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Light field microscopy (LFM) has emerged as a powerful tool for fast volumetric 
image acquisition in biology, but its effective throughput and widespread use 
has been hampered by a computationally demanding and artefact-prone image 
reconstruction process. Here, we present a novel framework consisting of a 
hybrid light-field light-sheet microscope and deep learning-based volume 
reconstruction, where single light-sheet acquisitions continuously serve as 
training data and validation for the convolutional neural network reconstructing 
the LFM volume. Our network delivers high-quality reconstructions at video-rate 
throughput and we demonstrate the capabilities of our approach by imaging 
medaka heart dynamics and zebrafish neural activity. 
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Capturing neuronal activity distributed over whole brains, elucidating long-range 
molecular signaling networks or analyzing structure and function of beating hearts in 
small animals necessitate imaging methods that are capable of resolving these highly 
dynamic processes on milli-second time-, and hundreds of micrometer length scales. 
To address these challenges, several imaging approaches1 have recently been 
proposed or optimized, ranging from highly optimized point and line scanning, to 
selective plane illumination2 or by reducing the dimensionality of the image 
acquisition3.  While the former two are limited by the sequential nature of the image 
capture, the latter often require sparsely labelled samples or a severely compromised 
imaging field-of-view (FOV). 
  
A particularly attractive candidate for high-speed three-dimensional (3D) imaging in 
biology is light-field microscopy (LFM), due to its ability to instantaneously capture 3D 
spatial information in a single camera frame, thus permitting volumetric imaging limited 
by the frame-rate of the camera only4–6. The exceptional ability to image the 3D 
distribution of fluorescent emitters over large, hundreds of micrometer-scale FOV with 
millisecond temporal resolution has opened new avenues in developmental and 
neuro-biology, such as the recording of whole-brain neuronal activity in several model 
organisms6–8 or the visualization of ultra-fast cardiovascular dynamics9,10. 
Technologically, LFM has seen a steady raise in performance over the past years, 
including approaches to advance its rather low and non-uniform spatial resolution9 and 
signal-to-noise10,11, and to optically9,12 or computationally13,14 reduce the presence of 
image reconstruction artefacts. Yet the widespread use of this optically appealing 
technique in the life sciences has been hampered by a computationally demanding, 
iterative image reconstruction process that ideally demands large-scale computational 
infrastructure as well as data management, and thus practically restricts the effective 
experimental throughput, especially with respect to long-term recordings. 
 
With the explosive development of deep learning and convolutional neural networks 
(CNNs), multiple algorithms have recently been proposed with the aim to replace 
iterative deconvolution procedures such as Richardson-Lucy’s by a CNN15. In the 
natural image domain, CNNs are now the primary method for removing motion blur 
and other artefacts traditionally solved by iterative deconvolution16. Similarly, in 
microscopy several deep learning-based methods have recently been introduced for 
deblurring, denoising or super-resolution applications17. Although these methods 
demonstrate excellent image reconstruction performance and empirically have been 
shown to generalize to data similar to the one used in training, no theoretical 
guarantees on generalization can be given. It is therefore of utmost importance to 
extensively validate and, if needed, to retrain the CNN for each experimental setting18. 
This requirement presents a problem for many bio-imaging applications, and in 
particular for dynamic imaging with LFM, as raw light field images are difficult to 
interpret. For many dynamic biological processes, it is not possible to arrest the activity 
and acquire a static training volume by confocal or other imaging modalities19,20. In 
that case, training has to be restricted to simulations or iterative algorithm 
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reconstructions, without showing the CNN any independently acquired volumetric data 
which truly corresponds to the light field images it aims to reconstruct. 
  
To overcome this limitation, here we present a novel framework for fast and high-
fidelity reconstructions of experimental light-field microscopy images, termed HyLFM. 
Our approach is based on reconstruction by a CNN enhanced by simultaneous 
acquisition of high-resolution image data for training and validation. Our neural 
network - which we term HyLFM-Net - is designed for light-field data processing and 
3D image reconstruction (see SI Fig. 1 and SI Tab. 1 for a detailed architecture 
description). To avoid potential bias to the previously seen training data and to enable 
direct validation of the reconstructions from uninterpretable LFM images, we have 
included an additional, continuous validation mechanism into our LFM imaging setup, 
thereby achieving and ensuring high-fidelity, trustable reconstructions. Experimentally, 
this is realized by adding a simultaneous, selective-plane illumination microscopy 
(SPIM) modality into the LFM setup which continuously produces high-resolution 
ground truth images of single planes for validation, training or refinement of the CNN. 
The training can thus be performed both on static sample volumes and dynamically 
from a single plane that sweeps through the volume during 3D image acquisition. 
Besides direct training from non-static samples, the latter approach allows for fine-
tuning of the network on-the-fly if an inconsistency is found during continuous 
validation. We demonstrate the capabilities of our HyLFM system by imaging the 
dynamics of a hatchling (8 dpf) medaka (Oryzias latipes)  beating heart across a 
350×300×150 µm3 FOV at a volumetric speed of 40–100Hz, as well as calcium-evoked 
neural activity in 5dpf zebrafish (Danio rerio) larvae over 350×280×120 µm3 FOV at 
10Hz. We train HyLFM-Net dynamically on a part of the acquired timelapse and 
achieve superior image reconstruction quality (and spatial resolution) compared to 
traditional, iterative LFM deconvolution-based techniques5,6 and at a video-rate (18Hz) 
inference throughput (SI Tab. 2). 
   
The design of our HyLFM imaging system is conceptually shown in Fig. 1a and based 
on an upright SPIM configuration with dual-illumination (Online Methods and SI Fig. 
2). This allows to simultaneously or sequentially illuminate the entire sample volume 
for light-field and/or a single plane for SPIM recording. On the detection side, the 
objective (Olympus, 20x 0.5NA) collects the excited fluorescence which is split either 
via a 70/30 beamsplitter or based on wavelength into separate optical paths for SPIM 
and LFM imaging, respectively. A fast, galvanometric mirror in the illumination path, 
together with an electrical-tunable lens (ETL) in the SPIM detection path enables to 
arbitrarily reposition the SPIM excitation and detection planes in the sample volumes 
at high speed (15ms), in respect to the LFM imaging volume (Fig. 1b). An automated 
image processing pipeline9 ensures that both LFM and SPIM volumes are co-
registered in a common reference volume/coordinate system with high precision, 
which is an important prerequisite for CNN training and validation. Our ability to 
simultaneously acquire both 2D and 3D training data is paramount to ensure high-
fidelity and reliable CNN light-field reconstructions of arbitrary samples, including data 
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never seen in previous training. Furthermore, this includes dynamic samples for which 
the process of interest cannot be arrested to acquire a static training volume at high 
resolution. This is an important advancement of our system compared to previous 
artificial intelligence enhanced LFM reconstructions19–21.  
 
Deep learning-based image reconstruction methods are commonly trained from 
“original”-“reconstruction” image pairs, although semi-supervised and self-supervised 
approaches are now also gaining popularity22,23. Here, we follow a fully supervised 
approach and train HyLFM-Net directly on pairs of SPIM-LFM images. The LFM image 
which serves as input to the network is transformed into a tensor where the individual 
pixels of each lenslet are rearranged as channels (Fig. 1c). This re-arrangement 
allows convolution operations to act on angular views, while the projection (1×1 
convolution) layers learn to combine information from different angles. The multi-
channel 2D images are passed through 2D residual blocks [ResNet] and a transposed 
convolution. The output goes through a final 2D convolution layer and is then 
transformed to 3D by reinterpreting network filters as the axial spatial dimension. The 
3D images are then further processed by 3D residual blocks and upsampled by 
transposed convolutions to finally yield the reconstructed 3D volume.  For training on 
single planes, the registration transform between the two detection modalities is 
encoded into the last network layer to enable direct comparison with the acquired 2D 
light sheet image (Online Methods, SI Fig. 1).  
 
To evaluate and verify the performance of our HyLFM system, we imaged sub-
diffraction sized, fluorescent beads suspended in agarose and quantified the 
improvement in both spatial resolution and overall image quality by comparing it with 
the standard, iterative light-field deconvolution (LFD – Fig. 1d–i). We found that 
HyLFM-Net correctly inferred the 3D imaging volume from the raw light-field data, 
yielding high and uniform lateral (1.8±0.2µm) as well as axial (7.1±1.3µm) resolution 
across the imaging volume (n=4966 beads, Fig. 1d), significantly better than what 
could be obtained by LFD (Fig. 1i). Furthermore, HyLFM-Net reconstructions do not 
suffer from artefacts near the native focal plane that are common in LFD5 (see arrows 
in Fig. 1i and SI Fig. 3). However, it has to be noted that the “PSF'' of the signal 
reconstructed with a CNN depends strongly on the resolution and the shape of the 
signal in the training data. Therefore, training on small structures such as sub-
diffraction sized beads will lead to unnaturally precise signal localizations and, when 
such a network is applied to a dataset with larger structures (or beads), can lead to 
erroneous reconstructions. Conversely, training only on large structures can lead to a 
network which merges small neighboring objects together (SI Fig. 4). While empirically 
the bias to training data can be alleviated by ensuring more diverse training datasets, 
at the current state of machine learning theory no formal guarantees on network 
generalization performance can be made. This observation has motivated our hybrid 
microscope setup, where the network can always be validated on concomitantly 
acquired high-resolution data and, if necessary, retrained directly on the imaged 
sample instead of relying on a sufficiently broad and general composition of static 
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training data, which in practice is typically lacking or time- and/or resource-intensive 
to produce.  
  
Next, we applied the HyLFM system to the challenging task of imaging a beating 
medaka fish heart in-vivo to show its capability to correctly capture highly dynamic 
cellular movements in 3D (Fig. 2a–h and SI Vid. 1). When imaging the dual color 
expressing cardiomyocytes (myl7::H2B-eGFP; myl7::H2A-mCherry; i.e. nuclear- 
eGFP for LFM-, -mCherry for SPIM detection-path) at a 40-100Hz volume rate, we 
could visualize the heart at single-cell resolution and free of reconstruction artefacts 
for both pharmacologically arrested (static) hearts (Fig. 2a–d, V-FOV 
~350×300×180µm3), and beating (dynamic) hearts (Fig. 2e–k, V-FOV 
~350×300×150µm3). Here, our HyLFM-Net yielded high image quality metrics (MS-
SSIM = 0.926, PSNR = 30.84), compared to SPIM (Fig. 2h), and allowed 3D volume 
inference at 18.2 Hz, which represents at least a 1000-fold reconstruction speed 
improvement over common LFD5,6  (SI Tab. 2). Note that in order to obtain the above-
mentioned image quality metrics, HyLFM-Net was trained on a separate fish heart and 
applied in inference mode. Being able to perform 3D volume inference at video-rate 
speed significantly boosts overall experimental imaging throughput and further 
enables real-time ‘quality’ control of uninterpretable light field images during image 
acquisition. Furthermore, if the pre-trained network is not performing sufficiently well, 
it can then be refined or fine-tuned based on the corresponding single plane SPIM 
images, or even re-trained from scratch (Fig. 2f,j). Importantly, note that the network 
trained on dynamically acquired SPIM single planes (HyLFM-Net-dyn in Fig. 2h) is 
performing equally well or better than the network trained on full static volumes 
(HyLFM-Net stat in Fig. 2h). This underscores the feasibility of our hybrid 2D/3D 
imaging approach. 
  
The unique assets of LFM make it a promising method for neural activity imaging in 
small model organisms. To demonstrate the potential of HyLFM to also deliver 
quantitatively accurate reconstructions, we imaged 5dpf transgenic larval zebrafish 
brains expressing the nuclear-confined calcium-indicator GCaMP6s Tg(elavl3:H2b-
GCaMP6s) (Fig. 2l–r). When distributing the excited fluorescence into the LFM and 
SPIM detection arms we could record whole-volume light field and high-resolution 
SPIM imaging data at 10 Hz each, over a 350×280×120µm3 volume. Again, the 
concurrent availability of ground truth data enabled our HyLFM system to faithfully 
learn and infer not only structural, but also intensity-based information, as 
demonstrated by the high degree of correlation of Ca2+-signal traces between HyLFM 
and ground truth data obtained by SPIM or conventional LFD (Fig. 2o–r). The ability 
to rapidly acquire neural activity dynamics from low signal light-field data at hundreds 
of Hz volume rate should make HyLFM an attractive method for visualizing electrical 
activity via recently developed voltage-indicators24, in which kHz-rate volumetric image 
data needs to be efficiently captured and reconstructed. 
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In summary, we have demonstrated a new framework for deep-learning based 
microscopy with continuous ground-truth generation for enhanced reconstruction 
reliability. Our approach enables light-field imaging with improved spatial resolution 
and minimal reconstruction artefacts, and compared to previous work based on 
multiview deconvolution9, achieves this performance within the relaxed imaging 
geometry of a standard two-objective SPIM. The ability to reconstruct light-field 
volumes at sub-second (video-)rate eliminates the main computational hurdle for light 
field imaging in biology, and we thus expect this to further accelerate the uptake of 
LFM by the community. The integration of a high-resolution imaging modality into our 
LFM system further mitigates the omnipresent problem of acquiring appropriate 
training data, as it can be generated simultaneously and on-the-fly. Furthermore, the 
on-line availability of single-plane ground truth (SPIM) images distributed over 3D 
space and time enables continuous CNN output validation and fine-tuning, as early 
time points of a time-lapse imaging experiment can be used for network training and/or 
refinement. This new concept to supervised AI-enhanced microscopy also solves the 
problem of transferability, as the network over time learns on the actual experimental 
data, and therefore does not require pre-acquisition of training images from particular 
specimen types with separate microscopes. This is a key advantage of our approach 
which goes beyond previous work in the field19–21. While the HyLFM setup has been 
developed specifically for light field imaging, the general principle behind it is 
applicable to other imaging approaches which rely on iterative or trained computational 
methods for image reconstruction or restoration. Finally, we note that access to time- 
and resource-efficient light-field reconstructions further facilitates data-intensive, long-
term 4D imaging experiments at high throughput as it allows to store volumetric image 
data in compressed form, i.e. as raw 2D light field images19. Given that light-field 
detection only requires the moderately complex and inexpensive addition of a suitable 
microlens array into the imaging path and is in principle compatible with any custom 
or commercial SPIM realization, bears further potential for widespread use of this 
method in the life sciences.  
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Figure 1: Schematic principle and experimental characterization of HyLFM imaging 
performance.  
(a) Microscope geometry showing simultaneous imaging via SPIM and light field modalities. 
(b) Schematic view of the SPIM and light field detection paths. (D-)BS, (dichroic) beamsplitter; 
TL, tube lens; MLA, microlens array; ETL, electrotunable lens; C, sCMOS camera. (c) HyLFM-
Net image reconstruction pipeline. The raw light field image serves as input to a reconstruction 
CNN, where the lenslet pixels are rearranged channelwise. The last layer encodes the affine 
transform between the SPIM and LFM spaces. The CNN can be trained either on high-
resolution light sheet volumes, for static samples, or on high-resolution light sheet planes, for 
dynamic samples. The network output can additionally be validated by sweeping light sheet 
planes. (d–i) Evaluation of HyLFM-Net’s performance on sub-diffraction sized, fluorescent 
beads. A 3D SPIM stack (g) and the corresponding raw light field image are recorded. (h) 
Same volume is reconstructed by a HyLFM-Net trained on other SPIM / light field pairs. (i) 
Conventional reconstruction based on Lucy-Richardson-type light field deconvolution (LFD). 
Exemplary artefacts are highlighted by white arrows. (d) Lateral and axial resolution as a 
function of imaging depth for SPIM, HyLFM-Net and LFD, respectively. MS-SSIM (e) and 
PSNR (e) image quality metrics across imaging volume comparing HyLFM-Net and LFD with 
the SPIM ground truth. Scale bars in (g-i) are 20µm in whole FOV (top row) and 10µm in PSF 
close-up (bottom row). 
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Figure 2: Experimental demonstration of HyLFM on medaka heart and zebrafish neural 
dynamics. 
(a) A static hatchling medaka heart acquired by light sheet (SPIM, maximum intensity 
projections). The corresponding light field volume reconstructions by (b) HyLFM-Net and (c) 
LFD. Note reconstruction artefacts (white arrows) and signal dimming in off-center regions in 
LFD. (d) MS-SSIM and PSNR image quality metrics across imaging volume of HyLFM and 
LFD compared to SPIM ground truth. (e) Example raw light-field (LF) image of a dynamic 
(beating) medaka heart, acquired at 40Hz. (f) Maximum intensity projection of the HyLFM-Net 
prediction after training on single light sheet planes that continuously swept through the 
volume during acquisition. Note improved cellular details and absence of artefacts compared 
to LFD reconstructions in (g). Image quality metrics MS-SSIM and PSNR (h) for single plane 
data in (i–k). (i) High resolution light sheet image plane at 16µm depth and same time-point 
as in (e). Single plane validation comparing image quality of HyLFM-Net (j) to LFD 
reconstruction (k). HyLFM-Net stat/dyn refers to networks trained either on full static volumes 
of the arrested heart as in (a–c) (static medaka heart) or on single planes acquired by imaging 
a beating heart as in (i–k) (dynamic medaka heart). Scale bar is 50µm in (a–n). See also SI 
Videos 1–3. (l–n): Ca2+-imaging in zebrafish larvae brain using SPIM, HyLFM-Net, and LFD, 
respectively (mean intensity projection over time). (o–r): Selected Ca2+-traces extracted from 
regions indicated in (l–n), with Pearson Correlation Coefficients (PCC) comparing LFD and 
HyLFM-Net to SPIM. Raw traces were pre-filtered (Savitzky-Golay filter order 3, window size 
11) and normalized. 
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Online methods  
  
Hybrid LFM-SPIM imaging setup 

The microscope consists of one illumination and one detection objective, orthogonal 
to each other (see SI Fig. 2). The illumination sources are continuous-wave lasers (λ 
= 488 nm, 20mW, Omicron, and λ = 561 nm, 50 mW, Cobolt). We use a 10x0.3 NA 
(Nikon CFI Plan Fluor 10XW) water dipping objective for illumination and a 20x0.5 NA 
(Olympus UMPLFLN 20XW) water dipping objective for detection. For the latter, a tube 
lens with focal length of 200mm (Nikon MXA20696) yields an effective magnification 
of 22.5x. Two illumination paths, combined by a dichroic mirror (D1), enable 
simultaneous dual color light-sheet and light-field illumination. For single-color calcium 
imaging, two separate 488 nm excitation lasers were used and the dichroic mirror (D1) 
was replaced by a non-polarising beamsplitter (Thorlabs, 70:30). A digital light sheet 
was generated using one of the axes of a 2D galvo pair (Cambridge technology) 
combined with a scan lens (SL) and tube lens (TL1, 200mm). To achieve a selective 
volume illumination for light-field excitation, the laser beam was first expanded and the 
central plateau of the (Gaussian) illumination profile was used to illuminate the entire 
volumetric FOV at once. The lateral extensions of the volumetric FOV could be 
adapted by changing the size of an aperture (2D slit) that was used to crop out the 
central region of the laser beam. A lens (TL2, 300mm) focused the light on the 
objective back aperture. On the detection side, the microscope has two arms 
separated by either a dichroic mirror (D2) for dual color imaging or a non-polarising 
beamsplitter (Thorlabs, 2”, 70:30 ratio) for single-color (e.g. calcium) imaging. For the 
light field detection arm, light first passes through a chromatic filter (BP2), and 
thereafter through a microlens array (pitch 125 μm and focal length 3.125 mm, RPC 
photonics MLA s125 f25) mounted in a six-axis kinematic mount (Thorlabs, K6XS) 
allowing fine adjustment of the array in respect to the optical axis. The microlens array 
is subsequently imaged onto a 4.2 megapixel (2,048×2,048 pixels) sCMOS camera 
(Andor Zyla) using a 1:1 relay macro lens objective (Nikon AF-S 105 mm 2.8 G VR IF-
ED Micro). The second detection arm is used for recording of the light sheet image 
modality. The light sheet images were acquired by displacing the illuminated light 
sheet with respect to the focal plane with a galvanometric mirror while refocusing the 
detection plane remotely using an electrically tunable lens (ETL, Optotune EL-10-30). 
Here, the fluorescence first passes through a band pass filter (BP1), and the primary 
image plane is then relayed through the remote focusing unit using a 100mm lens 
(RL1) to a lens pair consisting of a -75mm offset lens (OL), and the ETL combined 
with another 100mm lens (RL2). Finally, two 150mm lenses (RL3, RL4) in a 4f 
configuration as well as a 1:1 macro lens (Nikon AF-S 105 mm 2.8 G VR IF-ED Micro) 
relay the image plane onto a second sCMOS camera (Andor Zyla). Precise sample 
positioning was enabled by a composite xyz linear positioning stage (Newport M-562-
XYZ) together with a piezo stage (Nanos LPS-30-30-1-V2_61-S-N and controller 
MC101) and a small rotation stage (Standa, 7R128). Further information on the setup 
can be found in SI Fig. 2. 
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HyLFM image acquisition and registration 
The training data for our HyLFM-Net network consists of SPIM data (ground truth) and 
the corresponding 2D light field image (input). Two options can be pursued to acquire 
high-resolution training data in our HyLFM setup: 1) The SPIM imaging plane remains 
stationary in order to sample the dynamics (e.g. multiple heart beats) over time and 
obtain sufficient variability in training data (e.g. heart shapes during the beat cycle). 2) 
The SPIM modality continuously loops in 3D in order to acquire enough variability at 
each respective z plane. The second option minimizes potential photobleaching and -
toxicity effects and was thus chosen for the majority of the experiments. Due to 
experimental imperfections, the FOV of the two detection paths might not overlap 
completely. In order to register the light sheet data to the light field volume, we 
acquired a light field image of fluorescent beads and a light sheet stack of the same 
volume by displacing the light sheet with respect to the focal plane with a 
galvanometric mirror and refocusing on the illuminated plane with the ETL. The light 
field volume was then reconstructed from the recorded light field image using 
Richardson-Lucy deconvolution (LFD) as in Ref.6. The two corresponding volumes 
were registered with the Multiview Reconstruction Plugin in Fiji25, yielding the affine 
transformation that maps the light field volume to the light sheet stack. In dynamic 
training this affine transformation is then used within the final layer of the network and 
only the slice for which a light sheet equivalent has been acquired is sampled from the 
predicted volume during training. This routine also allows for an easy comparison 
between SPIM images and volumes reconstructed by the HyLFM-Net and LFD. We 
used the affine transformation that was computed from the fluorescent bead sample 
throughout all experiments.  
  
HyLFM-Net for light-field reconstruction  
The input to the network is a 3-dimensional tensor. The original 2D light field images, 
composed of up to 70×85 lenslets, 19×19 pixels each, are rearranged to contain 361 
(192) channels, with each channel corresponding to an angular view, i.e. same pixels 
of each lenslet. The input is normalized by its 5.0th and 99.8th percentile without 
clipping. For training and evaluation, the light sheet target images are normalized by 
their 5.0th and 99.9th percentile. During training several data augmentations are 
applied. These include addition of Gaussian or Poisson noise, joined random rescaling 
of light field input image and light sheet target image, lateral axis flipping, as well as 
joined random 90-degree rotations (applied before rearranging light field to 361 
channels). The full network architecture is shown in SI Fig. 1 and SI Tab. 1. Briefly, 
the rearranged 3D input tensor is passed through two or three residual blocks 
interlayered with transposed convolutional layers scaling up by factor 2 in the lateral 
dimensions. The output of the last residual block undergoes a final 2-dimensional 
convolution, after which its channel dimension is re-interpreted as an axial dimension 
and a smaller channel dimension. This 4D tensor is passed through 3D residual blocks 
and transposed convolutional layers, further upsampling in the two lateral dimensions. 
For predictions aligned with the SPIM data, the last layer of the network encodes the 
registration of the reconstructed LF volume to the SPIM volume. For static volumes 
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the SPIM volume was transformed instead. In dynamic training only the one slice, for 
which a light sheet equivalent has been acquired, is sampled from the predicted 
volume. The network is trained either with L2 Loss or with a weighted, smooth L1 Loss 
(down-weighting non-peak-signal-pixels with a decaying weight). Only for the sparse 
bead data this choice has a significant impact on network convergence, as with the L2 
loss the network converges to only predict background. The Adam optimizer is used 
with the learning rate set between 1.0e-5 and 3.0e-4. The networks have been trained 
for 26.5, 121.2, 48, and 89.8 hours for the beads, static heart, dynamic heart and 
neural activity tasks respectively, which were determined by observing the smooth L1 
validation loss (for beads) or the MS-SSIM validation score (heart and brain). All 
training was done on a single NVIDIA GeForce RTX 2080 Ti GPU. Training data 
volumes measured 137 261.2×400.2×100 μm3 stacks for beads, 111 
339.0×394.6×245 μm3 and 34 311.3×483.6×245 μm3 for the static heart, 13747 
339.0×394.6 μm2 and 5925 277.9×283.5 μm2 slices for the dynamic heart, as well as 
26164 355.7×439.1 μm2 slices  for the neural activity (see also training data 
acquisition). Full network code using the PyTorch 1.4.0 framework can be found at 
https://github.com/kreshuklab/lnet.   
  
Reconstruction quality analysis 
To quantify the microscope’s performances in terms of spatial resolution, we imaged 
a 3D distribution of 0.1 μm sized fluorescent beads (TetraSpeck, Thermo Fisher 
Scientific) embedded in agarose. The Fiji plugin ‘Multiview-Reconstruction’25 was used 
to detect 3D bead positions in the recorded light sheet stacks. The same positions 
were then used to fit a 3D Gaussian and to compare the full width at half maximum 
(FWHM) in SPIM, LFD and HyLFM-Net prediction volumes respectively. In order to 
investigate bias to training data and shape priors we imaged 4 μm sized fluorescent 
beads (TetraSpeck, Thermo Fisher Scientific), cross-applied trained deep neural 
networks and computed FWHM for all possible combinations (see SI Fig. 4). We 
computed MS-SSIM and PSNR values per z plane for light field and network 
predictions, using light sheet planes as the reference, for the fluorescent beads and 
the medaka heart respectively. The following values were used for MS-SSIM 
computations: NumScales=5, ScaleWeights=fspecial(‘gaussian’, [1, numScales], 1), 
Sigma=1.5 (Ref.26) 
  
Fish husbandry and transgenic lines 
All medaka fish are maintained in closed stocks at Heidelberg University. Medaka 
(Oryzias latipes) husbandry (permit number 35–9185.64/BH Wittbrodt) and 
experiments (permit number 35-9185.81/G-145/15 Wittbrodt) were performed 
according to local animal welfare standards (Tierschutzgesetz §11, Abs. 1, Nr. 1) and 
by European Union animal welfare guidelines. The fish facility is under the supervision 
of the local representative of the animal welfare agency. Medaka was raised and 
maintained as described previously27. For in-vivo imaging, embryos were kept in 165 
mg/l 1-phenyl-2-thiourea (PTU) in embryo rearing medium (ERM) from 1 dpf until 
imaging to inhibit pigmentation. For heart imaging, the following transgenic medaka 
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lines were crossed: myl7::H2B-eGFP (see Ref.9) and myl7::H2A-mCherry. For the 
generation of the myl7::H2A-mCherry transgenic medaka line the myl7::eGFP 
cassette of the pDestTol2CG plasmid 
(http://tol2kit.genetics.utah.edu/index.php/PDestTol2CG) was replaced by a 
myl7::H2A-mCherry cassette and the modified plasmid was co-injected with Tol2 
transposase mRNA into wild-type stock Cab embryos as described earlier28. The 
calcium imaging experiments were performed using a zebrafish (Danio rerio) line with 
a nuclear-localized calcium sensor (Tg(elavl3:H2B-GCaMP6s)). 
 
Medaka imaging  
Medaka larvae were imaged 1–3 days after hatching. Hatchlings were anesthetized in 
150 mg/l disodium phosphate-buffered (pH 7,3) tricaine and mounted in 1 % low-
melting agarose (in ERM) containing 150 mg/l tricaine. For light field volume 
reconstructions with Richardson-Lucy deconvolution, a light-field PSF was chosen that 
yielded 49 distinct axial planes, spaced 5 μm apart after 8 iterations of deconvolution. 
To create a static medaka heart for HyLFM-Net training, myl7::H2B-eGFP, myl7::H2A-
mCherry transgenic medaka hatchlings were sedated with 150 mg/l tricaine and the 
heart was pharmacologically arrested with 40 mM 2,3-butanedione 2-monoxime 
(BDM). Pre-treated hatchlings were mounted in 1% low-melting agarose (in ERM) 
containing 150 mg/l tricaine and 40 mM BDM. In the case of re-onset of cardiac 
contractions, BDM stock solution (100 mM) was titrated into the sample chamber until 
the heart stopped beating. Then light field images and light sheet stacks were acquired 
subsequently for the same position of the static heart. In order to get sufficient 
variability for training data we imaged the heart at multiple positions and at different 
angles. For this purpose, a linear piezo stage was used, which displaced the static 
heart diagonally to the detection objective, thereby assuring variations in two 
coordinates simultaneously, while the sample angle was modified manually with a 
rotation stage. For imaging the beating heart, we simultaneously acquired pairs of light 
field and light sheet images at all z-planes in the volume. 
  
Zebrafish calcium imaging 
Zebrafish calcium imaging was performed using a nuclear localised calcium reporter 
Tg(elavl3:H2b-GCaMP6s). The zebrafish embryos were mounted according to 
previous work9  in 1 % low-melting agarose and imaged 5 days after fertilization using  
alternatingly SPIM and light-field illumination with 10Hz for both modalities. 
Training and validation data were recorded by alternatingly acquiring light-field and 
SPIM images at 10Hz each (50ms exposure time). To cover the whole volume the 
SPIM plane was swept along the axial dimension.  
  
Code availability 
The neural network code with routines for training and inference are available at 
https://github.com/kreshuklab/lnet.  
  
Data availability 
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The datasets generated and/or analysed during the current study will be made publicly 
available at the point of publication. 
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Supplementary Figure 1: Network architecture. Res2/3d:residual blocks with 2d or 3d 
convolutions with kernel size (3×)3×3. Residual blocks contain an additional projection layer 
(1×1 or 1×1×1 convolution) if the number of input channels is different from the number of 
output channels. Up2/3d: transposed convolution layers with kernel size (3×)2×2 and stride 
(1×)2×2. Proj2d/3d: projection layers (1×1 or 1×1×1 convolutions). The numbers always 
correspond to the number of channels. With 19×19 pixel lenslets (nnum=19) the rearranged 
light field input image has 192=361 channels. The affine transformation layer at the end is only 
part of the network when training on dynamic, single plane targets; otherwise, in inference 
mode it might be used in post-processing to yield a SPIM aligned prediction, or the inverse 
affine transformation is applied to the SPIM target for static samples to avoid unnecessary 
computations. 
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Supplementary Figure 2: LFM-SPIM optical setup. Schematic 2D drawing of the LFM-SPIM 
setup showing the main opto-mechanical components. The sample is illuminated through a 
single illumination objective with two excitation beam paths (ocra, light sheet illumination and 
blue, light field selective volume illumination) combined by a dichroic mirror (D1).  The 
fluorescence is detected by an orthogonally oriented detection objective and optically 
separated onto two detection arms with a dichroic mirror (D2). Bandpass filters (BP1 and BP2) 
are placed in front of a tube lens (TL3,TL4) for the respective detection path. For the light field 
detection path (green), the tube lens (TL4) focuses on the microlens array (ML) and the image 
plane (shown in magenta) displaced by one microlens focal length is relayed by a 1-1 relay 
lens system (RL6) to an image plane coinciding with the camera sensor (shown in magenta).  
For the light sheet detection path, a combination of several relay lenses (RL1 to RL4), a 1:1 
macro lens (RL5) together with a lens pair consisting of an offset lens (OL) and an electrically 
tunable lens (ETL) is used to image two axially displaced objective focal planes (shown in 
magenta, dotted and solid) to a common image plane at the sensor. The refocusing is 
achieved by applying different currents on the ETL. The mirror M1 is placed at a Fourier plane, 
such that the FOV of the light sheet path can be laterally aligned to fit the light field detection 
FOV. For single color imaging, the dichroic mirrors D1 and D2 are replaced by beamsplitters. 
See Methods for details. 
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Supplementary Figure 3: HyLFM-Net provides artifact free deconvolution of LFM data.   
(a) Ground truth single light sheet image. (b) Subdiffraction beads reconstructed by LFM-Net 
and (c) iterative light field deconvolution (LFD). The volume reconstructed by LFD shows clear 
signs of artifacts which are removed in HyLFM-Net reconstructed volumes. Scale bar is 10 
µm. 
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Supplementary Figure 4: Cross-application of trained deep neural networks can reveal 
bias to training data. We created two kinds of samples, one with small (0.1μm) and one with 
medium-sized (4μm) beads suspended in agarose. In (a), HyLFM-Net was trained on small 
beads and applied to small beads. FWHM of the beads in the reconstructed volume shows 
good agreement with SPIM measurements.  The same effect is observed in (c), where the 
network is trained on large beads and applied to large beads. However, when a mismatch 
between the training and test data is present, the network predictions are biased towards the 
training data. In (b), HyLFM-Net was trained on small beads and used to reconstruct a volume 
with large beads, resulting in erroneously small bead reconstructions. Similarly, in (d), HyLFM-
Net trained on large beads and used to reconstruct a volume with small beads produces 
erroneously large objects. (e) SPIM image of 0.1μm beads, (f) reconstructions of HyLFM-Net 
from (a), trained on small beads, (g) reconstructions from HyLFM-Net from (d), trained on 
large beads. (h) SPIM image of 4μm beads, (i) reconstructions of HyLFM-Net from (c), trained 
on large beads, (j) reconstructions of HyLFM-Net from (b), trained on small beads. Line profile 
is shown to highlight a reconstruction error (red arrows), where the network reconstructs very 
small beads (as found in the training data) and produces an additional erroneous peak where 
none is present in the ground truth SPIM volume. Scale bar 2μm in (e–g), and 10μm in (h–j). 
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Supplementary Table 1: Network architecture and image dimensions. 
Network layers and their corresponding image/tensor dimensions for Medaka heart, zebrafish 
brain, and beads samples. For Medaka heart samples also slightly smaller image dimensions 
were used (e.g. SI Video 2&3). Layer names as indicated in SI Fig. 1. For training on single 
plane images, an additional layer enacting the affine transformation was appended after the 
final projection.  
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Supplementary Table 2: Inference speed on single GPU. Speed of HyLFM-Net inference 
and LFD deconvolution on a Nvidia GeForce RTX 2080 Ti. For LFD we used the following 
settings: magnification 22.5x, nnum=19. For HyLFM-Net without i/o and LFD a mini batch size 
of 1 was chosen. For HyLFM-Net with i/o mini batch sizes of 8, 5, and 1 for heart, brain, and 
beads were chosen, respectively. 
 
 
Supplementary Video 1: Volumetric HyLFM reconstruction of a beating Medaka heart 
at 40Hz.  
Volumetric reconstruction of the medaka heart at 40Hz image acquisition speed shown in Fig. 
2e–k. The cyan plane corresponds to the sweeping SPIM image plane. The panels from left 
to right show the overlay of the light sheet plane with the respective plane from the 
prediction/reconstruction volume, a projection of the prediction/reconstruction volume rotated 
by 45 degrees around the y-axis, and a maximum projection of prediction/reconstruction 
volume along z-axis, along y-axis, and along x-axis, respectively. Scale bar 30 µm. 
 
Supplementary Video 2: Single plane HyLFM reconstruction of a beating Medaka heart 
at 56Hz. 
Single plane comparison of SPIM ground truth to the corresponding plane of the prediction 
volume of HyLFM-Net and reconstruction volume of LFD at indicated axial positions of the 
Medaka heart at 56Hz image acquisition speed. See also Fig. 2i–k. Scale bar 30 µm. 
 
Supplementary Video 3: Single plane HyLFM reconstruction of a beating Medaka heart 
at 100Hz. 
Single plane comparison of SPIM ground truth to the corresponding plane of the prediction 
volume of HyLFM-Net at indicated axial positions of the Medaka heart at 100Hz image 
acquisition speed. Scale bar 30 µm. 
 

Name
Sample 
rate [Hz]

Input rate 
[Mpx/s]

Output 
rate 

[Mvx/s]

heart 18,2 32,1 61,9
brain 15,3 31,1 60,5
beads 5,4 7,1 59,6

heart 8,2 14,4 31,3
brain 9,4 19,1 41,5
beads 4,3 5,7 47,7

heart 9,5E-4 1,0E-3 5,1E-2
brain 9,0E-4 1,1E-3 5,3E-2
beads 9,3E-4 1,0E-3 5,3E-2

1292×1577 1292×1577×49 377.9×461.3×245.0
931×1406 931×1406×49 272.3×411.3×245.0

1235×1425 1235×1425×49 377.9×416.8×245.0

HyLFM-Net with i/o to/from hard drive (avg. of 3 runs of 100 samples)
1235x1425 244×284×49 339.0×394.6×245.0
1292x1577 256×316×49 355.7×439.1×140.0

931x1406 376×576×51 261.2×400.2×100.0

LFD without i/o to/from hard drive (avg. of 3 runs of 1 sample with 8 iterations)

1292×1577 256×316×49 355.7×439.1×140.0
931×1406 376×576×51 261.2×400.2×100.0

1235×1425 244×284×49 339.0×394.6×245.0

LFM image 
size [px] Prediction size [px] Prediction size [µm]

HyLFM-Net without i/o to/from hard drive (avg. of 3 runs of 1000 samples)
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