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Localised variation of somatic mutation rates affects diverse functional sequence elements 10 

in cancer genomes through poorly understood mutational processes. Here, we characterise 11 

the mutational landscape of 640,000 gene regulatory and chromatin architectural elements 12 

in 2,421 whole cancer genomes using our new statistical model RM2. This method 13 

quantifies differential mutation rates and signatures in classes of genomic elements via 14 

genetic, trinucleotide and megabase-scale effects. We report a detailed map of localised 15 

mutational processes affecting CTCF binding sites, transcription start sites (TSS) and 16 

cancer-specific open-chromatin regions. This includes a pan-cancer indel depletion in open-17 

chromatin sites, a TSS-specific mutational process correlated with mRNA abundance in 18 

core cellular and cancer-associated processes, a subset of hypermutated, constitutively 19 

active CTCF binding sites involved in chromatin architectural interactions, and an 20 

enrichment of signature SBS17b in CTCF sites in gastrointestinal cancers. We also detect 21 

genetic driver alterations potentially underlying localised mutation rates, including RAD21 22 

amplifications and BRAF mutations associating with mutagenesis of CTCF binding sites, 23 

and SDHA amplifications indicative of frequent lung cancer mutations in open-chromatin 24 

sites. Our framework and the catalogue of localised mutational processes provide novel 25 

perspectives to cancer genome evolution and its implications for oncogenesis, tumor 26 

heterogeneity and cancer driver gene discovery.   27 
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Introduction 28 

Genomes accumulate somatic mutations through exposure to exogenous and endogenous 29 

mutagens. Subsets of these mutations confer cells select proliferative advantages and drive 30 

oncogenesis while most mutations are functionally neutral passengers 1,2. The discovery and 31 

validation of driver mutations is a major focus of cancer genomics research 3-5, however the 32 

genome-wide landscape of passenger mutations is also instrumental to our understanding of 33 

oncogenesis and tumor evolution 6,7. Somatic mutation rates show complex genomic variation at 34 

multiple resolutions 8. In megabase-scale genomic windows, variations in mutation rates are 35 

associated with transcriptional activity, chromatin state and DNA replication as late-replicating 36 

and untranscribed regions are often more mutated than regions of early replication and highly 37 

expressed genes 9-12. At a single base pair resolution, certain trinucleotides are preferentially 38 

mutated through processes of carcinogen exposures, defective DNA repair pathways, and 39 

aberrant DNA replication 13-15. For example, mutational signatures detected in metastatic tumors 40 

are informative of the treatment history of patients 16,17. In concert, these large-scale and 41 

nucleotide-level variations contribute to tumor heterogeneity and leave a footprint of tumor 42 

evolution and its cell of origin 12,18,19.  43 

Complex variation in mutation rates is also apparent across intermediate genomic resolutions 44 

spanning hundreds to thousands of nucleotides. This encapsulates diverse functional genomic 45 

elements such as exons, transcription factor binding sites (TFBS) and chromatin architectural 46 

elements 8,20. DNA bound by nucleosomes and transcription factors (TFs) show increased 47 

mutation rates in cancer genomes 21-23. Active promoters in melanoma are enriched in UV-48 

induced C>T somatic mutations resulting from differential activity of nucleotide excision repair 49 

influenced by DNA-binding of regulatory proteins 24,25. Likewise, DNA-binding sites of the 50 

master transcriptional regulator and chromatin architectural protein CTCF (CCCTC-binding 51 

factor) are enriched in somatic mutations in multiple cancer types 21,26-28. In contrast, certain 52 

genomic elements such as chromatin-accessible regulatory regions 29 and protein-coding exons 30 53 

have been shown to carry relatively fewer mutations due to increased DNA repair activity. While 54 

most such non-coding mutations are likely functionally neutral passengers induced by localised 55 

mutagenesis, some regulatory elements at the high end of the mutation frequency spectrum may 56 

undergo positive selection due to their effects on cancer phenotypes. For example, the mutation 57 
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hotspot in the TERT promoter creates a TFBS of the ETS TF family that leads to constitutive 58 

activation of TERT and enables replicative immortality of cancer cells 31-33. Recent studies have 59 

catalogued candidate non-coding driver elements in gene regulatory and chromatin architectural 60 

regions of the cancer genome with functional validations of novel elements 34-36 and highlighted 61 

the convergence of non-coding mutations on molecular pathways and regulatory networks 37,38. 62 

Thus we need to characterise localised mutational processes to understand the evolution of the 63 

somatic genome and the effects of carcinogens and endogenous mutational processes, but also to 64 

evaluate the effects of positive selection in the non-coding genome. However, few dedicated 65 

computational methods exist to analyse mutation rates at the local resolution of the genome. As a 66 

result, there is a lack of large-scale analyses of the local mutation landscape in pan-cancer WGS 67 

datasets, leaving the genetic and environmental determinants poorly understood.  68 

Here we developed a new statistical framework that quantifies the activity of mutational 69 

processes and signatures on specific classes of non-coding elements of the cancer genome. Our 70 

model considers local sequence context, megabase-level somatic mutation rates and genetic 71 

covariates to control for variation at the trinucleotide and megabase resolution while isolating 72 

site-level effects. We performed a systematic analysis of local mutation rate variation in three 73 

classes of gene-regulatory and chromatin architectural genomic elements across 2,500 whole 74 

cancer genomes of the ICGC/TCGA Pan-cancer Analysis of Whole Genomes (PCAWG) project 75 
3. We found a pervasive mutation enrichment at these functional non-coding elements that was 76 

characterised by specific mutational signatures and transcriptional and pathway-level activities of 77 

these elements in select cancer types. We detected statistical interactions of local mutagenesis 78 

and recurrent genomic alterations that suggest potential genetic mechanisms driving the 79 

underlying mutational processes. Our computational framework and systematic analysis reveals 80 

the diversity of mutational processes in functional non-coding elements of the cancer genome 81 

and their roles in somatic genome evolution, drivers of cancer phenotypes and molecular 82 

heterogeneity.   83 
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Results 84 

A statistical framework for quantifying localised mutagenesis in cancer genomes 85 

We implemented a statistical model, Regression Models for Regionalised Mutations (RM2), to 86 

quantify the local activity of mutational processes in whole cancer genomes in elements each 87 

spanning dozens to hundreds of nucleotides (Supplementary Figure 1). The model considers a 88 

genome-wide set of genomic elements such as TFBSs detected in thousands to hundreds of 89 

thousands of loci using chromatin immunoprecipitation with DNA sequencing (ChIP-seq) and 90 

similar techniques. The model uses negative binomial regression to evaluate whether the 91 

genomic elements of interest are collectively subject to a different mutation rate compared to 92 

control sequences upstream and downstream of these elements. Somatic single nucleotide 93 

variants (SNVs) and small insertions-deletions (indels) are analysed, however, the model can be 94 

extended to somatic structural variant breakpoints and germline variation. The model considers 95 

four types of information to evaluate local mutation rates: a) nucleotide sequence content of 96 

genomic elements and control sequences representing the potential space for mutagenesis, 97 

grouped by 96 trinucleotide signatures and one indel signature (nPosits), b) the counts of 98 

observed somatic mutations in the cohort of tumors (nMut) in genomic elements and control 99 

sequences also grouped by 96 trinucleotide signatures and one indel signature required to derive 100 

mutation rates (triNucMut), c) megabase-scale background mutation rates of elements computed 101 

across the cohort of tumors (MbpRate) to account for large-scale mutation correlates such as 102 

transcription and chromatin state, and d) an optional binary cofactor (coFac) to stratify tumors 103 

based on their genetic makeup (e.g., presence of a driver mutation) or clinical information (e.g., 104 

tumor subtype or stage). Genomic elements and upstream and downstream control regions are 105 

pooled into a user-defined number of bins of equal size based on their megabase-scale mutation 106 

rates (ten bins by default). Elements and flanking control sequences are distinguished using the 107 

binary cofactor isElement. The full model is written as follows: 108 

nMut ~ NegBin( offset( log( nPosits) ) + triNucMut + log1p( MbpRate ) + coFac + isElement ).  109 

To determine whether the mutation rates of the genomic elements differ from the rates of the 110 

flanking sequences given trinucleotide-level and megabase-scale covariates, we evaluate the 111 
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significance of the cofactor isElement using a likelihood-ratio test. Significant and positive 112 

coefficients of this cofactor indicate increased mutation rates in genomic elements relative to 113 

flanking controls, while negative coefficients indicate a depletion of mutations. Similarly, we can 114 

discover potential genetic or clinical interactions with localized activity of mutational processes. 115 

Given a binary subgroup classification of tumors (coFac), we evaluate the significance of its 116 

interaction with local mutation rates (isElement:coFac). Positive coefficients of the interaction 117 

indicate that the mutation rates in a clinical or genetic tumor subgroup are elevated when 118 

accounting for the overall differences of the subgroups. Lastly, we extend the mutation rate 119 

analysis to subclasses of mutations by allowing only specific classes of mutations to be included 120 

in the mutation counts (nMut), for example those of specific DNA strand, transcriptional 121 

direction, or COSMIC mutational signatures. We evaluated the performance of our method using 122 

simulated datasets, power analysis and parameter variations as described below (Supplementary 123 

Figure 2). 124 
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Localised mutation rates in gene-regulatory and chromatin architectural elements of 127 

cancer genomes 128 

To study localised mutation rates in gene-regulatory and chromatin architectural elements of the 129 

genome, we analysed the pan-cancer dataset of 2,514 whole cancer genomes of the PCAWG 130 

project 3. We individually analysed 25/35 cancer types with at least 25 samples as well as the 131 

pan-cancer set containing all tumors of the 35 types (Supplementary Figure 3A). 69 132 

hypermutated tumors were excluded to avoid confounding effects. Three classes of genomic 133 

elements were analysed: 119,464 CTCF binding sites conserved in at least two cell lines in the 134 

ENCODE project 39, 37,309 transcription start sites (TSS) of protein-coding genes from the 135 

Ensembl database (GRCh37), and a pan-cancer set of 561,057 open-chromatin sites detected 136 

across 410 primary tumors of The Cancer Genome Atlas (TCGA) project (i.e., ATAC-seq sites) 137 
40 (Supplementary Table 1A). In total, the analysis included 640,023 unique loci representing 138 

3.9% (120.5 Mbps) of the human genome. In addition to total mutations, we grouped mutations 139 

by DNA strand (Watson or Crick), transcription status (forward, reverse, bidirectional or absent), 140 

reference and alternative nucleotide pairs, and COSMIC mutational signatures of single base 141 

substitutions (SBS) inferred in the PCAWG study 14. Indel mutations were pooled with SNVs 142 

and also analysed separately. To obtain a conservative analysis, we excluded a small fraction of 143 

tumors as outliers (31 or 1.3%) where even single-sample RM2 analysis revealed highly 144 

significant differences in local mutation rates in any of the three classes of sites (FDR < 0.001) 145 

(Supplementary Figure 3B). The final pan-cancer analysis studied 23.0 million mutations 146 

including 1.61 million indels detected in 2,421 genomes of 35 cancer types.  147 

We first focused on the mutational profiles of CTCF DNA-binding sites. Overall mutation rates 148 

in CTCF binding sites were significantly higher in liver hepatocellular carcinoma (Liver-HCC) 149 

(RM2 FDR = 4.3 x 10-14, fold-change (FC) = 1.10), esophageal adenocarcinoma (FDR = 1.1 x 150 

10-20, FC = 1.19) and stomach adenocarcinoma (FDR = 8.3 x 10-14, FC = 1.19). The pan-cancer 151 

cohort also showed a significant enrichment, likely due to pooled effects of certain cancer types 152 

(FDR = 8.1 x 10-27, FC = 1.07). These initial results confirm earlier reports of elevated mutation 153 

rates in CTCF DNA-binding sites 21,27,28 and validate our computational model. Smaller 154 

increases in mutation rates were also detected in melanoma, pancreatic and breast cancer (FDR £ 155 

0.02). Additional signals were observed in specific subgroups of mutations. Grouping the 156 
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mutations by reference and alternative nucleotides revealed a strong enrichment of T>G 157 

mutations (e.g., Liver-HCC, FDR = 1.4 x 10-33, FC = 1.56), T>C and T>A mutations. 158 

Interestingly, intergenic CTCF binding sites were particularly enriched in mutations in several 159 

cohorts. We then asked whether CTCF binding sites were characterised by specific COSMIC 160 

SBS mutational signatures. Esophageal and stomach cancers showed a strong enrichment of 161 

SBS17 mutations (SBS17b: FDR = 5.6 x 10-23, FC = 1.73; and FDR = 5.2 x 10-8, FC = 1.66) 162 

(Figure 1B), while this was not observed in Liver-HCC and other cancer types with frequent 163 

CTCF binding site mutations. The etiology of SBS17b is unknown, however it has been linked to 164 

acid reflux and oxidative damage to DNA in gastro-esophageal cancers 41,42, and a similar 165 

mutational signature found in metastatic tumors has been associated with the effects of 166 

nucleoside metabolic inhibitor chemotherapies capecitabine and 5-FU 16. Our analysis suggests 167 

that effects of these mutagens may be especially active at insulator and chromatin architectural 168 

elements bound by CTCF in tissues of the digestive system. This analysis refines the annotation 169 

of a mutational process acting on the DNA-binding sites of CTCF in a large dataset of whole 170 

cancer genomes. 171 

Transcription start sites (TSS) of protein-coding genes were significantly enriched in mutations 172 

in the pan-cancer cohort (FDR = 1.2 x 10-35, FC = 1.07) and in cohorts of 13/25 cancer types, 173 

most prominently in melanoma (FDR = 1.6 x 10-17, FC = 1.18), breast, head, lung, ovary and 174 

pancreatic cancers (FDR £ 10-4). Stronger enrichments were detected among C>G and C>T 175 

mutations. Mutational signature analysis highlighted an elevated rate of the aging-associated 176 

signature SBS5 in the pan-cancer cohort (FDR = 1.5 x 10-11, FC = 1.06) and cohorts of four 177 

cancer types. The signature SBS3, associated with defects of homologous recombination-based 178 

DNA damage repair, was observed in the pan-cancer cohort (FDR = 5.7 x 10-19, FC = 1.14) 179 

(Figure 1C) as well as breast and ovarian cancers (FDR £ 10-3, FC ³ 1.12). Spontaneous 180 

formation of endogenous double strand breaks at promoters has been associated with the pause 181 

and release of RNA polymerase II and linked to chromosomal translocations in cancer 43, 182 

suggesting a mechanism of TSS-specific mutagenesis in cancer genomes. Further mutational 183 

signature enrichments were identified in specific cancer types, such as the ultraviolet light 184 

signatures in melanoma (e.g., SBS7a: FDR = 3.6 x 10-16, FC = 1.24) and the tobacco-associated 185 

signature SBS4 in the two cohorts of lung cancers (FDR £ 10-3, FC ³ 1.10). The enriched 186 
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mutational signatures at TSSs match the major mutagens and exposures of these cancer types, 187 

indicating an overall increased vulnerability of TSSs to mutational processes. This analysis 188 

confirms previous reports of increased mutation rates in promoters in melanoma 24,25 and 189 

indicates that TSS-specific mutational processes are widely active in the pan-cancer context.  190 

Pan-cancer open chromatin regions defined as ATAC-seq profiles of primary tumors were also 191 

enriched in mutations in 11/25 cancer types and the pan-cancer cohort, especially among C>G 192 

mutations (e.g., pan-cancer, FDR = 1.0 x 10-27, FC = 1.08) (Figure 1D). However, the effect 193 

sizes of mutational enrichments were more modest compared to CTCF binding sites and TSSs, 194 

potentially due to mixed effects of SNVs and indels: mutation enrichments in open-chromatin 195 

sites were primarily driven by SNVs, while in contrast, indel mutations were significantly 196 

depleted in the pan-cancer cohort and in 9/25 cancer types, indicating that the open chromatin 197 

environment or the binding of regulatory elements may be protective of the mutational processes 198 

responsible for generating indels. For example, in uterine adenocarcinoma, 1,762 indel mutations 199 

were observed in open-chromatin sites while 2,172 were expected according to RM2 (FDR = 5.3 200 

x 10-9, FC = 0.82) (Figure 1E). This indel depletion appeared relatively stronger in intergenic 201 

sites of open chromatin. Further, mutational signature analysis indicated reduced activity of the 202 

aging-related signature SBS1 in open-chromatin sites, apparent in eight cancer types and the pan-203 

cancer cohort (e.g., colorectal adenocarcinoma, FDR = 3.8 x 10-5, FC = 0.90). However, analysis 204 

of these pan-cancer open chromatin regions is better powered compared to the analysis of TSS 205 

loci due to a larger number of sites, thus smaller deviations in local mutation rates were 206 

detectable. Our findings contrast an earlier report that indicated broadly decreased mutation rates 207 

at chromatin-accessible regulatory elements derived from cell lines 29. Comparison of localised 208 

mutation rates at TSS loci and open-chromatin sites indicate distinct properties of localised 209 

mutagenesis acting on proximal and distal regulatory elements of the genome.  210 

We extended this analysis to benchmark our model and evaluate statistical power. First, to assess 211 

model calibration and false positive rates, we analysed a PCAWG dataset of simulated variant 212 

calls designed to approximate neutral genome evolution 4. As expected, analysis of simulated 213 

data did not reveal any significant differences in mutation rates in the three classes of elements 214 

(all FDR > 0.05). Quantile-quantile analysis of P-values confirmed that the model is well 215 

calibrated for true and simulated mutations (Supplementary Figure 2A). Second, we evaluated 216 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 30, 2020. ; https://doi.org/10.1101/2020.07.29.226373doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.29.226373
http://creativecommons.org/licenses/by-nc/4.0/


 10 

the statistical power of our model by analyzing down-sampled subsets of liver cancer genomes 217 

and CTCF sites (Supplementary Figure 2B). For example, the mutation enrichment in CTCF 218 

sites was detectable 80% of the time when sampling 75 genomes and 75,000 CTCF binding sites. 219 

Third, we varied the parameter corresponding to the normalised width of genomic elements for 220 

the three classes (Supplementary Figure 2C). Local differences in mutation rates were robustly 221 

detected for multiple element widths. However, mutation enrichments in chromatin architectural 222 

elements bound by CTCF were generally focused at narrower regions (50 bps) compared to 223 

gene-regulatory elements at TSS and open-chromatin regions (200 bps). This is reflective of their 224 

different element widths and indicative of differences in underlying mutational processes. In 225 

summary, our method provides a versatile and well-calibrated framework for analyzing localised 226 

mutation rates and mutational processes in cancer genomes.  227 
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 229 

Functional associations of gene-regulatory and chromatin architectural mutations  230 
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We asked whether the increased mutational load at TSSs and open-chromatin sites correlated 231 

with transcriptional activity of target genes. To precisely quantify mRNA abundance in different 232 

cancer types, we used matching RNA-seq data in the PCAWG project 44. TSS-specific mutation 233 

rates were studied in six bins of genes grouped by median mRNA abundance in 19/25 cancer 234 

types. TSS-specific mutation rates were significantly increased in highly expressed genes in 235 

eleven cancer types (FDR < 0.05) and the pan-cancer cohort (FDR = 2.2 x 10-50, FC = 1.16) 236 

(Figure 2A) (Supplementary Table 1B). Association of transcriptional activity and TSS-237 

specific mutation rates was the strongest in melanoma and ovarian, lung, pancreatic, and breast 238 

adenocarcinoma where genes with the highest mRNA abundance were strongly enriched in TSS-239 

specific mutations (FDR £ 10-4, FC ³ 1.15) (Figure 2B). Of note, the top gene bin was highly 240 

variable in mRNA abundance (e.g., 11-7,100 RPKM-UQ in the pan-cancer cohort). In silenced 241 

genes, TSS loci consistently showed no significant differences in mutation rates relative to 242 

flanking controls (FDR > 0.05), however the overall mutation rate in sites and controls was 243 

higher, potentially a result of lower rates of transcription coupled repair in closed chromatin. 244 

This analysis highlights a localised mutational process in gene promoters apparent in multiple 245 

cancer types that is potentially driven by transcriptional initiation or TF binding at core gene-246 

regulatory promoter elements.  247 

Compared to TSSs, mutation rates in open-chromatin sites showed only limited associations with 248 

mRNA abundance (Figure 2B). The open-chromatin sites of the most highly expressed genes 249 

were significantly associated with higher mutation rates, however the effect sizes of fold-changes 250 

were consistently lower (e.g., pan-cancer, FDR = 9.3 x 10-17, FC = 1.04). We performed a down-251 

sampling analysis of open-chromatin sites and found no significant associations of highly 252 

expressed genes and localised mutation rates when considering random subsets of sites 253 

comparable with the analysis of TSSs. Since the number of open-chromatin sites is considerably 254 

larger, the observed localised increase in mutation rates can be partly attributed to the improved 255 

statistical power that allows detection of smaller effects (Supplementary Figure 4). Thus, our 256 

observed transcription-dependent mutational process appears to be more active at promoters 257 

while the broader spectrum of proximal and distal pan-cancer regulatory elements is less 258 

affected. 259 
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To understand the functional associations of TSS mutations, we performed a pathway 260 

enrichment analysis by adapting RM2 to gene sets of GO biological processes and Reactome 261 

molecular pathways 45. This allowed us to test our hypothesis that promoters enriched for non-262 

coding mutations are concentrated in specific biological processes. We found 546 unique 263 

pathways and processes exhibiting elevated TSS-specific mutation rates (FDR < 0.1) (Figure 264 

2C) (Supplementary Table 1C), the majority of which were found in the melanoma cohort 265 

(70%) while 28% of pathways were found in more than one cancer type. Translation, ribosome 266 

biogenesis and RNA processing were among the largest groups of pathways with increased TSS-267 

specific mutation rates. This is expected as the translational machinery is ubiquitously active in 268 

proliferating cells and includes many highly expressed genes. Cancer-related processes and 269 

pathways were also enriched in TSS mutations, for example mitotic cell cycle, apoptosis, DNA 270 

repair, angiogenesis, developmental and immune response processes as well as druggable 271 

signalling pathways (e.g., MAPK, Wnt, Notch) were identified in multiple cancer types. The 272 

pathway analysis augments our observation of frequent TSS mutations associating with 273 

increased transcription and highlights a variety of core cellular processes with high baseline 274 

transcription and associated localised mutagenesis active in many cell types. Furthermore, the 275 

significant enrichment of TSS-specific mutations in genes of cancer-related processes suggests 276 

that some more frequent non-coding mutations at individual promoters are functional and may 277 

contribute to cancer driver mechanisms and tumor heterogeneity by altering gene-regulatory 278 

circuits in molecular pathways and interaction networks 37.  279 

We asked whether the elevated mutation rates in CTCF binding sites were also associated with 280 

their functional characteristics. We used the extent of conservation of DNA-binding across cell 281 

types as a proxy of site functionality across an extended set of 162,209 CTCF binding sites 282 

catalogued in 70 cell lines in ENCODE. We grouped CTCF binding sites into five equal bins 283 

based on the number of cell lines where the site was detected, with entirely tissue-specific CTCF 284 

binding sites in bin one and the constitutively bound subset of sites detected in most or all cell 285 

types in bin five (median conservation in 67 cell lines; range 52-70) (Figure 3A). Strikingly, the 286 

localised elevations of mutation rates were exclusively detected in the subset of constitutively 287 

bound CTCF binding sites, as observed in eleven cancer types and the pan-cancer cohort (FDR = 288 

3.3 x 10-89, FC = 1.23) (Figure 3B) (Supplementary Table 1D). In contrast, all other bins 289 
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showed no significant enrichment of mutations (FDR > 0.05). Additional cancer types with 290 

frequent CTCF binding site mutations were uncovered in this more focused analysis, including 291 

colorectal and pancreatic cancer and lymphoma (BNHL) (FDR £ 10-6, FC ³ 1.18). This extends 292 

the established pattern of CTCF mutation enrichment to a subset of pan-tissue genomic elements 293 

and highlights the utility of RM2 in detecting mutational patterns. Since CTCF is known as the 294 

master regulator of genome architecture, we incorporated a HiC dataset of chromatin long-range 295 

interactions 46 to interpret the mutation enrichments at highly conserved CTCF binding sites. We 296 

found that these constitutively bound CTCF binding sites were strongly enriched in chromatin 297 

loop anchor elements: 30% (9,393/32,442) of the sites of bin five were located within 1 kbps of 298 

anchor midpoints (3,973 or 12% expected, Fisher’s exact P = 0). Contrarily, the majority of 299 

CTCF binding sites that were only detected in a few cell types showed no deviation from 300 

expected mutation rates and an expected distribution with respect to chromatin loop anchors. 301 

This indicates the mutational process primarily affects the subset of CTCF sites that are 302 

constitutively bound in most cell types and participate in chromatin architectural and gene 303 

regulatory interactions 46,47. Conservation is a property of functionally integral CTCF binding 304 

sites, which upon disruption, can lead to changes in underlying chromatin architecture and gene 305 

regulation 48 and is associated with activation of proto-oncogenes 26. 306 
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Localized mutation rates associate with recurrent mutations of BRAF, RAD21 and SDHA 309 

To find potential genetic mechanisms of localised mutagenesis, we asked whether any recurrent 310 

mutations in tumor genomes could explain the observed mutation rate increases in the three 311 

classes of genomic elements. We considered 14 cancer types with 15 driver genes with frequent 312 

SNVs and indels detected using the ActiveDriverWGS method 34, and 60 recurrent copy-number 313 

amplifications detected in the PCAWG project using the GISTIC2 method 49 (Supplementary 314 

Figure 5). We found 27 driver alterations that positively interacted with local mutation rates, 315 

including 26 recurrent copy-number amplifications and one driver gene with SNVs and indels 316 

(RM2 FDR < 0.05, interaction P < 0.05) (Figure 4A) (Supplementary Table 1E-F). Significant 317 

interactions were detected in seven cancer types, mostly in breast adenocarcinoma (17) and one 318 

to three interactions each in stomach, pancreatic, ovarian, lung and liver cancers and melanoma. 319 

Six genomic amplifications were identified twice (3q26.2, 6q21, 8q22.2, 8q23.3, 8q24.21, 320 

9p24.1). The majority of interactions (20/27) were found for CTCF binding site mutations. The 321 

large number of statistical interactions seen in breast cancer suggests that overall chromosomal 322 

instability may contribute to mutational processes at CTCF binding sites 28 in this cancer type. 323 

However, several specific examples of potential genetic factors contributing to local mutagenesis 324 

were also found.  325 

Driver mutations in BRAF in melanoma were associated with an increased mutation rate at 326 

CTCF binding sites (FDR = 5.5 x 10-5, FC = 1.07, interaction P = 0.032). Comparison of driver-327 

mutated and wildtype tumors confirmed the interaction: 30 tumors with BRAF mutations showed 328 

a significant increase in mutation burden at CTCF sites (FDR = 1.8 x 10-5, FC = 1.10) while the 329 

remaining 33 BRAF-wildtype tumors showed no significant change (FDR = 0.34, FC = 1.02) 330 

(Figure 4B). The activating V600E amino acid substitutions in the BRAF serine/threonine 331 

kinase and proto-oncogene define a druggable subtype of melanoma 50,51. Ectopic expression of 332 

V600E-mutant BRAF in epithelial cell lines was shown to induce DNA double strand breaks and 333 

reactive oxygen species 52. In this cohort, 23 melanomas carried V600E substitutions and four 334 

additional tumors had V600K substitutions. Therefore, the melanomas defined by BRAF driver 335 

mutations may have an increased activity of the mutational process acting on CTCF binding 336 

sites.  337 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 30, 2020. ; https://doi.org/10.1101/2020.07.29.226373doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.29.226373
http://creativecommons.org/licenses/by-nc/4.0/


 18 

To further map the potential genetic mechanisms of local mutagenesis, we determined the genes 338 

in the highlighted CNA regions that responded transcriptionally to genomic amplifications. We 339 

found 260 unique genes in 19 recurrently amplified regions that were up-regulated in tumors 340 

with amplifications (Wilcoxon test, FDR < 0.05) (Figure 4C) (Supplementary Table 1G). 341 

These associations were identified for all three categories of genomic elements and six cancer 342 

types were represented (breast, liver, lung squamous, ovary, stomach and pancreatic). Eleven 343 

known cancer genes were found in single cancer types (RECQL4, CCND1, SDHA, DEK, 344 

CDK12, ERBB2, JAK2, PDCD1LG2, BRAF, EXT1, PTK6) according to the Cancer Gene Census 345 

database. Notably, the cohesin subunit RAD21 was the only gene associated with localized 346 

mutagenesis in two cancer types. Thus amplification-driven activation of hallmark cancer genes 347 

may directly or indirectly affect the activity of localised mutational processes.  348 

Amplification and transcriptional up-regulation of RAD21 located at 8q23.3 was associated with 349 

increased mutation rates in CTCF binding sites in stomach and breast cancers. RAD21 encodes a 350 

subunit of the cohesin complex that co-binds DNA with CTCF to orchestrate transcriptional 351 

insulation and chromatin architectural interactions 46,47. Stomach cancer genomes with 352 

amplifications of 8q23.3 showed a strong increase in mutations in CTCF binding sites (FDR = 353 

3.1 x 10-12, FC = 1.24) while the increase was less significant in tumors with no amplification 354 

(FDR = 6.6 x 10-5, FC = 1.13; interaction P = 0.020) (Figure 4D). mRNA abundance of RAD21 355 

in 8q23.3-amplified stomach cancers was significantly higher compared to non-amplified 356 

samples (FDR = 2.6 x 10-4, 46 vs. 27 median FPKM-UQ), suggesting that RAD21 expression is 357 

driven by the genomic amplification. This association was also observed in breast cancer where 358 

the genomes with 8q23.3 amplifications showed an increased mutation rate in CTCF binding 359 

sites (FDR = 5.3 x 10-5, FC = 1.08) that was not apparent in tumors lacking 8q23.3 360 

amplifications (FDR = 0.36, FC = 0.98; interaction P = 5.0 x 10-4). RAD21 amplification was 361 

also associated with increased mRNA abundance in breast cancer (FDR = 1.4 x 10-7, 108 vs. 50 362 

median FPKM-UQ), which is also indicative of poor prognosis 53. In the ENCODE dataset, 51% 363 

of CTCF binding sites were also co-bound by cohesin, representing 94% of the high-confidence 364 

RAD21 binding sites in ENCODE (60,636 / 64,483), significantly more than expected by chance 365 

(666 expected, binomial P = 0). Mutations in another cohesin subunit, STAG2, have been 366 

associated with specific mutational signatures and altered transcription at double strand break 367 
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sites 54. In addition to RAD21, components of the general transcriptional machinery were 368 

amplified in 8q23.3 and showed increased mRNA abundance in breast and stomach cancers, 369 

potentially contributing to mutation rates in CTCF binding sites. These included MED30, which 370 

encodes a subunit of the Mediator transcriptional coactivation complex that interacts with 371 

cohesin to connect promoters and enhancers 55, as well as the transcription initiation factor 372 

subunit encoded by TAF2. Alternative explanations to CTCF binding site mutations were also 373 

apparent in our data. For example, interactions with the amplification of 8q24.21 encoding the 374 

MYC oncogene were identified in both breast and stomach cancer, however these amplification 375 

events did not associate with MYC up-regulation. This analysis suggests that the elevated 376 

mutagenesis at CTCF binding sites may be driven by the genomic amplification and up-377 

regulation of core transcriptional and genome architectural machinery interacting with CTCF.  378 

As another example, amplification of 5p15.33 was associated with increased mutation rates at 379 

open-chromatin sites in lung squamous cell carcinoma (Lung-SCC) (Figure 4E). 27 tumors with 380 

this amplification showed an elevated mutation rate in open-chromatin sites (FDR = 1.2 x 10-6, 381 

FC = 1.03) while 18 non-amplified tumors showed no significant difference (FDR = 0.10, FC = 382 

1.01; interaction P = 0.037). The cancer gene SDHA and nine other genes in the region showed 383 

significant up-regulation in tumors with this amplification (FDR = 7.0 x 10-5, 19 vs. 13 FPKM-384 

UQ). SDHA encodes a subunit of the mitochondrial succinate dehydrogenase (SDH) complex 385 

involved in cellular energy metabolism through the citric acid cycle and the electron transport 386 

chain. Germline mutations of the tumor suppressor SDHA and the genes encoding other SDH 387 

subunits predispose individuals to the neuroendocrine tumors pheochromocytomas and 388 

paragangliomas 56,57. Mutations and inhibition of SDH subunits are associated with increased 389 

oxidative stress, production of reactive oxygen species (ROS) and activation of the hypoxia-390 

inducible factor HIF 58,59. These data suggest that the increased mutation rate in open-chromatin 391 

sites in Lung-SCC is associated with the genomic amplification and up-regulation of SDHA that 392 

leads to the destabilization of the SDH complex and results in increased oxidative damage in 393 

open-chromatin sites.  394 

In summary, our analysis provides a catalogue of potential genetic mechanisms underlying 395 

localised mutation rate variations in cancer genomes. While a subset of these driver mutations 396 

and recurrent copy-number amplifications may be directly involved in processes of mutagenesis 397 
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and DNA repair, others may represent tumor subtypes with specific exposures or endogenous 398 

factors. 399 

 400 

Discussion 401 

The cancer genome is molded by diverse mutational processes that continuously shape its broad 402 

megabase-scale features and the fine context of nucleotide signatures. Here we focused on the 403 

mutational processes of an intermediate scale that affect thousands of functional genomic 404 

elements each spanning dozens to hundreds of nucleotides. Using a novel computational 405 

framework, we mapped widespread enrichments and some depletions of mutations in gene-406 

regulatory and chromatin architectural elements. These non-coding mutations associated with 407 

transcriptional and pathway activity, trinucleotide mutational signatures, and conservation of site 408 

activity across cell types. We found interactions with recurrent driver mutations and copy-409 

number amplifications that provide hypotheses regarding the mechanisms of the underlying 410 

mutational processes, for example copy-number alterations and driver mutations in RAD21, 411 

SDHA and BRAF were indicative of increased mutation rates in CTCF binding sites and open-412 

chromatin sites. In particular, the finding of RAD21 amplifications associating with CTCF 413 

binding site mutations fits with our observation of the constitutively active, hypermutated subset 414 

CTCF binding sites enriched at chromatin loop anchors, as cohesin and CTCF co-bind DNA to 415 

facilitate chromatin architectural interactions. Overall, we speculate that the localised mutations 416 

represent a functional continuum of passengers and drivers. On the one hand, the mutation rates 417 

of these genomic elements likely deviate from the background rates due to focal carcinogen 418 

exposures or interactions with transcriptional, DNA replication or repair machinery that make 419 

these sites more or less vulnerable to mutations. On the other hand, some of these functional 420 

elements may control transcription regulatory interactions or epigenetic states of genes and 421 

pathways involved in cancer and their excess mutations reflect positive selection. While it is 422 

unlikely that all functional elements of a specific class would positively impact oncogenic 423 

processes when mutated, specific subsets of elements may contribute to hallmarks of cancer as 424 

suggested by our pathway analysis. Our computational framework and the detailed catalogue of 425 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 30, 2020. ; https://doi.org/10.1101/2020.07.29.226373doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.29.226373
http://creativecommons.org/licenses/by-nc/4.0/


 21 

localised mutational processes and genetic interactions detected in a large pan-cancer dataset 426 

provides specific hypotheses for further study. 427 

Our analysis has certain caveats and limitations. We analysed a generic catalogue of genomic 428 

elements that only provides limited representation of the primary tumors in our cohort. To 429 

address this limitation, we used matching RNA-seq data to stratify regulatory elements based on 430 

their activity in specific cancer types and also considered open-chromatin profiles of primary 431 

tumors in the first analysis of this kind. Future analyses will benefit from detailed multi-omics 432 

cohorts with matching genomic, transcriptomic and epigenomic profiles of individual tumors. 433 

Also, the current framework is designed for genomic elements of uniform width where analysis 434 

of elements of variable width, such as exons or non-coding RNAs, may lead to statistical biases. 435 

Further, our analysis suggests that different classes of gene-regulatory and architectural elements 436 

of the genome may be subject to localised mutational processes that have footprints of different 437 

sizes. Thus it is recommended to evaluate that input parameter of the method when analysing 438 

new genomic elements. Our method is designed to quantify localized differences of mutation 439 

rates acting on an entire class of genomic elements with thousands to hundreds of thousands of 440 

genomic loci. It is not powered to evaluate a single genomic element as a potential cancer driver 441 

and alternative methods should be used for this purpose. However, we have adapted our method 442 

to evaluate TSS-specific mutation rates in gene sets of representing biological processes and 443 

pathways with hundreds to thousands of genes. 444 

Our study enables a number of future developments. Integrative analysis of whole cancer 445 

genome sequences and rich clinical and pathological profiles of tumors 17 may highlight 446 

associations of clinical variables and localised mutagenesis and lead to the discovery of novel 447 

WGS-based biomarkers. Considering patient lifestyle information, environmental exposures and 448 

germline variation in the analysis may elucidate the impact of carcinogens and endogenous DNA 449 

repair deficiencies. Our catalogue of genetic associations provides hypotheses on the mutational 450 

mechanisms that can be tested experimentally using genome editing and mutagenesis assays. 451 

Rare germline variants in the human population 60, de novo variants detected in genetic disorders 452 
21 and the widespread somatic genome variation found in healthy tissues 61 provide further 453 

avenues to study mutational processes acting at functional non-coding elements. Our study 454 
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enables a detailed annotation of localised mutational processes in whole genomes to decipher 455 

cancer driver mechanisms, molecular heterogeneity and genome evolution.  456 

  457 
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Methods  458 

Regression models for Regionalised Mutations (RM2). Local differences in mutation rates in 459 

functional genomic elements (i.e., sites) were evaluated using a negative binomial regression 460 

model we refer to as RM2. Single nucleotide variants (SNVs) and small insertions-deletions 461 

(indels) were analysed. The model simultaneously considers a collection of non-coding sites, 462 

such as regulatory elements that are commonly ~10–1,000 bps in length and measured in ChIP-463 

seq and related experimental assays in thousands to hundreds of thousands of genomic loci. Sites 464 

were uniformly redefined using their median coordinate and added sequences of fixed width 465 

upstream and downstream of the sites (e.g., ±25 bps or 50 bps around the midpoints of CTCF 466 

binding sites). Upstream and downstream flanking sequences of these sites were used as control 467 

regions to estimate expected mutation rates. Control regions were of equal width to sites such 468 

that the upstream and downstream regions combined were twice as wide as the sites. To account 469 

for megabase-scale variation in mutation rates, we computed the total log-transformed mutation 470 

count for each site within its one-megabase window (i.e., ±0.5 Mbps around site midpoint). 471 

Based on this estimate, all sites were distributed into ten equal bins (MbpRate). The value of ten 472 

bins worked well in our benchmarks and captured variation in smaller and larger cohorts of 473 

individual cancer types. However, custom values of this parameter can be used. Mutation rates 474 

for sites and flanking sequences for each bin were defined separately and sites and flanking 475 

sequences were distinguished by a binary cofactor (isSite). To avoid inflated counts, mutations 476 

affecting more than one site were counted once. Likewise, mutations affecting the flanking 477 

sequence of more than one site were also counted once. Sequence positions were counted 478 

separately by their trinucleotide context (nPosits) and expanded to three alternative nucleotides 479 

to account for the potential sequence space where such single nucleotide variants could occur 480 

(nPosits). The observed mutations in these contexts were also counted (nMuts) and a cofactor 481 

was used to add separate weights to different trinucleotide classes (i.e., reference trinucleotide 482 

and alternative nucleotide; triNucMutClass). Indels were counted under another entry in 483 

triNucMutClass such that all mutation counts were summed and the entire genomic space was 484 

accounted for. An optional binary cofactor (coFac) was included to allow the consideration of 485 

genetic or clinical covariates of localised mutation rates. To evaluate the significance of localised 486 
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mutation rates in sites compared to flanking control regions, we first constructed a null model by 487 

excluding the term isSite:  488 

Hnull : NegBin( nMut ~ offset( log( nPosits ) ) + triNucMutClass + log1p( MbpRate ) + coFac ).  489 

The main model representing the alternative hypothesis of a site-specific mutation rate was 490 

constructed as follows:  491 

Halt : NegBin( nMut ~ offset( log( nPosits ) ) + triNucMutClass + log1p( MbpRate ) + coFac + isSite ). 492 

We extended our model to evaluate whether localised mutation rates differed between two 493 

subtypes of tumors, such as those defined by clinical annotations or genetic features using the 494 

term coFac. Trinucleotide sequence content, trinucleotide mutational signatures and megabase-495 

scale covariations of mutation rates were computed separately for the two sets of tumors. To 496 

establish the associations of localised mutation rates and driver mutations, we added to the initial 497 

model the term isSite:coFac mapping the interaction of the tumor subtype and the cofactor 498 

distinguishing sites and flanking sequences.  499 

Hcof : NegBin( nMut ~ offset( log( nPosits ) ) + triNucMutClass + log1p( MbpRate ) +  500 

coFac + isSite + isSite:coFac). 501 

We used likelihood ratio tests to compare the models and evaluate the significance of localised 502 

mutation rates (Halt vs. Hnull to evaluate the term isSite). Chi-square P-values from the likelihood 503 

ratio tests were reported for each analysis. We also reported coefficient values of the term isSite 504 

to characterise enrichment or depletion of mutations at sites relative to flanking controls for 505 

positive and negative values, respectively. The interactions of driver mutations and mutation 506 

rates were evaluated using likelihood ratio tests that compared the models Halt and Hcof . Only the 507 

models with significant positive coefficients were reported. The expected mutation counts were 508 

derived from each model by 1000-fold sampling of mutation counts from the negative binomial 509 

distribution informed by the fitted probabilities and theta values derived from the regression 510 

models. Fold-change values were derived by dividing median observed and expected mutation 511 

counts, and confidence intervals were derived using the 2.5th  and 97.5th percentiles of sampled 512 

values. Chi-square P-values from the models were corrected for multiple testing using the 513 
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Benjamini-Hochberg procedure where appropriate. Besides modelling total mutations in sites 514 

and flanking sequences, we evaluated mutations of multiple sub-classes, such as mutations 515 

stratified by transcriptional activity, COSMIC mutational signatures or DNA strands. Mutation 516 

subclass analysis was conducted as described above. The same megabase-scale mutation rates 517 

estimated for all mutations were used rather than those of the specific subclasses. The method is 518 

available at https://github.com/reimandlab/RM2. 519 

Somatic mutations in whole cancer genomes. Somatic single nucleotide variants (SNVs) and 520 

short insertions-deletions (indels) in the genomes of 2,583 primary tumors were retrieved from 521 

the uniformly processed dataset of the Pan-cancer Analysis of Whole Genomes (PCAWG) 522 

project of the ICGC and TCGA 3. We used consensus variant calls mapped to the human genome 523 

version GRCh37 (hg19). We removed 69 hypermutated tumors with at least 30 mutations per 524 

Mbps, resulting in 2,514 tumors and 24.7 million mutations. We also removed tumors for which 525 

mutational signature predictions were not available in PCAWG. We analysed tumor genomes of 526 

the pooled pan-cancer cohort of multiple cancer types, and also 25 cohorts of specific cancer 527 

types with at least 25 samples in the PCAWG cohort. We excluded a small subset of tumors (31 528 

or 1.3%) where localised mutation rates were exceptionally strong even when analysing one 529 

tumor genome at a time (FDR < 0.001, RM2). Based on our initial analyses, we found that the 530 

individual contribution of these tumors to the overall analysis would have caused overestimates 531 

of mutation rates. To enable this filtering, we performed tumor specific analyses for the three 532 

classes of sites (open-chromatin sites, binding sites of CTCF, and TSSs). We analysed each 533 

cohort of a cancer type separately and grouped the mutations according to tumor ID, allowing the 534 

model to learn an expected background mutation rate in the respective cohort and then test each 535 

tumor genome separately for localised mutation rates. To perform this single-tumor analysis in 536 

smaller cohorts within the PCAWG dataset (<25 tumors of a given type), we created a meta-537 

cohort by pooling these smaller cohorts. After filtering hypermutated tumors, tumors without 538 

PCAWG signatures, and tumors with exceptionally strong signals of localised mutations, we 539 

derived a conservative final set of 2,421 genomes of 35 cancer types with 23 million mutations 540 

including 1.61 million indels. To evaluate the performance of our model, we also processed a 541 

dataset of simulated variant calls for the same set of tumors derived from the PCAWG project 542 

(i.e., the Broad dataset) 4.  543 
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Mutation features and signatures. In addition to evaluating total mutations, several classes of 544 

mutations were analysed separately. Mutations were mapped to C and T nucleotides and grouped 545 

by reference and alternative nucleotides (C>[A,G,T], T>[A,C,G]). Four additional classifications 546 

were developed. First, mutations were classified as located either on the Watson (w) strand if the 547 

original reference nucleotide was C or T, or the Crick (c) strand if the original reference 548 

nucleotide was A or G. Second, transcriptional activity and orientation of the mutated 549 

nucleotides was mapped based on the coordinates of protein-coding genes defined in the 550 

Ensembl database (GRCh37) using 500 bps flanking sequence at both ends of genes to account 551 

for transcriptional initiation and termination. We then classified mutations as forward-transcribed 552 

(F), reverse-transcribed (R), bidirectionally transcribed (B), or not transcribed (O). This initial 553 

classification did not include information on tissue-specific transcription and was augmented 554 

using matching tumor-specific mRNA abundance data, as described below. Third, mutation 555 

strand and transcription status were combined into eight categories (w_[F,R,B,O] and 556 

c_[F,R,B,O]). Fourth, we classified mutations by the trinucleotide signatures of single base 557 

substitutions (SBS) that were derived earlier using the SigProfiler software in the PCAWG 558 

project 14. We assigned each mutation to its most probable signature in the given patient tumor 559 

based on its trinucleotide context. For model evaluation, these five major categories of mutations 560 

were also derived for the dataset of simulated variant calls.  561 

Chromatin architectural and gene-regulatory genomic elements. We performed a systematic 562 

analysis of three classes of genomic elements: DNA-binding sites of CTCF (CCCTC-binding 563 

factor) detected in multiple human cell lines, transcription start sites (TSS) of protein-coding 564 

genes, and open-chromatin sites (ATAC-seq sites) detected in human primary tumors. CTCF 565 

binding sites were retrieved from the ENCODE project 39. Sites observed in only one cell line 566 

were removed, resulting in 119,464 sites across 70 cell lines. TSS loci of protein-coding genes 567 

were retrieved from Ensembl Biomart (GRCh37) and filtered based on location of standard 568 

chromosomes (1-22, X, Y), resulting in 37,309 TSSs of 18,710 genes. Open-chromatin sites of 569 

410 primary tumors defined by ATAC-seq were retrieved from the TCGA study 40. We used the 570 

pan-cancer set of sites in the GRCh37 genome as defined in the study and filtered sites on non-571 

standard chromosomes and those lacking defined coordinates in GRCh37. This resulted in 572 

561,057 open-chromatin sites. For the mRNA-based analysis of mRNA abundance described 573 
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below, we further filtered open-chromatin sites based on their target genes as defined in the 574 

original study. We selected the subset of open-chromatin sites where predicted target genes were 575 

available, mapped the gene symbols to ENSG identifiers using Ensembl Biomart (GRCh37, 576 

release 100), and removed open-chromatin sites with missing or ambiguous gene symbols, 577 

resulting in 438,948 sites annotated to 17,116 genes. Throughout the study, the three classes of 578 

sites were normalised to uniform width based on median coordinates. CTCF binding sites were 579 

defined using 50 bps (±25 bps) windows around the midpoint of sites. Midpoints of TSS loci 580 

were defined in the Ensembl database and we used a 200 bps (±100 bps) window around the 581 

TSSs. Open-chromatin sites were also defined using a 200 bps (±100 bps) window around site 582 

midpoints. A systematic analysis was used to explore various values of the site width parameters 583 

and the final selection was based on the strength of signal and consistency (Supplementary 584 

Figure 2). For CTCF binding site analysis, we also retrieved DNA-binding sites of the cohesin 585 

protein RAD21. These sites were also retrieved from the ENCODE dataset and those only 586 

observed in single cell lines were filtered, resulting in 64,483 high-confidence sites. The majority 587 

(94% or 60,636) of high-confidence RAD21 sites overlapped with high-confidence CTCF sites 588 

(i.e., those observed in at least two cell lines in ENCODE). We evaluated the enrichment of 589 

RAD21 binding sites in CTCF binding sites with a binomial test, using RAD21-bound fraction 590 

of the human genome (kbps) as the expected probability, and total sequence coverage of CTCF 591 

sites (kbps) and RAD21-cobound CTCF sites (kbps) as the numbers of tries and successes, 592 

respectively.  593 

Grouping gene-regulatory sites by mRNA abundance. TSS and open-chromatin sites were 594 

analysed in groups based on the mRNA abundance of associated genes in matching tumors. TSS 595 

target genes were retrieved from the Ensembl database and target genes of open-chromatin sites 596 

were retrieved from the original TCGA study. This analysis was carried out in 19 cohorts of 597 

cancer types with at least 20 tumor samples with mRNA and WGS data, as well as the pan-598 

cancer cohort of all cancer types. We used the uniformly processed PCAWG RNA-seq dataset 44 599 

(RPKM-UQ) and applied the same filtering of tumor samples described previously and excluded 600 

non-coding genes. Additionally, we discarded a subset of genes with duplicated HGNC symbols 601 

as well as the genes for which TSS or open-chromatin sites were not mapped. This resulted in 602 

mRNA measurements for 20,042 protein-coding genes in 1,267 tumor transcriptomes. Next we 603 
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derived the gene lists grouped by median mRNA abundance. Six exclusive lists of genes were 604 

compiled for each cancer type based on mRNA abundance values in the matching samples, 605 

including silent genes (median zero RPKM-UQ) and five lists of non-silent genes of equal size 606 

grouped into 20% bins. For the pan-cancer analysis, we binned genes using median mRNA 607 

abundance in the entire RNA-seq dataset.  608 

Grouping CTCF binding sites by cell type specificity. To analyse CTCF binding sites by their 609 

tissue and cell type specificity, we grouped all 162,209 CTCF binding sites of the ENCODE 610 

dataset into five equally sized bins based on the number of cell lines where the sites were 611 

detected. To interpret these CTCF sites, we retrieved chromatin loops in eight cell lines from a 612 

Hi-C study 46, used a ±1,000 bps window around loop anchor midpoints to define narrower 613 

versions of loop anchors, and counted the number of CTCF binding sites in each bin overlapping 614 

these loop anchors. We used a Fisher’s exact test to evaluate the enrichment of CTCF binding 615 

sites at loop anchors among the CTCF binding sites with constitutive activity across cell types 616 

(i.e., the 5th bin of CTCF sites).  617 

Analysis of localised mutation rates in gene-regulatory and chromatin architectural 618 

elements. First, we evaluated the localised mutation rates in CTCF binding sites, TSSs and 619 

cancer-specific open-chromatin sites (i.e., TCGA ATAC-seq sites) for the pan-cancer cohort and 620 

all cohorts of selected cancer types. Total mutations and mutations grouped by COSMIC 621 

signatures, mutation and transcription strand, and reference/alternative allele were analysed. 622 

Indel mutations were analysed as part of total mutations and also as a separate group. Results 623 

were adjusted for multiple testing using the Benjamini-Hochberg false discovery rate procedure 624 

and filtered (FDR < 0.05). We also analysed the simulated variant call set using the same 625 

pipeline and found no significant results, as expected (FDR < 0.05). Results of the systematic 626 

analysis were visualised as a dot plot. FDR values in the main dot plot were capped at 10-32 for 627 

visualisation purposes. To visualise localised mutation rates, all sites were pooled, aligned using 628 

median coordinates and trimmed to uniform lengths. Coordinates were transformed relative to 629 

site midpoint. Upstream and downstream flanking sequences of equal length were also 630 

considered. Local regression (loess) curves with the span parameter of 33% were used to 631 

visualise a smoothened mutation frequency in sites relative to flanking sequences.  632 
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Transcriptomic and functional associations of localised mutation rates. We evaluated the 633 

localised mutation rates in TSSs and open-chromatin sites grouped by mRNA abundance of 634 

genes in matching tumor types. Again, the results were adjusted for multiple testing using the 635 

Benjamini-Hochberg false discovery rate procedure and filtered (FDR < 0.05). To compare 636 

different cohorts and subsets of sites, we normalised per-nucleotide mutation counts by dividing 637 

these by number of sites in each gene bin, and also by the number of tumors in each cohort. 638 

Normalised counts were multiplied by 1e6 to quantify a per-tumor, per-megabase average 639 

mutation rate. To study the functional associations of localised mutation rates at CTCF binding 640 

sites, we asked whether the extent of conservation of CTCF binding sites in cell types, as 641 

observed in ENCODE ChIP-seq experiments, was indicative of the rate of localised mutagenesis 642 

at these sites. CTCF binding sites were grouped into five mutually exclusive bins of equal size 643 

based on the number of cell types where the sites were observed. Analysis of localised mutation 644 

rates in these sites was conducted as described above, findings were corrected for multiple 645 

testing correction and filtered to select significant findings (FDR < 0.05).  646 

Down-sampling of open-chromatin sites to evaluate mRNA associations. To evaluate the 647 

mRNA associations of mutation rates in open-chromatin sites compared to TSSs, we performed a 648 

down-sampling analysis. The analysis was designed to check whether the statistical significance 649 

of mRNA associations in open-chromatin sites was systematically amplified due the larger set of 650 

open-chromatin sites available for analysis. To this end, RM2 was used to evaluate randomly 651 

sampled subsets of open-chromatin sites in all the bins of sites grouped by mRNA abundance. 652 

For each bin, we sampled the number of open-chromatin sites that were observed in the 653 

equivalent bin of TSSs. The analysis was repeated for 100 random subsets of open-chromatin 654 

sites for each bin and median P-values and corresponding fold-changes of localised mutation 655 

rates were reported. A lenient cut-off was used to filter and visualise results (unadjusted P < 0.2). 656 

Identifying pathways with regional mutation rates. We asked whether the localised mutation 657 

rates of TSSs significantly affected genes in specific biological processes and pathways. We 658 

repurposed the RM2 model to analyse TSSs of gene sets corresponding to biological processes of 659 

Gene Ontology 62 and molecular pathways of the Reactome database 63. Gene sets were derived 660 

from the g:Profiler 64 web server (March 3rd 2020) and subsequently filtered to include 1,871 661 

gene sets with 100 to 1,000 genes. Pathway analysis of localised mutation rates was conducted 662 
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separately for each cancer type, results were corrected for multiple testing using the Benjamini-663 

Hochberg FDR procedure separately for every cancer type and filtered for statistical significance 664 

(FDR < 0.1). We chose the less stringent significance filter since the mutation rate analysis of 665 

functional gene sets was relatively less powered given that fewer sites were considered. The 666 

pathways with significant TSS-specific mutation rates were visualised as an enrichment map 65 667 

in Cytoscape and major biological themes were manually curated as described earlier 45. Nodes 668 

in the enrichment map were painted to reflect cancer types where these pathway enrichments 669 

were detected following the custom color scheme of the PCAWG project.   670 

Associating regional mutation rates with driver mutations and recurrent copy-number 671 

alterations. We asked whether the localised mutation rates in CTCF binding sites, TSSs and 672 

open-chromatin sites were associated with driver mutations (i.e., SNVs, indels) or recurrent 673 

copy-number alterations (CNAs) in cancer genomes. First we collected a high-confidence set of 674 

driver mutations and CNAs in the PCAWG cohort. Driver mutations in exons of protein-coding 675 

genes were predicted for each selected cancer type using the ActiveDriverWGS method 34. We 676 

used the PCAWG variant calls after filtering tumors as described above, corrected the results for 677 

multiple testing using the Benjamini-Hochberg FDR procedure and selected significant driver 678 

genes (FDR < 0.05). FDR correction was conducted separately for each cancer type across the 679 

pooled set of protein-coding and non-coding genes. Tumors with and without SNVs or indels in 680 

predicted driver genes were used for localised mutation rate analysis. Predictions of recurrent 681 

CNAs were derived from the pan-cancer dataset of GISTIC2 calls of the PCAWG project 49. All 682 

CNA lesions at 95% confidence scores were considered and amplifications and deletions were 683 

analysed separately. High-confidence CNA events were used (GISTIC2 score = 2). Tumors with 684 

and without CNAs in the recurrently altered regions as defined by GISTIC2 were used for 685 

localised mutation rate analysis. Each cancer type was considered separately. Next we filtered 686 

very frequent and infrequent drivers and CNA events to improve the power of the RM2 analysis. 687 

We selected the driver genes and CNA regions with at least 25 tumors in the mutated (or copy-688 

number altered) group of tumors and filtered very frequent drivers and CNAs affecting more 689 

than 2/3 of the cohort. Each driver gene and recurrent CNA locus in each cancer type was then 690 

analysed for associations with localised mutation rates in the three categories of genomic 691 

elements (open-chromatin sites, CTCF binding sites, TSSs). The binary co-factor in RM2 was 692 
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used to indicate the mutated or wildtype status of the tumor with respect to the given recurrent 693 

genetic event. We first computed the significance of site-specific localised mutation rates given 694 

the presence or absence of driver gene mutations or recurrent CNAs. All combined RM2 results 695 

of driver gene mutations, cancer types and genomic sites were adjusted for multiple testing 696 

correction using the Benjamini-Hochberg FDR procedure and significant results were selected 697 

(FDR < 0.05). We then conducted an additional likelihood ratio test to evaluate the significance 698 

of the interaction between localised mutation rates and the presence of driver mutations and 699 

filtered the results to only include positive and significant interactions (unadjusted P < 0.05, 700 

main and interaction coefficients > 0). To validate and visualise the detected interactions, we 701 

separately analysed individual groups of tumors defined by the presence or absence of driver 702 

mutations and CNAs using RM2, and compared the resulting FDR values and fold-changes. 703 

Associating CNAs with mRNA abundance. To evaluate the functional role of CNAs associated 704 

with localised mutation rates, we compared mRNA abundance levels of genes in the CNA loci in 705 

groups of tumors defined by the presence or absence of the CNA events, using matching RNA-706 

seq data available in PCAWG 44. Genes in CNA loci were retrieved from the PCAWG GISTIC2 707 

dataset and genes with low mRNA abundance were removed (median FPKM-UQ < 1). mRNA 708 

abundance levels of genes in CN amplified and non-amplified (i.e., balanced and deleted) tumors 709 

were compared using the nonparametric Wilcoxon test. One-sided tests were used, assuming that 710 

change in mRNA abundance would match the underlying copy-number change (i.e., copy 711 

number amplifications were tested for increase in mRNA abundance of matching genes). Results 712 

were adjusted for multiple testing correction using the Benjamini-Hochberg FDR procedure and 713 

significant results were selected (FDR < 0.05). To confirm the CNAs, we retrieved the consensus 714 

dataset of CNA calls in each tumor from the PCAWG study 49 and visualised the detected CNA 715 

segments normalised by tumor ploidy predictions in subsets of tumors defined by the presence or 716 

absence of these CNA events. Known cancer genes of the COSMIC Cancer Gene Census 717 

database 66 (v91, downloaded 14.05.2020) were identified among the genes with mRNA/CNA 718 

associations. 719 

Method benchmarking and power analysis. We evaluated the performance of our method and 720 

statistical power using simulated variant calls, different parametrizations and down-sampling of 721 

input datasets. First, to evaluate method calibration and false-positive rates, we performed a 722 
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systematic analysis of open-chromatin sites, TSSs, and CTCF binding sites in a comparable set 723 

of simulated variant calls from PCAWG. This simulated variant set was derived earlier from the 724 

same set of tumor genomes using trinucleotide-informed shuffling of mutations 4. Simulated 725 

variant calls were analysed similarly to true variant calls for total mutation counts, reference and 726 

alternative nucleotide combinations, predicted mutational signatures and transcription and 727 

mutation strand properties. Results from RM2 were adjusted for multiple testing using the 728 

Benjamini-Hochberg FDR procedure separately for results derived from true and simulated 729 

variant calls. As expected, simulated variant calls revealed no statistically significant results of 730 

localised mutation rates in any cancer type, site type or mutation subset (FDR < 0.05). We then 731 

visualised the distribution of log-transformed P-values derived from true and simulated variant 732 

calls using quantile-quantile (QQ) plots and found that highly significant P-values were detected 733 

in true datasets while the P-values derived from simulated variant calls were uniformly 734 

distributed as expected. These analyses show that our model is well-calibrated and is not subject 735 

to inflated false-positive findings. Second, to evaluate the statistical power of RM2, we 736 

performed systematic down-sampling by randomly selecting subsets of sites and tumors for 737 

localised mutation rate analysis. We focused on the PCAWG liver hepatocellular carcinoma 738 

(Liver-HCC) cohort of 300 samples and CTCF sites. A series of down-sampling configurations 739 

were used (2000, 5000, …, 100,000 sites sampled; 25, 50, …, 300 genomes sampled). Each 740 

configuration was tested 100 times in different subsets of data. For a power analysis, we 741 

evaluated the fraction of runs that revealed a significant enrichment of somatic mutations at 742 

CTCF sites (P < 0.05) and the median P-value of these 100 runs. Third, we evaluated the 743 

parameter values of RM2 that determine the genomic width of each site and the control regions 744 

of upstream and downstream flanking sequences. As expected, site-specific mutation rates were 745 

consistently identified at multiple values of the width parameter for each class of site (open-746 

chromatin sites, CTCF binding sites, TSSs), indicating robustness of our analysis to different 747 

parameter values. However, different site classes showed preferences towards shorter sites 748 

(CTCF binding sites: 20-100 bps) or longer sites (open-chromatin sites and TSS: 200-800 bps), 749 

likely due to different underlying mutational processes. For the entire study, the optimal genomic 750 

size of every site class was selected based on the strongest effect size and significance across 751 

multiple cancer types. The value of 50 bps (±25 bps) was selected for CTCF sites. For open-752 

chromatin sites and TSSs, we selected the common site width of 200 bps (±100 bps) that showed 753 
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strong effects in both TSSs and open-chromatin sites, to increase comparability of the two 754 

classes.  755 
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