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Abstract 16 

The metaphor of fitness landscapes is common in evolutionary biology, as a way to visualise the change in allele or 17 

phenotypic frequencies of a population under selection. Understanding how different factors in the evolutionary process 18 

affect the trajectory of the population across the landscape is of interest to both theoretical and empirical evolutionary 19 

biologists. However, fitness landscape studies often have to rely heavily on mathematical methods that are not easy to 20 

access by biologically trained researchers. Here, we used a method borrowed from engineering - genetic algorithms - to 21 

simulate the evolutionary process and study how different components affect the path taken through a phenotypic fitness 22 

landscape. In a simple study, we compare five selection models that reflect different degrees of dependency of fitness on 23 

trait quality: this includes strengths of selection, trait-quality dependent reproductive hierarchy and the amount of 24 

stochasticity in the reproductive process. We include an analysis of other evolutionary variables such as population size 25 

and mutation rate. We analyse a game theory problem, as a test landscape, that lends itself to analysis through a 26 

deterministic mathematical simulation, which we use for comparison. Our results show that there are differences in the 27 

speed with which different models of selection lead to the fitness optimum. 28 

Author summary 29 

Evolution and adaptation in biology occurs in fitness landscapes, multidimensional spaces representing all possible 30 

genotypic or phenotypic combinations, where population adapt by following the cline of the fitness dimension. The study 31 

of adaptation on complex fitness landscapes has so far been limited by the need for mathematically heavy methods. Here, 32 

we present a simulation modelling framework, genetic algorithms, that can be used for evolutionary simulations of a 33 

population on a fitness landscape of chosen features and with custom evolutionary parameters. 34 

Keywords 35 

evolutionary modelling; evolutionary theory; adaptation; evolutionary algorithm; Sir Philip Sidney game  36 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 30, 2020. ; https://doi.org/10.1101/2020.07.29.226324doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.29.226324
http://creativecommons.org/licenses/by-nc-nd/4.0/


3 

 

1. Introduction 37 

1.1 Fitness landscapes and evolutionary biology  38 

The evolutionary trajectory of a trait within a population is often represented as a walk in a fitness landscape (1) of as 39 

many dimensions as the number of (either phenotypic or genetic) components underlying fitness, plus one. The additional 40 

dimension is the fitness value that the combination confers to the carrier and is what we use to estimate the evolutionary 41 

trajectory of a population. For example, if there are two components then their values can be thought of as orthogonal x 42 

and y coordinates and fitness can be envisaged as the height of a landscape above the x-y plan. The shape of the landscape 43 

will influence the direction of a notional hill-climber who looks ever to be moving upward. This hill-climbing analogy 44 

has been useful in representing and studying evolutionary paths (despite the challenges of visualising a mapping of low 45 

and high fitness areas in higher dimensions) and has given rise to several formal models on the correspondence between 46 

genotype/phenotype and fitness (2,3). The study of the these models has generated fundamental underpinning to the theory 47 

of adaptation, such as the expected distribution of mutation size (4–6). Recent technological developments in genomics 48 

and transcriptomics have allowed us to breakdown and reconstruct empirical fitness landscapes (7,8) that are answering 49 

our questions regarding their expected characteristics. 50 

So far, no study of evolutionary processes and fitness landscape trajectories has looked at whether varying the relationship 51 

between the relative quality of a member of the population and their relative contribution to the next generation affects 52 

the evolutionary walk. For example, in a simplified scenario where we measure fitness based on one trait with multiple 53 

underlying genotypic or phenotypic components, the same trait variant is likely to achieve different reproductive fitness 54 

depending on the reproductive hierarchy within the population. This is likely to influence adaptation in many ecological 55 

systems.  56 

The relationship between trait quality and reproductive fitness can be broken down into two key dynamics: 1. the 57 

relationship between trait quality and expected reproductive fitness (including, specifically in the factors analysed here, 58 

the strength of selection acting on the trait and the reproductive hierarchy of the population) and 2. the strength and nature 59 

of stochasticity in the reproductive process. Here, we call the interplay of these two factors selection model and we study 60 

its influence on population-level evolutionary dynamics by means of a simulation method derived from engineering: 61 

genetic algorithms. 62 

1.2 Genetic algorithms 63 

The exploration versus exploitation problem has been explored extensively in a particular subfield of evolutionary 64 

computations: genetic algorithms (GAs (9)). GAs were invented in 1960 by John Holland and colleagues as a part of the 65 

developing field of evolutionary computations (10). They exploit a natural selection-like process to find optimal solutions 66 
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to complex problems by evolving a starting population of solutions through selecting, mutating and recombining higher 67 

quality variants. This type of heuristic optimisation method is valuable when the solution space analysed is too big to be 68 

fully explored and it exploits the correlation in the landscape’s ruggedness. Effectively, it looks for optimal solutions to 69 

problems where solutions are given by the non-linear interaction of multiple traits – similarly to a population’s walk in 70 

the fitness landscape.  71 

In evolutionary biology, GAs have been applied to problems whose solution by other means might be challenging: 72 

searching for efficient parameters for machine learning systems (such as neural networks, e.g. Montana and Davis, 1989), 73 

identifying or evolving solutions to game-theory problems (e.g. (12,13) and ecological niche models (such as GAs for 74 

Rule Set Production, or GARP (14)). They have also been deployed in the simulation of evolutionary or evolution-like 75 

dynamics (e.g. evolution of cognitive processes (15)), although the limitations in understanding and representing 76 

analytically what happens during the optimisation process have somewhat limited this latter application.  77 

GAs in evolutionary biology may be usefully applied to investigate how different assumptions about the selection model 78 

and, virtually, any other component of the evolutionary process (mutation, sexual or asexual reproduction, structure of 79 

the reproductive interaction network within a group, just to name a few) affect the evolutionary trajectory of a trait. 80 

Effectively, we can use this tool to extrapolate common rules in the way these components affect the trajectory and to 81 

study whether the trajectory holds consistently (or varies consistently) across different fitness landscapes. This knowledge 82 

can then inform our prediction of the evolutionary trajectory in natural populations and also improve the theoretical study 83 

of evolutionary scenarios. GAs can specifically inform the study of systems where the evolutionary trajectory depends 84 

on non-linear (including epistatic) interactions between traits, and thus cannot be captured by deterministic methods (such 85 

as adaptive dynamics (16,17).  86 

Here, we start by analysing the effect of the selection model on a small phenotypic fitness landscape that is the product 87 

of the interaction of biallelic loci. We assume throughout that reproductive potential across the population is limited to a 88 

fixed number of reproductive slots at each generation. We use the five most common models of selection and reproductive 89 

slot allocation used in the GA literature as proxies for different biological contexts. These models are: k-tournament, 90 

truncation, proportional selection, linear and exponential ranking. We summarise in this introduction how each of these 91 

models influences the exploration-exploitation trade-off and we illustrate it with an equivalent biological scenario. We do 92 

not claim that our findings obtained by this method can be generalised to all evolutionary adaptive landscapes: as with 93 

every simulation modelling method, the identify dynamics that are the result of modelling assumptions – here, the 94 

characteristics of the fitness landscape under study. This method allows to the same analysis on different landscapes 95 

withing a fixed modelling framework that reduces unwanted sources of variation. 96 

1.3 Selection model and the fitness landscape  97 
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Recent analyses of empirical landscapes show varying (often considerable) levels of ruggedness, at least for small 98 

genomes or gene complexes (18) (with ruggedness indicating the amount of epistatic interactions in the genetic 99 

architecture (19)). There is, essentially, in biological landscapes a degree of correlation that fits our theoretical 100 

understanding of evolutionary landscapes: on average, two neighbouring points in the landscape have similar fitness, 101 

while, the more mutations separate them (i.e. the further away they are in the landscape), the less likely their fitnesses are 102 

to be similar, until we reach a distance at which their fitnesses are uncorrelated (19). If the landscape is large enough, 103 

multiple fitness peaks might exist far apart. While theory predicts that it is possible (20), if not likely, that a path 104 

connecting any two viable genotypes always exist, this path might cross areas of lower fitness, so that a population might 105 

find a local peak (a local optimum), with higher fitness than the region it started in, but fail to discover the highest peak 106 

in the landscape (the global optimum). When mutations are not or cannot be large enough to reach distant areas of the 107 

landscape, the evolutionary process must rely on strong enough selection to reliably climb fitness peaks, while at the same 108 

time allowing exploration of less-fit phenotypes.  109 

Varying selection models might have two distinct consequences on the movement of a population in the fitness landscape 110 

and we illustrate them here. Let us take a classic case study evolutionary scenario used in the evolutionary literature: a 111 

discrete fitness landscape with neighbouring points assumed to be at one-mutation distance from each other and with 112 

mutations assumed to be rare enough to arise one at a time. If the evolutionary process relies on a small group of high-113 

quality individuals to reproduce, then the population will follow a highest-fitness neighbour trajectory and is likely to 114 

land on the closest fitness peak in the landscape. If this point is a local optimum, that optimum is where the population 115 

will stay until the next change in selective pressure that modifies the landscape. Maintaining sufficient variation in the 116 

population, by allowing lower quality individuals to reproduce, on the contrary facilitates the emergence of new variants 117 

away from the current optimum. A second consequence of the relationship between trait quality and reproductive fitness 118 

is the change in the speed with which the population moves along the trajectory: the higher the proportion of reproductive 119 

fitness assigned to the highest-quality variants, the quicker the movement. The higher the proportion that lower-quality 120 

variants benefit from, the more time the population needs to move to a point with higher average quality. 121 

1.4 Explorative and exploitative selection models  122 

We define exploitative systems as those biological scenarios where the highest-quality individual (or a small élite of high 123 

quality individuals) obtains a share of reproductive fitness that is disproportionately large compared to what would be 124 

expected should reproduction be directly proportional to the relative quality of the individual with respect to the average. 125 

An exploitative system is, for example, a non-eusocial group with a single reproductive male or female which suppresses 126 

subordinate reproduction and sires all new offspring. Conversely, an explorative system corresponds to a scenario where 127 
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most individuals have at least as much reproductive fitness as what would be expected from their relative quality in the 128 

population. In the absence of sexual selection (or in the presence of moderate sexual selection), biological scenarios in 129 

which individuals compete for each reproductive opportunity (for example, species in which reproductive pairs form and 130 

dissolve yearly) can be considered explorative and the amount of exploration is increased by stochastic events interfering 131 

with the fitness-proportional distribution of reproductive chances (e.g. in a species with a 20 year reproductive span, the 132 

individual with highest fitness expectations might stochastically die after only 1 year, but the individual with the lowest 133 

expectations could, stochastically, reproduce for 11 years).  134 

In the study described below, we investigate how different systems affect the evolutionary walk of a population in a 135 

phenotypic landscape from game theory, the SPS game. 136 

1.5 Landscape of the Sir Philip Sidney game 137 

The fitness landscape we study here, the Sir Philip Sydney (SPS) game theory problem (21), has been chosen for ease of 138 

access and understanding at the time this study began and it cannot be described purely in terms of well-established formal 139 

models of fitness landscapes. Nevertheless, those shortcomings do not prevent it from being a useful representation of a 140 

biological landscape. It is a phenotypic gambit scenario of six independent traits contributing to the total reproductive 141 

fitness of the individual. Mutations are additive at the phenotypic level, but non-additive at the fitness level, meaning that 142 

the traits interact non-linearly to determine fitness. Our landscape differs from the assumptions commonly made in the 143 

literature in two ways. Firstly, it is discrete. Mathematically, this is the equivalent of any continuous landscape whose 144 

optima and minima are all represented on our discrete landscape. Secondly, it is a multi-phenotype frequency-dependent 145 

landscape. Although this is not a commonly studied landscape scenario, it is found in several real-world evolutionary case 146 

studies, such as apostatic selection or microbial competition experiments where multiple strains grow on a medium with 147 

multiple carbon sources.  148 

1.6 Details of analysed selection models  149 

We call selection model the set of assumptions in an evolutionary simulation that define the relationship between trait 150 

quality and reproductive success of the individual, as a function of the two dynamics listed in paragraph 1.1 (relationship 151 

to expected reproductive fitness and amount of stochasticity in the system). Different biological scenarios often imply 152 

different selection models. Below, we provide a brief summary of the models analysed here. 153 

k-tournament: This selection model assumes that competition for each reproductive slot occurs in small, randomly formed 154 

groups, where the individual with the highest-quality trait wins with a specified probability. The stochasticity introduced 155 

by randomly selecting competitors and the uncertainty in the probability that the individual with the highest-quality 156 
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phenotype wins means that k-tournament allows for some stochasticity in the selection of the traits transmitted to the next 157 

generation. This method is equivalent, in a biological scenario, to a group of individuals competing for a mate after being 158 

drawn to the same location by a mating signal: competitors are brought together by contingency and the strongest does 159 

not necessarily, albeit is more likely to, prevail.  160 

Truncation: Truncation sets a fixed threshold to the proportion of the population that can reproduce and makes this 161 

threshold dependent on trait quality. For example, only the top 10% of individuals in terms of trait quality may have the 162 

opportunity to reproduce. Among this reproductive élite, chances of reproducing are then uniform (22). Making a parallel 163 

with a biological scenario, we can compare this method of selection to dynamics in an animal group where a reproductive 164 

hierarchy is established, by which only top-ranking individuals mate and reproduce.  165 

Proportional selection: Proportional selection allocates reproductive slots in a manner that is statistically proportional to 166 

trait quality, but it introduces some stochasticity in the allocation. In a biological equivalent, we can think of this method 167 

of selecting reproductives as a system where individual reproductive success is strongly dependent on the absolute quality 168 

of one trait – but failure of a high-quality individual to reproduce is still possible (simply through bad luck). 169 

Ranking: We can visualise the ranking selection model as a population organised as a list of individuals ranked from 170 

highest to lowest trait quality. Individuals are then assigned reproductive slots according to the place held in the ranking 171 

(plus some additional stochasticity), rather than to the absolute trait quality value. The advantage of this method is that 172 

the within-population variance in the expected number of reproductive slots remains fixed, evening out reproductive 173 

chances within each generation and effectively enhancing exploration. In fact, because the range of the number of 174 

allocated slots is independent of population trait-quality mean and variance at that time, the highest quality phenotype in 175 

the population will receive the same expected reproductive proportion regardless of how far away it stands from average 176 

population trait quality. Conversely, lower quality individuals will enjoy reproductive opportunities as long as their 177 

ranking position is not too far below the rest of the population. A biological equivalent of this method is a scenario with 178 

a hierarchically organised population where reproductive opportunities are proportional to the rank and where the number 179 

of reproductive positions available remains relatively fixed across generations. 180 

We also use this study to test the effect of other evolutionary parameters on the evolutionary trajectory. The complete list 181 

of evolutionary parameters tested (including selection method parameters) is given in Table 1. We explain here the use 182 

of one particular method, derived from GA literature, and its meaning as a biological parameter: replacement.  183 

In a GA, replacement is the process by which new individuals replace members of the parent generation in a fixed-size 184 

population. It relies on two features with important evolutionary implications in affecting the exploration-exploitation 185 

balance: replacement size (or number of reproductive slots M relative to population size, M:N) and replacement criterion. 186 
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It is either generational, where the offspring completely replaces parents in the new generation (M = N), or overlapping, 187 

where only a fixed proportion of the population is replaced (M<N). In biological terms, this is the equivalent of studying 188 

the effect of the reproductive overlap between generations. Overlapping replacement allows trait variants already present 189 

in the previous population to compete with newly-generated variants. Increasing M considerably reduces variance in the 190 

growth curve of the best-variant proportion of the population, with generational replacement having the least variance 191 

(23). It thus reliably produces quality-proportional strategy fitness, but relative to the quality of already-existing strategies 192 

– the local fitness cline is exploited. The second critical feature is how strategies are selected for replacement. In the First-193 

In-First-Out (FIFO) GA method, individuals are replaced in chronological “birth” order, while in Worst-In-First-Out 194 

(WIFO) replacement occurs either by quality-dependent proportional selection or by deterministic death of the worst 195 

individual. This is the equivalent of studying the effect of the relationship (or absence thereof) between trait quality and 196 

probability of death on the evolutionary trajectory. FIFO favours drift and thus exploration, granting each strategy the 197 

same reproductive time frame, while WIFO is exploitation-based. 198 

In this paper, we describe the results obtained from evolving a population towards a solution to the SPS game, under each 199 

selection model and across different parameter values for selection, mutation, population size and replacement. Multiple 200 

solutions to the SPS game have been found by different methods (see Box 2) and are considered the expected endpoints 201 

of an evolving population. We compare the reliability with which each model reaches the evolutionary stable solutions 202 

previously identified for this game: the evolutionary stable strategy (ESS) analytically found by Johnstone and Grafen 203 

(24) and the evolutionary stable set (ES) obtained by Hamblin and Hurd (25).  204 

Parameter Description 

Values or variants tested in our 

simulations 

N population size {50,100,200} 

M number of available reproductive slots per generation {1,
𝑁

20
,
𝑁

10
,
𝑁

5
,
𝑁

4
, 𝑁} 

μ mutation rate (per locus or per chromosome) {0.001,0.003,0.005,0.007,0.01} 

a 

in the starting population, proportion occupied by the ancestral 

strategy [0,0,0,0,0,0] 

{0.05, 0.10, 0.15, 0.20} 
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l 

Used in truncating selection. Top proportion of the population 

(ordered by rank) that reproduces. 

{0.1, 0.2, 0.3, 0.5} 

k 

Number of individuals selected to compete for a reproductive 

slot at each round, in tournament selection. 

{2,3,5,7} 

α 

Used in tournament selection. Probability of fittest competitor 

to win. 

1 

v 

Used in proportional selection. A strategy with quality equal to 

the population average can be expected to realise a number of 

reproductive slots equal to 
𝑣𝑀

𝑁
 in the next generation. 

{0.70, 0.80, 0.90, 1} 

z 

Used in linear ranking selection. The highest-quality solution 

has a maximum of 
2𝑧𝑀

𝑁
 reproductive slots that they can be 

expected to realise in the next generation. 

{0.55, 0.60, 0.65, 0.70} 

c 

Used in exponential ranking selection. The factor by which the 

number of expected reproductive slots decreases per every unit 

of rank. 

{0.55, 0.60, 0.80, 0.90} 

mutation 

type 

whether μ indicates the value for each genotype or at each 

locus of a genotype 

{𝑝𝑒𝑟 𝑐ℎ𝑟𝑜𝑚𝑜𝑠𝑜𝑚𝑒, 𝑝𝑒𝑟 𝑙𝑜𝑐𝑢𝑠} 

replacement 

type 

method with which one member of the parent generation is 

selected for replacement by one offspring 

{𝑊𝐼𝐹𝑂, 𝐹𝐼𝐹𝑂} 

Table 1. Description of parameter tested with listed values. 205 

Box 1: Individual, genotype and phenotype in a GA and in biology 206 

In a GA, populations consist of multiple possible solutions to the problem under study that are undergoing a selection 207 

process for a high-quality solution. This population is the equivalent of a biological population of individuals displaying 208 

variation in the trait (solution) under selection. Each solution is encoded by a genotype, consists of a string of values, one 209 

(locus) for each of the parameters or features that contribute to a solution. For example, in a GA genotype modelling 210 
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leopard predatory effectiveness as a physiological trait, the genotype might consist in a series of loci encoding the 211 

parameter values for: muscular mass, fibre elasticity and the parameter defining the developmental and physiological 212 

trade-off between the two. The solution built under this genotype is a combination of muscular power and elasticity used 213 

to respond to predatory encounters, in which prey size and speed are drawn from fixed probability distributions. While 214 

phenotype and genotype overlap in one-locus traits, the difference becomes apparent wherever we introduce an interaction 215 

between loci. In our predatory effectiveness trait, it is the trade-off parameter that causes a phenotype to be different than 216 

the effect of the power and elasticity loci taken independently. This resembles the complexity observed in real biological 217 

traits. Similarly to biology, moreover, an additional layer of complexity can be introduced at the strategy-generation step 218 

if noise or plasticity (learning) mechanisms influence the trait. Multiple individuals in the same population might carry 219 

the same genotype and, indeed, the change in genotype frequency in a population over generations is one currency for 220 

measuring its success. 221 

In the game theory problem modelled here, we are looking at the evolution of a behavioural strategy, in a signalling-for-222 

resources scenario. Each strategy is a combination of behavioural responses, each encoded at a separate locus. Here, we 223 

call the behavioural strategy a strategy (solution) and we follow GA terminology in using genotype to indicate the 224 

combination of behavioural responses that make up a strategy, despite them being the phenotypes in the phenotypic 225 

landscape. 226 

2. Methods 227 

To test the effect of selection models over evolutionary trajectories, we evolved solutions to the Sir Philip Sidney game 228 

under different models, using a genetic algorithm. We applied five different selection models, each evaluated across a 229 

range of parameter values. Table 1 summarises the parameters analysed and lists the values tested for each. 230 

2.1. Genetic Algorithm  231 

The workflow of a GA is depicted in Figure 1. 232 

Fig 1. Workflow of a GA. Simplified representation of the processes in a GA (in white), that pool, select and modify the 233 

initial population (in red) to generate a new population. The parental pool are the individuals in the current population 234 

that meet the trait-quality requirements to reproduce. They produce copies of themselves (parental copies) that undergo 235 

mutation and crossover to generate the final offspring individual, as in asexual selection. Offspring take the place of 236 

individuals of their parent’s generation in the population. Each cycle through this sequence of steps constitutes one 237 

generation.  238 
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2.1.1. Chromosomes 239 

Strategies are encoded by 6-locus strings, or chromosomes, with each locus encoding either a 0 or a 1. 240 

2.1.2. Population and replacement size 241 

The population consists of N individuals, of which M are replaced by offspring strategies at each generation. 242 

2.1.3. Trait quality evaluation 243 

This is where the quality of the strategy generated by each individual n with genotype 𝑔𝑖 in the population is tested. We 244 

define trait quality as the average outcome of the test; this value is converted into fitness at later stages. In this simulation, 245 

quality is evaluated through competition against randomly selected strategies from the same population over five rounds, 246 

as in (25). At each round, an “opponent” strategy is chosen among the N – 1 remaining and takes the complimentary role 247 

(i.e. donor or signaller) to the strategy evaluated. Role, health state and degree of relatedness are assigned with probability 248 

equal to population frequencies in the equilibrium parameter range of (24). Performance is calculated from the interaction 249 

of the two strategies in each round and trait quality as the average of all rounds. 250 

2.1.4. Selection 251 

We assume throughout that reproduction is asexual, requiring only a single parent. Selection defines which subset of the 252 

parental population will be passed on to the next generation and how many breeding slots (proportion of the offspring 253 

generation) each parent solution receives. 254 

k-tournament: k randomly selected individuals are compared in each of N rounds. In each round, the individual with 255 

highest quality is selected with probability α. If the highest-quality individual is rejected, then the second fittest is chosen 256 

with probability α, etc. Selected individuals re-enter the population pool after reproduction and can thus be selected 257 

multiple times. 258 

Truncation: Individuals are sorted by decreasing quality and parents selected from the l topmost proportion of the list are 259 

selected for reproduction. Note that individuals with equal trait quality might be separated by the threshold and some not 260 

enter the selection pool. Parent individuals are selected with uniform probability from the selection pool to enter the parent 261 

pool.  262 

Proportional selection: Individuals are assigned an expected value of reproductive slots, which is, the statistical mean of 263 

the number they should receive in an infinite number of trials. The assignment function used to derive expected values is 264 

      265 
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𝐸[𝑚𝑛,𝑡] ∶=

{
 
 

 
 
(1 +

ℎ𝑛(𝑡) − ℎ̅(𝑡)

2𝜎(𝑡)
)
𝑀

𝑁
, 𝜎(𝑡) ≠ 0

                                      
𝑀

𝑁
, 𝜎(𝑡) = 0

 266 

from (26). The equation represents the expected number of reproductive slots mn,t that individual n will be allocated at 267 

time 𝑡, given its estimated quality at that time step, hn,t, and the average quality in the population at that time step, ℎ̅(𝑡), 268 

and adjusted according to the standard deviation of quality within the population at that time step, σ(t). Variance-scaling 269 

is applied to limit the effect of drift from the highest quality value, making reproductive chances more widely distributed 270 

when variance is high and less when it is low. We modify (26) to control how reproductive slot assignment depends on 271 

the quality value. Via proportional selection, we can set the expected value for an individual with average quality through 272 

a parameter v. This is done by multiplying: 273 

𝐸[𝑚𝑛,𝑡] ∶= (1 +
ℎ𝑛(𝑡)−ℎ̅(𝑡)

2𝜎(𝑡)
)
𝑣𝑀

𝑁
  . 274 

When v =1, an average quality individual receives as many reproductive slots as if assigned by a uniform quality-275 

independent distribution. If we set v<1, only higher-than-average individuals will expect at least one reproductive slot. 276 

The lower v, the greater the reproductive advantage of high-quality individuals over those of average quality. Thus, the 277 

lower v, the higher the exploitation. 278 

The effective number of slots is assigned using a sampling algorithm: a random integer 𝑟 between 0 and the sum of 279 

expected values is drawn for a number of rounds M equal to the number of reproductive slots and the expected value of 280 

individuals summed as the population is looped through in a fixed order, until the expected value of an individual makes 281 

the total equal to or higher than 𝑟 and that individual wins one reproductive slot. Slot allocation following this system is 282 

thus statistically proportional to assigned expected values, with drift. Linear ranking: Individuals are ranked in increasing 283 

order of quality and the rank used to assign the expected value through an assignment function. The linear implementation 284 

of the assignment function (27) is: 285 

𝐸[𝑚𝑛,𝑡] ∶= 𝑚𝑖𝑛 + (𝑀𝑎𝑥 − 𝑚𝑖𝑛) ×
rank(𝑛,𝑡)−1

𝑁−1
 , 286 

where min is the expected value allocated to the worst individual in the population at time t and Max that allocated to the 287 

best individual. In this type of implementation, it is possible to manipulate the expected fitness of the best individual to 288 

adjust the exploitation-exploration balance, in the same way as we changed the expected fitness of the average individual 289 

in proportional selection. Max can be set to a different value from its maximum, 2M/N, through a parameter z similar to 290 

v in proportional selection, so that  291 
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𝑀𝑎𝑥 =
2𝑧𝑀

𝑁
 292 

(see the derivation in SI.1.). 293 

The effect of z is analogous to that of v in proportional selection, but with opposite effects as it acts on the highest-quality 294 

individual: the higher z, the higher the exploitation and the lower z, the higher the expected fitness of lower quality 295 

individuals. 296 

Reproductive slots are then assigned with a sampling algorithm identical to that in proportional selection. 297 

Exponential ranking: The exponential implementation of the assignment function takes the form 298 

𝐸[𝑚𝑛,𝑡] ∶= 𝑐𝑁−rank(𝑛,𝑡)   and  0 ≤ 𝑐 ≤ 1, 299 

where c determines the steepness of the exponential increase in expected values with rank. By changing c, we can control 300 

the exploration-exploitation balance: a high c assigns exponentially higher advantage to the highest-quality individual, 301 

thus creating high exploitation.  302 

The effect of z, v or c is that of fine-tuning the proportion of individuals effectively reproducing (what Baker (27) calls 303 

“percentage involvement”).  304 

2.1.5. Mutation 305 

Parents that are assigned breeding slots through selection generate copies of themselves. Such copies undergo mutation 306 

to generate new variants and explore the solution space around parent solutions. We do not explicitly assume a “strong 307 

selection, weak mutation" (SSWM) regime: we instead model mutation through a mutation rate parameter and a mutation 308 

method parameter that span through a range of mutation regimes. In per chromosome mutation, one locus on the 309 

chromosome is selected with uniform probability and with probability 𝜇𝑐 its value switches to the opposite binary value. 310 

In per locus mutation, the chromosome is scanned and every locus switches with probability 𝜇𝑙. As a result, our study 311 

investigates SSWM conditions, under low mutation rate, per chromosome method and small reproductive slot size, as 312 

well as biologically unlikely high-mutation scenarios, when reproductive slot size is very large or under per locus mutation. 313 

We chose not to include crossover in the analysis, because, in small fitness landscapes, mutation should be sufficient to 314 

explore the full space. In accordance with this expectation, (25) found that crossover does not affect the endpoint reached. 315 

After mutation (and crossover), the offspring set has been generated and is input into the population, entering the next 316 

generation. 317 
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2.1.6. Replacement 318 

At the end of each cycle, M individuals among the population’s N are replaced by the offspring. Individuals in the parent 319 

generation are chosen for replacement either on the basis of quality (Worst-In-First-Out or WIFO), where the M lowest 320 

quality individuals are replaced, or in a time-sequence manner, with oldest individuals being replaced (First-In-First-Out 321 

or FIFO). We investigate both WIFO and FIFO. 322 

2.1.7. Running time and data collection 323 

The algorithm is run for 500 generations, as in (25). Frequency of each possible strategy in the population and population 324 

fitness values are recorded every 50 generations. 325 

2.1.8. Implementation 326 

Each combination of selection model and parameter values was run in 10 replicates, each with random number generators 327 

seeded with a different integer value between 0-9. The simulations were implemented in Python version 2.7.12 using 328 

Cython language version 0.27.3. 329 

Box 2: Sir Philip Sidney game 330 

The SPS game is a game theory problem in evolutionary biology used (first by (21)) to study the evolution of costly and 331 

honest signalling within an inclusive fitness framework. The problem of signalling for help when health is poor is 332 

evolutionarily interesting because, once honest signalling has evolved, individuals who are in good health benefit by 333 

signalling as if they were poorly and receiving the resource at the expense of the donor. This means that honest signalling 334 

is evolutionarily unstable. However, honest signalling might be maintained through a combination of inclusive fitness - 335 

conferring an indirect fitness benefit to the helping donor and to the honest signaller - and of signals that are costly to 336 

produce - enforcing lower dishonesty. The SPS game recreates a simple case study scenario with a population of 337 

individuals of relatedness r who can transfer a fitness-increasing resource to each other. Individuals can choose whether 338 

to ask for the resource, paying a cost c to signal for help, and whether to donate it, lowering their fitness but increasing 339 

that of the receiver. Individuals should take into account their own level of fitness (usually called “thirst”, for fidelity to 340 

the Sir Philip anecdote), as well as the potential donor’s, to decide whether or not to signal. The game asks which 341 

conditions of relatedness and cost allow the evolution of completely or partially honest signalling.  342 

The mathematical models following Maynard Smith’s (e.g. (24,28–31)) have tested the problem under different scenarios 343 

by varying underlying assumptions; however, evolutionary simulations have challenged the notion that ESSs, obtained 344 

through either mathematical analysis or deterministic evolutionary simulations (e.g. (32)) and albeit possible under 345 

specific conditions, should be the expected evolutionary outcome.  346 

2.2. SPS game  347 
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We use the SPS game (see Box 2) as a testbed problem. We chose to reproduce the study by Hamblin and Hurd (25), who 348 

evolved solutions to the SPS scenario investigated by Johnstone and Grafen (24) using a GA. The signalling scenario 349 

studied by (24) consists of a population of donors and of two types of signallers, a close relative with relatedness r1 to the 350 

donor (type I) and a distant relative (type II) with relatedness r2. Signallers can be in either of two states: thirsty and dying 351 

in the absence of the resource (fitness = 0), and healthy, with fitness Fb in the absence of the resource. Resource transfer 352 

re-establishes full fitness. Signallers are healthy with probability o and needy with probability (1 - o) and closely related 353 

to the potential donor with probability q and distantly related with probability (1 – q). Similarly, donors have fitness of 1 354 

with the resource and of Fd without. The donor can decide whether or not to transfer the resource, based on whether a 355 

signal received, and signallers can decide whether to signal or not. Signalling has a cost 𝑑 =  𝑑1 × 𝐹 for close relatives 356 

and of 𝑑 =  𝑑2 × 𝐹 for distant relatives, where F is the signaller’s fitness after the donor has made its decision. The 357 

optimal strategy for the donor will depend on the degree of relatedness to the signaller and on the proportions of relatives 358 

of each degree in the population, while the optimal strategy for signallers will depend on relatedness and the cost of 359 

signalling. 360 

We searched for solutions for the same SPS game parameter set used by (25) and based on (24) (also accepting (25)’s 361 

correction for d2 = 0.1 for the semi-separating equilibrium to be an analytical ESS solution to the game). This parameter 362 

set is a point in parameter space at which the analytical ESS is expected. This ESS is a biologically interesting case of 363 

partially-honest signalling and is the highest-payoff strategy when only one strategy is present in the population (at this 364 

point in parameter space). However, most commonly the population seems to reach a different convergence point, when 365 

an evolutionary simulation is used (25): the ES, a two-strategy endpoint that has the highest average payoff in the 366 

population when every strategy is equally represented at time zero (see Supporting File 1).  367 

2.2.1. Chromosome representation of a strategy 368 

The six loci represent, in order: donor strategy on signal received, donor strategy on no signal (1 = transfer resource, 0 = 369 

no transfer), closely-related signaller strategy when thirsty, closely-related healthy signaller strategy when healthy, 370 

loosely-related signaller strategy when thirsty, loosely-related healthy signaller strategy when healthy (1 = signal, 0 = no 371 

signal) (Figure 2a). 372 

Fig 2. How SPS strategies are encoded in the GA. A. Structure of a GA chromosome encoding a strategy used in the 373 

SPS game. Each locus (A-F) contains a binary value indicating whether that behavioural response is used by the carrier 374 

(1 = yes, 0 = no). The first two loci are behavioural responses from the donor of the resource: transfer the resource when 375 

hearing the signal (A) and transfer the resource when not hearing the signal (B). The other four loci encode the responses 376 

of the signallers to their own health status and to the degree of relatedness to the donor. Loci C-D encode the responses 377 

towards closely related donors: emit a signal if thirsty (C) and emit a signal if healthy (D). Loci E-F encode the same 378 
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responses towards distantly related donors. B. The table shows how the ESS and the two strategies within the ES are 379 

encoded according to the scheme above. 380 

2.2.2. Initialisation 381 

At the start of each simulation, a proportion a of the population consists of the putative ancestral strategy [no-transfer, 382 

no-signal]. The remaining strategies are randomly drawn among all possible SPS game solutions. 383 

2.2.3. SPS game parameter values 384 

Parameter values used: o = 0.6, q = 0.9, r1 = 0.5, r2 = 0.2, Fb = Fd = 0.8, d1 = 0.4, d2 = 0.1. 385 

At this point in parameter space, we find the ESS and the ES detailed in Figure 2b. 386 

2.3. Deterministic model  387 

To have a benchmark for estimating the amount of exploration generated by each selection model, we produced a 388 

deterministic model and compared its results with those obtained by the GA. The model assumes a population of fixed 389 

size equal to the total possible strategies in the SPS game (N = 64). At generation 0, each strategy is equally represented 390 

in the population (i.e. there is exactly one copy of each strategy). Fitness in the model is given exclusively by the relative 391 

quality of each strategy. We define the fitness of strategy i at time t as 392 

𝑤𝑖(𝑡) ∶=  𝑓𝑖,𝑡∑𝑢𝑖,𝑗𝑓𝑗,𝑡

𝑁

𝑗=1

 , 393 

where 𝑓𝑖,𝑡 is the frequency of strategy i in the population at time t and 𝑢𝑖,𝑗 is given by the average value obtained by i 394 

when competing against strategy j in the SPS game, defined as the average between playing as the donor and playing as 395 

the beneficiary. These two components of ℎ𝑖,𝑗 were calculated as in (24), for the same values of SPS game parameters 396 

used in the GA (i.e. for the point in the SPS parameter space where the ESS is the strategy detailed in Figure 2). The 397 

average fitness obtained by all strategies at time t is 398 

�̅�(𝑡) ∶= ∑
𝑤𝑖(𝑡)

𝑁

𝑁

𝑖=1

 . 399 

The relative fitness of strategy i is thus 400 

𝑊𝑖(𝑡) ∶=
𝑤𝑖
�̅�(𝑡)

 , 401 

which becomes the frequency of strategy i at time t+1.  402 

The model has no mutation nor recombination. We calculate population frequencies for 500 generations, which is the 403 

same number of generations used in the GA. 404 
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The deterministic model was built and run in MATLAB R2020a. The matrix of values resulting from the interaction of 405 

all pairs of strategies was built in Python version 2.7.16. 406 

2.4. Analysis  407 

2.4.1. Fitness landscape exploration 408 

To quantify the effect of parameters and methods on landscape exploration, we only considered those simulations in which 409 

the ESS or ES reached and maintained a population-level frequency higher than 80% for the last 50 generations of the 410 

simulation. We consider those runs as having converged to that solution (as in (25)). For each selection model, we 411 

calculated the proportion of runs that converged to each solution type. Within each selection model, we then compared 412 

the effect of each parameter value of each evolutionary parameter by looking at the proportion of simulations with that 413 

value that had reached each solution type, across all values of other parameters. Mean and standard deviation were 414 

calculated as the mean and standard deviation of replicates with the same seed. In total, 72,000 simulations were run for 415 

each selection model and 12,000-36,000 simulations were run for each parameter value within selection model (that is, 416 

across all values of other parameters). This difference in the number of simulations for each parameter value is an effect 417 

of grouping runs along single parameter dimensions: for example, if we calculate statistics for each value of M within one 418 

selection model, we analyse 72,000/6 = 12,000 simulations (where 6 is the number of values of M we tested in total; see 419 

Table 1), while, if we do the same calculations for N, we look at 72,000/3 = 24,000 simulations. 420 

2.4.2. Statistical analysis 421 

We tested for a significant difference in the distribution of number of seeds converged, across selection methods, to three 422 

solution types: ESS, ES and all other solutions. We used a Fisher’s Exact test with simulated p-values by Monte Carlo 423 

simulations, 10,000 iterations. Statistics were implemented in R, version 3.5.1 (33). 424 

3. Results 425 

3.1. Different selection models lead to different outcomes  426 

We reproduced the analysis run by Hamblin and Hurd (25), who used a GA to explore a point in the parameter space of 427 

the SPS scenario studied by Johnstone and Grafen (24). We used this case study to analyse the effect that different 428 

assumptions made on the evolutionary process have on the trajectory of a simulated evolving population. Specifically, we 429 

were interested in the evolutionary outcome under multiple selection models. We also looked at the effect of the 430 

evolutionary parameter values listed in Table 1. Hamblin and Hurd’s algorithm reaches quite different evolutionary 431 

endpoints from the original 1993 study of this SPS game variant, with the ESS identified analytically at this point in 432 
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parameter space ([give-on-signal, signal-when-needy, always-signal] for [donors, closely-related signallers, loosely-433 

related signallers]) effectively emerging with very low frequency. More frequent as a solution is an ES of strategies, [give-434 

when-no-signal, never-signal, never-signal] and [always-give, never-signal, never-signal]. 435 

We analyse the effect of each selection model on the point in the phenotypic landscape which a population reaches within 436 

500 generations. We compare these results to the convergence point of a fully deterministic (i.e. perfectly fitness-437 

proportional) model run for the same number of generations, to better understand the amount and effect of exploration in 438 

each of our partially stochastic selection models. For convenience, we define three types of solutions to the SPS game: 439 

the Evolutionary Stable Strategy (ESS), the Evolutionary stable Set (ES) and every other solution. We can envisage that 440 

exploitation of the best individual will lead to the ES, more commonly than to the ESS, due to the former being the highest 441 

average fitness strategy, while the ESS needs high frequency in the population before reaching the highest payoff. In 442 

accord with this latter statement, we can see in (25) that ESS convergence increases with the frequency at which it is 443 

seeded in the initial population.  444 

If we look at the proportion of simulations reaching the two evolutionary stable solutions (ESS and ES) in our study 445 

(Figure 3), we see that no model reliably reaches the ESS and that there is no difference among the models in the 446 

frequency with which they land on this solution (Figure 3a, bottom panel). The ESS is thus not an evolutionary attractor. 447 

When we shift our attention to the ES, we realize that different selection models reach the highest fitness solution with 448 

very different frequencies (Figure 3a, top panel; note the difference in the y-axis scale with the bottom panel; Fisher’s 449 

Exact test, p-value<0.001).  450 

Most of our selection models reach the ES with very high frequency. If we consider that, in a selection model where 451 

fitness equals relative trait quality such as the deterministic model, the ES only reaches a frequency of 0.5 in the population 452 

in 500 generations (Figure 3b) and that we have set the threshold frequency to consider a strategy as the evolutionary 453 

endpoint to 0.8 (maintained over the last 50 generations), these frequencies are considerably higher than expected. What 454 

is happening here? Reproductive fitness in our model is dependent, as in most biological scenarios, on an estimate of trait 455 

quality. This estimate is obtained from five “events”, each under randomly assigned “conditions” (relatedness, health state, 456 

identity of the other strategy and the role played, in this SPS game) – it is a combination of stochasticity and of median 457 

quality, rather than average, that creates the estimate. Our ES has high estimated quality under most condition 458 

(Supplementary file 1: strategy 1 in the ES has the highest payoff in almost half of the pairwise competitions with other 459 

strategies: 30/64, including itself; strategy 2 has the highest payoff only in 3/64 pairwise competitions, including against 460 

strategy 1 and itself – it is an equivalent phenotype to strategy 1 at equilibrium). However, many other strategies have 461 

high quality in more than one condition. In many conditions where the ES has maximum quality, one or more other 462 
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strategies share this property. Essentially, the average landscape is relatively flat, which means that there is a good chance 463 

of error when estimating overall trait quality from only a small number of samples.  464 

Competition within small groups (k-tournament) favours strategies with high mean estimated fitness: an individual 465 

carrying that strategy has low chances of competing against an individual with higher estimated fitness and, if they win, 466 

they automatically reproduce. Larger sizes of competition groups slow down the diffusion of the ES (Figure 4b). Even 467 

in a relatively flat landscape, assigning fitness in a manner directly proportional to estimated trait quality is enough to 468 

reach quick and reliable convergence to the ES (proportional selection). This is independent of the estimated number of 469 

reproductive slots assigned to the average individual, v, (Figure 4c) and we believe this is because drift occurs only 470 

towards high quality, not average, solutions (the average mean payoff from pairwise interactions among all possible 471 

strategies is 1.056; the average mean payoff of strategies that obtain the highest payoff against at least one other strategy 472 

is 1.095). Ensuring that everyone in the population reproduces (ranking selection) makes convergence slower. Even a 473 

reproductive hierarchy that assigns a lot of advantage with every step up in the rank (exponential ranking) reaches the ES 474 

in 500 generations with much lower frequency than with competition within groups (k-tournament) or trait-quality 475 

proportional selection. Increasing the advantage for each step in the rank (c; Figure 4e) increases the speed of convergence. 476 

Linear ranking is the slowest method and seems to work at its best in small populations (N; Figure 4d). However, limiting 477 

reproduction to the individuals with the highest estimated quality (truncation) also slows down convergence to the ES. 478 

The larger the share of the population that is allowed to reproduce, the faster the convergence (l; Figure 4a). Based on 479 

these observations, we think that a strict regime of selective reproductive allocation accentuates the effect of the error in 480 

the quality estimate. 481 

Fig 3. Proportion of simulation converging to ESS or ES by selection method and deterministic fitness of ESS and 482 

ES. A. Proportion of simulations that converge to each solution type, of those run with the specified selection method 483 

(across all other parameters and parameter values). Note that the top and bottom panel are plotted across different y-axis 484 

values. The standard deviation bars reflect the variation among runs with different random seeds, collapsed across all 485 

parameter values. B. In the deterministic model, the ES and the ESS reach these frequencies at generation 500. The 486 

frequency of the ESS is 3.8e-47. These frequencies are the outcome of a selection process where fitness exactly corresponds 487 

to relative trait quality within the population, with each strategy being present once in the population at time zero and in 488 

the absence of mutation. 489 

Fig 4. Proportion of simulations converging to ESS or ES by parameter value, within each selection method. Each 490 

group of plots shows the proportion of simulations that converge to each solution type by parameter type and value ( i.e. 491 

across all other values and all other parameters), within a selection method. The standard deviation bars indicate the 492 
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variation found among runs with different random seeds, collapsed across all parameter values. mut = mutation, pc = per 493 

chromosome, pl = per locus, rpl = replacement. 494 

3.2. Effect of other parameters and methods  495 

We can identify some general effects of other evolutionary parameters and of the mutation and replacement processes by 496 

looking at the general performance across selection models (Figure 4). 497 

• In this small fitness landscape, a high mutation regime decreases the speed and reliability of convergence. However, 498 

even under very high mutation rate (µ) values, most methods reliably reach the ES in 500 generations.  499 

• A trait-quality dependent death rate (WIFO) increases the speed of convergence across all selection models, compared 500 

to an age-dependent death rate (FIFO) (this is in agreement with results found in GA literature (34)).  501 

• A larger population size increases convergence. The effect seems to level off once population size becomes sufficiently 502 

larger than the solution space (>64), although we would need to run simulations with intermediate population sizes 503 

(e.g. 30<N<100) to confirm this effect. The effect of large N on convergence is true under all selection models, with 504 

two exceptions. Under linear ranking, a small population size increases the frequency of convergence; under truncation, 505 

population size seems irrelevant – probably because the key parameter here is the proportion of the population that is 506 

reproductively active, l. 507 

• Having an intermediate number of reproductive slots available at each generation accelerates convergence, probably 508 

by counterbalancing the high mutation rate. The case M = 1 shows, nevertheless, a higher frequency of convergence 509 

than expected: under linear ranking, this is the only point in the parameter space we analysed where convergence 510 

occurs reliably in so many generations. We hypothesise that, when M = 1, slots are statistically allocated in the manner 511 

that more closely resembles the expected value than other low M values, eliminating some drift. However, further 512 

studies and a better statistical insight are necessary to confirm this hypothesis. The effect of M can be interpreted as 513 

inversely correlated with the variance between an individual’s observed and expected growth curves between 514 

generations, according to the GA literature (23). 515 

• A starting population with high frequency (a) of a high-quality but unstable strategy (in this case, the putative ancestor 516 

strategy; this strategy has a mean pairwise payoff of 1.102, much higher than the average, but only achieves the highest 517 

possible payoff against six other strategies) does not slow down convergence to the ES in this size of fitness landscape. 518 

4. Discussion 519 

We can think of three measures of the impact of an evolutionary factor on the evolutionary trajectory. We can define, 520 

assuming all other conditions fixed: the speed of convergence to the global optimum, that is, the average time with which 521 
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a population converges to it; the frequency of convergence, which is the frequency with which populations reach the 522 

global optimum, given infinite evolutionary time; and the accuracy of convergence, that is, the amount of time, on average, 523 

that a population spends with one or more solutions present at very high frequency (e.g. >80%) in its pool, independently 524 

from whether it will ultimately converge to the global optimum or not. Our results show that different assumptions made 525 

on the selection model affect the convergence speed. We have also endeavoured to find common patterns in the effect of 526 

components of the evolutionary process other than the selection model (e.g. population size, mutation rate). 527 

We want to stress the limitations of generalising other details of our results to other fitness landscapes. Some fitness 528 

landscape features are independent from simplifications that are made at the simulation building stage when studying a 529 

biological system: the small size of this landscape and the relatively small difference in fitness between many of its 530 

strategies (the ‘flatness’ of the landscape). They nevertheless affect the trajectory of the population over time. Other 531 

features we have chosen not to include for simplicity or inapplicability to this game theory landscape: sexual reproduction 532 

and hybrid fitness are two of them. They are likely to be major factors influencing the evolutionary trajectory. We believe 533 

it to be an interesting future direction to investigate how much of these findings holds true in a larger and differently 534 

contoured fitness landscape and under a more complicated relationship between phenotype and genotype. Among the 535 

characteristics we suggest testing there are also are the assumption of a continuous landscape and varying mutation sizes. 536 

How important is exploration in reaching the global optimum? Our results show that, the larger the gap in reproductive 537 

advantage between the best quality individual and the second best (that is, the greater the exploitation), the faster the 538 

convergence, even in a relatively flat landscape. This performance is likely linked to landscape size, relatively to mutation 539 

rate and size. This fitness landscape is a high connectivity scenario, because of its small size, meaning that all areas are 540 

relatively close together. Therefore, we expect the landscape to have been thoroughly explored by mutation within the 541 

500 generations of our model. High connectivity also means that exploitation is enough to reach the global optimum. In 542 

larger landscapes, exploration might play a more important role on the evolutionary endpoint reached, including whether 543 

the population can find the global optimum. 544 

The ability of exploitation to find the global optimum is also limited to cases where the optimum is an evolutionary 545 

attractor: in the fitness landscape used here, the location with the highest average fitness is also stable (ES), but there are 546 

likely to be biological scenarios in which highest average fitness leads to instability and exploration might be essential to 547 

reach a stable outcome. 548 

Our investigation focuses on the fitness optimum. However, natural populations are likely to stay in area of high fitness 549 

close to but not exactly matching the optimum, due to other constraints including the trade-off between different traits. 550 

New analyses should investigate differences between methods in converging to these extended “optimality zones”. 551 
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Finally, our results also show that the accuracy of trait quality estimation affects the amount of drift observed. Accordingly, 552 

the details of our results are likely to be sensitive to the number of rounds we used in trait evaluation 553 

We have provided, in this article, an overview of the methodology of GAs. This modelling framework offers a useful tool 554 

to evolutionary biologists interested in the effect of evolutionary process components on a population’s evolutionary 555 

trajectory. The advantage of this modelling architecture is that it is already set up to mimic the evolutionary process, thus 556 

limiting the degrees of freedom compared to ad hoc modifications of a more universal tool like agent-based modelling. 557 

This enhances comparability and replicability. GAs, on an equal level to agent-based models, have the flexibility needed 558 

for modelling the effect of more complex dynamics, such as the relationship between phenotype and genotype, on the 559 

evolutionary outcome. For example, as mentioned, a key feature of our simplistic case study is the absence of phenotypic 560 

plasticity. This can easily be integrated into the simulation. 561 

5. Conclusion 562 

We have highlighted here the use of genetic algorithms as a simulation framework for studying the effect of all 563 

components of the evolutionary process, by presenting a case study of five selection models and their effect on the 564 

evolutionary trajectory of a population. Although we emphasise that this outcome cannot be generalised to all possible 565 

correlated fitness landscapes, the results outlined here are nevertheless interesting: they highlight substantial differences 566 

in the way different assumptions about the evolutionary process influence the expected evolutionary trajectory. We hope 567 

that this modelling framework will be used to integrate both known and predicted characteristics of fitness landscapes in 568 

the study of evolutionary trajectories. The resulting findings will be useful both to evolutionary theorists and ultimately, 569 

if used to generate more accurate models of trajectories for existing populations, to empirical scientists.  570 
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