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Abstract 

To further our understanding of how gonadal steroids impact sleep biology, we 

sought to address the mechanism by which proestrus levels of cycling ovarian steroids, 

particularly estradiol (E2), suppress sleep in female rats. We showed that steroid 

replacement of proestrus levels of E2 to ovariectomized female rats, suppressed sleep to 

similar levels as those reported by endogenous ovarian hormones. We further showed that 

this suppression is due to the high levels of E2 alone, and that progesterone did not have a 

significant impact on sleep behavior. We found that E2 action within the Median Preoptic 

Nucleus (MnPN), which contains estrogen receptors (ERs), is necessary for this effect; 

antagonism of ERs in the MnPN attenuated the E2-mediated suppression of both non-

Rapid Eye Movement (NREM) and Rapid Eye Movement (REM) sleep. Finally, we found 

E2 action at the MnPN is also sufficient for sleep suppression, as direct infusion of E2 into 

the MnPN suppressed sleep. Based on our findings, we predict proestrus levels of E2 alone, 

acting at the MnPN, mediate sex-hormone driven suppression of sleep in female rats. 
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A. Introduction 

We have reported in adult female rats that sleep-wake behavior and neuronal 

activation in preoptic area sleep nuclei are highly sensitive to fluctuations in circulating 

E2. Sleep behavior in males, is completely insensitive to changes in gonadal steroids, both 

E2 and testosterone, due to developmental programming effects of gonadal steroids on the 

preoptic area sleep active nuclei.6,196 Thus, the preoptic area suggests itself as a potential 

site of E2 action on sleep. The ventrolateral preoptic area (VLPO) and the median preoptic 

nucleus (MnPN) are two key sleep-active nuclei involved in the onset and maintenance of 

sleep.159-160 Moreover, previous findings suggest sleep-active neurons in the VLPO are 

sensitive to fluctuations in ovarian steroids.7 E2 replacement following ovariectomy 

reduces neuronal activation of VLPO sleep active neurons as well as mRNA expression 

and protein levels of lipocalin-type prostaglandin D synthase (L-PGDS), the synthesizing 

enzyme for the somnogen prostaglandin D2.7,197 Together, these data suggest that E2 action 

in the preoptic area nuclei may alter critical factors involved in sleep and sleep homeostasis.  

In the current study, we sought to expand our knowledge of the mechanisms 

through which ovarian steroids regulate sleep-wake behavior in adult female rats and 

specifically determine if the preoptic area is the locus of these effects. Using an exogenous 

hormone replacement model that mimics the estrous cycle levels and timing of E2 and 

progesterone, we first tested whether E2 alone is sufficient to induce changes in sleep-wake 

behavior and sleep homeostasis or if progesterone has additional actions. Second, using 

pharmacological manipulations of local estrogenic signaling in the preoptic area sleep 

nuclei, with ER antagonism and local E2 infusion, we investigated whether E2 is necessary 

and sufficient to induce changes in sleep-wake behavior and homeostasis. These 
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experiments test the hypothesis that (1) E2 acting alone at the MnPN is (2) necessary and 

(3) sufficient to induce the changes in sleep seen with high hormone levels in cycling 

female rodents. 

 

B. Materials and Methods 

1. Animals. 

Adult female Sprague–Dawley rats (250-350g) were purchased from Charles River 

Laboratories (Kingston, N.Y.) and housed in the Laboratory Animal Facilities at the 

University of Maryland, School of Medicine under a reversed 12 h: 12 h dark: light cycle 

(Lights on at 9PM for Chapter II and experiments 1 and 3 in Chapter III, lights on at 6AM 

for Chapter III, experiment 2.) with food and water available ad libitum. In all experiments, 

zeitgeber time 0 (ZT 0) represents Lights ON. Due to logistical limitations, all experimental 

procedures were run in multiple cohorts, with all experimental groups represented in each 

cohort. All procedures were performed in accordance with the National Institutes of Health 

guide for care and use of laboratory animals. All experiments were approved by and were 

in accordance with the guidelines of the University of Maryland Institutional Animal Care 

and Use Committee. 

2. Gonadectomies and Transmitter/Cannula Implantation. 

 All surgeries were conducted under isoflurane anesthesia. All animals were 

ovariectomized (OVX) or castrated according to standard protocol and simultaneously 

implanted with TL11M2-F40-EET transmitters (Data Sciences International, St. Paul, 

Minn.). Briefly, animals were OVX using a dorsal incision followed by isolation and 

removal of the ovaries bilaterally. Males were castrated using a similar dorsal incision 

followed by isolation and removal of the testes. Using the OVX incision for females or 
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with a separate dorsal incision for males, a bipotential- lead transmitter (DSI Inc., St. Paul, 

Minn.) was implanted intraperitoneally. Another incision was made along the midline of 

the head and neck to expose the skull and neck muscle. Two burr holes were drilled 

asymmetrically and stainless-steel screws (Plastics One, Roanoke, Va.) were implanted at 

2 mm anterior/1.5 mm lateral and 7 mm posterior/1.5 mm lateral relative to the bregma. 

The four transmitter leads were threaded subcutaneously to the head incision. 

Electroencephalographic (EEG) leads were wrapped around the screws and secured with 

dental cement. Electromyogram (EMG) leads were implanted directly in the dorsal cervical 

neck muscle, approximately 1.0 mm apart, and sutured in place.  

 For experiments that required local injections into preoptic area nuclei (Chapter II 

experiments 2 and 3, Chapter III experiments 2 and 3) guide cannula were implanted. Three 

types of guide cannula were used. For MnPN infusion, a single guide cannula (C315G, 26-

gauge; Plastics One) targeted to the MnPN was implanted at a 9o angle at the stereotaxic 

coordinates 0.45mm posterior/ +1.0mm lateral/ 6.5mm ventral relative to bregma. For 

microdialysis (Chapter III experiment 2), the same posterior and lateral MnPN coordinates 

were used, with a depth of 6mm using a microdialysis cannula (SciPro Inc. #MAB-6.14.G, 

Sanborn, N.Y.). For VLPO infusion (Chapter II experiment 2), a bilateral guide cannula 

(C235G, 26-gauge; Plastics One) targeted to the VLPO was implanted at the stereotaxic 

coordinates 0.1mm posterior/ 1.0mm lateral/ 7.0mm ventral relative to bregma. In all cases, 

the cannula and EEG leads were secured together with dental cement. Upon insertion of 

the cannula, the opening was closed with a matching dummy provided by the respective 

cannula manufacturer. The skin along the head was sutured around the guide and dummy 

cap, and the dorsal incision was closed with wound clips. Fig. 17 and 42 are representative 
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images of the guide cannula placement. All animals were treated with antibiotic ointment 

and topical lidocaine as well as carprofen (5 mg/kg) postoperatively and then allowed 7 

days to recover before the start of the experiments. 

3. Data Collection and Sleep Scoring. 

Home cages with the telemeter-implanted animals were placed on receiver bases 

that continuously collected EEG and EMG data at 500Hz and transferred the data to a PC 

running Dataquest (Chapter II experiments 1-2) or Ponemah (Chapter II experiment 3 and 

Chapter III) software (both DSI Inc., St. Paul, Minn.). Digitized signal data was scored off 

line using NeuroScore DSI v3.3.9 (DSI Inc., St. Paul, Minn.). The EEG/EMG signals were 

parsed into 10 second epochs. A Fast Fourier transform (Hamming window, 4096 samples) 

was used to break down the EEG frequency bands (Delta (0.5-4Hz), Theta (4-8Hz), Alpha 

(8-12Hz), Sigma (12-16Hz), Beta (16-24Hz) Gamma (24-50Hz) and Total (0.5-50Hz)). 

The mean of the absolute value was calculated for the EMG data (bandpass 20-200Hz). 

These data were exported to Matlab (Matlab R2015, Mathworks, Natick, Mass.) where 

vigilant states were automatically scored using a custom program developed by the lab 

(DJP). In the automated program, scoring decisions were based on threshold levels of EEG 

delta power, theta power, the ratio of delta to theta, and the EMG activity. Data were 

normalized to the mean of the entire recording, then the median for each signal was used 

as a threshold (see table 1 below). The scoring data was reimported into NeuroScore using 

a custom Matlab program courtesy of Dr. Michael Rempe. The automated scores were 

visually confirmed in NeuroScore and changes were made where necessary. Table 1 

summarizes the gestalt paradigm used to assign sleep states, with determinations of low 
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and high made to each animal’s median value for the given parameter. The NeuroScore 

program was used to compile total time spent in wake, NREM, and REM sleep.  

The scored epochs were summed over the 12h dark phase and reported as the total 

time (in minutes) spent in each state (wake, total sleep, NREM sleep, and REM sleep). The 

percent change induced by E2 was calculated for each vigilance state: Percent change from 

oil baseline = [(estradiol_time – baseline_time) / baseline_time] x 100. 

EMG Delta (0.5-4Hz) Theta (4-8Hz) Sleep State 

High High OR Low High OR Low Wake 

Low High High NREM Sleep 

Low High Low NREM Sleep 

Low Low High REM Sleep 

Low Low Low Wake 

Table 1. Scoring Paradigm. This table describes sleep state scored by EEG/EMG inputs. 

Determinations of low and high are made relative to each animal’s median value for the 

given parameter. 

4. EEG Spectral Analysis. 

NREM Slow Wave Activity (NREM-SWA; a marker of sleep homeostasis), was 

assessed via EEG spectral distributions of NREM sleep bouts. Here, the scored bouts of 

NREM sleep were imported into Matlab. EEG power spectra were computed between 0.5 

- 20Hz in 0.25Hz stepwise bins. Each power bin was normalized to the mean total power 
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from the 24-hour baseline recording, then averaged into 6-hour epochs (ZT times 0-6, 6-

12, 12-18, and 18-0). 

5. Steroid Treatments. 

For experiment 1, all animals were administered 50uL of sesame oil on Day 1. 

Animals were subsequently administered 5 μg 17-β-estradiol benzoate in 50uL sesame oil 

(E2; Sigma-Aldrich, St. Louis, MO) on Day 2, and 10 μg E2 in 100uL sesame oil 24 h later 

on Day 3, or equivalent amounts (50uL/100uL) of sesame oil vehicle, through 

subcutaneous flank injections. On Day 4, animals received a dose of 500mg progesterone 

in 50µL sesame oil vehicle, or sesame oil vehicle control. Experiment 2 follows the same 

timing paradigm with the omission of the Day 4 progesterone injection. For experiment 3, 

5ug cyclodextrin-encapsulated E2 in 5uL saline (Sigma-Aldrich), or 5uL free cyclodextrin 

vehicle (Sigma-Aldrich), was infused directly into the MnPN in each of three successive 

injections 24 hours apart. Experimental manipulation and sleep data collection was 

performed at times from 4 to 36 hours after the second hormonal injection (see specific 

experiments below).  

6. Drugs and Infusion Paradigm. 

 Animals in experiment 1 comprised a single group that all received ovariectomy and 

identical hormone replacement as described above, with each animal’s individual baseline 

serving as a control. Animals in experiment 2 were randomly assigned into either the 

vehicle (VEH; 0.25% dimethyl sulfoxide (DMSO) in sterile saline) or ICI (50ng in 0.25% 

DMSO in sterile saline; Sigma-Aldrich) infusion groups, and reversed the following week 

for a second round of infusions. For targeted infusions to the VLPO, the dummy stylet was 

removed and replaced with a 33-gauge micro-infusion needle, which extends 2.0mm below 
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the tip of the guide cannula. For targeted infusions to the MnPN, the dummy stylet was 

removed and replaced with a 33-gauge micro-infusion needle (Plastics One), which 

extends 0.5mm below the tip of the guide cannula. The needle was connected to a Hamilton 

1705 RNR 50ul syringe (Hamilton, Reno, NV) via polyethylene tubing. A BASi Bee pump 

and Bee Hive controller (Bioanalytical Systems, Inc., West Lafayette, IN) was used to 

deliver ICI or VEH at a rate of 0.1μl/min. Following infusion, the needle remained in place 

for 5 minutes to ensure diffusion. ICI or VEH was infused 3 times per injection: (i) 6-12h 

prior to, (ii) 30 minutes prior to and (iii) 12h after injections (Fig. 16). Similarly, animals 

in experiment 3 received targeted infusions to the MnPN of cyclodextrin-encapsulated E2 

or cyclodextrin vehicle; the dummy stylet was removed and replaced with a 33-gauge 

micro-infusion needle (Plastics One), which extends 0.5mm below the tip of the guide 

cannula. The needle was connected to a syringe and controller as described above. The 

setup was used to deliver cyclodextrin-encapsulated E2 or cyclodextrin vehicle at a rate of 

0.1μl/min. Following infusion, the needle remained in place for 5 minutes to ensure 

diffusion.   

7. Cannula Placement Verification 

 At the end of each experiment, animals were overdosed with a ketamine/ 

acepromazine mix before being transcardially perfused with 0.9% saline + 2% sodium 

nitrite followed by 4% paraformaldehyde in 0.05M KPBS. The brains were removed and 

post-fixed overnight in 4% paraformaldehyde. Brains were cryoprotected in 30% sucrose 

in KPBS, frozen on dry ice, and stored at -80oC. Each brain was cut on a cryostat along the 

coronal plane at 30μm thick into 4 series and stored in an ethylene glycol-based storage 

solution at -20oC. Sections in each series are separated by 120μm.  
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 Sections corresponding to the VLPO and MnPN from one series were mounted on 

2% gelatin-coated slides. The slides were processed for cresyl violet (0.1% solution; cresyl 

violet acetate, Sigma-Aldrich) staining to examine cannula placement. VLPO hits were 

counted as placement within sections 32-36 of the brain atlas198 and MnPN hits were 

counted as placement within sections 33-35. For experiment 2 in the VLPO, one animal 

was a miss and excluded from the study, while 3 animals were euthanized prior to 

completion and removed from the study. For all MnPN cannulations, animals with cannula 

placement outside of this area were removed from analysis; 3 animals were removed. There 

was 1 animal in experiment 2 whose cannula placement was a miss but remained in the 

analysis; this animal was infused with VEH and her behavior was not different from hits. 

8. Statistical Analysis. 

 All data are represented as mean ± SEM. Two-way, repeated measure ANOVAs 

followed by Sidak post-hoc tests were run for each vigilance state to determine if direct 

VLPO and MnPN infusions significantly altered E2 effects on sleep-wake. Since this was 

a within-animal study, systemic injection (oil vs. E2) was the repeated factor and infusion 

(VEH vs. ICI) was the independent factor. An a priori comparison of interest was between 

the VEH and ICI infused E2 days of analysis. We ran an unpaired t-test to compare means 

on the E2 day between VEH and ICI infused animals. T-tests were used to compare E2 and 

VEH MnPN infusions and two-way, repeated measure ANOVAs followed by Sidak post-

hoc tests were run for analysis across the phase in 1h bins. Mann-Whitney U nonparametric 

tests were run to analyze differences between mean percent changes of each vigilance state. 

All statistical tests were conducted using the Graph Pad Prism program (San Diego, CA) 

on a PC. In all figures (*) denotes significance at p<.05, (**) denotes significance at p<.01, 
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(***) denotes significance at p<.001, and (****) denotes significance at p<.0001. 

C. Results  

Experiments 1 and 2 were originally performed by, and data for Experiment 2 collected 

by, Danielle M. Cusmano, PhD. Except where noted data has been reinterpreted by PCS. 

1. Estradiol is the Ovarian Steroid that Predominantly Influences Sleep-Wake 

Behavior in the Adult Female Rat. 

Our laboratory and others have demonstrated that exogenous E2 administration, 

which mimics the levels and timing of the fluctuations in endogenous hormones, markedly 

reduces time spent in NREM and REM sleep with a concomitant increase in the time spent 

in wake.6-8,80,110-111 However, these previous findings have only analyzed the 24 hours after 

the last injection of E2. To further explore and establish this model of ovariectomy 

followed by hormone replacement, which mimics the natural rise of E2 to peak proestrus 

level80 and also recapitulates the sleep patterns of intact females,7 we recorded and 

analyzed sleep across the treatment paradigm. We ovariectomized (OVX) female rodents 

and replaced E2 and progesterone globally through subcutaneous injection, in a cycle 

formulated to mimic endogenous hormone steroid levels. This replacement paradigm 

consists of an oil dose on Day 1 designed to mimic metestrus, a low 5ug E2 dose on Day 

2 designed to mimic diestrus, and a high 10ug E2 dose on Day 3 designed to mimic 

proestrus.80 (See “Steroid Treatments” in section II-B-3.) The advantage of this established 

model (ovariectomy; OVX + exogenous E2 replacement that mimics the gradual natural 

rise of E2 to peak proestrus levels) is the standardization and reproducibility of circulating 

E2 levels on specific recording days. Following the second E2 treatment, the animals were 
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divided into two groups and administered a physiological dose of progesterone (1mg; based 

on our established findings7 or vehicle (referred to as Post E2) on Day 4. (Fig. 7). 

Fig. 7. Timeline of Hormonal Recapitulation Experiment. Ovariectomized Female 

Sprague-Dawley Rats (n=17) were administered an oil injection on Day 1, 5ug of E2 on 

Day 2, and 10ug of E2 on Day 3. On Day 4, the animals were split into two groups, with 

one group being administered progesterone to mimic the estrous hormone milieu and one 

group being administered vehicle to solely examine solely the effect of E2. Sleep times 

were measured using EEG/EMG telemetry (DSI Inc. St. Paul, Minn.)  

 

a. Proestrus-Level Estradiol is Sufficient to Suppress Sleep 

As anticipated, in the dark phase, E2 significantly increased the time spent in wake 

at the expense of NREM. This change was present on the day of high E2 administration. 

(Fig. 8-9-10) compared to the oil baseline.  

Fig. 8. Proestrus-level E2 Suppresses Sleep and Increases Wake. Using a within animal 

design, we recorded EEG/EMG data from OVX adult rats treated with our standard dosing 

paradigm of 2 injections of E2 24 hours apart. On the day of high-dose E2 administration 

(Day 3), mimicking proestrus hormone levels, there is an increase in wake time and 

decrease in slow wave sleep time. This sleep change mimics the change in sleep on 

proestrus in naturally cycling rodents. (Repeated measure ANOVA; Wake main effect of 

treatment: F(2,29)=13.37, p<0.0001); (Repeated measure ANOVA; NREM main effect of 

treatment: F(2,29)=14.15, p<0.0001). 
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Conversely to the changes in wake (Fig. 9A), there was a significant decrease in 

NREM sleep time in the dark phase on the day of high E2 administration (Fig. 9B). E2 

administration also significantly decreased REM sleep. (Fig. 9C) 

 

Fig. 9 A-B-C. E2 Increases Total Dark Phase Wake Time and Decreases Total NREM 

and REM Sleep Time. (A) In the dark phase, animals showed a significant increase in 

wake time relative to oil on the day of high-dose E2 treatment (p=.0005). The low-dose E2 

treatment did not have a significant effect on wake, while the progesterone-treated animals 

did not show a significant difference in wake from their E2-only treated counterparts on 

the same day. (Repeated measure ANOVA; Wake main effect of treatment: F(2,29)=13.37, 

p<0.0001). (B) The high-dose E2 showed a significant decrease in NREM sleep time in the 

dark phase compared to both oil (p<.01) and low dose E2 (p<.01). (Repeated measure 

ANOVA; NREM main effect of treatment: F(2,29)=14.15, p<0.0001) (C) The high-dose 

E2 showed a significant decrease in REM sleep time in the dark phase compared to both 

oil (p<.001) and low dose E2 (p<.001). (Repeated measure ANOVA; REM main effect of 

treatment: F(2,29)=15.43, p<0.0001) 

 

It is interesting to note that on the day analogous to proestrus (Post E2), E2 

treatment abolished the mid-phase siesta by markedly increasing wake at ZT 14-16 

compared to the baseline and low E2 days (Fig. 10). This effect was not present in the light 

phase, with no significant change in light phase sleep time noted across any of the treatment 

days. (Fig. 11)  
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Fig. 10. E2-mediated Sleep 

Suppression is Most Prevalent 

in the Early Dark Phase. 

Analysis of the sleep time by 

hour across the treatment days, 

shows that wake time is not 

significantly different between 

the oil and low dose E2 at any 

treatment time. However, the 

high-dose E2 treatment showed 

a significantly higher wake time 

at six hourly time points, with 

the effect being particularly 

pronounced in the early dark 

phase (ZT-14-16) (Repeated Measure 2-way ANOVA; Main effect of treatment 

F(2,48)=46.50; p<0.0001. Sidak’s multiple comparison test, Oil vs. 10ug E2, ZT 1 p<.01, 

ZT5 p<.05, ZT 9 p<.05, ZT 14 p<.05, ZT 15 p<.001, ZT 16 p<.001) 

 

 

Fig. 11. E2 does not Affect Total Sleep or Wake Time in the Light Phase. There is no 

significant difference in (A) wake time, (B) NREM sleep duration, or (C) REM Sleep 

Duration across any treatment.  

 

b. Progesterone Has No Significant Additional Effect on Sleep-Wake States 

After showing the effects of E2 alone, a question remained over whether 

progesterone, which also rises on the afternoon of proestrus in natural cycling females, is 

influencing sleep and wake. Thus, to further validate our model, following the second E2 

treatment, on Day 4 the animals were divided into two groups and administered a 

physiological dose of progesterone (P; 1mg, which is a dose relevant to endogenous 

proestrus levels)199 or vehicle (referred to as Post E2). Moreover, we also analyzed sleep 
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times with and without progesterone. We found that progesterone had no significant effect 

on sleep-wake states, either wake, NREM, or REM, when compared to the analogous Day 

4 (Post E2) day (Fig. 12A-B-C).  

Fig. 12 A-B-C. Progesterone does not Affect Sleep Times. To compare for the effect of 

Progesterone, we split the cohort into two treatment groups on Day 4, one receiving 

progesterone on the day after high estrogen, 

recapitulating the estrus phase, and one 

receiving no additional treatment. There 

was no significant difference between the 

groups in (A) wake time, (B) NREM sleep 

time, or (C) REM Sleep Time. (Mixed 

Effect Model: treatment x time, Wake: 

F(4.08,46.9)=1.12, NREM: F(4.08,46.9)= 

1.15, REM F(4.08,46.9)=1.18) 

 

 Furthermore, we also analyzed NREM delta (0-4 Hz) power through Fourier 

transformation of the EEG signal, a widely used200-201 measure of the depth of homeostatic 

sleep, both with and without progesterone. When normalizing delta power to each animal’s 

baseline oil day (Day 1), we found no significant change in the relative delta power 

difference between progesterone-treated and untreated animals. However, in both groups, 

there was a decrease relative to oil baseline in the E2-treated animals (Fig. 13). Thus, these 

findings validate the ovariectomy + exogenous E2 (alone) model as a reliable experimental 

system that is amenable to local manipulation of sleep-active nuclei to more directly test 

how estrogens modulate the sleep-circuits and elicit changes in sleep behavior, and show 
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that global E2 action alone is sufficient to recapitulate sleep changes in naturally cycling 

rodents. 

Fig. 13. Progesterone Produces 

No Change in EEG Spectral 

Power. We compared power 

spectra of the progesterone and 

non-progesterone treated groups 

on Day 4 relative to their own 

Day 1 oil baseline. In both 

groups, we see a decrease in 

spectral power on the day of 

progesterone treatment, with no 

significant difference between 

the progesterone treated and E2 

only groups. 

 

c. Estradiol Decreases NREM-SWA Spectral Power 

To investigate these EEG power spectrum findings (Fig. 13) further, we examined 

the differences in EEG power between oil-treated and post-E2/E2+P animals, comparing 

each animal’s Day 1 and Day 4 readings. The power frequency distribution of dark phase 

NREM-SWA from the females used in the progesterone experiment was compared 

between Oil versus the day post-E2, which represents the period of the greatest NREM 

sleep loss following E2 administration, with or without progesterone. We found that there 

was no significant change in power across all sleep states during either the first half (Fig. 

14A) or second half (Fig. 14B) of the light phase. However, during the dark phase, 

significant changes were observed. Given the significant decrease in dark phase NREM 

sleep (~40%), we expected the NREM-SWA frequency distribution in the 0.5-4.0 Hz bands 

to be significantly greater following E2 treatment. However, E2-treated animals, both with 

and without progesterone, showed a significant decrease in EEG power in the low 

frequency ranges, particularly in the delta band. (Fig. 14C) Comparisons of the normalized 
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percent of total power spectral distribution revealed that E2 significantly decreased the dark 

phase power of the 1-2.5 Hz bands, which typically represent the highest level of cortical 

synchronization and thus high-quality sleep, suggesting a decreased level of deep, 

homeostatically restorative sleep. In the second half of the light phase, the effect of lowered 

EEG power with E2 was less-pronounced, (Fig. 14D) but appeared to be present over a 

broader range of frequencies, including in the theta band. These results suggest that the 

decrease in NREM sleep time in E2 also manifests as a decreased level of deep, 

homeostatically restorative sleep, and that E2 may attenuate the build-up of SWA under 

normal physiological conditions. 

Fig. 14 A-B-C-D. E2 Decreases Spectral Power in the Dark Phase, Particularly in 

the Delta Band. We examined the spectral power across all animals on Day 1, the day of 

oil treatment (Oil), Day 4, the day of progesterone treatment (P) following E2, or the 

following Day 5 (Recovery). (See Fig. 7) There was no significant change in spectral 
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power at any frequency in the light phase, either the ZT 0-6 early portion (A) or the ZT 6-

12 later portion (B). In the dark phase, however, there was a pronounced decrease in 

normalized power at low frequencies, particularly in the delta and theta ranges in the first 

half of the dark phase ZT 12-18 (C), when sleep times are most affected by E2. These 

low power ranges have been shown to be important for homeostatically restorative sleep. 

(REML Mixed-Effects model with multiple comparisons, main effect of hormone, F (19, 

200) = 105.9, p<.001, interaction of hormone X time, F (57, 580) = 1.484, p<.05) In the 

second half of the dark phase ZT18-0 (D) there was a significant decrease in the Theta 

and Alpha frequency ranges as well as the Delta. (REML Mixed-Effects model with 

multiple comparisons, main effect of hormone, F (19, 200) = 141.0, p<.0001, interaction 

of hormone X time, F (57, 580) = 1.901, p<.001)  

 

2. Estrogen Receptor Antagonist Action at the MnPN but not the VLPO of Adult 

OVX Females Attenuates Estradiol Mediated Suppression of Sleep. 

 

a. ER Alpha Expression is Present at High Levels in the Female MnPN but not the 

VLPO. 

 Building on those results, we next attempted to determine if the POA circuitry is 

necessary to drive these effects. Over the past decade, numerous studies using various 

techniques have convincingly demonstrated that neurons in the VLPO and the MnPN are 

involved in sleep-regulatory mechanisms.159-160 The VLPO and MnPN reportedly have 

complementary roles in the maintenance of sleep, as they both (i) have a predominant 

number of sleep-active cells (i.e., the number of Fos-ir neurons increases following 

episodes of sustained sleep but not sustained waking),84,160 (ii) have a high concentration 

of neurons with elevated discharge rates during both NREM and REM sleep compared to 

waking (i.e. sleep-active discharge pattern),172 and (iii) are thought to function to promote 

and sustain sleep by inhibiting key arousal centers via descending GABAergic (MnPN) 

and GABAergic/galaninergic (VLPO) projections 166,169-171 Here we investigate whether 

estrogen receptors were present in these sleep- associated nuclei. Immunocytochemistry 

using polyclonal antibodies against ER alpha demonstrated a significantly greater 
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population of ER alpha positive cells in the MnPN compared to the VLPO (Fig. 15). These 

findings show that the MnPN appears to be the major seat of E2 sensitivity in these active 

sleep circuits. 

Fig. 15. (Figure from DMC) 

Estrogen Receptors are 

Highly Expressed in the 

Female MnPN. Staining for 

Estrogen Receptors (ER) show 

there is a high concentration in 

the MnPN but not the VLPO 

of females. (Student’s t-test, *, 

p<0.05 vs. VEH). 

 

b. ER Antagonist Infusion to the MnPN Partially Rescues E2-Mediated Sleep 

Suppression 

Building on the presence of E2-receptors in these nuclei, we attempted to test if the 

MnPN is necessary to mediate E2 actions on NREM sleep. Using the same exogenous E2 

replacement paradigm shown to produce effects on sleep, we then cannulated the VLPO 

and the MnPN and infused ICI-182-780 (ICI), an estrogen receptor (ER) antagonist. This 

study attempts to determine if estrogen receptor (ER) signaling is required in either region 

for E2 suppression of sleep. These experiments show that blocking ER signaling at the 

MnPN, but NOT the VLPO, is able to ameliorate E2-mediated sleep suppression.  

 Due to greater expression of ER alpha in the MnPN, we ran a preliminary cohort 

of infusion of the direct estrogen receptor antagonist ICI 182,780 (ICI) into the MnPN. 

OVX rats were hormonally replaced with E2 or Oil, using the same paradigm as in 

experiment 1. However, on days of E2 administration, an ER agonist, ICI, was also infused 

locally into the MnPN. (Fig. 16). Cannula targeting was confirmed by histology (Fig. 17).  

Fig. 16. Timeline of ER Antagonism Experiment. Ovariectomized Sprague-Dawley rats 

(n=15) were treated with hormone replacement of either E2 or Oil using the same paradigm 
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as in fig. 1-3 (5ug Day 1, 10ug Day 2) and cannulated to the MnPN. A subset of the animals 

(n=8) were treated as well with the Estrogen Receptor antagonist ICI through direct local 

infusion to the MnPN and the others (n=7) were treated with vehicle. Sleep behavior 

measured with EEG/EMG telemetry (DSI Inc., St. Paul MN). 

 

 Fig. 17. Representative Image of MnPN 

Probe Placement. Probe placement to the 

MnPN was confirmed histologically. 

 

The effects of ICI in the MnPN on 

E2 suppression of sleep were moderate to 

high for wake (d = 0.67), total sleep (d = 

0.67), NREM sleep (d = 0.5), and REM 

sleep (d = 1.36), prompting further investigation. In all groups, systemic E2 significantly 

modulated sleep-wake behavior; there was a main effect of E2 treatment for wake, total 

sleep, NREM sleep, and REM sleep during the dark phase. E2 treatment increased the time 

spent in wake and decreased sleep, both NREM sleep and REM sleep during the dark 

phase. In this study, pairwise comparisons of VEH infused animals given oil then E2 

revealed that E2 treatment increased wake duration and decreased total sleep and REM 
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sleep. Direct infusion of ICI into the MnPN significantly attenuated these effects during 

the dark phase, for both Wake and NREM sleep (Fig. 18A-B).  

Fig. 18 A-B. ER Antagonist ICI Reduces Wake Time and increases NREM Sleep 

Versus E2 Replacement. (A) Injection of ICI against a background of E2 treatment 

reduced wake time across much of the dark phase, with statistically significant decreases 

from ZT 12-16 (p<.001) and ZT16-20 (p<.001). There was no significant difference 

between ICI-treated and ICI-untreated animals without E2 replacement. (B) Injection of 

ICI against a background of E2 treatment increased NREM time across much of the dark 

phase, with statistically significant increases from ZT 12-16 (p<.001) and ZT16-20 

(p<.001). There was no significant difference between ICI-treated and ICI-untreated 

animals without E2 replacement. Main effect of E2 treatment for wake, (F1,12 = 53.48, p < 

0.001)/ (t5 = 2.56, p = 0.05), total sleep (F1,12 = 53.48, p < 0.001)/ (t5 = 2.68, p = 0.04), 

NREM sleep (F1,12 = 39.93, p < 0.001) and REM sleep (F1,12 = 57.03, p < 0.001)/ (t5 = 2.78, 

p = 0.04) during the dark phase.  

 

Animals who received direct infusions of ICI into the MnPN acquire about 47 

minutes less wake than VEH and about 37 more minutes of NREM sleep and 10 more 

minutes of REM sleep (Fig. 19) during the dark phase. The percent change in wakefulness 

induced by E2 was not significantly different between VEH and ICI infusion groups. 

However, the percent changes in total sleep, NREM sleep, and REM sleep induced by E2 

were significantly attenuated by ICI during the dark phase. As anticipated, the saline/E2 

treated animals had significantly increased wake and reduced NREM sleep during the dark 

phase following the last injections. However, treatment with ICI (ICI/E2) blocked this E2 

mediated effect, partially rescuing keeping NREM and REM sleep, and inhibiting 
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additional wake, to near baseline levels (Fig. 19). Keeping with the lack of significant effect 

of E2 in the light phase (Fig. 11), there was no effect of ICI on sleep times in the light 

phase (Fig. 20). 

Fig. 19. ICI Treatment 

Partially Rescues E2-

Mediated Dark Phase Sleep 

Suppression. We also 

compared total sleep time 

relative to each animal’s oil 

baseline recording, both with 

E2 treatment and vehicle and 

E2 and ICI treatment. (F) 

During the Dark Phase, ICI 

treatment partially rescued 

the E2-mediated decrease in 

sleep, both in NREM and 

REM phases, leading to an 

increase in sleep time relative 

to E2+Vehicle animals. (Dark 

phase two-way ANOVA; 

main effect of treatment, 

Wake: F(3,26) = 9.157; 

p<0.0005, NREM: F(3,26) = 

14.86 p<0.0001) 

Wake (t12 = 2.376, P = 0.04) 

NREM sleep (t12 = 2.158, p = 

0.05) REM sleep (t12 = 2.518, 

p = 0.03) 

  

Fig. 20. ICI does not 

Significantly Change Sleep 

in the Light Phase. As E2 

did not have significant effects on sleep in the light phase relative to oil baseline, there was 

no effect of ICI antagonism of ERs in in the light phase relative to E2 treatment alone. 

 

c. ER Antagonist Infusion to the VLPO Does NOT Rescue Sleep Behavior 

Conversely to the MnPN, in the VLPO, infusions of ICI in the presence of systemic 

E2 had no effect on NREM or wake. Findings suggest that ICI infusion into the VLPO 

does not attenuate E2 effects on wake and sleep (Fig. 21A-B). Therefore, our data 
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demonstrate that E2 acting directly in the MnPN and not the VLPO is necessary to attenuate 

NREM sleep, and that the inhibitory effect of E2 on sleep behavior is mediated by E2-

expressing cells in the MnPN.  

Fig. 21 A-B. (Figure from 

DMC) ICI Infusion to the 

VLPO does not Change E2-

Driven Sleep Behavior. 

Unlike infusion into the MnPN, 

infusion of ICI into the VLPO 

did not affect wake time, total 

sleep time, or REM sleep time, 

either (A) in overall time or (B) 

change from oil control 

baseline. The effect size of the 

preliminary cohort for wake (d 

= 0.51), total sleep (d = 0.51), 

NREM sleep (d = 0.58), and 

REM sleep (d = 0.24) indicate 

any effect of ICI in the VLPO 

on E2 suppression of sleep was 

small to moderate. 

 

3. Direct Infusion of Estradiol into the MnPN Increases Wake and Suppresses Sleep. 

Finally, we investigated whether E2 is sufficient to suppress sleep. To test this aspect of 

the signaling, we replaced the global subcutaneous administration of E2 with direct local 

infusion into the MnPN, to determine if E2 acting specifically at that nucleus is sufficient 

to reduce sleep. These studies will address whether estrogen receptor signaling in the 

VLPO and/or the MnPN is the key site of action for the E2-mediated suppression of sleep 

in metrics of both necessity and sufficiency. OVX female rats were implanted with 

EEG/EMG telemeters and guide cannula to the MnPN. After recovery, animals were 

infused with 3 doses of cyclodextrin- encapsulated E2, a water soluble form of E2, or 

equivalent amount of free cyclodextrin vehicle. This treatment was performed over 3 

successive days at ZT18. (Fig. 22). 
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Fig. 22. Timeline of Direct E2 Infusion 

Experiment. Female Sprague-Dawley rats 

(n=9) were ovariectomized and implanted with 

EEG/EMG telemeters and guide cannula to the 

MnPN. After recovery, animals were infused 

at ZT18 with 5ug cyclodextrin- encapsulated 

E2 in 5uL sterile saline, or 5ug cylodextrin 

vehicle in 5uL sterile saline. The same 

treatment was repeated for 3 successive days. 

After a 4-day washout, animals were subjected 

to the other treatment. Sleep architecture was 

quantified.  

The significant differences in wake and NREM sleep were observed only in the 

light phase following the second injection. E2 infusion showed sleep suppression during 

the light phase on the second day of 

treatment, which significantly 

increased wake (Fig. 23) and 

decreased NREM sleep (Fig. 24) over 

the entirety of the light phase. There 

was no change in REM sleep (Fig. 25). 

In agreement with previous results 

showing a lack of hormone effects on 

sleep in males,8 ICI treatment showed 

no effect in males. 

Fig. 23 A-B. Direct E2 Infusion Increases Dark Phase Wake. E2-treated animals 

showed an increase in wake time in the 2nd light phase (p=.03, two-way ANOVA, main 

effect from ZT0-12 on treatment day 2). Lower Panel is increased detail of boxed region. 
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Fig. 24 A-B.> Direct E2 Infusion Tends 

Toward a Decrease in Dark Phase NREM 

Sleep. There was no significant difference in 

NREM sleep time between the two groups, 

though the E2-treated animals did show a 

trend (p=.10 main effect, two-way ANOVA 

ZT 0-12 day 2 of treatment) toward lower 

sleep time in the second light phase.  

<Fig. 25 A-B. Direct E2 Infusion Has No 

Significant Effect on REM Sleep. There was 

no significant difference in REM sleep time 

between the two groups.  

a. Estradiol Infusion Decreases NREM-SWA 

We analyzed EEG spectral power in the second light phase with and without E2. 

While there was no significant change in NREM Delta Power over the entirety of the 

experiment, analysis of the second light phase showed decreases in delta power across 

many time points, particularly in the early part of the period (Fig. 26)  

Fig. 26. E2 Infusion Decreases NREM 

Delta Power. We analyzed the spectral 

power with and without E2. NREM Delta 

Power from E2-treated animals shows a 

significant decrease in several time points in 

the second light phase relative to oil controls. 

(Repeated Measures two-way ANOVA, main 

effect of hormone, F (1, 9) = 3.228P = 0.1059 

post-hoc Sidak’s multiple comparison test, 

ZT 13 p<.01, ZT 14 p<.001, ZT 16 p<.001, 

ZT 17-18 p<.01, ZT 20-21 p<.01)  
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Further spectral analysis of this period shows that the effect is concentrated in the 

lowest frequencies of the delta band (below 2Hz), showing a decrease in the most 

coordinated brain waves that signify deep homeostatic sleep. (Fig. 27) Together, these 

findings strongly suggest that the MnPN is a direct mediator of E2 actions on sleep, and 

that E2 action at the MnPN is both necessary and sufficient for estrogenic effects on sleep. 

Fig. 27. Direct Infusion of E2 Changes Power Most Significantly in the Low Delta 

Band. Spectral Fourier analysis 

revealed the decrease in delta power 

was localized to a particular portion of 

the low delta band, with the difference 

between E2 and vehicle significant at 

the 1.25 (p<.001), 1.5 (p<.0001), 1.75 

(p<.001), and 2 (p<.01) Hz bands. 

(Repeated Measures two-way 

ANOVA, main effect of hormone, F 

(1, 9) = 4.129, post hoc Sidak’s 

multiple comparison test, 1.25Hz band 

p<.001, 1.5Hz band p<.0001, 1.75Hz 

band p<.001, 2Hz band p<.01). 

 

D. Discussion 

Previous research studies using rodent models describe the changes in sleep across 

the female estrous cycle and following gonadectomy.7-8,76,80 Studies consistently reported 

that E2 suppresses NREM sleep and REM sleep in females, while changes in gonadal 

steroids cause little to no change in sleep in males. Here, we sought to address the 

mechanism by which proestrus levels of cycling ovarian steroids suppress sleep in females. 

We show that after hormone replacement of proestrus levels of E2, the suppression of sleep 

by endogenous hormones may be recapitulated. We further show that this suppression is 

due to the high levels of E2 alone, and that progesterone, the other major circulating ovarian 

steroid, did not have a significant impact on sleep behavior. Extending these findings, we 

found that E2 has direct actions within the sleep-active POA, specifically in the MnPN, 
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which contains estrogen receptors (ERs). Antagonizing of ERs in the MnPN, but not the 

VLPO, attenuated the E2-mediated suppression of both NREM and REM sleep. We finally 

found that, in addition to E2 actions at the MnPN being necessary for E2 suppression of 

sleep, it is also sufficient, as the direct infusion of E2 into the MnPN suppressed sleep with 

no other intervention. Based on our findings, we predict that proestrus levels of E2 alone, 

acting at the MnPN, mediate sex-hormone driven suppression of sleep in female rats. 

From our findings, we further predict that E2 is both necessary and sufficient to 

reduce the activation of MnPN sleep active cells, thereby releasing the inhibitory tone on 

downstream targets. The MnPN contains GABAergic sleep-active projection neurons, 

which innervate the lateral hypothalamus and multiple brainstem nuclei.166 GABAergic 

MnPN neurons have direct inhibitory control over the orexinergic neurons in the 

perifornical area/ lateral hypothalamus.167 These orexinergic neurons are a key source of 

arousal signaling, suggesting a sleep-promoting mechanism of the MnPN. Since ICI had 

little to no effect within the VLPO, while E2 in the MnPN was sufficient to induce changes, 

E2 is most likely acting predominantly on the MnPN and not acting directly on the neural 

circuits of the VLPO. However, as the MnPN also innervates the VLPO,168 a decrease in 

MnPN activation by E2 may elicit a similar decrease downstream in the VLPO. 

Additionally, the sex difference in MnPN ERexpression may account for the difference 

in sensitivity of males and females to the suppressive effects of E2 on sleep.8 

1. Potential Molecular and Neurological System Mechanisms of Estradiol Effects on 

Sleep 

Beyond the question of a site of action, the question of how, in terms of molecular 

and neurological mechanism, E2 may be meditating sleep effects is an important one. Two 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 29, 2020. ; https://doi.org/10.1101/2020.07.29.223669doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.29.223669


27 
 

distinct systems govern aspects of sleep regulation, the circadian wake system and the 

homeostatic sleep pressure system, which operate in concert to generate an overall sleep 

pressure that is responsive to both the animal’s intrinsic homeostatic needs as well as 

external factors such as the light-dark cycle. The homeostatic sleep pressure system, which 

governs the amount of sleep needed after a given period of wake to maintain homeostasis, 

independent of circadian factors, is thought to utilize both the VLPO159 and MnPN5 as key 

originators of this pathway. The VLPO and MnPN send GABAergic projections to key 

mediators of the wake state, including nuclei in the lateral hypothalamus governing the 

orexinergic wake system.5 Additionally, the VLPO and MnPN have been shown as sites of 

sensitivity to adenosine, an important mediator of homeostatic sleep pressure.151 Further 

exploration of these molecular and neurological pathways could provide greater insight 

into precisely how E2 is affecting sleep need and behavior. 

E. Conclusion 

Rodents provide a model system for studying the mechanism underlying the 

sensitivity of the sleep circuitry and behavior to E2. Such a model is highly significant in 

the identification of neuronal targets for E2 within the sleep circuitry. Here, we describe 

the key role of E2 alone in modulating sleep behavior, as well as provide first clear 

evidence of a direct role for E2 in a sleep-active nucleus. The identification of the MnPN 

as a direct site of E2 action, showing that it is both necessary AND sufficient for induction 

of estrogenic effects on sleep, now allows for more mechanistic research to determine how 

E2 is suppressing sleep in females. Understanding the circuits that E2 can act on to regulate 

sleep may enable better drug development and treatment of sleep disorders in the clinical 

population. 
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