenues for 

restoring normal synaptic function in early PD. 
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Figure Legends 

 

Figure 1 CSPα expression is altered in the striatum of 12 month-old 1-120hαSyn mice 

A CSPα staining in striatal sections from controls and 1-120hαSyn mice. Note the loss of 

puncta intensity of CSPα in 1-120hαSyn mice compared to controls. Scale bar: 20 μm. B Left 

panel: Immunoblot for anti-CSPα and -βActin (βAct) in sequentially-extracted total 

homogenates and synaptic fractions from striata of control and 1-120hαSyn mice. Right 

panel: RI of CSPα levels normalised to βactin in total homogenates and synaptic fractions. 

Data are presented as mean±SEM of N=3 mice, **P<0.01 (Student’s t-Test). C Left panel; 

immunoblots of HSC70, CSPα, SGTa after co-immunoprecipitation with anti-SGTa antibody 

with non-hydrolysable ADP. CSPα and HSC70 complexes with SGTa are reduced in 1-

120hαSyn mice compared to controls whereas input levels do not change (lower panel, 

CSPα, HSC70 and SGTa and correspondent βActin). Right panel; RI of HSC70, CSPα, 

SGTa relative to their input levels (total homogenates prior co-immunoprecipitation). Values 

in graph represent N=4-5 mice in 3 independent experiments ***P<0.001 (One-way ANOVA 

with Bonferroni’s multiple comparison test). 

 

Figure 2 CSPα rescues the vesicle cycle impairment in PC12 cells expressing 1-

120hαSyn 

A FM1-43 dye fluorescence (left panels, green) and αsyn staining (right panels, red) in cells 

treated with empty vector (EV) or CSPα. Note the reduction in FM1-43 dye retention in cells 

stably expressing 1-120hαsyn treated with CSPα compared to their EV-treated counterpart 

(arrows). Treatment with CSPα or EV had no effect in non-transfected PC12 cells (endo). B 

Quantification of the number of cells that retained FM1-43 dye above basal levels in every 

treatment group. Values are mean±SEM of N=12 independent experiments ***P<0.001, 

Two-Way ANOVA Bonferroni’s multiple comparison test. Scale bar 10μm. 
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Figure 3 CSPα restore DA release impairment in 1-120hαsyn mice 

Striatal DA release after infusion of 50mM KCl for 60 min during in vivo microdialysis. 

Twelve month-old 1-120hαSyn mice showed a significant reduction in DA release following 

KCl stimulation compared with controls (*** P<0.001, *P<0.05). Values show fold change 

compared to baseline fractions. 

Increase of CSPα following AAVCSPα injection restored DA release to control levels in 1-

120hαSyn mice whereas treatment with AAVEV was ineffective (fractions: 60 min ## 

P<0.01, 80 min # P<0.05). No significant difference was observed in the 60- and 80-min 

fractions between CSPα and EV-treated or untreated control mice. Values are mean±SEM of 

N=5-7 1-120hαSyn and N=5-6 control mice per treatment group, two-way ANOVA, 

Bonferroni’s multiple comparison test. 

 

Figure 4 CSPα reduces αsyn aggregates and increases αsyn monomers in the striatum 

of 1-120hαSyn mice 

A αSyn immunostaining in the striata of CSPα and EV treated 1-120hαsyn mice. Scale bar 

10µm. B Aggregate number (RU) versus monomeric αsyn in AAVEV (EV) and AAVCSPα  

(CSPα)-treated mice based on dSTORM analysis using anti-αsyn Syn1 antibody. A 

significant reduction in the number of aggregates versus monomeric αsyn is present after 

AAVCSPα injection. Two-tailed Student’s t test **p�0.01; N=4 mice per group. C Median 

size of αsyn aggregates showing no significant difference between EV-and CSPα-injected 

mice. Two-tailed Student’s t test p>0.01, N=4 mice. D Left panel, Cumulative histograms for 

αsyn species distribution in EV- and CSPα-treated mice and difference between the two 

distributions. Right panel, Frequency values table of αsyn species at the 36.5 nm intercept in 

EV- and CSPα-treated mice. Kolmogorov-Smirnov test **P<0.01, number of measured 

species EV: 4583, CSPα: 2574. E Representative dSTORM images of αsyn staining in CSPα 

or EV injected 1-120hαsyn mouse striatum. Note the difference in size of αsyn aggregates, 

(single αsyn aggregates enlarged in boxed areas scale bar insets =200 nm).  
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Supplementary Figure Legends 

 

Supplementary Figure 1 HSC70, SGTa and VAMP2 expression in the striatum 

A (Left panel) Representative blots of synaptosomal fraction of HSC70, correspondent 

βActin and normalised RI values (right panel, Control (Con) 0.29+0.05, 1-120hαSyn 0.42+ 

0.1). B (Left panel) Representative blots of synaptosomal fraction of SGTa, correspondent 

βActin and normalised RI values (Right panel, Con 1.32+0.06, 1-120hαSyn 1.28+ 0.08). C 

(Left panel) Representative blots of VAMP2 and correspondent βActin in control and 1-

120hαSyn mice from synaptic and total brain homogenates fractions. (Right panel) VAMP2 

levels quantification (Synaptic fraction RI; Con 0.72+0.07, 1-120hαSyn, 0.65+0.03; total 

homogenate; Con 0.25+0.06, 1-120hαSyn 0.34+ 0.03) data are mean+SEM of N=3 mice per 

group, two-tailed Students t test for data in A an B, one-way ANOVA for data in C. 

Supplementary Figure 2 Time course of CSPα expression following injection of 

AAVCSPα and AAVEV in mouse substantia nigra. 

 

A Immunoblots of CSPα and βActin in striatal extracts at 4, 6, 8 weeks post AAV injections 

in the SN. B Densitometry of CSPα levels at 4, 6 and 8 weeks post AAV injection. Data are 

mean+SEM of N=3 mice per group, Two-way ANOVA with Bonferroni’s multiple 

comparisons test, 4wks ** P<0.01, 6 wks ***P<0.001, 8 wks ** P<0.01. 
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