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ABSTRACT

GABA is the principal inhibitory neurotransmitter in the human brain and can be measured with Magnetic
Resonance Spectroscopy (MRS). Conflicting accounts report decreases and increases in cortical GABA
levels across the lifespan. This incompatibility may be an artifact of the size and age-range of the
samples utilized in these studies. No single study to date has included the entire lifespan. In this study,
8 suitable datasets were integrated to generate a model of the trajectory of GABA across the lifespan.
Data were fit using both a log-normal curve and a nonparametric spline as regression models using a
multi-level Bayesian model utilizing the Stan language. Integrated data show the lifespan trajectory of
GABA involves an early period of rapid increase, followed by a period of stability during early adulthood,
with a gradual decrease during adulthood and aging that is described well by both spline and log-normal
models. The information gained will provide a general framework to inform expectations of future studies
based on the age of the population being studied.

Keywords: MEGA-PRESS, development, magnetic resonance spectroscopy, GABA, lifecourse, Stan,
aging, lifespan, MRS

Magnetic resonance spectroscopy (MRS) is a non-invasive imaging technique that allows for the
measurement of levels of metabolites. Of particular interest to the neurosciences is the measurement of
specific neurotransmitters such γ-Aminobutyric acid (GABA) in vivo (Alger, 2010; Edden and Barker,
2007; Mescher et al., 1998; Mullins et al., 2014; Puts et al., 2011; Rothman et al., 1993). GABA is the
main inhibitory neurotransmitter in the human nervous system and plays a fundamental role in central
nervous system function (Buzsáki et al., 2007). A number of studies have explored the relationship
between cortical GABA (as measured with MRS) and age in various contexts. These studies have found
that age-related changes in GABA are consistently associated with cognitive and neurophysiological
outcomes that change across the lifespan. These findings have important implications for both healthy and
pathological development and aging.

Most prior studies have included a restricted age range. Some have reported increases in GABA as
age increases (Ghisleni et al., 2015), others have reported decreases (Gao et al., 2013; Marenco et al.,

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 24, 2020. ; https://doi.org/10.1101/2020.07.23.218792doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.23.218792
http://creativecommons.org/licenses/by-nc-nd/4.0/


PREPRINT

2018; Porges et al., 2017b; Rowland et al., 2016; Simmonite et al., 2019), and still others reported no
significant age-related changes (Aufhaus et al., 2013; Mikkelsen et al., 2018). This inconsistency makes
the results difficult to interpret, as partially overlapping age ranges produce conflicting trajectories. For
example, the age range of participants reported by Gao et al. (2013) have substantial overlap with those
reported by Ghisleni et al. (2015) yet have disparate outcomes. Interestingly, this apparent conflict in
the literature is not present when similar age ranges are considered. For example, both Porges et al.
(2017b) and Gao et al. (2013) focus on adults through advanced age and both report age-related decrease
in GABA. Here, we predicted that this apparent conflict is the result of a non- linear age-related trajectory,
similar to other features of brain development (Lebel et al., 2012), showing that the lifespan trajectory
involves a rapid increase of GABA rich grey matter in early life, relative stability in early adulthood,
followed by a gradual decrease, and that this is consistent with inhibition- dependent behavior (Williams
et al., 1999). To date, no single study has explored the lifespan trajectory of cortical GABA spanning
development, adulthood, and aging. In the absence of a lifespan study, we implemented an individual
participant data (IPD) meta-analytic approach following PRISMA guidelines (Moher et al., 2009, ; see
Figure 1) supplemented with data collected by the authors and previously published in summary form
(Puts et al., 2017).

The majority of MRS studies of GABA at 3 Tesla have utilized the unique structure of the GABA
molecule to selectively edit the GABA signal using a typical MRS acquisition with frequency-selective
pulses (e.g. Mullins et al., 2014). Editing is necessary at 3 Tesla due to the low concentration of GABA
in the human brain (1-2 mM) (Harris et al., 2017). In un-edited MRS, signal from higher concentration
molecules like NAA and creatine (Cr) mask the GABA signal. The most widely used edited MRS
technique is MEGA-PRESS (Mescher et al., 1998), in which a GABA-selective editing pulse at 1.9 ppm is
applied in half of the experiment (edit-ON). Due to its low concentration, measurement of the GABA-
edited signal in humans requires a large voxel (most commonly 27 cm3 Mullins et al., 2014; Peek et al.,
2020; Salthouse, 2010) to keep acquisition times reasonable (1̃0 minutes) and to provide an adequate
signal-to-noise ratio (Mikkelsen et al., 2018). This limitation constrains the spatial specificity of the
measurement to coarse regions that often lack discrete functional specificity. The spectrum is further
complicated by a macromolecule signal at 3 ppm, which is coupled to another macromolecule signal at
1.7 ppm and thus falls within the envelope of the editing pulse, resulting in a co-edited macromolecule
signal as part of the 3 ppm GABA signal (Edden et al., 2014; Henry et al., 2001). Consequently, most
studies refer to the GABA signal as “GABA+”. Both MM-suppressed and GABA+ measures are included
here (Table 1).

The functional relevance of MRS measures of GABA is important to note. Measured GABA levels
include both intracellular and extracellular contributions to the overall GABA concentration, however
these relative contributions are not well-known, particularly in development. GABA levels measured via
MRS at rest describe a physiological characteristic of the tissue measured and, while associated with
functional metrics (e.g. neurophysiological response or behavior), are better interpreted in a manner
similar to structural neuroimaging. The GABA measure is a single quantity representing the entirety
of the voxel and thus, all pools of GABA present (with no discrimination between intra/extracellular,
neuronal/astrocytic, vesicular, etc). However, studies have shown that the majority of the GABA measured
using MRS reflects intracellular levels rather than synaptic levels (Marenco et al., 2011; Rae, 2014; Stagg
et al., 2011b). As such, the GABA signal is considered to be reflective of inhibitory tone rather than
dynamic synaptic inhibition (Rae, 2014). GABA levels measured via MRS in young adults at rest have
been reported to be stable for up to 7 months (Near et al., 2014) and do not exhibit a diurnal rhythm (Evans
et al., 2010).

In this manuscript, we statistically combine datasets of published research that used MEGA-PRESS to
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measure GABA levels of discrete age ranges where individual data points were presented relative to age to
present a non-linear model for GABA levels over the human lifespan using an Individual Participant Data
approach. This work is motivated by several studies showing that MEGA-PRESS measures of cortical
GABA are relevant to both development and aging with a specific emphasis on cognition and perception.
We further discuss the lack of available data across the lifespan.

The importance of GABA in cognition motivates an understanding of the age-relationship
GABA levels measured with MRS have been linked to clinical and cognitive outcomes. While this

review does not pertain to cognition, an understanding of the relationship between GABA and cognition
motivates our initial step towards understanding the relationship between GABA and age. Alterations of
GABA levels are seen in neurodevelopmental disorders such as ADHD (Bollmann et al., 2015; Edden et al.,
2012), Autism Spectrum Disorder (Cochran et al., 2015; Drenthen et al., 2016; Gaetz et al., 2014; Puts et al.,
2017), and Tourette syndrome (Puts et al., 2015), as well as in other neurological and psychiatric disorders
including schizophrenia (Rowland et al., 2016; Shaw et al., 2020), depression (Sanacora et al., 1999) and
neurofibromatosis (Violante et al., 2013). These associations are reviewed by Puts and Edden (2012) and
by Schür et al. (2016). Measures of GABA levels appear to be functionally and regionally specific, and
studies have shown associations between sensorimotor GABA levels and tactile sensitivity (Heba et al.,
2016; Puts et al., 2011, 2015), between occipital GABA levels and visual orientation discrimination (Edden
et al., 2009; Yoon et al., 2010), between motor cortex GABA and motor control and learning (Bachtiar and
Stagg, 2014; Stagg et al., 2009, 2011a), between anterior cingulate cortex and response inhibition (Silveri
et al., 2013), and between frontal GABA concentrations and working memory (Michels et al., 2012). For
a review, see Duncan et al. (2014). Moreover, GABA levels correlate with other measures of brain activity,
including functional magnetic resonance imaging (fMRI) (Donahue et al., 2010; Muthukumaraswamy
et al., 2009), measures of cerebral blood flow (Donahue et al., 2010), and motor cortex gamma oscillations
(Gaetz et al., 2011; Muthukumaraswamy et al., 2009) as measured using magnetoencephalography (MEG);
for a review, see Duncan et al. (2014).

The above paragraph reflects a large number of studies showing that GABA plays an important role
in regulating cognitive function in health and disease. It is also well known that age affects cognitive
processes both in development and aging, including sensory processing (Koerner and Zhang, 2018;
Simmonite et al., 2019), working memory (Mok et al., 2019), motor function (Hermans et al., 2018; Maes
et al., 2018; Mikkelsen et al., 2018) and many others, however the potential role of GABA has not been
well-explored. Perhaps more immediately, it is not well-known how GABA changes across the lifespan.
Our approach allows for a systematic review of existing work studying GABA across development and
aging.

GABA across the lifespan
To date, cross-sectional and longitudinal investigations of cortical GABA across the entire human

lifespan have yet to be published. However, there have been recent reports investigating the relationship
between cortical GABA levels and discrete age ranges in humans that test a linear association focused on
a specific population (e.g. ‘aging’). As discussed above, the results of these studies are ambiguous—some
suggest a positive correlation between GABA and age, others hint at a negative correlation, and still
others conclude that there is no relationship at all. Here, we discuss these reports in the context of human
development and divide them into three categories: developmental, adult, and aging.

Developmental
The developmental component of the lifespan of cortical GABA as measured by MRS of GABA is

explored in less depth than in adult or aging cohorts. Port et al. (2017) report a maturational increase
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in GABA+ with age. The majority of evidence comes from non-MRS work, showing dramatic change
in GABAergic function during early life. Human autopsy data describes large changes in both GABA
synthesis and receptor expression (Pinto et al., 2010) and animal models describe a shift in GABA from
excitatory to inhibitory (Leonzino et al., 2016). Yet, in vivo reports in healthy younger populations
(particularly infants and young children) are sparse or missing. Several reasons exist for the absence of
high quality MRS data during development with technical challenges being one main challenge. These
challenges are not unique to MRS, but exist for most —if not all— Magnetic Resonance modalities. For
example, it is well established that imaging of MRS of GABA is highly sensitive to motion (Edden et al.,
2016; Mullins et al., 2014), thus compounding the challenges involved when imaging pediatric cohorts.
Many studies in pediatric cohorts, including our own (Puts et al., 2017), also suffer from the limitation
that age relationships are not reported due to individual studies often studying a restricted age range to
minimize developmental effects within the cohort.

Adult
The vast majority of studies in healthy populations focus on age ranges between development and

aging to minimize the effect of age on the measures of interest (and for ease of recruitment). However,
this limits the reporting of GABA-age relationships within this range. Mikkelsen et al. (2017) conducted a
multisite study collecting GABA+ levels in 272 participants between 18 and 35 years old, providing a
substantial dataset to assess this relationship. The sample size and restriction to healthy adults in this study
provide a reasonable representation of normal GABA levels in the target demographic. Their objective
with this study was to report stability of the GABA+ measure across multiple 3T MRI platforms with
systems by GE, Phillips, and Siemens well represented. Voxel placement was selected for the medial
parietal lobe. While their original manuscript contains neither a report nor a visualization of the GABA/age
relationship, we are able to provide this information for our review (data are freely available from the
Big GABA repository, Mikkelsen et al., 2017, https://www.nitrc.org/projects/biggaba/). There was no
age-related increase or decrease between age and GABA+/Cr [ ?2(7) = 3.52, pboot = 0.31] in this large
cohort of adults between 18-48 years of age.

Aging
Most, if not all, MRS of GABA studies that investigate aging populations report a decrease in cortical

GABA as a function of age in both frontal (Gao et al., 2013; Porges et al., 2017b) and parietal (Gao et al.,
2013) voxels. Marenco et al. (2018) also show a decrease in GABA with aging. It is important to note that
other reports (Hermans et al., 2018; Maes et al., 2018) have compared MRS of GABA between defined
groups of older and younger adults rather than with continuity across the lifespan. These findings are
consistent with continuous approaches, with older adults having reduced GABA. However, a categorical
approach comparing two groups does little to elucidate the aging-related trajectory. Manuscripts that
employ MEGA-PRESS methodology in a manner that is inconsistent with methods outlined in consensus
papers (Mullins et al., 2014; Puts and Edden, 2012), have insufficient SNR, or other technical limitations
have not been considered for this assessment.

In conclusion, an understanding of the link between GABA and age is incredibly important for the study
of inhibition across the lifespan, the study of development- and aging-related behavioral and cognitive
processes, and the study of health and disease. No study has attempted to study GABA across the entire
lifespan. Here we utilize an Individual Participant Data Meta-Analytical approach of all existing and
eligible cortical edited MRS of GABA data across the lifespan (from development to aging) to build a
model that informs us of the best-fit model of GABA across the lifespan. We hypothesize that the model
of best-fit would be consistent with that of other cortical measures, showing a sharp increase during
development, and a slow gradual decrease during aging.
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METHODS
We conducted and reported this systematic review in accordance with the PRISMA (Preferred Report-

ing Items for Systematic Reviews and Meta-Analyses) statement (Moher et al., 2009) and we used an
Individual Participant Data-Meta Analysis (IPD-MA) approach (Debray et al., 2015).

A systematic literature search was performed in two iterations by BF and EP to retrieve studies in
which MRS of GABA using the MEGA-PRESS method was collected in the human brain from voxels
that included the frontal lobe. In the first iteration, a search was performed using Google Scholar and
Medline with the following combination of terms: (GABA OR GABA+ OR ?-aminobutyric acid OR
gamma-Aminobutyric acid) AND (MRS OR Magnetic Resonance Spectroscopy) AND (MEGAPRESS
OR MEGA-PRESS OR MEshcher-GArwood Point RESolved Spectroscopy OR edited). Both GABA+
and MM-suppressed measures were deemed inclusive. The following constraints were applied to limit
results: the result should be (i) a full-text article or a conference abstract, (ii) peer-reviewed, (iii) written in
English, (iv) included in the publication must be a scatter plot with GABA by Age suitable format for
extraction of individual human subject data via WebPlotDigitizer. The search was conducted on April 2,
2019, resulting in a total of 273 studies. Out of these, 55 were relevant.

Additional Criteria
Study Design

A second step was performed by BF, EP, and NP to exclude based on the following criteria: studies
must report GABA, acquired using MEGA-PRESS, in at least one cortical voxel (subcortical voxels were
excluded). To exclude a potential region effect, when a frontal voxel (any inclusion of frontal cortex) was
available we included that voxel (given its importance for cognition and applicability to the majority of
available studies). If not, we used the other cortical voxel only. If a study sampled multiple voxels, we only
extracted data from a frontal voxel to prevent multiple sampling of a single subject as this would include
in inclusion of non-independent datasets. If multiple frontal voxels were available, we chose the dataset
with the largest sample. Then, data were only included when they originated from published figures
of sufficient quality for data extraction of individual data points to be used. Finally, the data extracted
required contiguous age ranges of 5 or more years for inclusion in the analysis. Studies failing to satisfy
all criteria were deemed incompatible with the individual participant data meta-analytic approach (as
described below). Duplicate datasets were excluded as well.

Data Quality
A third step was performed to assess whether studies adhered to consensus quality assurance criteria

for data collection, analysis, and reporting. For this purpose, two coauthors (NP and EP) evaluated all
remaining studies using the MRS-Q, which was specifically designed for MRS and based upon consensus
documentation (Peek et al., 2020).

Of the 55 relevant studies retrieved in the systematic search, only 7 included figures suitable for
data extraction or had data freely available in available online repositories. One dataset was only partly
published (Puts et al., 2017) but was supplied in full by authors of this manuscript NP and RAEE, for
a total of 8 datasets. At final review, these datasets were reviewed for consistency in research methods
(see Figure 1 and Table 1), evaluated for age distributions (see Figure 2 and Table 2), and combined in
aggregate (see Figure 3 and Table 3).

Risk of Bias
All 8 studies included in the systematic review included both male and female participants, although the

pediatric data were somewhat skewed to include more males. No data were excluded based on acquisition
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Figure 1. Prisma 2009 Flow Diagram of study identification and inclusion.

parameters as assessed with the MRS-Q. Most studies were well-matched for acquisition and followed
published recommendations (Mullins et al., 2014). No exclusions were made based on the direction of
the correlations. With the exception of two publications, (Gao et al., 2013; Porges et al., 2017b), the
age-by-GABA relationship was not a primary outcome, and was therefore unlikely to have been a driver
of publication bias in the majority of studies included. However, a risk of publication bias cannot be ruled
out.

Individual data points were extracted from figures using WebPlotDigitizer (Rohatgi, 2019). None of
the data included were corrected for voxel tissue fractions (see Discussion). MEGA-PRESS sequences
can vary between and within MRI vendors; these can impact editing efficiency and in turn absolute
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GABA
Study

Type of
Scanner

Analysis
Software

Reference
Method

Voxel
Volume

(mL)
MRS

Averages
TE

(ms)
TR

(ms)
Aufhaus* 3T Siemens jMRUI / GABA/H2O 24 192* 68 3000

LCModel
Gao 3T Philips jMRUI GABA+/Cr 27 320 68 2000

Ghisleni 3T GT LCModel GABA+/H2O 30 320 68 2000
Mikkelsen 3T GE / Gannet GABA+/Cr 27 320 68 2000

Philips /
Siemens

Porges 3T Philips Gannet GABA+/H2O 27 320 68 2000
Puts 3T Philips Gannet GABA+/H2O 27 320 68 2000

Rowland 3T Philips Gannet GABA/H2O 24 256 68 2000
Simmonite 3T Philips Gannet GABA+/Cr 22.5 256 68 1800

Table 1. Neuroimaging acquisition and analysis details for eight studies included in the analysis. GABA+ = GABA and
macromolecule; GABA = Macromolecule-suppressed GABA; H2O = water referenced; Cr = creatine referenced. MRS
averages refer to the number of ON+OFF transients. *The manuscript refers to 96 averages. It was clarified with the authors
that this referred to 96 ON and 96 OFF averages.

GABA
Study

# of
Subjects

Mean
Age

Age
(SD)

Age
Range

Aufhaus* 44 35.5 10 21-53
Gao 96 45.7 14.5 20-76

Ghisleni 55 27.2 11 13-53
Mikkelsen 220 26.5 4.9 18-48

Porges 86 71.8 10.6 43-92
Puts 101 10.3 1.2 8-13

Rowland 82 38.0 13.7 18-62
Simmonite 38 50.1 29.2 18-87

Table 2. Descriptive statistics for eight studies included in the analysis.

quantification (Harris et al., 2015; Saleh et al., 2020). However, the consequence of this will not impact
the within-site relationship to age (the metric used in this review) as the consequences of such variation
are stable within-site and function as a scaling factor (Mikkelsen et al., 2018).

Table 2 gives a basic description of sample size and age range for the eight datasets. Additionally,
Figure 2 depicts the distribution of ages using a raincloud plot (Allen et al., 2019).

Statistical Methodology
Our meta-analysis made use of an individual participant’s data meta-analytic (IPD-MA) approach

(Debray et al., 2015). The chief advantage of this approach is that it allows the analyst to account for
the evidence provided by the individual observations recorded in each study while also accounting for
any systematic differences between studies using the framework of a hierarchical model. As a result,
methodological steps like estimating the “weight” associated with each study in order to determine how to
combine reported statistics is rendered unnecessary, as the relative effect size and uncertainty of each study
is communicated to the model by the data themselves (Riley et al., 2010). Such an approach is especially
important in non-linear regression paradigms, in which the meta-analytic models’ uncertainty for any
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Figure 2. Raincloud plot depicting the age distribution in each of the eight included datasets. Plotted densities are scaled
within study. The relevant analysis script for these densities is included as supplemental material.

value of a continuous predictor depends on the complex covariance of participant-level and study-level
parameters. Without considering the changing density and overlap of the individual data points, estimation
of the main trend would be greatly complicated and plausible error bars would be effectively impossible to
calculate.

Our general statistical framework in this analysis was to assume that some unknown “canonical
function” describes the average change in the feature-scaled GABA signal over the lifespan as a function
of age. In other words, given participant i in study s, their age is denoted by xs,i and the relative change
in GABA over the lifespan is given by the function g (xs,i). This change cannot be directly observed
though imaging, but is instead inferred indirectly from a measurable reference (in our case, either water
or creatine). As such, the mean observed effect in each study has an unknown feature scaling factor
Fs. Finally, individual observations are assumed to vary with respect to the lifespan function given
normally-distributed noise ε with an unknown error term σ. In total, this gives the following general form
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Figure 3. Linear relationships between age and GABA signal. In each dataset, GABA was scaled relative to the geometric
mean. Linear models were fit for each dataset separately. Shaded regions represent the 95% credible interval for the regression
line.

GABA
Study

Mean
Slope

Lower Bound
(0.025 Quantile)

Upper Bound
(0.975 Quantile) R2

Aufhaus* -0.0008 -0.0055 0.0041 0.003
Gao -0.0075 -0.0092 -0.0058 0.459

Ghisleni 0.0034 0.0007 0.0061 0.106
Mikkelsen -0.0019 -0.0054 0.0016 0.005

Porges -0.0099 -0.0133 -0.0064 0.279
Puts 0.0436 0.0085 0.0795 0.058

Rowland -0.0032 -0.0060 -0.0004 0.061
Simmonite -0.0023 -0.0040 -0.0005 0.156

Table 3. Descriptive statistics for eight studies included in the analysis.

for each observation in our data ys,i:

ys,i = g (xs,i) · Fs + ε, where ε = Normal (0.0, σ) (1)

Because the scaling factor Fs is intended to act as a feature-scaled standardization of the unitless
function g (xs,i), the scaling factors were constrained so that the geometric mean of all values g (xs,i) were
equal to 1.0. In addition to allowing different reference methods to be combined, the relative values of Fs

act as a study-by-study correction for any systematics that might otherwise shift one study’s observations
relative to another’s.

This model is highly general, accommodating any function g() the analyst deems appropriate. The
parameters that must be estimated are one scaling factor Fs for each study, a global error term σ, and
whichever parameters the function g() requires to specify its shape. Because parameter estimates in
any non-linear regression model necessarily covary, it is essential that all parameters be estimated
simultaneously (McElreath, 2020). If, for example, each dataset were “feature scaled” independently
and then subsequently stitched together, any vertical shift needed to maximize the overlap of outcomes
recorded during overlapping age ranged would necessarily be ad-hoc and would not be able to balance the
relative weight of the evidence from each study in that area of overlapping age. By this same token, it was
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important that all studies included in our analysis included a range of ages that overlapped with at least
one other study.

In order to ensure that all estimates were permitted to covary appropriately, we obtained posterior
distributions for each parameter numerically using a Bayesian paradigm (Gelman et al., 2014) and
implemented with the Stan programming language (Carpenter et al., 2017). Details of these analyses can
be found in the supplementary information.

RESULTS
To evaluate the 8 datasets for a linear trend, each dataset was the subject of a separate linear regression

with respect to age. In each case, data were scaled by dividing the values by that dataset’s geometric mean.
The resulting fits are depicted in Figure 3, with corresponding regression statistics reported in Table 3.
These results are not meta-analytic; instead, they reflect the linear trend in each dataset. In six of the eight
datasets, the linear trend explained less than 20% of the variance, and although the slope in the dataset
with the youngest participants was positive, slopes tended to become more negative as the age of the
participants increased. This pattern suggests that although a linear trend may provide a good account of
data over short periods of time, a linear trend over the entire lifespan is not appropriate.

To provide a meta-analytic synthesis of these datasets without biasing our result through an arbitrary
choice of our function g(), we fit two models: both nonlinear and able to accommodate the pattern visible
from the individual trendlines.

Our first function g() was a penalized basis spline model, adapting the procedure described by
Kharratzadeh (2017). This provided a nonlinear and nonparametric estimate of how GABA changes over
the lifespan as described by these 8 datasets. The resulting model is depicted in Figure 4 (left). Overall,
this time course is characterized by a rapid increase in GABA during early life, followed by a plateau from
adolescence through midlife, and then a gradual decline from approximately 40 years onward.

This pattern of a rapid increase in GABA in early life, followed by a gradual decline, has been
characterized in the past using the log-normal distribution to describe other neurophysiological changes
across the lifespan (Lebel et al., 2012). To provide a parametric description of GABA over the lifespan,
our second function g() was a log-normal distribution with a free scaling factor. This model is depicted in
Figure 4 (right).

To ensure that the directionality of the ‘late-age’ component was not driven by changes in creatine,
we performed an additional ‘leave-one-out’ (LOO) cross-validation approach (Arlot and Celisse, 2010)
for each of the three datasets that included late-age participants. Figure 5 shows that when datasets are
left out, the general shape of both models remains the same, with wider 95% credible intervals for the
oldest of age due to limited available data. This suggests the overall pattern of a negative slope in late
age is unlikely to be driven by creatine changes, as the data contributed by Porges et al. (2017b) made the
largest contribution to this slope (having the most observations to contribute) and relied on a water-based
reference method. We also explored the potential effect of region by performing the analysis on only
frontal data (removing Mikkelsen et al. and Simmonite et al. respectively) with no substantial impact on
the direction of the slope over time. This analysis is depicted in Figure 6.

DISCUSSION
Here we show that the age-related trajectory of GABA across the lifespan is characterized by a sharp

increase in GABA levels during development, followed by a flattening during early adulthood and by a
subsequent slow decrease with aging. No single study reveals such a relationship (as evidenced by Figure
3) — it is only by meta-analysis of multiple datasets that we are able to identify this relationship. Here, we
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Figure 4. Nonlinear regression models of GABA signal integrating all data simultaneously. The shaded region depicts the
95% credible interval for the mean. Left. Penalized B-spline model. Right. Log-normal model.

will discuss the case for a biological mechanism that drives a non-linear trajectory of GABA levels with
age and then discuss methodological and biological factors that may influence these results. Finally, we
review the implications of our evaluation and suggest potential directions of future research characterizing
the trajectories of GABA concentrations over the lifetime.

Biological Mechanisms
Although previous work, including the authors’ own, has generally reported a linear relationship

between GABA and age within a given stage of life, it is far more plausible that changes across the
lifespan are non-linear, in line with other biological effects. For example, while Gao et al. (2013) might
capture a decrease in GABA with age, the broad age range studied in Ghisleni et al. (2015) might prevent
observation of a linear relationship. Indeed, a decline in GABAergic interneurons with age has been
widely reported in animal models (Hua et al., 2008; Stanley et al., 2012). Post-mortem data from human
samples showed a reduction in the 65 isoform of Glutamic Acid Decarboxylase (the enzyme responsible
for the production of GABA, GAD) in visual cortex, suggesting reduced GABA production with aging
(Pinto et al., 2010). MRS of GABA by itself cannot provide sufficient resolution to determine what
these reductions in GABA levels reflect; we can only make vague assumptions and conclusions on the
relationship between brain structure, cognitive function, and potential molecular mechanisms.

In considering a nonlinear model for GABA across the human lifespan, we find three major stages:
1) a developmental stage where GABA levels increase rapidly, 2) a stabilization phase during adulthood
where GABA concentrations remain mostly stable, and 3) a gradual descending period of GABA with
advanced aging. This is consistent with previous studies of brain structural and cognitive function across
the lifespan. Non-linear trajectories have been reported in age-effects of total grey matter (Lenroot et al.,
2007; Sussman et al., 2016) and cortical thickness (Shaw et al., 2008). Diffusion tensor imaging (DTI)
studies show non-linear age-related changes through childhood and adolescence (Lebel and Beaulieu,
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Figure 5. Nonlinear regression models of GABA signal performed using a leave-one-out (LOO) cross-validation approach for
late-life datasets. The grey shaded region and black line depicts the 95% credible interval for the mean for the model as shown
in Figure 4 and the colored shaded region and dotted line show the model with the respective data left out. In all cases, a similar
overall trajectory to the full data is implied by each of the subsets, albeit with greater uncertainty.

2011), with an “inverted U-shaped” trajectory that peaks at approximately 40 years of age (Bendlin et al.,
2010; Good et al., 2001; Lebel et al., 2012; Westlye et al., 2010). A similar trajectory pattern for cognitive
abilities is reported in memory, verbal ability, and inductive reasoning (Kobayashi et al., 2015), as well as
word recall, verbal fluency, math skills (Whitley et al., 2016), and behavioral inhibition (Williams et al.,
1999).

GABA changes in Development
An increase in cortical GABA could be extrapolated from the proliferation of new GABAergic neurons

during development. GABA is thought to be linked to the myelination of frontal white matter trajectories
by controlling oligodendrocyte precursor cell activity through the developmental phase (Ghisleni et al.,
2015; Vélez-Fort et al., 2012). An increase in cortical GABA concentrations could also be the result of
increased synaptic activity of GABAergic neurons during development. This potentiation-like mechanism
of cortical GABA is supported by studies where astrocytes have been shown to mediate plasticity of
rodent hippocampus (Kang et al., 1998) and visual cortex (Chen et al., 2012), suggesting a possible
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Figure 6. Nonlinear regression models of GABA signal performed using a leave-one-out (LOO) cross-validation approach for
non-frontal datasets. The grey shaded region and black line depicts the 95% credible interval for the mean for the model as
shown in Figure 4 and the colored shaded region and dotted line show the model with the respective data left out. In all cases, a
similar overall trajectory to the full data is implied by each of the subsets, albeit with greater uncertainty.

potentiation-like mechanism of cortical GABA concentrations. In addition, upregulation of GAD could
lead to increased production of GABA and indeed, GABA levels as measured with MRS have been
shown to relate to expression of the GAD1 gene (Marenco et al., 2010). GABAergic neuronal function is
reported to become more efficient through synaptic pruning and long-term depression during development
(Paolicelli et al., 2011; Wagner and Alger, 1995; Wu et al., 2012). It should be pointed out that no eligible
MRS studies of GABA were available for infancy and early development, which is a significant gap in the
literature that should be addressed in future work.

GABA changes in Aging
Decreased GABA concentrations during aging are most likely linked to grey matter atrophy and

demyelination associated with pathology and normal aging. Studies have shown a reduction in the number
of interneurons expressing GAD in the medial prefrontal cortex. These reductions were accompanied
by altered spatial working memory, linking altered GABA function to altered behavior in aging (Spiegel
et al., 2013) (Spiegel et al., 2013). Furthermore, studies have shown changes in the efficacy of GABAergic
function at both GABA-A and GABA-B receptors (McQuail et al., 2015). Finally, animal work has
shown reduced GABAergic neurons and efficacy in cats and monkeys (Hua et al., 2008; Leventhal et al.,
2003). Any other explanation of decreased cortical GABA during development may be linked to disease
pathologies.

GABA changes across the lifespan
Very few non-MRS studies have assessed changes in GABA function across the lifespan. In those that

report changes in the GABAergic system across the lifespan, a pattern of change similar to our findings
has been presented. Using GAD labeling methodology in the human visual cortex, GAD65 has been
reported to increase early in life and gradually decrease during aging (Pinto et al., 2010). Provocatively,
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they show GAD67 to be stable across the lifespan. Given the more specific relationship between GAD65
and neurotransmission, this may underlie reports of GABA associated alterations in cognitive function that
occur during periods of GABAergic change (Porges et al., 2017b) throughout the lifespan. Future studies
should aim to address the relationship between these two different functional isoforms, brain GABA levels,
and function in both health and disease.

Regional differences
It can be assumed that regional changes in GABA are not homogeneous. We do not presume that the

model we have presented is characteristic of age-related changes in GABA in all neural tissues due to
well-known ontological and age-related regional variation in tissue that influence GABA levels (Lebel
et al., 2012). One could even argue that regional differences are likely to exist within smaller regions of
the frontal lobe. However, limiting this regional selectivity even further would have not allowed for our
analysis, as 1) we would not be able to correct for covariation between frontal and parietal regions, and 2)
Inclusion of multiple observations per participant would violate the independence of individual datapoints
in our analysis. Because all data we included from a particular study were restricted to the same cortical
region, differences between regions would be absorbed by the studies’ scaling factors Fs, and would be
indistinguishable from methodological systematics (further discussed below). We additionally show that
the model shows a similar trajectory for frontal-only data (Figure 6). The majority of published studies on
MRS of GABA focus on cortical, rather than subcortical, regions of interest. The few publications that
describe subcortical GABA often show trends that are difficult to associate with cortical GABA levels. For
instance, GABA was negatively associated with age in subcortical voxels but positively associated with
age in anterior and posterior cortical voxels (Ghisleni et al., 2015). Subcortical GABA undoubtedly plays
an important role in brain function, as evidenced by increased GABA concentrations in subcortical basal
ganglia that have been associated with schizophrenia and depression Puts and Edden (2012). However, the
role of subcortical GABA—measured via MRS—in cognitive function is not thoroughly investigated in
the literature, and thus there are too few studies to perform a suitable meta-analysis. In the current review,
we limit our discussion to GABA concentrations in cortical voxels in order to provide a meaningful initial
evaluation of GABA over the lifespan. Both the publication of future participant-level data and the release
of participant-level data from past studies will increase the sample available to the field, which in turn will
make possible the rigorous examination of the contributions of these covariates.

Methodological Differences
Inconsistencies in age-related changes in GABA levels may stem from differences between study

methodologies or inherent structural differences across the lifespan. We discuss each of these in turn
below.

Quantification of MRS is relative and expresses the ratio between the signal of interest and an internal
reference signal. The most widely used references for GABA levels are the Cr signal in editing-off spectra
and the unsuppressed water signal from the same volume (Alger, 2010; Mullins et al., 2014). Each method
has its advantages and disadvantages. For instance, Cr is acquired during the same MEGA-PRESS scan as
GABA, limiting effects of chemical shift: Cr has a minimal shift from the GABA signal. In contrast, the
water signal represents a more concentrated chemical yielding a higher SNR, but it may also introduce
error in estimates of location due to chemical shift effects (Mullins et al., 2014). Furthermore, the Cr
signal arises only from tissue, whereas water signal arises from tissue and CSF with substantially different
relaxation behavior. A small number of studies have looked at the relationship between Cr and age (Ding
et al., 2016) showing an increase or no change with age (for review, see Cleeland et al., 2019). This would
make the negative GABA/Cr correlation less significant. Moreover, Gao et al. investigated both GABA/Cr
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and GABA/NAA and found the same effect. NAA has been shown to consistently decrease in aging as
well (Cleeland et al., 2019). There remains the potential for a Cr-bias on the final model that needs to be
considered. Our leave-one-out approach to the ‘late-age’ data (Figure 5) found no substantial differences
in the final models, providing additional support to the notion that differences in creatine are not driving
the GABA findings presented here.

Another limitation is that voxel location can be inconsistent between studies (e.g. the medial prefrontal
cortex in one study may not be localized the same way as in another study, (also see a recent review
Peek et al., 2020). This becomes more problematic in younger cohorts where, due to smaller intracranial
volumes, the methodologically limited size of the voxel (Mullins et al., 2014) necessarily incorporates a
proportionally larger fraction of the brain.

It is well known that voxel tissue composition has a significant impact on the quantification of
GABA levels (Harris et al., 2015). In many cases, tissue correction is appropriate due to existing partial
volume effects (Barker et al., 1993; Christiansen et al., 1993; Danielsen and Henriksen, 1994; Ernst et al.,
1993; Hennig et al., 1992; Kreis et al., 1993; Thulborn and Ackerman, 1983). Researchers frequently
tissue-correct GABA values by segmenting the T1 weighted structural images (Ghisleni et al., 2015).
Interestingly, none of the studies included in this review showed significant changes in segmented tissue
content with age. This is surprising because other studies (Maes et al., 2018; Porges et al., 2017a) showed
that age-related changes in GABA depend on tissue correction due to atrophy being common in older
participants. The potential effect of tissue composition on GABA levels is limited if a study focused on a
young cohort where age-related atrophy would be negligible. All of the studies included in this review
assume a linear model to represent change in GABA. Thus, while tissue correction could potentially
contribute to the variance and differences between MRS-GABA studies, they are unlikely to explain the
discrepancies between study populations of different age ranges.

In water-referenced studies of age-related changes in older cohorts (where bulk tissue changes are most
likely to impact this relationship), accounting for cerebrospinal fluid (CSF) in the analysis does not remove
a significant relationship between age and cortical GABA (Porges et al., 2017a). Given our concern
was with relative changes in GABA, our analysis approach used a feature-scaling approach to examine
variation within-study as an estimation problem that was simultaneous with the estimation of the time
course. Given this approach, the scaling factor Fs for each study s is conceptually very similar to a method
of correcting “house effects” in the analysis of political polling data (Jackman, 2005), allowing pollsters
that show systematic bias (e.g. to a particular party) to be included in aggregate measures of public opinion.
Indeed, there is no significant difference in the correlation for GABA x age in the overlapping age range of
43 to 76 years between Porges et al. (GABA+/H2O) and Gao et al. (GABA/Cr) who looked at comparable
samples (Fisher R-to-Z; (z = 1.48, p = 0.19)) showing consistency between studies focusing on the same
population.

As for other methodological differences (Table 1 and Table 2), studies used a variety of scanner
vendors: a variation that is known to contribute to between-site variability (Mikkelsen et al., 2017) but
is unlikely to lead to substantial difference in the age relationship. Furthermore, a variety of analysis
techniques have been used, making direct comparison between studies problematic. A given analysis
pipeline is unlikely to be biased to substantial differences in the age relationship. By rescaling the data in
a way that emphasized scale ratios within each dataset, we minimized the impact of differences in site and
vendor-driven GABA magnitude estimations. Future studies should provide concentration values across
the lifespan. Recent developments in MRS of GABA methodology will allow for this, even when data is
collected on multiple scanner platforms (Saleh et al., 2020). It should be noted that all datasets used for
this meta-analysis were cross-sectional. Although it is tempting to draw longitudinal inferences from our
analysis, there are several limitations in doing so. For example, the present data provide no insight into
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long-term survival trends, so the population that is represented at age 20 likely differs in various ways
from the population that is represented at age 70 and we cannot rule out a relationship between GABA
and survival-related confounds. Additionally, because our method simultaneously estimated the scaling
factor and the time course for each dataset, areas of minimal overlap between datasets (e.g. at around 13
years) are particularly uncertain.

The present analysis provides a model of the lifespan based on the data that is presently available. It
would be valuable to test these in a longitudinal study of MRS of GABA across the lifespan. Even if it is
not feasible to measure GABA in the same individual over a 70-year span, obtaining multiple estimates
per participant over a moderate length of time (e.g. 5 years) would greatly facilitate estimating rate of
change over time.

Conclusion and Future Research
This review considered research of cortical GABA concentrations over the lifespan. After combining

datasets, we conclude that a linear model of GABA over the lifetime is not supported. Instead, consistent
with other developmental aging studies of neurophysiology and cognitive function, we propose non-linear
models to describe lifespan GABA levels. A log-normal trajectory provides a satisfactory parametric
description of the life-course for the time being, but large and longitudinal datasets may necessitate the
use of nonparametric regression strategies to best characterize the age-GABA relationship.

In the future, it will be important to investigate the neurophysiological and anatomical processes
that drive apparent changes in bulk metabolite and neurotransmitter levels. While it is clear that GABA
changes with age and seems to follow trends reported in other lifespan datasets, non-linear relationships
in GABA and other neurotransmitter concentrations warrant further exploration. Future inquiries would
benefit from recruiting cohorts that encompass the entire lifespan. Studies of development including
those of infants and young children are virtually non-existent but are crucial given the importance of
GABA in early development. Furthermore, alterations in GABA have been seen in neurodevelopmental
and neurodegenerative disorders—a better understanding of abnormal GABAergic function early in
development may elucidate this relationship, point to potential early-intervention targets, or explain
variability in response to pharmacological treatments for these conditions.

Here, we report on the relationship between GABA and age across the lifespan. It is well known that
GABA contributes to cognition and perception, which in and of themselves change with age. It would
be extremely interesting to apply our meta-analytical approach to the investigation of how age-related
changes in GABA might correlate with cognition. However, this is greatly complicated by the wide variety
of cognitive measures used across studies, which would be much more difficult to standardize across
studies than feature-scaled GABA as measured using an MRI machine. While pursuit of this work is
notably challenging, conducting such research is undeniably crucial going forward.

While many papers exist that report on age-related changes that are consistent with our lifespan
trajectory, these are often reported as group or cohort differences without the presentation of individual
data points necessary for such meta-analyses as applied here (Hermans et al., 2018; Port et al., 2017).
Collaborative and group-science approaches are becoming increasingly important in generating large
datasets that allow for a broader and larger-scale application of this work and we hope that sharing data, or
at least reporting individual data points, becomes more common in the future even in studies where age
may not be the main focus.
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