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Abstract  

Biological interactions are prevalent in the functioning organisms. Correspondingly, statistical 
geneticists developed various models to identify genetic interactions through genotype-
phenotype association mapping. The current standard protocols in practice test single variants 
or single regions (that contain multiple local variants) sequentially along the genome, 
followed by functional annotations that involve various aspects including interactions. The 
testing of genetic interactions upfront is rare in practice due to the burden of testing a huge 
number of combinations, which lead to the multiple-test problem and the risk of overfitting. 
In this work, we developed interaction-integrated linear mixed model (ILMM), a novel model 
that integrates a priori knowledge into linear mixed models. ILMM enables statistical 
integration of genetic interactions upfront and overcomes the problems associated with 
combination searching.    

Three dimensional (3D) genomic interactions assessed by Hi-C experiments have led to 
unprecedented biological discoveries. However, the contribution of 3D genomic interactions 
to the genetic basis of complex diseases has yet to be quantified. Using 3D interacting regions 
as a priori information, we conducted both simulations and real data analysis to test ILMM. 
By applying ILMM to whole genome sequencing data for Autism Spectrum Disorders, or 
ASD (MSSNG) and transcriptome sequencing data (GTEx), we revealed the 3D-genetic basis 
of ASD and 3D-eQTLs for a substantial proportion of gene expression in brain tissues. 
Moreover, we have revealed a potential mechanism involving distal regulation between 
FOXP2 and DNMT3A conferring the risk of ASD.   

Software is freely available in our GitHub: https://github.com/theLongLab/Jawamix5  

Keywords: Genotype-phenotype association mapping; Genetic interaction; Linear mixed 
model; 3D genomic interactions; Autism spectrum disorder.   
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Introduction  

Genotype-phenotype association mapping has revealed thousands of loci associated with 
complex traits. As genes function by various forms of interactions and no gene operates in a 
vacuum (Costanzo et al. 2016; Phillips 2008), it is possible that the discovered single-gene 
associations may represent only the tip of an iceberg of the genetic-basis of complex 
disorders. In Statistical Genetics, genetic interaction is defined as the non-linear effects 
between multiple loci (Baryshnikova et al. 2013). Although researchers have developed many 
statistical models aiming to discover the role of genetic interactions underlying complex 
disorders (Fang et al. 2019; Greene et al. 2015; Jansen et al. 2019a; Miguel-Escalada et al. 
2019; Watson et al. 2019; Wen et al. 2016), single locus analyses such as single variant 
models (Kang et al. 2010) or approaches jointly analyze multiple local variants in a single 
regions (Wen et al. 2016; Wu et al. 2010) are still dominant in the practice of association 
mapping (Jansen et al. 2019b; Watson et al. 2019). This may be partly due to the difficulties 
of interpreting the large number of outcomes from interaction analyses as well as the problem 
of multiple-test and overfitting (Cordell 2009). In contrast, researchers frequently utilize 
information regarding interactions, such as chromatin status (Tak and Farnham 2015), 
transcriptional regulations (Gallagher and Chen-Plotkin 2018), and protein bindings (Mao et 
al. 2016) and others (Schork et al. 2013), from various databases (Gallagher and Chen-Plotkin 
2018; Ward and Kellis 2012) as sources for downstream annotations of peaks from single-
region association mappings. On the other front, many methods quantitatively integrate 
single-locus functional information in association studies were also developed (Kichaev et al. 
2019; Lu et al. 2016; Pickrell 2014; Sveinbjornsson et al. 2016; Yang et al. 2017). Moreover, 
methods integrating known biological network information in association studies were also 
recently proposed (Carlin et al. 2019), although genetic principle (e.g., heritability) was 
omitted in building such models. To our best knowledge, there is no tool of association 
mapping that integrates a priori, however yet incomplete, knowledge of interactions of 
multiple genomic regions into the statistical genetic models. 

In this work, we developed ILMM, Interaction-Integrated Linear Mixed Model, a novel tool 
integrating a priori knowledge of genetic interactions with a statistical test to map 
associations between interacting genetic regions and the phenotypic variations. By leveraging 
a linear mixed-model, ILMM only requires the knowledge of the potential genetic regions; 
ILMM can test the existence of joint effects when the actual mechanism of interaction is 
unknown (Methods & Materials). By integrating biological a priori knowledge into the 
statistical models, ILMM has two major advantages over state-of-the-art models. First, as 
mentioned above, models searching for potential combinations of genetic loci de novo may 
lead to an astronomical number of candidates (Hoh and Ott 2003). However, ILMM tests a 
controllable number of combinations based on prespecified interacting regions, therefore, 
significantly relieving the risk of overfitting and the burden of multiple-test corrections. 
Second, instead of conducting statistical tests and the interpretation of interactions 
sequentially, ILMM allows simultaneous modeling and quantitative assessment of a priori 
partial knowledge using genetic and phenotypic variations in the disease cohort. ILMM 
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moves the efforts of collecting biological knowledge of interactions from downstream 
annotations to the upstream statistical tests. This is a meaningful innovation because the test 
P-values specifically quantify the strength of associations in terms of interactions as well as 
genetics rather than simply labelling marginal significance of a single gene as “found” or “not 
found” in the interactions databases.  

The three-dimension (3D) chromatin structure is an important mechanism altering gene 
transcriptions that has been extensively studied for several years (Eres et al. 2019; Mah and 
Won 2019; Melo et al. 2020; Miguel-Escalada et al. 2019; Rao et al. 2014; Won et al. 2016). 
In addition to many biological insights revealed by the 3D structure of genomes, a 
fundamentally new view for statistical geneticists is that genes that are far apart when placed 
in the one-dimensional view could actually be spatially close to each other in 3D space when 
they function. This insight may bring a paradigm shift to statistical genetics, although more 
rigorous statistical analyses are required. A recent study suggested that the topologically 
associating domain (TAD) generally does not overlap with linkage disequilibrium (LD) block 
in large scale (Whalen and Pollard 2019). However, it is still unclear whether genetic 
interactions between the regions that are spatially close in a 3D domain exist and whether 
such interactions are functionally relevant to complex traits. Researchers have recently used 
3D information in annotating peaks in association mappings (Fu et al. 2018; Giusti-Rodriguez 
and Sullivan 2019; Yu et al. 2019), however not integrated with association mapping models.  

To illustrate the use of ILMM and further our understanding of the contribution of 3D 
genome structure to complex traits, we applied ILMM to multiple datasets of autism spectrum 
disorder (ASD) (Neale et al. 2012; Yuen et al. 2017) and gene expression data of 9 brain 
tissues and whole blood in the GTEx dataset (Aguet et al. 2017; Ardlie et al. 2015). In the 
analysis, we considered the interacting regions in 3D structure in brain tissues, assessed by 
Hi-C experiments (Rajarajan et al. 2018), as a priori information, and used them in the 
association mapping. We call this process 3D-Genome-wide association study, or 3D-GWAS. 
Indeed, we discovered interesting associations between 3D structure and ASD and 
expressions, which we called 3D-genetic basis of complex traits and 3D eQTLs, respectively. 
Additionally, we have identified substantial overlap between ASD and expressions in terms of 
3D genetics, indicating pleiotropy effects shared by ASD and gene expressions. Through in-
depth analysis of transcription factor binding motifs and protein docking, we have also 
revealed a mechanism underlying ASD that involves distal regulation between FOXP2 and 
DNMT3A. 

This paper will explain the design intuition of ILMM, followed by its mathematical 
formulations. The simulations under various interaction mechanisms will be presented to 
demonstrate the universal power of ILMM which is robust to unknown mechanisms, 
contrasting to state-of-the-art alternatives. After that, analyses of real data and outcomes will 
be presented. Finally, limitations and future extensions will be discussed.   
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Materials and Methods  

Design principle of ILMM.  

Multiple genetic regions can jointly alter the phenotype through various mechanisms, 
including epistasis (Bateson 1903; Mackay 2014), compensatory (Brown et al. 2010), 
heterogeneity (Madsen et al. 2011), or sometimes just additive (Madsen et al. 2011). 
Designing a general model to test interactions without knowing a specific mechanism could 
be tricky. A test that exhaustively verifies all potential known mechanisms would lead to 
substantial risk of overfitting and multiple-test burden; not to mention the lack of a complete 
list on all potential mechanisms. We took advantage of a specific angle underlying the linear 
mixed models; linear mixed models (LMM), although being called “linear”, can capture 
interactions implicitly. Although the pattern of genetic interactions could be complicated and 
largely unknown, the probability for two individuals carrying the same combinations of 
alleles at multiple genetic loci is proportional to the overall genetic similarity in these loci 
(e.g. identity by descendant). This similarity can be naturally captured by the genomic 
relationship matrix (GRM), which serves as the variance-covariance matrix in a multivariate 
normal distribution (MVN) of a random term in LMM.  

Based on the above rationale, we designed ILMM by embedding the focal genetic regions 
into an LMM (Fig. 1). In this LMM, we have two random terms: one term employs the 
whole-genome GRM as the variance-covariance matrix in its MVN, while the other term 
employs a “interacting regional” GRM as its variance-covariance matrix. The interacting 
GRM is calculated using genetic variants in the regions that are suspected to have 
interactions, e.g., the two regions that are interacting in 3D space (revealed by a Hi-C 
experiment) (Fig. 1). Using such an LMM model, we aggregate the genetic variants in regions 
that are potentially interacting into the “regional” random term; and the rest contributions 
(i.e., other genes or population structure) are captured by the “global” random term using the 
whole-genome GRM.  

Mathematical formulations. 

We use 𝑌𝑌 to denote the phenotype, 𝑈𝑈𝑖𝑖 to denote the interaction term capturing the 
interacting regions, and 𝑈𝑈𝑔𝑔 to denote the random term capturing the rest contribution. Our 
model then becomes: 

𝑌𝑌 = 𝑈𝑈𝑖𝑖 + 𝑈𝑈𝑔𝑔 + 𝜀𝜀  (1) 
Where 𝑈𝑈𝑖𝑖 ∼ MV𝑁𝑁�0,𝜎𝜎𝑖𝑖2𝐾𝐾𝑖𝑖�, 𝑈𝑈𝑔𝑔 ∼ MV𝑁𝑁�0,𝜎𝜎𝑔𝑔2𝐾𝐾𝑔𝑔�, and 𝜀𝜀 ∼ MV𝑁𝑁(0,𝜎𝜎𝑒𝑒2𝐼𝐼). 
where 𝐼𝐼 is the identity matrix, 𝐾𝐾𝑔𝑔 is the GRM calculated using the whole genome variants: 

𝐾𝐾𝑔𝑔 = 1
n
𝑋𝑋𝑇𝑇𝑋𝑋, where 𝑋𝑋 is the centralized and standardized genotype matrix and n is the 

number of variants in whole genome. Denoting the corresponding centralized and 
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standardized genotype matrix in the m-th focal region (m = 1,2, …, M) as 𝑋𝑋𝑚𝑚, and the 

combined genotype matrix 𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖 = (𝑋𝑋1, … ,𝑋𝑋𝑚𝑚) then 𝐾𝐾𝑖𝑖= 1
n𝑖𝑖𝑖𝑖𝑖𝑖

𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖𝑇𝑇𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖. , where n𝑖𝑖𝑖𝑖𝑖𝑖  is the 

total number of variants in all the m regions. The model is solved using an integration of de-
correlation of the global GRM and the low-rank trick proposed by FaST-LMM (Lippert et al. 
2011). The details of the mathematical derivations are in Supplementary Materials.  

Software implementation.  

ILMM is implemented as a function in our existing software Jawamix5 (Long et al. 2013; 
Xiong et al. 2019) that employs memory virtualization techniques (or “out-of-core” in 
computer science) based on HDF5 libraries. The software is scalable to very large genomic 
dataset that cannot be loaded into memory. The data file is stored in the disk with highly 
effective indexing so that the calculation is as fast as though the data were resided in the main 
memory (RAM).  

Procedure of simulations and type-I error adjustment.  

We thoroughly tested ILMM via simulations, contrasting to state-of-the-art alternatives. The 
control dataset of Wellcome Trust Case-Control Consortium (WTCCC) (Burton et al. 2007) 
were used as the template genotype (N=2,938).  

To prepare a priori knowledge, we first collected a list of potential 3D-interacting pairs of 
regions, which has been reported by other researchers by conducting Hi-C experiments in 
brain tissues (Rajarajan et al. 2018; Watson et al. 2019; Won et al. 2016). Here, we utilized a 
Hi-C assessment in the developing brain which has 27,982 brain-specific paired 3D-
interacting regions, measured from neurons derived from human induced pluripotent stem 
cells (hiPSCs) (Rajarajan et al. 2018). This dataset is available in the Synapse database 
(https://www.synapse.org/) with Synapse ID: syn12979149.  

During each round of simulation, a pair of interacting regions was randomly selected. We 
then randomly selected 5 genetic variants in each region as causal to form the genetic 
contribution from the region. These 5 variants were modeled using a combination of “additive 
model” and “heterogeneity model”: the aggregated contribution from a region will be 0, 1, or 
2 if there are 0, 1 or 2 alternate alleles in the 5 variants, reflecting an additive pattern. 
However, if there are more than 3 alternate alleles, the total contribution is still 2, reflecting 
heterogeneity pattern in which different mutations can cause phenotypic changes 
independently. Based on the regional contributions, the total genetic contribution to 
phenotypes were simulated using four mechanisms of joint contributions from multiple 
genetic regions; the models used are the additive model, epistasis model, heterogeneity model 
and compensatory model, defined in Table 1. Finally, the phenotype was simulated by adding 
genetic contribution with a random noise. We rescaled the genetic contribution to ensure that 
the phenotype indeed has the prespecified heritability.  
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ILMM was compared to EMMAX (Kang et al. 2010), the most frequently used tools for 
single-marker analysis, and SKAT (Wu et al. 2010; Wu et al. 2011), a popular method testing 
aggregated effects of genetic variants in a single region. We also tested ILMM against our 
own implementation of single-region-based mixed model, which is a specific case of ILMM 
when M=1 (i.e., the number of interacting regions is just one). We call this method 
“LOCAL”. The motivation of comparing ILMM to LOCAL is to quantify how much power 
gain ILMM will achieve when comparing with the single-region-based method with the same 
implementation.  

To conduct a fair comparison, we simulated random phenotype (i.e., no genetic component) 
to adjust the Type-I-Errors (TIEs) to be the same. In particular, we ranked all the P-values 
calculated under the null distribution (i.e., using the random phenotype) and took the top 5% 
cut-off. If this cut-off is surrounding 0.05, we can conclude that the corresponding method’s 
TIE is under control. Also, this cut-off, after multiple-test correction, will be the cut-off to 
claim significance when calculating powers under alternative hypothesis. How the other tools 
were executed are detailed in Supplementary Materials. 

Genotype and phenotype data for 3D-GWAS 

The a priori information of genetic regions suspected undergoing interactions, as stated in 
Simulations, is the 3D interaction data generated by other researchers using Hi-C experiments 
in brain tissues (Rajarajan et al. 2018).  

The genotype and phenotype data are acquired from dbGaP and other genomic consortia. 
There are two ASD datasets: the first dataset is the influential MSSNG data (Yuen et al. 
2017), containing 7,065 whole genome sequencing data; the second dataset contains 9,428 
subjects (Neale et al. 2012) assessed by whole exome sequencing (phs000298.v4.p3.c1 & 
phs000298.v4.p3.c2). A more detailed description of the datasets is in Supplementary Table 
S1. We have conducted general quality control by removing variants with low MAF and 
derivation from HWE for association mapping but use the full dataset for downstream 
annotations.  

Additionally, we applied ILMM to the gene expressions in brain tissues generated by the 
Genotype-Tissue Expression (GTEx) project (Aguet et al. 2017; Ardlie et al. 2015). The list 
of tissues and sample sizes are listed in Supplementary Table S2. 

Annotating 3D-GWAS outcomes by distal regulation 

In this work, relating to a pair of interacting regions assessed by Hi-C experiments, distal 
regulation refers to the situation where a transcription factor (TF) binding to one region of the 
pair interacts with a gene located in the other region of the pair. The input of this analysis is a 
list of identified candidate genes (that are located in regions significantly associated with 
ASD assessed by ILMM P-values, e.g. DNMT3A). The output is a list of TFs (together with 
their binding motifs) regulating the candidate genes. To detect such regulations, we took two 
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steps. First, we used the TF2DNA (Pujato et al. 2014) database to identify TFs which have 
been reported to interact with at least one of the candidate genes. These TFs, however, may or 
may not bind to the iterating regions. So, in the second step, we used the JASPAR (Khan et 
al. 2018) database to search for the binding sites (i.e., motifs) to filter out the TFs that do not 
bind to our candidate interacting regions. The TFs that have their binding sites located to the 
pairing regions will then be the output.   

Next, we looked for genetic SNPs located at the binding sites (motifs) of these candidate TFs 
and further predicted the interactions between DNA and proteins (motif-TF complexes). This 
was achieved by utilizing HDock, a tool specifically designed to quantify the binding 
affinities between TF and motifs (Yan et al. 2020).   

Calculating LD between interacting regions associated with phenotype and expressions 

The paired regions that are in genetic interactions may be susceptible to have high linkage 
disequilibrium (LD), even though they may be far away from each other. For selected pairs of 
regions, we computed their LD in terms of both D’ and r2 using genotype data from the 1000 
Genomes Project (Altshuler et al. 2015). Since the standard LD is defined between two 
genetic variants, we calculated the pairwise LD between all variants in one region and all 
variants in the other region and considered their average as the LD between two regions. To 
contrast the LDs between interacting regions with the background, i.e., non-interacting 
regions, we formed a null distribution by calculating LDs between randomly selected pairs of 
regions with the same sizes and between-region distance for 1000 times. These 1000 average 
LD values formed a null distribution. Then the standings of actual LDs of interacting regions 
will be ranked in the null distribution as an assessment of whether they are significantly high.  

Results 

Simulations 

The type-I-errors of all the four competing methods were generally under control, although 
ILMM and LOCAL are slightly different to the supposed value of 0.05 (Supplementary 
Table S3). In particular, ILMM was more conservative (with a top 5% cut-off being 0.0713). 
Using the adjusted critical values ensuring type-I-errors to be 0.05, the fairness of power 
comparison was guaranteed. QQ-plot for the ILMM P-values under null hypothesis showed 
that the expected P-values are generally equal to observed P-values, although they were 
slightly under the diagonal (Supplementary Fig. S1), consistent to the slightly conservative 
type-I error.    

As described in Methods and Materials, we compared the power of ILMM with other three 
methods: SKAT, EMMAX and LOCAL. The power is defined as the number of rounds that 
the corresponding method significantly identified the simulated pairs of regions. In the 
present setting of pairs of regions, there are two regions to be detected. For ILMM, naturally 
it will detect both regions in a single test; however, for the other tests, the criteria of defining 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 27, 2020. ; https://doi.org/10.1101/2020.07.27.222364doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.27.222364
http://creativecommons.org/licenses/by/4.0/


8 
 

“success” could be detecting at least one region or detecting both regions. Here we used “(1)” 
to indicate the criteria of detecting at least one region, and “(2)” for the criteria of detecting 
both interacting regions. SKAT and LOCAL are naturally region-based, and we set up the 
window size of 5kb, which is the average of the length of one side of the pairs of interacting 
regions. For EMMAX, which is based on a single marker test, we claimed success of a region 
as long as there is at least one genetic variant significantly associated with the phenotype. The 
statistical significance of a particular test for a focal method is defined by its P-value smaller 
than the corresponding cut-off observed in the previous simulations to adjust type-I-error 
(Supplementary Table S3) divided by the number of tests (i.e., Bonferroni correction (Noble 
2009)). Note that different methods had different numbers of tests. For SKAT and LOCAL, 
the number of tests was 1200K (=3 x 109/2500), which was the total number of tiling 
windows across the genome. For ILMM, it was 27,982, the total number of Hi-C assessed 
spatial-interacting regions. For EMMAX, it was the number of SNPs of the WTCCC array, 
which was 386,469.    

The outcome is depicted in Fig. 2. Evidently, the other methods had very small powers when 
the criterion is to detect both interacting regions. This is consistent with the motivation that 
testing multiple interacting regions together will substantially improve power. Additionally, 
ILMM outperforms all the methods with the criteria of identifying at least one region. This 
implied that the current standard protocol, which discovers an associated region in single-
region tests followed by database-search-based annotations, is suboptimal compared to the 
interaction-integrated test.  

3D-genetic basis of Autism Spectrum Disorder 

Using the potential 3D interacting regions revealed by Hi-C experiments in neurons induced 
by human iPSC brains (Rajarajan et al. 2018) as a priori knowledge, we applied ILMM to the 
MSSNG whole-genome sequencing data (Yuen et al. 2017) to identify 3D-genetic basis of 
ASD. As important follow-ups, we carried out annotations for the statistically significant 
genes from various aspects including enrichment analysis for pathway and gene ontology, as 
well as functional annotation towards distal regulations.  

Statistically significant genes. By applying ILMM to MSSNG dataset, we identified 1,164 
pairs of regions that are significantly associated with ASD (whole genome FDR =0.05). There 
are 1,445 genes located in these significant regions (Supplementary Table S4). As a 
comparison, we also applied SKAT (Wu et al. 2010; Wu et al. 2011) to this dataset with 
sliding windows of 5kb and revealed 32,682 significant regions (with the same criteria of 
whole-genome FDR =0.05), containing 6,322 genes, among which 663 genes (10.4%) also 
have been identified by ILMM method (Supplementary Table S5). This comparison 
indicates that majority genes still impact ASD by marginal effects, in which around 10.4% 
may be involved in 3D-interactions. On the other hand, by directly integrating interactions in 
a statistical model, ILMM identified around 2.1 (= 1,445 / 663) times genes than a single 
region-based model.     
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To carry out functional enrichment analyses for the 1,445 potential genes located in 
significant regions, we utilized an R package named clusterProfiler (Yu et al. 2012) which 
quantifies the level of enrichment of a gene set with regards to various functional annotations. 
Using clusterProfiler, we performed both pathway enrichment analysis based on Kyoto 
Encyclopedia of Genes and Genomes (KEGG) (Kanehisa et al. 2002) and gene ontology 
(GO) (Ashburner et al. 2000) enrichment. The top 20 KEGG significantly enriched pathways 
were reported (Fig. 3a). Among them, Huntington disease, which belongs to the nervous 
system category, was the pathway that covered the highest proportion of genes. Notch 
signaling pathway, which is central to a wide range of development processes in human 
organs (Lasky and Wu 2005) was also among the most significantly enriched pathways. 
Notably, the Glutamatergic synapse pathway, which is labelled by KEGG to be associated 
with ASD, was also present in our results. Several additional pathways, such as antigen 
processing and presentation, SNARE interactions in vesicular transport and base excision 
repair, were also reported to be related with ASD (Bennabi et al. 2018; Castermans et al. 
2010; Markkanen et al. 2016).  

The GO analysis was applied to three ontologies: biological process (BP), cellular component 
(CC), and molecular function (MF); and the top 10 significant GO terms are depicted (Fig. 
3b). Among the top 10 highly enriched BP terms, four of them are leukotriene associated, i.e., 
leukotriene metabolic process, leukotriene D4 metabolic process, leukotriene D4 biosynthetic 
process, and leukotriene biosynthetic process. The elevated levels of leukotrienes have been 
reported in autistic patients in several studies (El-Ansary and Al-Ayadhi 2012; Theoharides et 
al. 2016). In addition, leukotriene can be used as a biomarker for the early diagnostic of 
autistic patients (El-Ansary and Al-Ayadhi 2012; Qasem et al. 2016). Among the significant 
CC terms, U1 snRNP (small nuclear ribonucleoprotein) is the most significant cellular 
component (P-value = 1.06 x 10-4) and is one of the 9 snRNA blood signatures boosting 
diagnostic accuracy for ASD in clinical practice(Zhou et al. 2019). For MF, the most 
significant enrichment was pre-mRNA 5'-splice site binding (P-value = 2.23 x 10-5), 
consistent with the report of the important role of alternative splicing of mRNA in ASD blood 
(Stamova et al. 2013). The above analyses for KEGG and GO enrichment showed that, at the 
gene-set level, our discoveries generally align to reported ASD pathology.  

In addition to the enrichment analyses, we conducted further annotations of significant results 
to figure out a hypothetical novel mechanism underlying ASD. To narrow down candidates, 
we first searched the SFARI database, an established repository for existing ASD genes 
(Abrahams et al. 2013), and found that 49 ILMM-identified genes in are in SFARI. The 
proportion that is in SFARI, 49/1,445 = 3.4%, is relatively low. This might be due to that 
firmly verified ASD genes are limited. Indeed, for the established method for single region 
analysis, SKAT, the corresponding ratio is also 217/6,322 = 3.4%. These 49 genes include 12 
genes scored as 1, which are known as high-confident ASD genes in SFARI (Table 2).  

Using the TF2DNA + JASPAR pipeline (described in Materials and Methods), we 
generated the distal regulatory TFs for the above score-1 genes. As the MSSNG dataset is 
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whole-genome sequencing that provides all polymorphisms, we were enabled to characterize 
the consequence of a genetic mutation located in a motif to the binding complex by using 
HDock (Yan et al. 2020). In particular, reference and mutant binding motifs as well as the 
TFs (represented by their protein data bank ID, or PDB) were submitted to the HDock server. 
We found that (1) FOXP2 is a TF to the gene DNMT3A (a score-1 candidate gene in Table 
2), and (2) a single nucleotide polymorphism, or SNP (NC_000002.11: g.133032477T>C) on 
the binding motif of FOXP2 (ATTGTTTTATT), will affect FOXP2 binding affinity. More 
specifically, on the structure of FOXP2, there is a positively charged interface (J:542R, 
J:543R, K:553R, K:554H, K:549K, K:583R, where J and K are protein chain index) in the 
minimum energy protein-ligand complex around the reference allele T (Fig. 4a). According 
to a previous study (Luscombe et al. 2001), because thymine has the highest acidities among 
the four nucleotides, thymine (reference allele) preferentially interacts with arginine (R), 
histidine (H), and lysine (K) than cytosine (mutant allele). Thus, thymine can reduce the 
binding energy by forming stable protein-DNA electric fields (Luscombe et al. 2001). 
Consistent to this interpretation, the docking score for wild type motif is -362.00, in contrast 
to the docking score for the mutated motif (ATTGTTCTATT) being -330.00, which has 
higher binding energy with FOXP2. Together, this suggested that the mutation 
(g.133032477T>C) reduces the binding affinity of FOXP2 to its motif. As a result, DNMT3A, 
which is regulated distally by FOXP2 through chromatin loop, may have diminished 
expression (Fig. 4b). 

DNMT3A encodes an enzyme named DNA methyltransferase 3 alpha, which is involved in 
DNA methylation and plays a crucial role in epigenetic regulation in cells. In particular, 
DNMT3A binds preferentially to intergenic regions and across transcribed regions of genes, 
which primarily induces methylated CA sequences (mCA) in the early-life neuron (Stroud et 
al. 2017) (Fig. 4c). These mCA functions act as landmarks for MECP2, whose function is to 
restrain gene expression in the maturing brain (Fig. 4d). As such, DNMT3A, mCA, and 
MECP2 coordinate to precisely tune gene expressions that are crucial for normal brain 
development and function (Stroud et al. 2017). The hypomethylation in adult neurons caused 
by insufficient DNMT3A at their early life will lead to overexpression of many genes that 
lead to risk of ASD (Stroud et al. 2017) (Fig. 4d). Indeed, disruption of the cooperation either 
through DNMT3A or MECP2 has been reported to cause Rett syndrome, a severe 
neurological disorder with features of autism. (Chahrour and Zoghbi 2007; Gabel et al. 2015). 
Additionally, mutations on DNMT3A have been widely reported in ASD (Alex et al. 2019; 
Yokoi et al. 2020) as well as those with intellectual disabilities (Tatton-Brown et al. 2014). As 
such, our proposed mechanism is that mutations in the region on or surrounding DNMT3A in 
conjunction with mutations of FOXP2 binding sites jointly confer the risk of ASD.  

In summary, our in-depth analysis including ILMM-based genetic mapping, functional 
annotation, motif search, and protein docking has jointly revealed a plausible mechanism for 
ASD: the SNV (g.133032477T>C), presenting in one of FOXP2 motifs, may lead to 
decreased gene expression of DNMT3A through distal regulation. The low level of DNMT3A 
may further cause the hypomethylation of CA, which reduces the recruitment of MECP2 and 
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results in the increased expression of some genes, causing higher risk to ASD. This regulation 
through 3D interactions may jointly confer the risk of ASD with local mutations surrounding 
DNMT3A.  

3D-cis eQTL in brain tissues  

EQTLs are the genetic mutations associated with gene expression. Analog to the above 3D-
GWAS that discovers 3D-genetic basis of complex traits, here we aimed to extend the 
concept of eQTL to spatially interacting regions using the list of interacting regions assessed 
by Hi-C experiments (that were used above). To keep this first attempt simple, we only 
looked at the eQTLs in cis, which means the gene body is located in or surrounding one of the 
interacting regions (20,000 base pair upstream or downstream of that gene). Such 3D-cis 
eQTLs may be deemed as trans in standard analysis (with 1D genome) but are considered as 
cis here as we hypothesized that the regulatory mutations are spatially nearby in the 3D 
domain. We applied ILMM on 10 tissues in GTEx datasets including 9 brain tissues and the 
whole blood to identify interacting regions functioning as 3D-cis eQTLs. First, we selected 
genes with high variance (variance >= 10 in RPKM value), which led to around five thousand 
genes for each tissue. Then we performed eQTL mapping between expressions of these 
selected genes and genotypes using ILMM to uncover paired regions that are significantly 
associated with gene expressions. Based on a cut-off of P-value lower than 0.05 after FDR 
correction (Noble 2009), we discovered hundreds of significant 3D-cis eQTL from these 10 
tissues. All results are listed in Supplementary Table S6-15. To assess the proportion of 
genes that are were able to detect 3D-cis eQTLs, we calculated the number of genes that are 
located in (or around) a pair of interacting regions and the number of genes for which we 
indeed identified 3D-cis eQTLs. It is observed that 3D-cis eQTL accounts for a small 
proportion (3% - 8%) of genes (Fig. 5a). This indicates that 3D-cis eQTLs do exist, however, 
they are not dominant for gene regulations.   

We checked whether the 3D interacting regions are in higher linkage disequilibrium (LD) 
compared to background (Materials and Methods). To narrow down the candidates, we 
selected only the pairs of regions that are significantly associated with both ASD and gene 
expressions. In total, there were 69 paired regions as the 3D co-localized loci for both ASD 
and eQTL (Supplementary Table S16). We then calculated the average r2 and D’ between 
the two regions and contrasted them to the background (Materials & Methods). The 
outcome is depicted in Fig. 5b & Supplementary Fig. S2, showing that some of the regions 
indeed experienced significantly higher LD than the background. However, many regions did 
not. This showed that the 3D interactions may be very weak to the extent of not being able to 
impact the LD between regions, an observation consistent with the recent reported LD study 
at a larger scale (Whalen and Pollard 2019). 

Conclusion & Discussion 
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By applying ILMM to GTEx data, we identified 3D-cis eQTLs for only 3% - 8% genes in the 
brain tissues. This indicated that such 3D-genetic basis of expressions is not dominant, 
compared with standard cis eQTLs based on the 1D view of a genome. However, this may be 
due to our current limitation of accurately pinpointing the 3D interacting regions. 
Furthermore, the genetic interaction may not be limited to chromatin conformations, and 
other sources of interactions may also contribute as well. Therefore, there is potentially 
substantial room to utilize ILMM in practice.  

As the GO and KEGG dataset may not be specifically designed for ASD, based on our 
hypothesis that ASD might be mediated by communication disorders, we specifically 
searched for annotations of genes association with hearing deficiencies using DisGeNET 
(Pinero et al. 2020). In total 41 genes that have been reported to be associated with 
Sensorineural Hearing Loss (disorder) or Nonsyndromic Deafness. Notably, 8 genes among 
these 41 genes were reported to be associated with ASD (Supplementary Table S17). 
Starting from these genes, further exploration to the functional mechanism of ASD medicated 
by communication disorders will be an interesting future work.  

In addition to the whole genome data from MSSNG, we have also applied ILMM together 
with the same 3D interacting regions (Rajarajan et al. 2018) to a whole exome sequencing 
(WES) dataset containing 7,766 individuals (4944 control and 2822 ASD cases, dbGaP ID: 
phs000298.v4.p3.c1), which yielded no significant results. In contrast, applying a single-
region tool with sliding windows of 5kb and 25kb led to the discovery of several significant 
regions (Supplementary Table S18). This outcome indicates that the 3D genetic interactions 
are generally distributed in non-genic regions and may need sequencing data to analyze.  

In summary, we developed a novel statistical method, ILMM, that integrates a priori 
knowledge of genetic interaction with linear mixed models to statistically identify genetic 
interactions. To demonstrate its use in practise, we used 3D chromatin conformation 
information assessed by Hi-C experiments as example a priori of potentially interacting 
regions. Using this list of paired regions, we applied ILMM to the whole-genome sequencing 
data generated by MSSNG and revealed the 3D genetic basis of ASD. Additionally, we also 
applied ILMM to transcriptome data generated by the GTEx consortium. The real data 
analysis revealed substantial insights into the 3D-genetic basis of both complex traits and 
expressions. Specifically, we formed a hypothetical mechanism including both local 
mutations and a motif impacting distal regulation that jointly confer the risk of ASD. This 
novel statistical method offers a complementary protocol to the standard practice that 
conducts association mappings for single regions followed by annotations and co-localization 
analyses. Additionally, compared with pure statistical methods searching for interactions de 
novo, ILMM does not suffer from the problem of choosing or optimizing the size of candidate 
genetic regions as the a priori knowledge will naturally offer such information. Therefore, 
ILMM further reduces the burden of multiple-test and risk of overfitting. Finally, the outcome 
of ILMM is naturally interpretable as the potential annotation, e.g., 3D-interactions, has been 
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built in. We expect ILMM will be broadly used in practise to discover novel genetic 
interactions.  
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Figure 1. The protocol of ILMM. 𝐺𝐺𝐺𝐺𝐺𝐺𝑖𝑖 refers to the genomic relationship matrix (GRM) 
calculated by the genotype present in the interacting regions. 𝐺𝐺𝐺𝐺𝐺𝐺𝑔𝑔 refers to the GRM 
calculated by all genotype from the whole genome. 
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Figure 2. Statistical power (y-axis) of four methods under four interacting models with 
various regional trait heritability (x-axis). (a): Additive model, (b): Epistasis model, (c): 
Heterogeneity model, (d): Compensatory model 
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Figure 3. KEGG and GO enrichment analysis of significant genes. (a): Top 20 KEGG 
pathways (ranked by p-value). Gene ratio (x-axis) is the percentage of significant genes over 
the total genes in a given pathway. (b): Top 10 (ranked by p-value) GO terms of three 
categories (BP: biology process, CC: cell component, MF: molecular function). Gene ratio (x-
axis) is the percentage of the number of genes present in this GO term over the total number 
of genes in this category. 
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Figure 4. Interaction between FOXP2 and its motif for distal regulation on DNMT3A. 
(a) Thymine (reference allele) on the motif and its nearby positively charged interface of 
FOXP2 visualized by PyMOL (DeLano 2002). (b): The single nucleotide mutation on FOXP2 
motif is likely to reduce the binding affinity of FOXP2 which may decrease the gene 
expression of DNMT3A through distal regulation. (c): A gene present in early-life neuron and 
DNMT3A deposits methylation on its CA sequences. (d): The low level of DNMT3A across 
the neuron development process may cause hypomethylation of many genes resulting in 
elevated expression of these genes in adult neurons.    
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Figure 5. 3D-cis eQTL analysis. (a) Number of genes for which we can and cannot identify 
3D-cis eQTLs. (b) LD (r2) value for 69 interacting regions associated with both ASD and 
gene expressions. X-axis: coordinate of one interacting region (details in Supplementary 
Table S15). Y-axis: percentile of LD value among background (higher percentile indicates 
stronger LD in interacting regions).  
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Table 1. Definition of four different models used to simulate genetic component to phenotype 
(before adding random noise).   
 

Additive 
  

Region A contribution 

0 1 2 

Region B contribution 0 0 1 2 

1 1 2 3 

2 2 3 4 

Epistasis  
  

Region A contribution 

0 1 2 

Region B contribution 0 0 0 0 

1 0 1 1 

2 0 1 1 

Heterogeneity 
  

Region A contribution 

0 1 2 

Region B contribution 0 0 1 1 

1 1 1 1 

2 1 1 1 

Compensatory 
  

Region A contribution 

0 1 2 

Region B contribution 0 0 1 2 

1 1 0 1 

2 2 1 0 
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Table 2. Significant genes identified by ILMM which are also reported as high confident 
ASD genes in the SFARI database. An FDR of 0.05 is used to adjust P-values.  
 
GENE SFARI 

SCORE 
CHR START END ILMM ADJUSTED P-

VALUE 
CACNA1C 1 chr12 2079952 2802108 1.98 x 10-15 

DHCR7 1 chr11 71139239 71163914 3.86 x 10-02 

DNMT3A 1 chr2 25455845 25565459 1.29 x 10-10 

DPYSL2 1 chr8 26371791 26515694 1.49 x 10-03 

GABRB3 1 chr15 26788693 27184686 4.31 x 10-04 

KANSL1 1 chr17 44107282 44302733 1.19 x 10-05 

KMT2C 1 chr7 151832010 152133090 5.39 x 10-05 

MYT1L 1 chr2 1792885 2335032 1.47 x 10-10 

NF1 1 chr17 29421945 29709134 2.77 x 10-06 

PHF21A 1 chr11 45950871 46142985 9.63 x 10-07 

SHANK2 1 chr11 70313961 70963623 3.86 x 10-02 

ZNF292 1 chr6 87862551 87973914 3.92 x 10-09 

  

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 27, 2020. ; https://doi.org/10.1101/2020.07.27.222364doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.27.222364
http://creativecommons.org/licenses/by/4.0/


21 
 

References 

Abrahams BS, Arking DE, Campbell DB, Mefford HC, Morrow EM, Weiss LA, Menashe I, Wadkins 

T, Banerjee-Basu S, Packer A (2013) SFARI Gene 2.0: a community-driven 

knowledgebase for the autism spectrum disorders (ASDs). Mol Autism 4: 36. doi: 

10.1186/2040-2392-4-36 

Aguet F, Brown AA, Castel SE, Davis JR, He Y, Jo B, Mohammadi P, Park Y, Parsana P, Segre AV, 

Strober BJ, Zappala Z, Cummings BB, Gelfand ET, Hadley K, Huang KH, Lek M, Li X, 

Nedzel JL, Nguyen DY, Noble MS, Sullivan TJ, Tukiainen T, MacArthur DG, Getz G, 

Management NP, Addington A, Guan P, Koester S, Little AR, Lockhart NC, Moore HM, 

Rao A, Struewing JP, Volpi S, Collection B, Brigham LE, Hasz R, Hunter M, Johns C, 

Johnson M, Kopen G, Leinweber WF, Lonsdale JT, McDonald A, Mestichelli B, Myer K, 

Roe B, Salvatore M, Shad S, Thomas JA, Walters G, Washington M, Wheeler J, Bridge J, 

Foster BA, Gillard BM, Karasik E, Kumar R, Miklos M, Moser MT, Jewell SD, Montroy RG, 

Rohrer DC, Valley D, Mash DC, Davis DA, Sobin L, Barcus ME, Branton PA, Grp EMW, 

Abell NS, Balliu B, Delaneau O, Fresard L, Gamazon ER, Garrido-Martin D, Gewirtz ADH, 

Gliner G, Gloudemans MJ, Han B, He AZ, Hormozdiari F, Li X, Liu B, Kang EY, McDowell 

IC, Ongen H, Palowitch JJ, Peterson CB, Quon G, Ripke S, Saha A, Shabalin AA, Shimko 

TC, Sul JH, Teran NA, Tsang EK, Zhang H, Zhou YH, et al. (2017) Genetic effects on gene 

expression across human tissues. Nature 550: 204. doi: 10.1038/nature24277 

Alex AM, Saradalekshmi KR, Shilen N, Suresh PA, Banerjee M (2019) Genetic association of 

DNMT variants can play a critical role in defining the methylation patterns in autism. 

Iubmb Life 71: 901-907. doi: 10.1002/iub.2021 

Altshuler DM, Durbin RM, Abecasis GR, Bentley DR, Chakravarti A, Clark AG, Donnelly P, Eichler 

EE, Flicek P, Gabriel SB, Gibbs RA, Green ED, Hurles ME, Knoppers BM, Korbel JO, Lander 

ES, Lee C, Lehrach H, Mardis ER, Marth GT, McVean GA, Nickerson DA, Schmidt JP, 

Sherry ST, Wang J, Wilson RK, Gibbs RA, Boerwinkle E, Doddapaneni H, Han Y, Korchina 

V, Kovar C, Lee S, Muzny D, Reid JG, Zhu YM, Wang J, Chang YQ, Feng Q, Fang XD, Guo 

XS, Jian M, Jiang H, Jin X, Lan TM, Li GQ, Li JX, Li YR, Liu SM, Liu X, Lu Y, Ma XD, Tang 

MF, Wang B, Wang GB, Wu HL, Wu RH, Xu X, Yin Y, Zhang DD, Zhang WW, Zhao J, 

Zhao MR, Zheng XL, Lander ES, Altshuler DM, Gabriel SB, Gupta N, Gharani N, Toji LH, 

Gerry NP, Resch AM, Flicek P, Barker J, Clarke L, Gil L, Hunt SE, Kelman G, Kulesha E, 

Leinonen R, McLaren WM, Radhakrishnan R, Roa A, Smirnov D, Smith RE, Streeter I, 

Thormann A, Toneva I, Vaughan B, Zheng-Bradley X, Bentley DR, Grocock R, Humphray 

S, James T, Kingsbury Z, Lehrach H, Sudbrak R, Albrecht MW, Amstislavskiy VS, Borodina 

TA, et al. (2015) A global reference for human genetic variation. Nature 526: 68. doi: 

10.1038/nature15393 

Ardlie KG, DeLuca DS, Segre AV, Sullivan TJ, Young TR, Gelfand ET, Trowbridge CA, Maller JB, 

Tukiainen T, Lek M, Ward LD, Kheradpour P, Iriarte B, Meng Y, Palmer CD, Esko T, 

Winckler W, Hirschhorn JN, Kellis M, MacArthur DG, Getz G, Shabalin AA, Li G, Zhou YH, 

Nobel AB, Rusyn I, Wright FA, Lappalainen T, Ferreira PG, Ongen H, Rivas MA, Battle A, 

Mostafavi S, Monlong J, Sammeth M, Mele M, Reverter F, Goldmann JM, Koller D, Guigo 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 27, 2020. ; https://doi.org/10.1101/2020.07.27.222364doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.27.222364
http://creativecommons.org/licenses/by/4.0/


22 
 

R, McCarthy MI, Dermitzakis ET, Gamazon ER, Im HK, Konkashbaev A, Nicolae DL, Cox 

NJ, Flutre T, Wen XQ, Stephens M, Pritchard JK, Tu ZD, Zhang B, Huang T, Long Q, Lin L, 

Yang JL, Zhu J, Liu J, Brown A, Mestichelli B, Tidwell D, Lo E, Salvatore M, Shad S, 

Thomas JA, Lonsdale JT, Moser MT, Gillard BM, Karasik E, Ramsey K, Choi C, Foster BA, 

Syron J, Fleming J, Magazine H, Hasz R, Walters GD, Bridge JP, Miklos M, Sullivan S, 

Barker LK, Traino HM, Mosavel M, Siminoff LA, Valley DR, Rohrer DC, Jewell SD, Branton 

PA, Sobin LH, Barcus M, Qi LQ, McLean J, Hariharan P, Um KS, Wu SP, Tabor D, Shive C, 

Smith AM, Buia SA, et al. (2015) The Genotype-Tissue Expression (GTEx) pilot analysis: 

Multitissue gene regulation in humans. Science 348: 648-660. doi: 

10.1126/science.1262110 

Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, 

Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson 

JE, Ringwald M, Rubin GM, Sherlock G, Consortium GO (2000) Gene Ontology: tool for 

the unification of biology. Nature Genetics 25: 25-29. doi: 10.1038/75556 

Baryshnikova A, Costanzo M, Myers CL, Andrews B, Boone C (2013) Genetic Interaction 

Networks: Toward an Understanding of Heritability. Annual Review of Genomics and 

Human Genetics, Vol 14 14: 111-133. doi: 10.1146/annurev-genom-082509-141730 

Bateson W (1903) Mendel's principles of heredity in mice. Nature 68: 33-34. doi: 

10.1038/068033c0 

Bennabi M, Gaman A, Delorme R, Boukouaci W, Manier C, Scheid I, Mohammed NS, Bengoufa 

D, Charron D, Krishnamoorthy R, Leboyer M, Tamouza R (2018) HLA-class II haplotypes 

and Autism Spectrum Disorders. Scientific Reports 8. doi: 10.1038/S41598-018-25974-9 

Brown KM, Costanzo MS, Xu WX, Roy S, Lozovsky ER, Hartl DL (2010) Compensatory Mutations 

Restore Fitness during the Evolution of Dihydrofolate Reductase. Molecular Biology and 

Evolution 27: 2682-2690. doi: 10.1093/molbev/msq160 

Burton PR, Clayton DG, Cardon LR, Craddock N, Deloukas P, Duncanson A, Kwiatkowski DP, 

McCarthy MI, Ouwehand WH, Samani NJ, Todd JA, Donnelly P, Barrett JC, Davison D, 

Easton D, Evans D, Leung HT, Marchini JL, Morris AP, Spencer CCA, Tobin MD, Attwood 

AP, Boorman JP, Cant B, Everson U, Hussey JM, Jolley JD, Knight AS, Koch K, Meech E, 

Nutland S, Prowse CV, Stevens HE, Taylor NC, Walters GR, Walker NM, Watkins NA, 

Winzer T, Jones RW, McArdle WL, Ring SM, Strachan DP, Pembrey M, Breen G, St Clair 

D, Caesar S, Gordon-Smith K, Jones L, Fraser C, Green EK, Grozeva D, Hamshere ML, 

Holmans PA, Jones IR, Kirov G, Moskvina V, Nikolov I, O'Donovan MC, Owen MJ, Collier 

DA, Elkin A, Farmer A, Williamson R, McGuffin P, Young AH, Ferrier IN, Ball SG, Balmforth 

AJ, Barrett JH, Bishop DT, Iles MM, Maqbool A, Yuldasheva N, Hall AS, Braund PS, Dixon 

RJ, Mangino M, Stevens S, Thompson JR, Bredin F, Tremelling M, Parkes M, Drummond 

H, Lees CW, Nimmo ER, Satsangi J, Fisher SA, Forbes A, Lewis CM, Onnie CM, Prescott 

NJ, Sanderson J, Mathew CG, Barbour J, Mohiuddin MK, Todhunter CE, Mansfield JC, 

Ahmad T, Cummings FR, Jewell DP, et al. (2007) Genome-wide association study of 

14,000 cases of seven common diseases and 3,000 shared controls. Nature 447: 661-

678. doi: 10.1038/nature05911 

Carlin DE, Fong SH, Qin Y, Jia TQ, Huang JK, Bao BK, Zhang C, Ideker T (2019) A Fast and Flexible 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 27, 2020. ; https://doi.org/10.1101/2020.07.27.222364doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.27.222364
http://creativecommons.org/licenses/by/4.0/


23 
 

Framework for Network-Assisted Genomic Association. Iscience 16: 155. doi: 

10.1016/j.isci.2019.05.025 

Castermans D, Volders K, Crepel A, Backx L, De Vos R, Freson K, Meulemans S, Vermeesch JR, 

Schrander-Stumpel CTRM, De Rijk P, Del-Favero J, Van Geet C, Van De Ven WJM, 

Steyaert JG, Devriendt K, Creemers JWM (2010) SCAMP5, NBEA and AMISYN: three 

candidate genes for autism involved in secretion of large dense-core vesicles. Human 

Molecular Genetics 19: 1368-1378. doi: 10.1093/hmg/ddq013 

Chahrour M, Zoghbi HY (2007) The story of Rett syndrome: From clinic to neurobiology. Neuron 

56: 422-437. doi: 10.1016/j.neuron.2007.10.001 

Cordell HJ (2009) Detecting gene-gene interactions that underlie human diseases. Nature 

Reviews Genetics 10: 392-404. doi: 10.1038/nrg2579 

Costanzo M, VanderSluis B, Koch EN, Baryshnikova A, Pons C, Tan GH, Wang W, Usaj M, 

Hanchard J, Lee SD, Pelechano V, Styles EB, Billmann M, van Leeuwen J, van Dyk N, Lin 

ZY, Kuzmin E, Nelson J, Piotrowski JS, Srikumar T, Bahr S, Chen YQ, Deshpande R, Kurat 

CF, Li SC, Li ZJ, Usaj MM, Okada H, Pascoe N, San Luis BJ, Sharifpoor S, Shuteriqi E, 

Simpkins SW, Snider J, Suresh HG, Tan YZ, Zhu HW, Malod-Dognin N, Janjic V, Przulj N, 

Troyanskaya OG, Stagljar I, Xia T, Ohya Y, Gingras AC, Raught B, Boutros M, Steinmetz 

LM, Moore CL, Rosebrock AP, Caudy AA, Myers CL, Andrews B, Boone C (2016) A global 

genetic interaction network maps a wiring diagram of cellular function. Science 353. doi: 

10.1126/science.aaf1420 

DeLano WL (2002) Pymol: An open-source molecular graphics tool. CCP4 Newsletter on protein 

crystallography 40: 82-92.  

El-Ansary A, Al-Ayadhi L (2012) Lipid mediators in plasma of autism spectrum disorders. Lipids 

in Health and Disease 11: 1-9. doi: 10.1186/1476-511x-11-160 

Eres IE, Luo KX, Hsiao CJ, Blake LE, Gilad Y (2019) Reorganization of 3D genome structure may 

contribute to gene regulatory evolution in primates. Plos Genetics 15. doi: 

10.1371/journal.pgen.1008278 

Fang G, Wang W, Paunic V, Heydari H, Costanzo M, Liu XY, Liu XT, VanderSluis B, Oately B, 

Steinbach M, Van Ness B, Schadt EE, Pankratz ND, Boone C, Kumar V, Myers CL (2019) 

Discovering genetic interactions bridging pathways in genome-wide association studies. 

Nature Communications 10: 1-18. doi: 10.1038/S41467-019-12131-7 

Fu Y, Tessneer KL, Li C, Gaffney PM (2018) From association to mechanism in complex disease 

genetics: the role of the 3D genome. Arthritis Research & Therapy 20: 216. doi: 

10.1186/S13075-018-1721-X 

Gabel HW, Kinde B, Stroud H, Gilbert CS, Harmin DA, Kastan NR, Hemberg M, Ebert DH, 

Greenberg ME (2015) Disruption of DNA-methylation-dependent long gene repression 

in Rett syndrome. Nature 522: 89-93. doi: 10.1038/nature14319 

Gallagher MD, Chen-Plotkin AS (2018) The Post-GWAS Era: From Association to Function. 

American Journal of Human Genetics 102: 717-730. doi: 10.1016/j.ajhg.2018.04.002 

Giusti-Rodriguez P, Sullivan P (2019) Using three-dimensional regulatory chromatin interactions 

from adult and fetal cortex to interpret genetic results for psychiatric disorders and 

cognitive traits. bioRxiv. 406330.  

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 27, 2020. ; https://doi.org/10.1101/2020.07.27.222364doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.27.222364
http://creativecommons.org/licenses/by/4.0/


24 
 

Greene CS, Krishnan A, Wong AK, Ricciotti E, Zelaya RA, Himmelstein DS, Zhang R, Hartmann 

BM, Zaslavsky E, Sealfon SC, Chasman DI, FitzGerald GA, Dolinski K, Grosser T, 

Troyanskaya OG (2015) Understanding multicellular function and disease with human 

tissue-specific networks. Nature Genetics 47: 569-576. doi: 10.1038/ng.3259 

Hoh J, Ott J (2003) Mathematical multi-locus approaches to localizing complex human trait 

genes. Nature Reviews Genetics 4: 701-709. doi: 10.1038/nrg1155 

Jansen IE, Savage JE, Watanabe K, Bryois J, Williams DM, Steinberg S, Sealock J, Karlsson IK, Hagg 

S, Athanasiu L, Voyle N, Proitsi P, Witoelar A, Stringer S, Aarsland D, Almdahl IS, 

Andersen F, Bergh S, Bettella F, Bjornsson S, Braekhus A, Brathen G, de Leeuw C, 

Desikan RS, Djurovic S, Dumitrescu L, Fladby T, Hohman TJ, Jonsson PV, Kiddle SJ, 

Rongve A, Saltvedt I, Sando SB, Selbaek G, Shoai M, Skene NG, Snaedal J, Stordal E, 

Ulstein ID, Wang YP, White LR, Hardy J, Hjerling-Leffler J, Sullivan PF, van der Flier WM, 

Dobson R, Davis LK, Stefansson H, Stefansson K, Pedersen NL, Ripke S, Andreassen OA, 

Posthuma D (2019a) Genome-wide meta-analysis identifies new loci and functional 

pathways influencing Alzheimer's disease risk. Nature Genetics 51: 404-413. doi: 

10.1038/s41588-018-0311-9 

Jansen IE, Savage JE, Watanabe K, Bryois J, Williams DM, Steinberg S, Sealock J, Karlsson IK, Hagg 

S, Athanasiu L, Voyle N, Proitsi P, Witoelar A, Stringer S, Aarsland D, Almdahl IS, 

Andersen F, Bergh S, Bettella F, Bjornsson S, Braekhus A, Brathen G, de Leeuw C, 

Desikan RS, Djurovic S, Dumitrescu L, Fladby T, Hohman TJ, Jonsson PV, Kiddle SJ, 

Rongve A, Saltvedt I, Sando SB, Selbaek G, Shoai M, Skene NG, Snaedal J, Stordal E, 

Ulstein ID, Wang YP, White LR, Hardy J, Hjerling-Leffler J, Sullivan PF, van der Flier WM, 

Dobson R, Davis LK, Stefansson H, Stefansson K, Pedersen NL, Ripke S, Andreassen OA, 

Posthuma D (2019b) Genome-wide meta-analysis identifies new loci and functional 

pathways influencing Alzheimer's disease risk. Nature Genetics 51: 404. doi: 

10.1038/s41588-018-0311-9 

Kanehisa M, Goto S, Kawashima S, Nakaya A (2002) The KEGG databases at GenomeNet. Nucleic 

Acids Research 30: 42-46. doi: 10.1093/Nar/30.1.42 

Kang HM, Sul JH, Service SK, Zaitlen NA, Kong SY, Freimer NB, Sabatti C, Eskin E (2010) Variance 

component model to account for sample structure in genome-wide association studies. 

Nat Genet 42: 348-54. doi: 10.1038/ng.548 

Khan A, Fornes O, Stigliani A, Gheorghe M, Castro-Mondragon JA, van der Lee R, Bessy A, 

Cheneby J, Kulkarni SR, Tan G, Baranasic D, Arenillas DJ, Sandelin A, Vandepoele K, 

Lenhard B, Ballester B, Wasserman WW, Parcy F, Mathelier A (2018) JASPAR 2018: 

update of the open-access database of transcription factor binding profiles and its web 

framework. Nucleic Acids Research 46: D260-D266. doi: 10.1093/nar/gkx1126 

Kichaev G, Bhatia G, Loh PR, Gazal S, Burch K, Freund MK, Schoech A, Pasaniuc B, Price AL (2019) 

Leveraging Polygenic Functional Enrichment to Improve GWAS Power. American Journal 

of Human Genetics 104: 65-75. doi: 10.1016/j.ajhg.2018.11.008 

Lasky JL, Wu H (2005) Notch signaling, brain development, and human disease. Pediatric 

Research 57: 104-109. doi: 10.1203/01.Pdr.0000159632.70510.3d 

Lippert C, Listgarten J, Liu Y, Kadie CM, Davidson RI, Heckerman D (2011) FaST linear mixed 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 27, 2020. ; https://doi.org/10.1101/2020.07.27.222364doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.27.222364
http://creativecommons.org/licenses/by/4.0/


25 
 

models for genome-wide association studies. Nature Methods 8: 833-835. doi: 

10.1038/Nmeth.1681 

Long Q, Zhang Q, Vilhjalmsson BJ, Forai P, Seren Ü, Nordborg M (2013) JAWAMix5: an out-of-

core HDF5-based java implementation of whole-genome association studies using 

mixed models. Bioinformatics 29: 1220-1222.  

Lu QS, Yao XW, Hu YM, Zhao HY (2016) GenoWAP: GWAS signal prioritization through 

integrated analysis of genomic functional annotation. Bioinformatics 32: 542-548. doi: 

10.1093/bioinformatics/btv610 

Luscombe NM, Laskowski RA, Thornton JM (2001) Amino acid-base interactions: a three-

dimensional analysis of protein-DNA interactions at an atomic level. Nucleic Acids 

Research 29: 2860-2874. doi: 10.1093/nar/29.13.2860 

Mackay TFC (2014) Epistasis and quantitative traits: using model organisms to study gene-gene 

interactions. Nature Reviews Genetics 15: 22-33. doi: 10.1038/nrg3627 

Madsen AM, Ottman R, Hodge SE (2011) Causal Models for Investigating Complex Genetic 

Disease: II. What Causal Models Can Tell Us about Penetrance for Additive, 

Heterogeneity, and Multiplicative Two-Locus Models. Human Heredity 72: 63-72. doi: 

10.1159/000330780 

Mah W, Won H (2019) The three-dimensional landscape of the genome in human brain tissue 

unveils regulatory mechanisms leading to schizophrenia risk. Schizophr Res. doi: 

10.1016/j.schres.2019.03.007 

Mao FB, Xiao LY, Li XF, Liang JL, Teng HJ, Cai WS, Sun ZS (2016) RBP-Var: a database of 

functional variants involved in regulation mediated by RNA-binding proteins. Nucleic 

Acids Research 44: D154-D163. doi: 10.1093/nar/gkv1308 

Markkanen E, Meyer U, Dianov GL (2016) DNA Damage and Repair in Schizophrenia and Autism: 

Implications for Cancer Comorbidity and Beyond. International Journal of Molecular 

Sciences 17. doi: 10.3390/Ijms17060856 

Melo US, Schopflin R, Acuna-Hidalgo R, Mensah MA, Fischer-Zirnsak B, Holtgrewe M, Klever MK, 

Turkmen S, Heinrich V, Pluym ID, Matoso E, de Sousa SB, Louro P, Hulsemann W, Cohen 

M, Dufke A, Latos-Bielenska A, Vingron M, Kalscheuer V, Quintero-Rivera F, Spielmann 

M, Mundlos S (2020) Hi-C Identifies Complex Genomic Rearrangements and TAD-

Shuffling in Developmental Diseases. American Journal of Human Genetics 106: 872-

884. doi: 10.1016/j.ajhg.2020.04.016 

Miguel-Escalada I, Bonas-Guarch S, Cebola I, Ponsa-Cobas J, Mendieta-Esteban J, Atla G, 

Javierre BM, Rolando DMY, Farabella I, Morgan CC, Garcia-Hurtado J, Beucher A, Moran 

I, Pasquali L, Ramos-Rodriguez M, Appel EVR, Linneberg A, Gjesing AP, Witte DR, 

Pedersen O, Grarup N, Ravassard P, Torrents D, Mercader JM, Piemonti L, Berney T, de 

Koning EJP, Kerr-Conte J, Pattou F, Fedko IO, Groop L, Prokopenko I, Hansen T, Marti-

Renom MA, Fraser P, Ferrer J (2019) Human pancreatic islet three-dimensional 

chromatin architecture provides insights into the genetics of type 2 diabetes. Nature 

Genetics 51: 1137. doi: 10.1038/s41588-019-0457-0 

Neale BM, Kou Y, Liu L, Ma'ayan A, Samocha KE, Sabo A, Lin CF, Stevens C, Wang LS, Makarov V, 

Polak P, Yoon S, Maguire J, Crawford EL, Campbell NG, Geller ET, Valladares O, Schafer 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 27, 2020. ; https://doi.org/10.1101/2020.07.27.222364doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.27.222364
http://creativecommons.org/licenses/by/4.0/


26 
 

C, Liu H, Zhao T, Cai GQ, Lihm J, Dannenfelser R, Jabado O, Peralta Z, Nagaswamy U, 

Muzny D, Reid JG, Newsham I, Wu YQ, Lewis L, Han Y, Voight BF, Lim E, Rossin E, Kirby 

A, Flannick J, Fromer M, Shakir K, Fennell T, Garimella K, Banks E, Poplin R, Gabriel S, 

DePristo M, Wimbish JR, Boone BE, Levy SE, Betancur C, Sunyaev S, Boerwinkle E, 

Buxbaum JD, Cook EH, Devlin B, Gibbs RA, Roeder K, Schellenberg GD, Sutcliffe JS, Daly 

MJ (2012) Patterns and rates of exonic de novo mutations in autism spectrum disorders. 

Nature 485: 242-245. doi: 10.1038/nature11011 

Noble WS (2009) How does multiple testing correction work? Nature Biotechnology 27: 1135-

1137. doi: 10.1038/nbt1209-1135 

Phillips PC (2008) Epistasis - the essential role of gene interactions in the structure and evolution 

of genetic systems. Nature Reviews Genetics 9: 855-867. doi: 10.1038/nrg2452 

Pickrell JK (2014) Joint Analysis of Functional Genomic Data and Genome-wide Association 

Studies of 18 Human Traits. American Journal of Human Genetics 94: 559-573. doi: 

10.1016/j.ajhg.2014.03.004 

Pinero J, Ramirez-Anguita JM, Sauch-Pitarch J, Ronzano F, Centeno E, Sanz F, Furlong LI (2020) 

The DisGeNET knowledge platform for disease genomics: 2019 update. Nucleic Acids 

Research 48: D845-D855. doi: 10.1093/nar/gkz1021 

Pujato M, Kieken F, Skiles AA, Tapinos N, Fiser A (2014) Prediction of DNA binding motifs from 

3D models of transcription factors; identifying TLX3 regulated genes. Nucleic Acids 

Research 42: 13500-13512. doi: 10.1093/nar/gku1228 

Qasem H, Al-Ayadhi L, El-Ansary A (2016) Cysteinyl leukotriene correlated with 8-isoprostane 

levels as predictive biomarkers for sensory dysfunction in autism. Lipids in Health and 

Disease 15: 1-10. doi: 10.1186/S12944-016-0298-0 

Rajarajan P, Borrman T, Liao W, Schrode N, Flaherty E, Casino C, Powell S, Yashaswini C, LaMarca 

EA, Kassim B, Javidfar B, Espeso-Gil S, Li A, Won H, Geschwind DH, Ho SM, MacDonald 

M, Hoffman GE, Roussos P, Zhang B, Hahn CG, Weng Z, Brennand KJ, Akbarian S (2018) 

Neuron-specific signatures in the chromosomal connectome associated with 

schizophrenia risk. Science 362: 1269. doi: 10.1126/science.aat4311 

Rao SSP, Huntley MH, Durand NC, Stamenova EK, Bochkov ID, Robinson JT, Sanborn AL, Machol 

I, Omer AD, Lander ES, Aiden EL (2014) A 3D Map of the Human Genome at Kilobase 

Resolution Reveals Principles of Chromatin Looping. Cell 159: 1665-1680. doi: 

10.1016/j.cell.2014.11.021 

Schork AJ, Thompson WK, Pham P, Torkamani A, Roddey JC, Sullivan PF, Kelsoe JR, O'Donovan 

MC, Furberg H, Tobacco, Genetics C, Bipolar Disorder Psychiatric Genomics C, 

Schizophrenia Psychiatric Genomics C, Schork NJ, Andreassen OA, Dale AM (2013) All 

SNPs are not created equal: genome-wide association studies reveal a consistent 

pattern of enrichment among functionally annotated SNPs. PLoS Genet 9: e1003449. 

doi: 10.1371/journal.pgen.1003449 

Stamova BS, Tian YF, Nordahl CW, Shen MD, Rogers S, Amaral DG, Sharp FR (2013) Evidence for 

differential alternative splicing in blood of young boys with autism spectrum disorders. 

Molecular Autism 4. doi: 10.1186/2040-2392-4-30 

Stroud H, Su SC, Hrvatin S, Greben AW, Renthal W, Boxer LD, Nagy MA, Hochbaum DR, Kinde B, 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 27, 2020. ; https://doi.org/10.1101/2020.07.27.222364doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.27.222364
http://creativecommons.org/licenses/by/4.0/


27 
 

Gabel HW, Greenberg ME (2017) Early-Life Gene Expression in Neurons Modulates 

Lasting Epigenetic States. Cell 171: 1151. doi: 10.1016/j.cell.2017.09.047 

Sveinbjornsson G, Albrechtsen A, Zink F, Gudjonsson SA, Oddson A, Masson G, Holm H, Kong A, 

Thorsteinsdottir U, Sulem P, Gudbjartsson DF, Stefansson K (2016) Weighting sequence 

variants based on their annotation increases power of whole-genome association 

studies. Nature Genetics 48: 314-317. doi: 10.1038/ng.3507 

Tak YG, Farnham PJ (2015) Making sense of GWAS: using epigenomics and genome engineering 

to understand the functional relevance of SNPs in non-coding regions of the human 

genome. Epigenetics & Chromatin 8. doi: 10.1186/s13072-015-0050-4 

Tatton-Brown K, Seal S, Ruark E, Harmer J, Ramsay E, Duarte SD, Zachariou A, Hanks S, O'Brien 

E, Aksglaede L, Baralle D, Dabir T, Gener B, Goudie D, Homfray T, Kumar A, Pilz DT, 

Selicorni A, Temple IK, Van Maldergem L, Yachelevich N, van Montfort R, Rahman N, 

Consortium CO (2014) Mutations in the DNA methyltransferase gene DNMT3A cause an 

overgrowth syndrome with intellectual disability. Nature Genetics 46: 385. doi: 

10.1038/ng.2917 

Theoharides TC, Tsilioni I, Patel AB, Doyle R (2016) Atopic diseases and inflammation of the brain 

in the pathogenesis of autism spectrum disorders. Translational Psychiatry 6. doi: 

10.1038/tp.2016.77 

Ward LD, Kellis M (2012) HaploReg: a resource for exploring chromatin states, conservation, and 

regulatory motif alterations within sets of genetically linked variants. Nucleic Acids 

Research 40: D930-D934. doi: 10.1093/nar/gkr917 

Watson HJ, Yilmaz Z, Thorntont LM, Hubel C, Coleman JRI, Gaspar HA, Bryois J, Hinney A, Leppa 

VM, Mattheisen M, Medland SE, Ripke S, Yao SY, Giusti-Rodriguez P, Hanscombe KB, 

Purves KL, Adan RAH, Alfredsson L, Ando T, Andreassen OA, Baker JH, Berrettini WH, 

Boehm I, Boni C, Perica VB, Buehren K, Burghardt R, Cassina M, Cichon S, Clementi M, 

Cone RD, Courtet P, Crow S, Crowley JJ, Danner UN, Davis OSP, de Zwaan M, Dedoussis 

G, Degortes D, DeSocio JE, Dick DM, Dikeos D, Dina C, Dmitrzak-Weglarz M, Docampo 

E, Duncan LE, Egberts K, Ehrlich S, Escaramis G, Eskos T, Estivill X, Farmer A, Favaro A, 

Fernandez-Aranda F, Fichter MM, Fischer K, Focker M, Foretova L, Forstner AJ, Forzan 

M, Franklin CS, Gallinger S, Giegling I, Giuranna J, Gonidakis F, Gorwood P, Mayora MG, 

Guillaume S, Guo YR, Hakonarson H, Hatzikotoulas K, Hauser J, Hebebrand J, Helder SG, 

Herms S, Herpertz-Dahlmann B, Herzog W, Huckins LM, Hudson JI, Imgart H, Inoko H, 

Janout V, Jimenez-Murcia S, Julia A, Kalsi G, Kaminska D, Kaprio J, Karhunen L, Karwautz 

A, Kas MJH, Kennedy JL, Keski-Rahkonen A, Kiezebrink K, Kim YR, Klareskog L, Klump KL, 

Knudsen GPS, La Via MC, Le Hellard S, Levitan RD, et al. (2019) Genome-wide 

association study identifies eight risk loci and implicates metabo-psychiatric origins for 

anorexia nervosa. Nature Genetics 51: 1207. doi: 10.1038/s41588-019-0439-2 

Wen XQ, Lee Y, Luca F, Pique-Regi R (2016) Efficient Integrative Multi-SNP Association Analysis 

via Deterministic Approximation of Posteriors. American Journal of Human Genetics 98: 

1114-1129. doi: 10.1016/j.ajhg.2016.03.029 

Whalen S, Pollard KS (2019) Most chromatin interactions are not in linkage disequilibrium. 

Genome research 29: 334-343.  

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 27, 2020. ; https://doi.org/10.1101/2020.07.27.222364doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.27.222364
http://creativecommons.org/licenses/by/4.0/


28 
 

Won HJ, de la Torre-Ubieta L, Stein JL, Parikshak NN, Huang J, Opland CK, Gandal MJ, Sutton GJ, 

Hormozdiari F, Lu DN, Lee C, Eskin E, Voineagu I, Ernst J, Geschwind DH (2016) 

Chromosome conformation elucidates regulatory relationships in developing human 

brain. Nature 538: 523. doi: 10.1038/nature19847 

Wu MC, Kraft P, Epstein MP, Taylor DM, Chanock SJ, Hunter DJ, Lin X (2010) Powerful SNP-set 

analysis for case-control genome-wide association studies. Am J Hum Genet 86: 929-

942. doi: 10.1016/j.ajhg.2010.05.002 

Wu MC, Lee S, Cai TX, Li Y, Boehnke M, Lin XH (2011) Rare-Variant Association Testing for 

Sequencing Data with the Sequence Kernel Association Test. American Journal of 

Human Genetics 89: 82-93. doi: 10.1016/j.ajhg.2011.05.029 

Xiong Z, Zhang QR, Platt A, Liao WY, Shi XH, de los Campos G, Long Q (2019) OCMA: Fast, 

Memory-Efficient Factorization of Prohibitively Large Relationship Matrices. G3-Genes 

Genomes Genetics 9: 13-19. doi: 10.1534/g3.118.200908 

Yan YM, Tao HY, He JH, Huang SY (2020) The HDOCK server for integrated protein-protein 

docking. Nature Protocols 15: 1829-1852. doi: 10.1038/s41596-020-0312-x 

Yang JJ, Fritsche LG, Zhou X, Abecasis G, Degene IA-RM (2017) A Scalable Bayesian Method for 

Integrating Functional Information in Genome-wide Association Studies. American 

Journal of Human Genetics 101: 404-416. doi: 10.1016/j.ajhg.2017.08.002 

Yokoi T, Enomoto Y, Naruto T, Kurosawa K, Higurashi N (2020) Tatton-Brown-Rahman syndrome 

with a novel DNMT3A mutation presented severe intellectual disability and autism 

spectrum disorder. Human Genome Variation 7: 1-3. doi: 10.1038/s41439-020-0102-6 

Yu GC, Wang LG, Han YY, He QY (2012) clusterProfiler: an R Package for Comparing Biological 

Themes Among Gene Clusters. Omics-a Journal of Integrative Biology 16: 284-287. doi: 

10.1089/omi.2011.0118 

Yu JT, Hu M, Li C (2019) Joint analyses of multi-tissue Hi-C and eQTL data demonstrate close 

spatial proximity between eQTLs and their target genes. Bmc Genetics 20. doi: 

10.1186/s12863-019-0744-x 

Yuen RKC, Merico D, Bookman M, Howe JL, Thiruvahindrapuram B, Patel RV, Whitney J, Deflaux 

N, Bingham J, Wang ZZ, Pellecchia G, Buchanan JA, Walker S, Marshall CR, Uddin M, 

Zarrei M, Deneault E, D'Abate L, Chan AJS, Koyanagi S, Paton T, Pereira SL, Hoang N, 

Engchuan W, Higginbotham EJ, Ho K, Lamoureux S, Li WL, MacDonald JR, 

Nalpathamkalam T, Sung WWL, Tsoi FJ, Wei J, Xu LZ, Tasse AM, Kirby E, Van Etten W, 

Twigger S, Roberts W, Drmic I, Jilderda S, Modi BM, Kellam B, Szego M, Cytrynbaum C, 

Weksberg R, Zwaigenbaum L, Woodbury-Smith M, Brian J, Senman L, Iaboni A, Doyle-

Thomas K, Thompson A, Chrysler C, Leef J, Savion-Lemieux T, Smith IM, Liu XD, Nicolson 

R, Seifer V, Fedele A, Cook EH, Dager S, Estes A, Gallagher L, Malow BA, Parr JR, Spence 

SJ, Vorstman J, Frey BJ, Robinson JT, Strug LJ, Fernandez BA, Elsabbagh M, Carter MT, 

Hallmayer J, Knoppers BM, Anagnostou E, Szatmari- P, Ring RH, Glazer D, Pletcher MT, 

Scherer SW (2017) Whole genome sequencing resource identifies 18 new candidate 

genes for autism spectrum disorder. Nature Neuroscience 20: 602-611. doi: 

10.1038/nn.4524 

Zhou JX, Wang XJ, Cheng W, Pan CL, Xing XB (2019) Development and validation of a novel and 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 27, 2020. ; https://doi.org/10.1101/2020.07.27.222364doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.27.222364
http://creativecommons.org/licenses/by/4.0/


29 
 

robust blood small nuclear RNA signature in diagnosing autism spectrum disorder. 

Medicine 98. doi: 10.1097/MD.0000000000017858 

 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 27, 2020. ; https://doi.org/10.1101/2020.07.27.222364doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.27.222364
http://creativecommons.org/licenses/by/4.0/

