
Page 1 of 29 

 

Unsupervised machine learning reveals key immune cell subsets in COVID-19, 

rhinovirus infection, and cancer therapy 

 

Sierra M. Barone1,2,*, Alberta G.A. Paul3,*, Lyndsey M. Muehling3,4*, Joanne A. Lannigan4, William W. 

Kwok5, Ronald B. Turner6, Judith A. Woodfolk3,4**, and Jonathan M. Irish1,2,7** 

 

Affiliations 

1 Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA. 

2 Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA. 

3 Allergy Division, Department of Medicine, University of Virginia School of Medicine, Charlottesville, 

VA, USA. 

4 Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of 

Medicine, Charlottesville, VA, USA. 

5 Benaroya Research Institute at Virginia Mason, Seattle, WA, USA.  

6 Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, VA, USA. 

7 Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, 

Nashville, TN, USA. 

 

* Denotes equal contribution. 

** Corresponding authors 

 Email: jonathan.irish@vanderbilt.edu (J.M.I.); jaw4m@virginia.edu (J.A.W.) 

 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 4, 2020. ; https://doi.org/10.1101/2020.07.31.190454doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.31.190454
http://creativecommons.org/licenses/by-nc-nd/4.0/


Page 2 of 29 

Abstract 

For an emerging disease like COVID-19, systems immunology tools may quickly identify and 

quantitatively characterize cells associated with disease progression or clinical response. With 

repeated sampling, immune monitoring creates a real-time portrait of the cells reacting to a novel 

virus before disease specific knowledge and tools are established. However, single cell analysis tools 

can struggle to reveal rare cells that are under 0.1% of the population. Here, the machine learning 

workflow Tracking Responders Expanding (T-REX) was created to identify changes in both very rare 

and common cells in diverse human immune monitoring settings. T-REX identified cells that were 

highly similar in phenotype and localized to hotspots of significant change during rhinovirus and 

SARS-CoV-2 infections.  Specialized reagents used to detect the rhinovirus-specific CD4+ cells, 

MHCII tetramers, were not used during unsupervised analysis and instead ‘left out’ to serve as a test 

of whether T-REX identified biologically significant cells.  In the rhinovirus challenge study, T-REX 

identified virus-specific CD4+ T cells based on these cells being a distinct phenotype that expanded 

by ≥95% following infection.  T-REX successfully identified hotspots containing virus-specific T cells 

using pairs of samples comparing Day 7 of infection to samples taken either prior to infection (Day 0) 

or after clearing the infection (Day 28).  Mapping pairwise comparisons in samples according to both 

the direction and degree of change provided a framework to compare systems level immune changes 

during infectious disease or therapy response.  This revealed that the magnitude and direction of 

systemic immune change in some COVID-19 patients was comparable to that of blast crisis acute 

myeloid leukemia patients undergoing induction chemotherapy and characterized the identity of the 

immune cells that changed the most.  Other COVID-19 patients instead matched an immune 

trajectory like that of individuals with rhinovirus infection or melanoma patients receiving checkpoint 

inhibitor therapy.  T-REX analysis of paired blood samples provides an approach to rapidly identify 

and characterize mechanistically significant cells and to place emerging diseases into a systems 

immunology context. 
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Introduction 

Systems immunology offers a new way to compare how an individual patient’s cells respond to 

treatment or changes during infection 1, 2.  However, systems immunology and computational analysis 

tools were primarily designed to track major cell populations representing >1% of a sample. Viral 

immune and cancer immunotherapy responses can include mechanistically important and extremely 

rare T cells that proliferate rapidly over the course of days but as an aggregate exist as <0.1% of 

blood CD3+ T cells at their peak. These cells can be tracked genetically through clonal expansion, but 

may be lost in computational analyses focused on describing the global landscape of phenotypes. 

The specific expansion or contraction of phenotypically distinct cells may be a hallmark feature of key 

immune effectors and could reveal these cells without the need for prior knowledge of their identity or 

specialized tracking reagents like MHC tetramers.  

The datasets tested here were all suspension flow cytometry, a data type where it is typical to 

have multiple snapshot samples of cells over time; however, an ongoing challenge in the field is to 

match or register cells to their phenotypic cognates between samples 3-5.  Analysis algorithms 

typically rely on aggregate statistics for clustered groups of cells, but the process of grouping the cells 

works best with larger, established populations 6-8 and can depend on pre-filtering of cells by human 

experts 1, 9.  Cytometry tools like SPADE 10, 11, FlowSOM 12, Phenograph 13, Citrus 14, and RAPID 15 

generally work best to characterize cell subsets representing >1% of the sample and are less capable 

of capturing extremely rare cells or subsets distinguished by only a fraction of measured features.  

Tools like t-SNE 16, 17, opt-SNE 18, and UMAP 19, 20 embed cells or learn a manifold and represent 

these transformations as algorithmically-generated axes.  For a biologist, these tools provide a way to 

organize cells according to phenotypic relationships that span multiple measured features, such as 
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the proteins quantified on each of millions of cells in the datasets here.  In addition to assisting with 

data visualization, these tools frequently reveal unexpected cells and facilitate their identification 

through manual or automated clustering 6, 15, 16, 21-23.  Sconify 24 is one such tool that applies k-nearest 

neighbors (KNN) to calculate aggregate statistics for the immediate phenotypic neighborhood around 

a given cell on a t-SNE plot representing data from multiple cytometry samples.  This approach to 

creating a population around every cell was a key inspiration for the Tracking Responders Expanding 

(T-REX) tool presented here, which applies KNN to every cell to pinpoint rare cells in phenotypic 

regions of significant change.  In addition to combining UMAP, KNN, and MEM in a rapid, 

unsupervised analysis workflow for paired samples from one individual, T-REX contrasts with prior 

approaches in its specific focus on the regions of great difference between samples.  This T-REX 

design is based on the observation that, in the absence of a perturbation such as disease or infection, 

adults tend to have a stable signature of blood cell abundances over weeks to months 9, 25, 26, and the 

hypothesis that short-term, dramatic changes in rare immune cell subsets will identify cells associated 

with exposure to an immunogenic agent, such as a virus. 

Data types used to challenge the T-REX algorithm here included a new spectral flow cytometry 

study (Dataset 1) and three existing mass cytometry datasets (Dataset 2, Dataset 3, and Dataset 4).  

Mass cytometry is an established technique for human immune monitoring where commercial 

reagents presently allow 44 antibodies to be measured simultaneously per cell 1, 27, 28.  Spectral flow 

cytometry is gaining attention in human immune monitoring as it generates data that compares well to 

mass cytometry 27, 29.  Spectral flow cytometers collect cells at around 10-fold the number of cells per 

second as mass cytometers.  While the availability of spectrally distinct antibody-fluorochrome 

conjugates imposes some practical limits on spectral flow cytometry at present, established panels 

like the one in Dataset 1 measure ~30 features per cell with excellent resolution, and that capacity is 

expected to roughly double in the next few years as recent work has demonstrated 40 features 30.  

Spectral flow cytometry is thus well-matched to studies of very low frequency cells, as was the case 
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in Dataset 1, where a goal was to computationally pinpoint hundreds of virus-specific T cells in 

datasets of over 5 million collected cells.   

Datasets 1 and 2 were from individuals infected with two different respiratory viruses, 

rhinovirus or SARS-Cov-2, respectively.  Respiratory viruses are ubiquitous and while some, like 

rhinovirus, are generally benign, they nonetheless pose risks to patients with underlying chronic 

health conditions.  The common colds associated with rhinovirus are characterized by shifts in very 

rare virus-specific cells in the blood 31, 32.  In contrast, novel respiratory viruses, such as SARS-CoV-

2, the coronavirus causing COVID-19, continue to emerge that enact high morbidity and mortality, 

even among healthy subjects.  Understanding the immune response to such viruses is vital to 

treatment and vaccine design, and there has been rapid progress applying human immune 

monitoring to COVID-19 patients 25, 33.  An ongoing challenge in the field is to quantitatively compare 

novel diseases, like COVID-19, to other disease states and immune responses.  T cells are pivotal to 

such responses.  Severe COVID-19 has been linked to a pathogenic “cytokine storm” in which 

cellular immune responses likely play a crucial role 34.  Nonetheless, in the case of both rhinovirus 

and COVID-19, it is clear that host factors are a key determinant of the degree of the T cell response 

25, 31.  Datasets 3 and 4 were from cancer patients that included melanoma patients being treated with 

α-PD-1 checkpoint inhibitor therapies or acute myeloid leukemia patients undergoing induction 

chemotherapy. By tracking the CD4+ T cells that expand rapidly during infections and respond to 

immunotherapy, it may be possible to pinpoint or therapeutically guide cells into helpful vs. harmful 

roles or niches.  Overall, a goal of this study was to develop an automated, quantitative toolkit for 

immune monitoring that would span a wide range of possible immune changes, identify and 

phenotype statistically significant cell subsets, and provide an overall vector of change indicating both 

the direction and magnitude of shifts, either in the immune system as a whole or in a key cell 

subpopulation. 
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Results 

We report here Tracking Responders Expanding (T-REX), a novel unsupervised machine 

learning algorithm for characterizing cells in phenotypic regions of significant change in a pair of 

samples (Figure 1).  The primary use case for developing the T-REX algorithm was a new dataset 

from individuals infected with rhinovirus, where changes in the peripheral immune system are 

expected in very rare memory cells responding directly to the virus (Dataset 1).  Infection with 

rhinovirus is known to induce expansion of circulating virus-specific CD4+ T cells in the blood, and a 

key feature of the new rhinovirus dataset here is that rare and mechanistically important virus-specific 

CD4+ T cells were marked with MHC II tetramers in the context of multiple other T-cell markers.  The 

T-REX algorithm was blinded to tetramers during analysis so that they could subsequently be used to 

test algorithm performance.  In addition, T-REX was tested with paired samples from patients with 

moderate or severe COVID-19 (Dataset 2), melanoma patients being treated with α-PD-1 checkpoint 

inhibitor therapies (Dataset 3), and acute myeloid leukemia patients undergoing induction 

chemotherapy (Dataset 4).  These datasets were used to determine whether the T-REX algorithm 

functions effectively across a spectrum of human immune monitoring challenges and to see how the 

algorithm performs when changes are restricted to rare cell subsets, as in Dataset 1 and Dataset 3, 

or when many cells may be expanding or contracting, as in Dataset 2 and Dataset 4.  

 

T-REX identifies cells in phenotypically distinct regions of significant change  

For the rhinovirus challenge study in Dataset 1, sample pairs available for T-REX included 

cells taken immediately prior to intranasal inoculation with virus (i.e., pre-infection, day 0), as well as 

those during (day 7) or following inoculation (day 28).  Cells were subsampled equally from each 

timepoint and then concatenated for a single UMAP specific to each analysis pair.  UMAP axes were 

labeled to indicate they were specific to a comparison for a given individual (Figure 2).  Thus, each 

UMAP comparison was a new run of the algorithm.  Although it is also possible to map all sample 

times or all individuals into a single UMAP for analysis, a key goal here was to imagine a minimal T-
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REX use case with only a pair of samples from one individual. The features selected for UMAP 

analysis were intentionally limited to surface proteins in order to test whether suitable features for live 

cell fluorescence activated cell sorting (FACS) could be identified.  Following UMAP, each cell was 

used as the seed for a KNN search of the local neighborhood within the UMAP axes (i.e., the KNN 

search was within the learned manifold, as with the analysis in Sconify 24 or RAPID 15).  The k-value 

for KNN was set to 60 as a starting point based on prior studies and later optimized.  For each cell, 

the KNN region could include cells from either time chosen for analysis, and the percentage of each 

was calculated to determine the representation of each sampled time in a cellular neighborhood. 

When cells in regions of expansion (≥95% of cells in the KNN region from one sampling time) were 

clustered together in one phenotypic region of the UMAP, they were considered a ‘hotspot’ of 

significant change.  Cells in change hotspots were aggregated and the phenotype automatically 

characterized using Marker Enrichment Modeling (MEM) 21.  MEM labels here indicated features that 

were enriched relative to a statistical null control on a scale from 0 (no expression or enrichment) to 

+10 (greatest enrichment).  Ultimately, T-REX and MEM were used to reveal hotspots of ≥95% 

change and assign a label that could be used by experts to infer cell identity.   

In the human rhinovirus challenge study yielding Dataset 1, MHC class II tetramers were used 

to identify rhinovirus-specific CD4+ T cells with the goal of tracking phenotypic changes over the 

course of infection.  Increases in tetramer+ cells on day 7 (Figure 2A) corresponded to the acute 

infection phase 31.  This tetramer tracking system for virus-specific T cells provided an opportunity to 

test whether the cells identified by T-REX were biologically significant by leaving the tetramer stain 

features out of the computational analysis (i.e., not using tetramers to make the UMAP or in other 

parts of T-REX) and then testing to see whether hotspots of cellular change identified by T-REX were 

statistically enriched for tetramer+, virus-specific cells.  In the example subject shown, the pairwise 

comparisons used in T-REX analysis included CD4+ T cells from day 0, immediately prior to rhinovirus 

infection, and day 7, a well-studied time point at which rare, virus-specific CD4+ T cells are observed 

at higher frequencies 31.  This trajectory of virus-specific cell expansion was confirmed by a peak in 
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the log2 fold change in the frequency of tetramer+ CD4+ T cells (Figure 2A).  Applying T-REX to the 

rhinovirus data revealed that KNN regions with expansion from day 0 to day 7 were greatly enriched 

for tetramer+ cells, as compared to regions with less expansion (Figure 2B). UMAP axes were labeled 

as UMAP_RV001_7_0 to denote this UMAP analyzed day 0 and day 7 for individual RV001 (Figure 

2C).  Regions of contraction were observed but were not enriched for tetramer+ cells, except in the 

case of one individual, RV007, studied here (Figure 3).  Notably, two of the eight study subjects 

challenged with rhinovirus were not infected (RV002 and RV003); all other individuals were infected 

(Supplemental Table 1).   

A key question for the T-REX algorithm is where to set a statistical cutoff for what is 

considered to be a biologically significant amount of expansion.  Two change cutoffs were tested with 

subject RV001, ≥90% and ≥95% (Figure 2C).  Using a cutoff of ≥95% identified 2/2 (100%) tetramer+ 

hotspots of change for RV001 and did not identify any additional regions that were not tetramer 

hotspots, whereas the ≥90% cutoff identified both tetramer+ hotspots and an additional tetramer- 

hotspot (Figure 2C, top). Thus, ≥95% represented a stringent cutoff that still captured biologically 

significant cells.  An analysis of tetramer enrichment as a function of percentile of expansion from day 

0 to day 7 (Figure 2B) showed that tetramer+ cells were not commonly observed to be in local 

neighborhoods around cells with change below 80% in their KNN region.  In contrast, above 90% 

change, the median CD4+ T cell had 10% or more tetramer+ neighbors around it in the KNN region 

(Figure 2B).  Thus, only regions of 80% or more expansion from day 0 to day 7 were enriched for 

tetramer+ CD4+ T cells in study individual RV001.   

 

A k-value of 60 effectively identified immune hotspots in T-REX 

A critical question for KNN analysis is the value of k, the number of neighbors to assess.  

While it is useful to have a lower k-value as the analysis will complete more quickly, increasing the k-

value might better represent the phenotypic neighborhood or be more statistically robust.  To assess 

how k-value impacted detection of cells in regions of change and the degree to which these cells 
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were virus-specific in rhinovirus challenge Dataset 1, the k-value was systematically changed.  In 

example case RV001, an optimal k was determined to be an inflection point in a graph of the average 

tetramer enrichment (y-axis, Figure 4) versus increasing values of k (x-axis, Figure 4).  To calculate 

this curve, a KNN search was repeated while increasing k in steps from 0 to 300 for every cell in each 

sampling.  This analysis was performed for all tetramer+ cells from day 7 (dark purple, Figure 4), all 

tetramer+ cells from day 0 (light purple, Figure 4), and, as a negative control, random tetramer 

negative cells from day 7 (black, Figure 4).  Within each of these neighborhoods, tetramer enrichment 

was calculated.  This approach identified the inflection point of the tetramer+ density curve as k = 70 

for RV001 (Figure 4).  In further analysis of the remaining infected rhinovirus subjects, optimal k 

values ranged from 40 to 80. A k value of 60 was chosen and used in all other analyses of rhinovirus 

subjects (Figure 3), as well as Datasets 2, 3, and 4 described below. 

 

Regions of significant change contained rhinovirus-specific CD4+ T cells in Dataset 1 

The association between regions of change and enrichment for virus-specific cells observed in 

the example subject shown (Figure 2B) was observed in five infected rhinovirus subjects; tetramer+ 

CD4+ T cells were not enriched in KNN regions around cells that had not expanded from day 0 to day 

7 (1 infected, 2 uninfected; Supplemental Figure 1).  This observation suggested that cutoffs at the 5th 

and 95th percentile would accurately capture cells representing phenotypic regions with significant 

change over time.  In addition, 15th and 85th percentiles were chosen as cutoffs to capture a more 

moderate degree of change and track cells that might still be of interest but not from regions 

experiencing significant change.  The remaining cells in phenotypic regions between the 15th and 85th 

percentiles were not considered to have not changed significantly in the context of these studies.  

Going forward, it was of interest to determine how often regions of significant change (i.e., the 95th 

and 5th percentile cutoffs) would contain tetramer+ CD4+ T cells in different individuals participating in 

the rhinovirus challenge study. Cells in regions of significant expansion (≥95%) were also from 

regions that were enriched for virus-specific cells in nearly all rhinovirus-infected individuals (4/6 at 
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95% cutoff, 5/6 at 85% cutoff) (Figure 2, Supplemental Figure 1, Figure 3). Thus, by focusing 

specifically on cells in regions representing the most change over time, T-REX analysis revealed 

subpopulations containing virus-specific cells.  This highlights the ability of T-REX to pinpoint such 

cells without the use of antigen-specific reagents. Following T-REX, MEM analysis was performed 

using all available features, including intracellular features not used to define the UMAP space (TCF1, 

TBET, and Ki-67). The phenotype of the regions of significant change enriched for virus-specific cells 

was quantitatively described with MEM scores (hotspot 1: ▲CD45R0+10 CD38+8 ICOS+6 CCR5+5 

TCF1+5 CD27+4 PD-1+4 CXCR3+3 CD95+3 TBET+2 CD25+2; hotspot 2: ▲CD45R0+10 CD38+8 ICOS+6 

CD27+5 TCF1+5 CCR5+4 CXCR3+3 CD95+3 CCR7+3 PD-1+2 CD25+2 CXCR5+2). The change hotspots 

thus contained activated memory cells (CD45RO+CD38+) that were notable for their early 

memory/stem-like T cell signature (TCF1+CD27+), as well as their expression of CCR5 and CXCR3, 

both of which are chemokine receptors found on rhinovirus-specific CD4+ T cells that respond during 

infection 31, 32.   

To determine the sensitivity of this method, all tetramer+ regions were next reviewed, including 

those that did not meet the criteria for hotspots of significant change (Figure 2C, bottom). In analysis 

of RV001, 66.6% (2/3) of tetramer+ regions were captured, meaning there was one region with lower 

change that contained tetramer+ cells. However, there were only 87 cells in these missed regions 

compared to 896 cells and 826 cells in the regions with ≥95% expansion, confirming that T-REX 

captured the majority of virus-specific cells in the data set.   

In the case of an emerging infectious disease, it may not be possible to have a pre-infection 

sample and it would be useful to know whether T-REX analysis of change between a peak of 

infection and a later time might also reveal virus-specific T cells.  To test this idea, pairwise 

comparisons were performed with cells from day 7 following rhinovirus inoculation and at day 28 after 

inoculation (Figure 5). Strikingly, cells in phenotypic regions of significant change again were enriched 

for virus-specific, tetramer+ CD4+ T cells.  The MEM values for these cells further identified them as 

CD45R0+ memory cells enriched for CD38, ICOS, CD27, TCF1, CXCR5, PD-1, and CD95 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 4, 2020. ; https://doi.org/10.1101/2020.07.31.190454doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.31.190454
http://creativecommons.org/licenses/by-nc-nd/4.0/


Page 11 of 29 

expression, a phenotype matching that of the cells identified in the day 0 to day 7 analysis for this 

individual (RV001, Figure 5). 

 

Traditional Biaxial Gating of Cells Identified by T-REX and MEM Enriches for RV-Specific T 

Cells 

Once identified by machine learning approaches, it can be useful to define a gating scheme 

that might be used to test whether computationally-defined cell subsets can be found using traditional 

gates.  In addition, FACS sorting for live T cells could use surface antigens and biaxial gates to 

physically separate such cells, as is typical for interrogation in vitro.  To test this idea computationally, 

the features enriched in MEM labels for cells identified by T-REX (MEM label average and standard 

deviation: ▲CD45R09±2.5 CD387±2.0 ICOS6±1.4 CCR54±1.7 PD-14±0.9 CD954±0.7 CD273±1.6 CXCR32±0.5) 

were used to define a new gating strategy that used a single positive cutoff gate for each feature of 

CD4+ T cells (Live, Dump-, CD3+, CD4+) in the order CD45R0, CD38, ICOS, CCR5, PD-1, CD95, 

CD27, and CXCR3 (Supplemental Figure 2).  At each gating step, the percentage of RV-specific cells 

was determined.   

It is known that precursor frequencies of rhinovirus-specific CD4+ T cells are very low, even 

during active infection (0.0004�0.04% of CD4+ T cells, Supplemental Figure 3). The ‘virtual sort’ 

successfully enriched for rhinovirus tetramer+ cells in all infected subjects (0.89�9.25% of CD4+ T 

cells; Supplemental Figure 3). This is notable, considering that the consensus MEM label was 

generated from regions of ≥95% change, some of which did not include tetramers. Furthermore, this 

strategy was able to enrich for tetramer+ cells in the one infected subject for which T-REX was unable 

to identify tetramer hotspots (RV007), and one in which the tetramer+ hotspot only met a ≥85% 

threshold of expansion (RV005), suggesting that T-REX-derived sorting strategies can be broadly 

applied across cohorts, including subjects whose response may not reach the threshold of 

identification by T-REX. A minimal panel of ten markers (Live, Dump–, CD3+, CD4+, CD45R0+, 

CD38+, ICOS+, CCR5+, PD-1+, CD95+) was sufficient to achieve maximal tetramer enrichment. 
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Interestingly, gating for CD45R0 alone � the first MEM-enriched feature � did not significantly enrich 

for virus-specific T cells. Furthermore, the T-REX-derived sorting strategy failed to enrich for 

rhinovirus-specific T cells in uninfected subject, nor did it enrich for CD4+ T cells stained with a control 

influenza tetramer, confirming the specificity of this method (Supplemental Figure 3). Thus, a 

computational ‘virtual sort’ for the cells suggests that FACS gates could be drawn using the results of 

T-REX and MEM analysis.  This result further confirms that the populations identified computationally 

also exist as populations that can be defined in traditional ways.   

 

T-REX tracking of direction and degree of change contextualizes diverse immune responses  

The next goal was to test T-REX with additional data types and to contextualize the results 

from rhinovirus infection (Dataset 1) with changes that might be observed in other immune 

responses, such as another respiratory infection (Dataset 2), cancer immunotherapy (Datasets 3), or 

cancer chemotherapy (Dataset 4). To accomplish this, metrics for degree of change as well as 

direction of change in each sample were devised (Figure 6A). Degree of change was calculated as 

the sum of the percent of cells in the 5th and 95th hotspots of change. Direction of change was 

calculated as the difference between the number of cells in the 95th and 5th hotspots of change 

divided by the sum of the number of cells in the 95th and 5th hotspots of change. This way of looking 

at the data provided a method for comparing changes in many disease types. Rhinovirus subjects 

had small changes in samples over time with a median of 0.019% and an interquartile range (IQR) of 

0.0006% (on a magnitude of change scale from 0 to 100%). Rhinovirus also had large directionality 

across all subjects either up or down, with a median of 0.029 and an IQR of 2.00 on the directionality 

scale from -1.00 to +1.00.  Thus, rhinovirus displayed an extremely low magnitude of change, as very 

rare cell subsets were responding, and the direction of this change was typically fairly high or low for 

a given individual (i.e., the changes were not balanced and tended to represent marked expansion or 

contraction in the rare subsets that changed; Figure 6).   
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Regions of change included cells expressing CD147 and CD38 in COVID-19 Dataset 2 

 Next, T-REX was applied to Dataset 2, a mass cytometry study of longitudinal collection of 

blood from patients with COVID-19 33. This study originally contained data for 39 total patients, of 

which 12 patients had accessible mass cytometry data with at least two blood samples over time. For 

each patient, the day 0 timepoint and the closest sampled timepoint to day 7, were used for pairwise 

comparison using T-REX. The COVID-19 samples varied from <1% to 68% in terms of degree of 

change, with a median of 6.86% and an IQR of 30.4%.  The directionality of change was near zero, 

with a median of -0.00880 and IQR of 0.773.  Thus, the blood of COVID-19 patients could display 

marked changes or little change.  Notably, the changes <5% were generally positive (median 

directionality of 0.55, N = 6), whereas the COVID-19 patient cell populations experiencing change 

>5% typically decreased between day 0 to day 7 (median directionality of -0.33, N = 6).   

In T-REX analysis looking at change on the UMAP axes, patients with significant change were 

apparent due to large islands of cells being painted dark red or dark blue, indicating ≥95% change 

between paired days (Figure 6).  These cell populations were clustered and separated into 

populations representing day 0 or the later time near day 7, and MEM labels calculated in order to 

assess the identity and phenotypic changes.  For example, patient COV26 saw little change 

(magnitude of 2.02%) and this was almost entirely expansion (directionality of 0.99).  The largest 

population experiencing significant change from COV26 decreased over time and had a MEM 

phenotype of CD147+10 CD99+8 CD29+6 CD38+4 CD55+3 CD14+2 CD39+2 CD64+1 CD56+1 CD8a+1, 

indicating it was a CD14+ myeloid cell subset with high expression of CD147/Basigin. The phenotypes 

for all automatically identified clusters of cells that expanded or contracted greatly, and the degree 

and direction of change for each COVID-19 patient from Dataset 2 is listed in Supplemental Table 2.  

These reference phenotypes should be comparable to those in other studies of COVID-19, and a 

meta-analysis of phenotypes could use quantitative analysis of MEM labels to compare these highly 

expanding and contracting cells. 

T-REX was also applied to only CD4+ T cells from patients with sufficient T-cell counts (10 out 
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of the 12 patients as described above). Of the 10 COVID-19 patients available for analysis, 5 

individuals had at least one hotspot of great change, as revealed by T-REX, in CD4+ T cell specific 

analysis (Supplemental Figure 4, Supplemental Table 2). Analysis of the COVID-19 CD4+ T cell 

hotspot phenotypes using root mean square deviation (RMSD) analysis (Diggins et al., 2018; Diggins 

et al., 2017; Greenplate et al., 2019) identified three phenotypic groups. One of these groups was a 

set of closely related T cell subsets from one individual, patient COV32, and the aggregate MEM label 

for this population was (MEM label average and standard deviation: ▲CD57+8±0.8 CD99+9±1.4 

CD29+7±0.5 CD147+6±0.5 CD43+5±0.6 CD45+4±0.3 CD3+4±0.5 CD81+4±0.4 CD52+4±0.3 CD49d+3±0.5 

CD45RA+3±2.3 CD5+3±1 CD56+2±1.5, Supplemental Figure 3). Another phenotype of CD4+ T cells was 

consistently observed in those COVID-19 patients where T-REX revealed a hotspot.  Of the 5 

patients where T-REX identified a CD4+ T cell hotspot, 4 of the patients had a hotspot matching the 

aggregate phenotype (MEM label average and standard deviation: ▲CD147+9±0.8 CD99+9±1.3 

CD29+8±1.3 CD45+4±2 CD3+4±0.7 CD38+4±1.8 CD49d+3±1.6 CD52+3±1 CD27+3±2.1 CD28+3±0.8 CD81+2±1.3 

CD62L+2±1.2 CD56+2±0.7 CD5+2±0.6, Supplemental Figure 4). When comparing Day 0 to Day 6 (±3 

days), this population of CD4+ T cells was observed to change significantly in patients COV24, 

COV29, COV32, and COV39 (4 of the 5 with a CD4+ T cell hotspot).  The features of this subset 

could now be used to physically separate this population using FACS, highlighting a practical 

application.  As a test of this idea, manual biaxial gating, as in standard FACS for physical separation 

of cell subset, was performed using the cell surface markers identified by MEM as most enriched, as 

in the prior analysis of cells from the rhinovirus study (Supplemental Figure 5).  While CD4+ T cells 

only represented 5.5-14.0% of total cells, following MEM-based gating they were enriched to 49.6-

83.3% of cells. Following expert gating, the MEM label of the resulting population was: ▲CD147+9±0.6 

CD99+8±1 CD29+7±0.6 CD38+7±0.8 CD27+5±0.8 CD45+4±1.2 CD3+4±0.6 CD49d+3±0.5 CD81+3±0.7 CD52+3±0.7 

CD28+3±0.7 CD62L+2±0.8 CD56+2±0.5 CD5+2±0.6, which closely matched the computationally identified 

cells. 
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T-REX reveals immune cell changes during cancer therapies in Dataset 3 and Dataset 4  

T-REX was next tested on two previously published cancer immune monitoring studies 

representing a wide range of immune system changes, from modest to extensive.  Dataset 3 

consisted of mass cytometry analysis of peripheral blood mononuclear cells (PBMC) from melanoma 

patients treated with anti-PD-1 9.  This well-studied dataset primarily includes melanoma patients 

whose blood had modest, subtle shifts in PBMC phenotypes over time. However, one patient in the 

set, patient MB-009, developed myelodysplastic syndrome (MDS) and experienced a great shift in 

blood immunophenotype in parallel with the emergence of a small population of blasts in PBMCs 35. 

Overall, when analyzed by T-REX, the melanoma samples in Dataset 3 for comparisons of day 21/35 

versus day 0 had a small degree of change (median of 0.58% and an IQR 2.34%) with a varying 

directionality (median of -0.42 and an IQR of 1.46), confirming the subtle shifts in phenotypes as 

previously indicated. The great shift in peripheral immunophenotypes observed in MB-009 was 

confirmed with T-REX analysis when comparing the 6-week and 12-week times.  Notably, at 6 weeks, 

the peripheral blast count was still below 5% 35, so T-REX detected a substantial change in subsets 

that were not driven solely by the emergence from the marrow of the MDS blasts.  

Dataset 4 was chosen to represent large changes and included peripheral blood from AML 

patients treated with induction chemotherapy 36. The compared timepoints for the AML data in 

Dataset 4 were day 5/8 versus day 0. As expected, the majority of AML patients had a large degree 

of change in samples (median of 81.0% and an IQR of 75.2%) with little to no directionality to the 

change (median of -0.00250 and an IQR of 0.0173), meaning that there were massive changes in 

terms of both expansion and contraction over the course of treatment.  MEM labels showed that the 

cells contracting in responder patients were the AML blasts, whereas the emerging cells were the 

non-malignant immune cells (Figure 6).  AML samples with a degree of change >80% (AML001, 

AML002, AML004) came from patients with high blast count in the blood and complete response to 

treatment indicating the complete transformation of the immune environment after treatment. 
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AML007, a patient with no blasts in the blood, had a degree of change of 5.97% over treatment. For 

AML003, a patient that did not respond to treatment, little change was seen from days 0 to 5 (degree 

of change = 3.19%) by means of T-REX analysis.  

 

 

Methods 

Generation of Dataset 1 

Dataset 1 was a newly generated dataset of PBMCs obtained by longitudinal sampling of 

healthy volunteers who were challenged intranasally with RV-A16. The study was approved by the 

University of Virginia Human Investigations Committee, performed in accordance with the Declaration 

of Helsinki, and registered with ClinicalTrials.gov (NCT02796001). Informed consent was obtained 

from all study participants.  Data were collected and processed at the University of Virginia.  Sample 

collection times were defined by established kinetics of memory effector T helper cell responses 31, 32. 

Cells were stained with antibodies that target markers of naïve, memory and helper T cells (CCR6, 

ICOS, CXCR3, CD27, CCR5, TBET, CD45RA, CD45R0, CD95, CXCR5, TCF1, CCR7), and 

activation and proliferation (CD25, CD38, CD127, Ki-67, PD-1). The marker panel also included up to 

three MHCII/peptide tetramers to identify virus-specific CD4+ T cells 37.  Data were collected using a 

3-laser Aurora spectral flow cytometry instrument.  Additional methodological details can be found on 

this article’s online supplement    

 

Data pre-processing 

Before testing and evaluating the modular analysis workflow for rare cells, data preprocessing 

and QC of the data was done on all samples for all time points, which included spectral unmixing with 

autofluorescence subtraction, spill-over correction, and applying scales transformation. An arcsinh 

transformation was applied to the dataset with each channel having a tailored cofactor based on the 

instrument used to acquire the data as well as to stabilize variance near zero. Manual gating for 
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clean-up of the data was done by an expert to exclude debris, doublets, and dead cells. As helper T 

cells were of interest for this RV study, the data analyzed was manually gated for CD3+ CD4+ T cells.  

 

T-REX algorithm  

A modular data analysis workflow including UMAP, KNN, and MEM was developed in R and 

scripts for analysis of data in this manuscript are available online (https://github.com/cytolab/T-REX).  

The dimensionality tool used included UMAP, or Uniform Manifold Approximation and Projection. The 

default parameter settings for UMAP as found in the uwot package in R were used.  Since UMAP 

analyses were specific to a given individual and pair of samples, UMAP axis were labeled to indicate 

the individual and comparison being made, as in ‘UMAP_RV001_07’, which indicated a comparison 

of day 0 and day 7 for individual RV001.  The KNN search from the Fast Nearest Neighbors (FNN) 

package was used to find the nearest neighbors for a given cell.  For this project, a KNN search was 

done for every cell using the low dimensional projection of the data as an input for the neighborhood 

search.  The value for k, or the number of nearest neighbors, was determined by an optimization of 

tetramer enrichment within a neighborhood.   

 

MEM analysis of enriched features 

Marker Enrichment Modeling from the MEM package (https://github.com/cytolab/mem) was 

used to characterize feature enrichment in KNN region around each cell.  MEM normally requires a 

comparison of a population against a reference control, such as a common reference sample 21, all 

other cells 15, 38, or induced pluripotent stem cells 9.  Here, a statistical reference point intended as a 

statistical null hypothesis was used as the MEM reference.  For this statistical null MEM reference, 

the magnitude was zero and the IQR was the median IQR of all features chosen for the MEM 

analysis. Values were mapped from 0 enrichment to a maximum of +10 relative enrichment. The 

contribution of IQR was zeroed out for populations with a magnitude of 0.  
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A Putative FACS Gating Strategy Based on T-REX Results 

In order to assess the applicability of the T-REX algorithm in the development of follow-up 

FACS experiments, a sorting strategy was devised based on the results of T-REX and then tested 

computationally using Datasets 1 and 2 (Supplemental Figure 2, Supplemental Figure 5). To 

accomplish this, aggregate MEM scores of T-REX hotspots of ≥95% expansion were generated for 

each dataset. Cells were sequentially gated in the order of decreasing MEM feature enrichment, 

ending with a maximum set of 12 markers, reflecting common capabilities for cell sorting.  In Dataset 

1, the enrichment of tetramer+ cells was assessed in the populations resulting from putative sort 

gates, as compared with the total CD4+ T cell population.  In Dataset 2, the enrichment of CD4+ T 

cells was assessed within the total cell population after similar gating using putative sort gates 

designed algorithmically based on the results of T-REX and MEM.  

 

Data availability and transparent analysis scripts 

Datasets analyzed in this manuscript are available online, including at FlowRepository 39.  

COVID-19 Dataset 2 33 (https://ki.app.box.com/s/sby0jesyu23a65cbgv51vpbzqjdmipr1), melanoma 

Dataset 3 9, 35 (http://flowrepository.org/id/FR-FCM-ZYDG), and AML Dataset 4 9, 36 

(http://flowrepository.org/id/FR-FCM-ZZMC) were described and shared online in the associated 

manuscripts.  Rhinovirus Dataset 1 is a newly generated dataset created at the University of Virginia 

available on FlowRepository (FR-FCM-Z2VX available at: 

http://flowrepository.org/id/RvFr2DwkDSym1BjCwd7ZJGNbl1ksyXT375C65F282JCjN30meLzqwn8G

096D7H9D).  Transparent analysis scripts for all four datasets and all presented results are publicly 

available on the CytoLab Github page for T-REX (https://github.com/cytolab/T-REX) and include open 

source code and commented Rmarkdown analysis walkthroughs.   
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Discussion 

A signature feature of the immune system is the ability of rare cells to respond to a stimulus by 

activating and proliferating, leading to rapid expansion of highly specialized cells that may share both 

a distinct phenotype and a clonal origin.  Here, we report the design of a new algorithm that can 

identify and reliably phenotype biologically relevant cell types, including very rare cells, which respond 

in human disease.  The T-REX algorithm was designed to capture phenotypic regions where 

significant change was occurring between a pair of samples from one individual.  The fact that T-REX 

was able to identify the phenotype of cells whose regions were greatly enriched for virus-specific T 

cells in rhinovirus Dataset 1, highlighted its ability to pinpoint rare cells responding to infection, and 

closely matches what would be expected based on a current understanding of rhinovirus immunology 

31, 32.  Specifically, after rhinovirus challenge, expanded regions displayed molecular signatures 

consistent with activated memory (CD45RO+CD38+) and tissue trafficking (e.g., CCR5 enrichment in 

the MEM labels) that aligned with our previous findings for rhinovirus-specific CD4+ T cells using 

manual gating methods and a limited marker panel  31, 40. The algorithm also reliably identified 

memory phenotypes of cells responding to rhinovirus infection, thereby revealing its potential to track 

the evolution of memory responses in vivo, in addition to defining candidate signatures that might be 

probed in functional assays. Although comparative phenotyping across time was beyond the scope of 

this study, it will be of high interest in the future to determine whether the vector of change in specific 

subsets correlates with additional aspects of disease or complicating host factors, such as allergy and 

asthma.  

The T-REX algorithm also revealed potential new research directions, as there were cells that 

one might predict would be virus-specific, based on the T-REX enrichment analysis, but which were 

not enriched for the specific tetramers available here (e.g., Figure 3, RV007).  Genetic analysis for the 

clonal origin of cells in such regions might help to determine whether these cells correspond to a 

clonal response for which a tetramer was not available, or else another type of CD4+ T cell response 

that may or may not be related to rhinovirus infection, such as a “bystander” response.  Additionally, it 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 4, 2020. ; https://doi.org/10.1101/2020.07.31.190454doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.31.190454
http://creativecommons.org/licenses/by-nc-nd/4.0/


Page 20 of 29 

will be important to test whether this type of finding holds true for other well-studied viruses for which 

tetramers are available, such as influenza 41, and whether these findings extend to MHC class I 

tetramers and CD8 T cells.  It was also striking that in the comparisons of day 7 to either day 0 

(Figure 2 and Figure 3) or day 28 (Figure 5), only the expanding cells (red) were in regions that were 

also tetramer hotspots.  However, despite the focus on expansion in the T-REX acronym, contracting 

cells will likely also be of biological significance in different disease settings (as with AML) or 

potentially at different time points during the course of an infection, for example as a result of egress 

from the circulation in the acute phase, or else transitions in memory and tissue-homing subsets that 

occur later. This aspect would also be expected to translate to different disease settings such as 

AML. 

Extending the use of T-REX algorithm beyond rhinovirus further highlighted its ability to identify 

responding cells in a consistent manner across different subjects, and different disease settings.  

Indeed, it is notable that regardless of the disease context, the patient served as an effective baseline 

for comparison, and allowed T-REX to find phenotypically similar cells in individuals with different 

starting immune profiles.  A central question in systems immune monitoring is to place newly 

emerging diseases into the context of other well-studied diseases and immune responses. In working 

to compare COVID-19 and rhinovirus, it became clear that a summary of change indicating both the 

direction and magnitude of shifts, was needed (Figure 6).  This framework represents a way to 

summarize both broad populations of immune cells, like all CD45+ leukocytes, and key cell 

subpopulations, like CD4+ T cells.  The striking changes observed in patients with moderate and 

severe COVID-19 were far beyond the subtle changes observed in individuals with rhinovirus and 

more closely matched the immune reprogramming observed in melanoma patients receiving 

checkpoint inhibitor therapy (Figure 6).  A primary finding of T-REX analysis of Dataset 2 from the 

blood of COVID-19 patients was that some patients experienced very large changes in the blood, and 

that these changes were typically associated with more decreases than increases (Figure 6).   This 

finding closely matches reported findings from others who observed a systematic reprogramming in 
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many immune cell populations in severe COVID-19 patients 25.  Also observed were T cell subsets 

with enrichment of CD38, PD-1, and CD95, as has also been reported.  While disease severity is not 

available for individual patients from Dataset 2, it is known that all these cases were at least moderate 

or severe 33.  It will be of interest to test the hypothesis that the more severe cases will be one of the 

two groups, either the patients with very little change and just expansion of cells, or those with more 

marked change and a general decrease of cells (Figure 6).   

Notably, CD147/Basigin, was highly expressed on many cells that changed during infection 

and was observed to change greatly on some populations over time.  CD147 has been proposed in 

pre-prints as both a binding partner for SARS-CoV-2 spike protein and a potential mechanism of 

cellular entry, although evidence is needed to support this controversial hypothesis 42.  In the study of 

Dataset 2, the authors noted that immune responses were dominated by cells expressing CD38 and 

CD147 33.  In the T-REX analysis of the same Dataset 2, for the cells that were changing greatly, 

CD147 was sometimes present on cells from day 0 that decreased greatly and was lower or absent 

on cells that emerged only at later times (Figure 6).  An example of this was seen in cells from patient 

COV40, for which the authors noted CD147 expression on effector subsets at 1 week and onwards.  

The cells pinpointed by T-REX as emerging at day 6 included B cells that expressed CD147 (e.g., 

CX3CR1+8 CD9+8 CD29+8 CD147+5 IgD+3 CD99+3 CD33+1 CD11c+1 HLA-DR+1 CD24+1, Supplemental 

Table 2), but the level of enrichment was lower than on myeloid cells from day 0 that decreased over 

time (e.g., CD147+8 CD29+6 CD55+5 CD38+5 CD99+4 CD64+3 CD62L+2 CD45+1 CD33+1 CD14+1, 

Supplemental Table 2).  This pattern of decreased enrichment of CD147 on cells emerging after day 

0 was seen on other patients (Supplemental Table 2) and is consistent with multiple explanations.  

Overall, there was a strong downward trend in many of the markers and cell subsets in COVID-19 

patients, suggesting either selection against cells expressing a high level of proteins, downregulation 

of expression of key surface markers like CD147, expansion of immature or abnormal cells, or 

extreme trafficking of cells into tissues.  These potential outcomes cannot be distinguished from each 

other with the analysis here. The utility of the T-REX algorithm is primarily in generating these 
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hypotheses automatically and in pinpointing cells with extreme behavior within the context of the 

patient as their own baseline.  Given the large amounts of change (Figure 6) and the generally lower 

numbers of T cell subsets observed in COVID-19 than in healthy individuals (Supplemental Table 2), 

it may be the case that therapeutic stabilization of the immune system will be needed before virus-

specific T cells will be identifiable with the T-REX method.  It will be especially interesting to explore 

more mild cases of COVID-19 with this approach and determine whether the hotspots of change are 

truly virus-specific, analogous to the scenario with rhinovirus. 

For the melanoma and AML cases presented here, the cohort sizes were not large enough to 

allow robust statistical comparison of patient response to degree or direction of change, although this 

information is available in the original studies 9, 36.  Of the AML patients, those with a high magnitude 

of change (Figure 6) were also those that had a high blast count and were complete responders to 

induction therapy, suggesting that the change represents the overall “reset” of the immune system 

following chemotherapy.  It will be of high interest to ask whether the identification of virus-specific T 

cells extends to populations of cells on checkpoint inhibitor therapy.  The dynamics of regulatory cells 

may also be of interest, especially for autoimmunity, and it is possible, but not known, whether these 

cells will follow the same pattern as the CD4+ T cells in rhinovirus infection. 

A major strength of the algorithm is that once cell regions of change are identified, the key 

features highlighted by T-REX and MEM can be used in lower parameter flow cytometry or imaging 

panels to provide further information, confirm findings, and physically isolate cells by FACS 

(Supplemental Figure 2).  Thus, low parameter cytometry approaches may rely more on manual 

analysis methods and cell signatures that are determined a priori, and T-REX may provide a useful 

tool for narrowing in on such features using exploratory high dimensional data.  The computational 

approach here emphasizes unsupervised UMAP and KNN clustering and uses statistical cutoffs to 

guide the analysis.  Further optimization of the algorithm could include a stability testing analysis 

where the stochastic components of the algorithm are repeated to determine whether clusters or 

phenotypes are stable 15, 43.  Overall, the unsupervised approach aims to diminish investigator bias 
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and reveal novel or unexpected cell types.  While unsupervised analysis tools have impacted high 

dimensional cytometry for at least a decade 6, 7, 10, 16, 22, T-REX is designed to capture both very rare 

and very common cell types and place them into a common context of immune change.  The 

extremely rare T cells identified here are overlooked by other tools due to these tools typically 

needing clusters of cells representing at least 1% and generally more than 5% of the sample.  

It is a central goal of systems immunology to map people with vastly contrasting immune 

system changes onto a common plot of change (as in Figure 6).  The approach here goes beyond 

prior single measures of systematic change, such as Earth Mover’s Distance 9, 44, by including both 

direction and magnitude of change in one view of an individual’s immune response.  This 

improvement proved useful for comparing settings with great change in many cell types (COVID-19 

infection, AML chemotherapy responders) to settings with rare cells that specifically expanded or 

contracted (rhinovirus infection, melanoma checkpoint inhibitor therapy).  This sensitivity of T-REX for 

extremely rare cells allowed the algorithm to reveal virus-specific CD4+ T cells without prior 

knowledge of their phenotype.  T-REX should now be tested further to determine whether cells 

identified in SARS-CoV-2 also share a clonal origin.  In addition, it is likely T-REX will be useful 

beyond immunology settings in paired comparisons of quantitative single cell data, such as discovery 

screening or paired analysis of tumor cells.   
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Figure legends  

Figure 1 – Tracking Responders EXpanding (T-REX) algorithm identifies rare cells based on 

significant expansion or contraction during infection or treatment. Graphic of the Tracking 

Responders Expanding (T-REX) workflow. Data from paired samples of blood from a subject are 

collected over the course of infection and analyzed by high dimensional, high cellularity cytometry 

approaches (e.g., Aurora or CyTOF instrument, as with datasets here).  Cells from the sample pair 

are then equally subsampled for UMAP analysis. A KNN search is then performed within the UMAP 

manifold for every cell. For every cell, the percent change between the sample pairs is calculated for 

the cells within its KNN region. Regions of marked expansion or contraction during infection are then 

analyzed to identify cell types and key features using MEM.  For some datasets, additional 

information not used in the analysis could be assessed to determine whether identified cells were 

virus-specific.  Finally, the average direction and magnitude of change for cells in the sample was 

calculated as an overall summary of how the analyzed cells changed between samples. 

 

Figure 2 – T-REX identifies molecular signatures of CD4+ T cells that are expanded during 

acute rhinovirus infection and enriched for virus-specific cells. A subject (RV001) was 

experimentally infected with rhinovirus (RV-A16) and CD4+ T cell signatures monitored by spectral 

flow cytometry in conjunction with tetramer staining during the course of infection. (A) Fold change in 

the number of tetramer-positive cells (log2) after rhinovirus challenge on day 0.  (B) Data showing the 

percentage of tetramer+ cells in each cell’s KNN region (where k = 60) plotted against the percentage 

change in its KNN region on day 7 vs. day 0.  A statistical threshold of 80% or higher for the 

percentage change in KNN region corresponded to marked enrichment of tetramer+ cells at day 7.  

(C) UMAP plots with T-REX analysis of CD4+ T cells for day 7 vs. day 0 based on statistical 

thresholds of 90-95% change (left column) and ≥95% change (right column) in cell phenotypes.  Pink 

and red colors denote regions of phenotypic change identified by T-REX.  Numbers of tetramer+ cells 

within the cell’s KNN region captured in these areas of phenotypic change are denoted.  Cells 
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containing >5% tetramer+ virus-specific cells in the corresponding KNN region were labeled pink.  

Red cells denote a KNN region that was not enriched for tetramer+ cells, and purple cells denote a 

tetramer enriched region not captured by T-REX.  Values in black indicate the actual number of 

tetramer+ cells in each circled hotspot of phenotypic change.  MEM labels on the right indicate cell 

phenotypes of each hotspot. 

 

Figure 3 – Cells in regions of significant change between day 0 and day 7 were typically in 

tetramer+ hotspots. T-REX plots of regions of significant change (blue and red) are shown on UMAP 

axes for CD4+ T cells from 8 rhinovirus challenge study individuals.  Solid pink circles indicate 

tetramer+ hotspots that also contained cells that were in regions of marked expansion ≥85% 

 

Figure 4 – KNN analysis around tetramer+ cells reveals an optimized k-value at the inflection 

point of the tetramer density curve.  (A) Tetramer+ cells from day 7 (dark purple) or from day 0 

(light purple) and random tetramer- cells from day 7 (black) are shown overlaid on a common UMAP 

plot.  The number of cells for each group is shown in the upper left of each plot. (B) Average tetramer 

enrichment is shown for increasing k-values in repeated KNN analysis of the cells. The inflection point 

of the resulting curve is circled in red at k = 70, which was the optimized k-value for KNN 

implemented as in T-REX for subject RV001. The T-REX plots on the UMAP axes are shown for 

various k-values. 

 

Figure 5 – Infected cell phenotypes can be compared to cells taken after infection to reveal 

regions of expansion. (A) Fold change in the number of tetramer-positive cells (log2) after rhinovirus 

challenge on day 0. (B) Box and whisker plot show KNN regions in terms of expansion during 

infection represented by percent change as well as percent of tetramer positive cells for post-infection 

(day 28) and during infection (day 7). (C) UMAP plots for 95 percent change and 5 percent tetramer 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 4, 2020. ; https://doi.org/10.1101/2020.07.31.190454doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.31.190454
http://creativecommons.org/licenses/by-nc-nd/4.0/


Page 29 of 29 

cutoffs. Cell count is in black as well as in the upper right of each UMAP plot. MEM labels are given 

for highly expanded and tetramer-enriched regions. 

 

Figure 6 – Mapping degree and direction of change for 5th & 95th hotspots reveals disease-

specific patterns. (A) Degree of change and direction of change from T-REX analysis in a time point 

comparison shown for AML (day 5/8 vs day 0), COVID (day 1/3/4/5/6/7 vs day 0), MB (day 21/35 vs 

day 0), and RV (day 7 vs day 0) samples. (B) Example T-REX plots are shown for each disease type 

analyzed. Degree of change shown in red and blue with red showing regions of expansion over time 

compared to the blue representing regions of contraction over time. MEM label given for change 

hotspots in the left example in each sample type. 
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