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ABSTRACT

The ability to make decisions based on external information, prior knowledge and context is a
crucial aspect of cognition and it may determine the success and survival of an organism.
Despite extensive and detailed work done on the decision making mechanisms, the
understanding of the effects of arousal remain limited. Here we characterise behavioural and
neural dynamics of decision making in awake and low alertness periods to characterise the
compensatory signatures of the cognitive system when arousal decreases. We used an auditory
tone-localisation task in human participants under conditions of fully awake and low arousal.
Behavioural dynamics analyses using psychophysics, signal detection theory and drift-diffusion
modelling showed slower responses, decreased performance and a lower rate of evidence
accumulation due to alertness fluctuations. To understand the modulation in neural dynamics
we used multivariate pattern analysis (decoding), identifying a shift in the temporal and spatial
signatures involved. Finally, we connected the computational parameters identified in the drift
diffusion modelling with neural signatures, capturing the effective lag exerted by alertness in
the neurocognitive system underlying decision making. These results define the reconfiguration
of the brain networks, regions and dynamics needed for the implementation of perceptual
decision making, revealing mechanisms of resilience of cognition when challenged by decreases
in arousal.

INTRODUCTION

The question of how decisions are made has shaped the world’s systems of government, justice
and social order (Buchanan and O’Connell, 2006). From a cognitive perspective, the modelling
of psychological and neural factors allows for the search of underlying brain mechanisms,
which are under specific constraints of the information provided from the external world and
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the internal state of the corresponding system. Studies on how the brain implements simple
decisions have revealed several neurocognitive processes at the perceptual, central integration
and motor implementation levels (Sigman and Dehaene, 2005, 2008), but the modulatory effects
of the internal milieu, homeostasis, arousal, alertness, and circadian influences on such
processes have received less attention (Hull et al., 2003; Knowles, 1993). Specifically, alertness
fluctuations on decision processes have been tackled by sleep deprivation and brain injury
studies but hardly by normal variations in the stability of wakefulness (Goupil and
Bekinschtein, 2012). The question arising is; how does the brain compensate for the detrimental
effects of decreasing arousal while making an optimal decision?

Perceptual decision making is referred to as a set of processes which involves processing
sensory information and making a single behavioural choice from a set of available options
(Heekeren et al., 2008). The various elements of this process include: a) a sensory system that
transforms physical stimulus intensities into decision variables in the brain; b) a decision system
that integrates and accumulates such decision variables and makes an optimal choice of based
on relative evidence; and c) a motor system that implements the appropriate motor plan for the
choice by pressing a response button etc. The brain regions involved in such processes have
been revealed by neuroimaging studies in monkeys and human observers. Signals from domain
general regions like right insula, posterior left SFS/DLPFC, left TPJ, posterior parietal cortex
(LIP) were identified as processes responsible for evidence accumulation (Heekeren et al., 2004,
2006; Ho et al., 2009; Roitman and Shadlen, 2002; Shadlen and Newsome, 1996, 2001). However,
these studies have not directly measured the effect of alertness modulations on evidence
accumulation or decision making parameters. Specifically alertness related modulations can be
classed into ‘tonic” fluctuations that span multiple trials and time-periods, and ‘phasic’ that are
moment to moment modulations in arousal produced in response to an ongoing task. A few
recent studies have shown in humans and mice that arousal measured by brain-stem based
systems (using pupil response) modulate individual decision making, specifically relating
task-evoked, moment to moment fluctuations of phasic arousal (or alertness) (de Gee et al.,
2017; McGinley et al., 2015). Further to this, van Kempen and collaborators (van Kempen et al.,
2019) showed that lower tonic and higher phasic arousal, as defined by the pupil
measurements, predicted shorter reaction times and was associated with a centroparietal
positivity in EEG space. All of the above mentioned studies though have only used proxies in
the form of pupil response to measure fluctuations in arousal, hence several other physiological
parameters are needed concurrently to accurately measure arousal (Wang et al., 2018).
Furthermore they have not measured influences of tonic fluctuations alone. Hence, so far no
study has directly investigated the effect of intrinsic alertness (tonic) fluctuations on
decision-making systems as the arousal decreases.

While experiments in spontaneous fluctuations in tonic alertness are difficult to perform in
animals since they stop responding when arousal drops, some have circumvented this problem
by using sleep deprivation and measuring brain activity after a prolonged wakefulness period
(Vyazovskiy et al., 2011). In the case of humans, patient studies have revealed the effect of
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alertness on cognitive processes like attention. Patients that sustain a stroke and then have a
lesion on one side of the brain have deficits in general levels of alertness, sometimes they also
have difficulty in localising and paying attention to information on the side opposite to the
lesion. This condition is referred to as unilateral spatial neglect and is usually, more persistent
(Bowen et al., 1999; Karnath and Fetter, 1995) after a stroke in the right hemisphere (compared
to left hemisphere) and hence also called left neglect (due to lack of attention to left side of
space). This asymmetry is thought to arise due to an interaction between processes responsible
for spatial attention: a bilateral dorsal fronto-parietal network and an alertness-related right
lateralized ventral attention network (Corbetta and Shulman, 2002, 2011). Other studies have
reasoned this behavioural asymmetry due to competition between hemispheres (Kinsbourne,
1970, 1977). However, it is important to note that studies in patients pose a problem to dissect
the systematic effects of alertness on decision making due to the heterogeneous nature of the
location and extent of lesions, and due to confounds in computational methods that attempt to
directly measure tonic alertness levels. Hence an ideal scenario to study the effect of alertness,
would be a study exposing such behavioural asymmetries (attentional bias) in attention in
healthy participants while their alertness fluctuates (Bareham et al., 2014).

Following this line of thought, studies with healthy participants (Bareham et al., 2014; Goupil
and Bekinschtein, 2012; Noreika et al.) have captured the effect of alertness on attention,
semantic-audiomotor mapping and conscious access. However, these studies use spectral
power (alpha-theta ratio) as a continuous measure or visually defined grapho-elements in the
transition to sleep (Hori et al., 1994) to define the level of drowsiness. While measures using
alpha-theta assume participants being equally alert and drowsy (not always true) and manual
Hori scoring suffers from subjectivity dependent on the experience of the human scorer.
Recently we published a novel computational method to track alertness levels using
electroencephalography (EEG) that shows robust outcomes (Jagannathan et al., 2018), and has
been successfully applied in other studies to explore the effect of alertness on executive control
systems (Canales-Johnson et al.). Here we decided to take advantage of this technique and use
an experiment (auditory spatial localisation task) with a known behavioural asymmetry
(Bareham et al., 2014) to investigate how decision-making is modulated by fluctuations in tonic
alertness.

In this study we aim to map the neurobehavioural changes in the decision making processes in
fully alert and in moments of decreased alertness. First, we use a combination of multi-level
modelling, psychophysics and signal detection theory to show how behaviour is modulated by
variations in alertness. Second, we employ a hierarchical drift diffusion model to tease apart
and parameterise the different elements of the decision-making process and examine
individually how they are modulated by alertness. Third, we use decoding at the
temporo-spatial levels to understand how the neural markers of such decision-making
processes may be implemented in the brain, and how such neural processes are modulated by
fluctuations in alertness. Fourth, we connect the distinct behavioural parameters of the decision
making process to the neural parameters, thereby capturing how the brain reconfigures, spatial
and temporally, to maintain behavioural performance when challenged by decreased alertness.
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RESULTS

Behavioural evidence of decision making modulated by alertness

Error-proportion modulated by alertness

We first used multilevel modelling to understand how the errors made by each subject in an
auditory tone-localization task (Figure 1A) was influenced by the stimulus presented (‘left” or
‘right” auditory tone) and the state of the subject (‘alert’ or ‘drowsy’). We defined 4 different
multilevel (linear mixed) models where errors were modulated by various combinations of
stimulus and alertness states (see methods section). The analysis of variance table of the
winning model shows that both alertness (F(1, 95.07) = 14.04, p<0.0001) and stimulus type
(F(1,95.07) = 18.80, p<0.0001) have an effect on error-proportion. Further, there was a reliable
interaction between alertness levels and stimulus type (F(1,95.07) = 6.88, p<0.05). Next, post-hoc
analysis revealed a reliable difference between alert and drowsy conditions for left stimuli
(p<0.001), and not for right stimuli (p = 0.859). These behavioural results (Figure 1B) replicate
the findings of (Bareham et al., 2014), reporting an increase in location assignment errors on
tones from the left side of the midline when people became drowsy.

Reaction times are modulated by alertness

Second, we aimed to quantify the modulation in the response profiles (reaction times) of
individual subjects by alertness levels. A paired samples t-test with t(31) = -7.78, p<0.05
revealed a reliable effect of alertness on reaction times. These behavioural results (Figure 1C)
replicate the findings of (Hori et al., 1994) indicating slower reaction times under lower levels of
alertness.

Subjective midline modulated by alertness

Third, we used psychophysics to quantify the modulation of subjective midline per subject by
alertness levels. For this purpose we fit a cumulative normal function (see methods section) to
the proportion of rightward responses (per subject) under each stimulus condition from -60° to
60° under both alert and drowsy periods. The fit was weighted by the number of trials
(responses) in each stimulus condition. The mean of the function referred to as ‘bias’ is the
subjective midline (where subjects have 0.5 chance of pressing left or right responses). Most
subjects (Figure 1D) had their bias point shifted to the left (as they became drowiser), indicating
more left errors (as they overestimate the right side of space). Some subjects had bias points
shifted to the right. Overall, a paired samples t-test with t(20) = 3.33, p<0.005 revealed a reliable
difference in bias points between alert and drowsy periods.

Next, we also plotted (Figure 1E) the mean of the psychometric fits of individual subjects to
show that overall the subjective midline has shifted to the left at the group level.
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Figure 1: Auditory spatial attention task: A) subjects had to localize the direction of auditory tones
coming from left and right side of the midline. B) proportion of errors committed in alert and drowsy
periods across left and right stimuli. Multilevel modelling reveals that error rates depend on stimulus
type (leftright) and state of subject (alert,drowsy). Post-hoc tests based on estimated marginal means
indicate that error proportion is reliably modulated by alertness but only for left stimuli. *** indicates
p<0.001, ns indicates not significant (or not reliable), error bars indicate standard error of the mean. C)
mean reaction times for individual subjects. Reaction times are variable and slower under drowsy
conditions. D) bias value per subject (using psychometric fits), bias level shifts towards the left side
(indicating more left errors) for most subjects. Negative bias values indicate shifts in the subjective
midline towards the left and positive values indicate shift towards the right. E) group level psychometric
fits indicate the shift in subjective midline (dotted lines), shaded regions are confidence interval bounds.
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F) signal detection analysis shows that only d” (sensitivity) is modulated by alertness and criterion
remains unaffected.

Signal detection parameters modulated by alertness

Fourth, we used signal detection theory to understand what factors modulate decision making
under varying levels of alertness. d” (sensitivity) was modulated by alertness with t(31) = 6.23,
p<0.05 however criterion (response bias) was not modulated by alertness levels with t(31) =
-1.87, p>0.05. This clearly indicates that internal representations in the brain in terms of sensory
and noise distributions are modulated by alertness levels. Further, the insignificance of the
response bias also indicates that subjects were not arbitrarily pressing right responses for
uncertain stimuli.

Computational modelling of decision making modulated by alertness

Next, we aimed to quantify the different elements of the decision-making process using the
drift-diffusion model. The drift-diffusion model captures the optimal procedure involved in
performing a 2-alternative forced choice (2AFC) task. It assumes that the observer accumulates
evidence for one or other alternative in every other time step (Ratcliff et al., 2016), until that
integrated evidence reaches a threshold to make a decision (Figure 2A). The localization of tones
to the left and right side of space is essentially a 2-choice task with the subject always forced to
make a decision on the direction of tone. The model was implemented with a hierarchical
Bayesian procedure using hierarchical drift diffusion model (HDDM) (See methods section). For
the HDDMSs, we fit the response of each subject instead of accuracy. This procedure is referred
to as Stimulus-coding and is critical to uncover response bias (de Gee et al., 2017).

We examined 8 different variants of the model (see methods section), allowing parameters like:
drift-rate (v), bias-point (z) to vary based on state (alert or drowsy) or stimulus (left or right)
(Figure 2B,C). The winning model was chosen as the one with lowest deviance information
criterion (DIC) which provides a balance between model fit and complexity. The winning model
(#8) was composed of: drift-rate (v) varied according to state (alert or drowsy) and stimulus,
whilst bias-point (z) varied according to stimulus (left or right) only. The winning model was
then analysed for differences in posterior densities of parameters. For this purpose, we used a
bayesian estimate which is fundamentally more informative and avoids the arbitrary choices
like significance level and specific statistical tests used by the frequentist based methods
(Kruschke, 2012).

We found in the winning model, the proportion of posterior overlap (between left and right
stimuli) in the bias point was 26.1% (Figure 2E). This indicates that the bias-point was not
reliably different between the different stimuli. Further, the proportion of posterior overlap
(between left and right stimuli) in the drift rate for alert trials was 14.8% this reduces to 3.6% for
drowsy trials (Figure 2H). This indicates that the drift-rate (evidence accumulation rate) was
reliably different between left and right stimuli on drowsy trials.
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Decision making models based on evidence accumulation
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Figure 2: Evidence accumulation models: A) Drift-diffusion model accounts for the reaction time
distributions of responses across left and right stimuli (‘Stimulus Coding’). “v(drift)” indicates evidence
accumulation rate, ‘a’ indicates the boundary separation across left and right responses, ‘z’ indicates the
bias point, usually z = 0.5 for unbiased responses. B,C) changes in response distributions explained by
shift in ‘z’, shift in ‘v’ respectively from alert to drowsy trials. grey lines indicate unbiased condition. D)
posterior densities of ‘z’ for left and right stimuli in the winning model #8. a.u. indicates arbitrary units.
E) differences in the posterior densities indicate no evidence of bias point difference across stimuli. F,G)
posterior densities of ‘v’ for left and right stimuli across alert and drowsy periods in the winning model
#8. H) differences in the posterior densities of difference in drift rate indicate strong evidence in favour of
drift rate difference across stimuli in the drowsy period compared to alert periods.
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Neural evidence of decision making modulated by alertness

Next, we aimed to uncover how the neural patterns in the EEG data are modulated by alertness
levels. Conventional ERP (Event related potentials) analysis for this purpose, relies on a-priori
identified spatial locations or temporal segments to measure the differences across conditions.
However decoding techniques do not rely on such a-priori definitions and perform much better
in detecting differences across experimental conditions (Fahrenfort et al., 2018). We applied
temporal decoding (see methods section) to understand the differences in the patterns of EEG
data across conditions.

Spatial and temporal signatures involved in spatial localization across alert and drowsy
periods:

First, we were interested in identifying the neural signatures involved in the performance of this
task during alert condition. For this purpose decoding involved in identifying the stimulus (X -
left or right tone) presented from the EEG data (Y). This process involves the identification of
the W (classifier weights) that can produce the transformation, Y, = WX, where ‘t’ represents
time (Figure 3A,B). The performance of the classifier (W) is evaluated by training and testing the
data at each time-point (t) using a measure such as the area under the curve (AUC). In Figure
3C, the shaded region represents statistically significant periods. For more details refer to the
methods section.

We found that when the subject was “alert’ the decoding of stimuli (Figure 3D) started from 160
ms after the stimulus was presented and lasted until 720 ms (reliable with cluster permutation,
p<0.05) with mean AUC of 0.57. The peak discriminatory power was at 280 ms (AUC = 0.61).
The average AUC between 200-300 ms was 0.58 + 0.007, p<0.05, between 300-400 ms was 0.56 +
0.002, p<0.05. However when the subjects became ‘drowsy’ the decoding of stimuli (Figure 3E)
started from 420 ms after the stimulus was presented and lasted until 730 ms (reliable with
cluster permutation, p<0.05) with mean AUC of 0.54. The peak discriminatory power was at 590
ms (AUC = 0.56). The average AUC between 420-500 ms was M = 0.53 + 0.002, p<0.05, between
510-590 ms was M = 0.54 + 0.004, p<0.05. This indicates that subjects are slower to discriminate
between left and right stimuli under drowsy conditions and also the discriminatory power is
lower.
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Neural analysis based on temporal decoding
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Figure 3: Temporal decoding: A) decoding consists of identifying Y (responses or stimuli) from X (EEG
data). The model thus consists of Y, = WX, , where ‘t’ represents times and W, represents transformation
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(classifier weights). B) classifier weights W, are determined by the optimal separation of different classes
(here left, right stimuli). C) decoding performance is assessed using the area under curve (AUC) where
shaded regions represent reliably different time periods. D) AUC under alert periods, where the classifier
was trained to discriminate between targets of left and right stimuli. Shaded regions show time periods
with reliable discriminatory power. E) AUC under drowsy periods, where the classifier was trained to
discriminate between targets of left and right stimuli. Shaded regions show time periods with reliable
discriminatory power, note that the scale is different when compared to alert periods. F,G) Coefficients of
classifier patterns (derived from classifier weights) under alert and drowsy periods. These patterns
explain how EEG data are generated from discriminatory neural sources and the strength is directly
proportional to discriminability of those channels. ** indicates p<0.05 in the corresponding period in
temporal decoding.

Next, we plotted the coefficients of the classifier patterns (derived from classifier weights W)
which are neurophysiologically interpretable (Haufe et al., 2014). The classifier patterns for the
‘alert’ time periods for every 40 ms between 180 ms to 660 ms is presented in Figure 3F. The
pattern between 180-220 ms indicates strong response in the fronto-central electrodes. The
pattern shifts to more posterior regions (centro-parietal electrodes in the right side of the scalp)
between 220 ms to 260 ms. Further, the topography of the patterns shifts to more parietal and
occipital electrodes from 260 ms to 300 ms. This indicates that the decoding pattern moves from
the frontal electrodes to more posterior (central, parietal) indicating that the decision making
areas would possibly converge on parietal regions in the brain.

When the subjects become drowsier, the classifier patterns (Figure 3G) between 180 - 220 ms
indicates the strong response in the frontal electrodes (though not reliably decodable).
Interestingly the topography from 220-260 ms stays in frontal electrodes (not reliable). The
pattern shifts to more posterior regions (centro-parietal electrodes, reliably decodable) from 380
ms to 420 ms. Further, the pattern shifts to more parietal and occipital electrodes between 420
ms to 460 ms. This suggests that evidence accumulation in drowsy periods could possibly be
delayed when compared to alert periods.
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Spatio temporal clustering of classifier patterns across alert and drowsy periods
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Figure 4: Classifier patterns: A,B) spatio-temporal clustering of differences in classifier patterns shown in
Figure 3 (F,G) between alert and drowsy periods. The differences indicate a cluster in early (160 - 330 ms
after stimulus) and later (390 - 660 ms after stimulus) time periods. C) classifier patterns (early) in
electrode space are projected to source space and spatio-temporal clustering identifies differences in
source patterns (mostly in right parietal regions) D) classifier patterns (later) in sensor space are
projected to source space and spatio-temporal clustering identifies differences in source patterns (mostly
in left frontal regions).

The descriptive analysis of the classifier patterns indicate differences between alert and drowsy
periods. To establish the spatial and temporal signatures of such differences we performed a
cluster permutation test and identified regions where activity patterns in alert periods is higher
than drowsy periods. The other contrast (drowsy periods > alert periods) is not meaningful as
the AUC (discriminatory power) in alert periods is overall always higher than drowsy periods
(Figure 3 D,E). The permutation test revealed an early cluster (160 ms to 330 ms) and a late
cluster (390 ms to 660 ms). The electrodes that are reliably different in both the early and late
cluster along with the mean temporal signature of the classifier pattern in those electrodes is
plotted in Figure 4A,B.

To identify the neural sources of these differences in electrodes, we used a source reconstruction
procedure to project the classifier patterns of both the early and later cluster back to their neural
sources separately (see methods section). In the source space again we performed cluster
permutation tests to identify neural regions where activity in alert periods is higher than
drowsy periods. We used the actual value of the source activity (instead of absolute values), as
we are interested in the distance between the two different patterns and not in overall activity
levels. In the early cluster, the permutation tests revealed regions in the right hemisphere,
mainly superior, inferior parietal and pre, post central gyrus etc and left prefrontal cortex. In the
later cluster, the permutation tests revealed a region in the left frontal side.

The above analysis reveals regions of the brain wherein elements of the decision making
process (by using classifier patterns) may be implemented in the alert periods, however, the
critical piece still missing in the puzzle is how these implementations are modified in the
drowsy periods.

Neurobehavioral evidence of decision making modulated by alertness

Next, we aimed to uncover the neural signatures of how the elements of the decision making
process might be implemented in the drowsy periods. To establish this we decided to develop a
novel method based on the drift-diffusion analysis developed earlier. First, we used the
winning model (#8) and computed trial-by-trial drift parameter (dv). Second, we used dv as a
dependent variable and regressed the same against ERP data (see methods section).
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neurobehavioural analysis
regression of trial-by-trial drift rate with EEG data
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Figure 5: Regression patterns: A) trial by trial drift rate (dv) was regressed against EEG data (z-scored
and averaged per 50 ms), the difference in the posterior of regression rate was quantified per electrode
per time-point per subject. B,C) mean regression patterns in alert and drowsy periods. Regression
patterns could be interpreted like activation patterns in Figure 3 (F,G), higher values indicate greater
discriminatory power to identify between left and right stimuli. D,E) spatio-temporal clustering identifies
differences in regression patterns between alert and drowsy periods in early (70 - 330 ms after stimulus)
and later (380 - 680 ms after stimulus) time periods. F) regression patterns (later time period) in sensor
space are projected to source space and spatio-temporal clustering in source space identifies differences in
source patterns (right and left parietal regions).

It can be expressed as

u:'lri' o 3.[] T -"jj I:ERPJ

The above equation can be written in patsy form as below.
dv ~ ERP : C(state, Treatment(* Alert')) : C'(stim, Treatment(* Right*))

Here, dv represents trial-by-trial drift-rate, ERP represents z-scored ERP data per trial per time
point per electrode, state represents alertness levels (‘alert’” or ‘drowsy’), stim represents
stimulus types (‘left’ or ‘right’). Further we compute the proportion of the overlap of the
posterior distributions of the trace obtained for both left and right stimuli separately under alert
and drowsy condition (Figure 5A). This analysis is repeated for each subject and we obtain
regression patterns (similar to the classifier patterns) per subject (see methods section).

Next, we plot the regression patterns in alert and drowsy periods. The patterns in the alert
periods (Figure 5B) indicate that the topography focuses initially in the fronto-central electrodes
(150 ms to 250 ms), which then shifts to centro-parietal electrodes (250 ms to 350 ms). The
patterns in the drowsy periods (Figure 5C) indicate that the topography initially focuses on the
frontal electrodes (though weaker compared to alert periods) in the interval from 150 ms to 250
ms. Further the patterns shift to more central electrodes (again weaker when compared to alert
periods) in the interval from 250 ms to 350 ms.

To establish the spatial and temporal signatures of such differences we performed a cluster
permutation test and identified regions where “activity” in drowsy periods is higher than alert
periods (opposite of the classifier analysis). The permutation test revealed an early cluster (70
ms to 330 ms) and a late cluster (380 ms to 680 ms). The electrodes that are reliably different in
both the early and late cluster along with the mean temporal signature of the regression pattern
in those electrodes is plotted in Figure 5D,E.

Further, we projected the patterns in source space and performed cluster permutation analysis
as before. We used the absolute value of the source activity (instead of the actual value) as the
proportion of posterior overlaps has always a positive sign in the sensor space, furthermore
using absolute values helps us understand which condition generates a larger response at
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specific time points. There were no reliable differences in the source space for the early cluster,
For the later cluster, the permutation tests revealed posterior parietal regions in both the left
and right hemisphere and right frontal pole region. This analysis reveals the regions of the brain
wherein elements of the decision making process (by using regression patterns) are possibly
implemented in the drowsy periods.

DISCUSSION

In this project, we were interested in, first, how changes of arousal modulate specific aspects of
spatial attention, and second, how general mechanisms of perceptual decision making are
affected by tonic alertness fluctuations. By using our previous data and results (Bareham et al.,
2014; Noreika et al.) we were able to formulate specific hypotheses to test particular aspects of
theories in cognition, informative to general frameworks of decision making.

We investigated how alertness modulates different neurocognitive components of perceptual
decision-making using a tone localisation task. We replicated the spatial bias induced by
alertness changes that has been shown in healthy participants and in patients with brain lesions
(spatial neglect). We characterised behavioural changes in decision making as impacted by the
fluctuations in arousal, revealing a decrease in performance due to sensitivity to the stimuli but
not response bias. We also showed a specific effect of alertness delaying the rate of evidence
accumulation in a drift diffusion model. At the neural level we show that the formation of brain
patterns (relating to stimuli presented) is delayed and decreased by lower levels of alertness,
suggesting a reconfiguration of the neural networks of the decision. We confirmed this effect by
mapping the behavioural model parameters of evidence accumulation into the neural evoked
response, showing delays in the neural processes and further recruitment of parietal and frontal
areas. For spatial attention theories we were able to add support to the role of distributed
parietal networks when attention systems are challenged, and to tease apart the change in the
predisposition of the system (bias-point, prior) from the modifications to the decision process
itself (drift-rate). For decision making theories, we have added a missing level of description by
characterising possible mechanisms of resilience of the neurocognitive processes when tonic
alertness decreases. We were able to show the behavioural flexibility of the system, its
behavioural dynamics, and capture the temporal and spatial neural progression and
reconfiguration caused by the change in the internal context - describing its cognitive
homeostasis.

Behavioural changes in decision making show specific modulations of spatial
attention with decreased arousal

We established, using multi-level modelling, that the errors for left-sided stimuli increased as
participants became drowsy. However the same did not occur for stimuli coming from the right
side. This directly replicates (Bareham et al., 2014), and provides evidence for inattention or
neglect of stimuli originating from the left side when healthy people become drowsy.
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Furthering the previous behavioural results, we fitted the proportion of rightward responses of
individual subjects and identified the subjective midline (tone angle where a subject is equally
likely to press left or right response), finding that the subjective midline shifted to the left side
(indicating more right responses) as individuals became drowsy. This is in agreement with
line-bisection studies (Jewell and McCourt, 2000) showing healthy individuals bisect
horizontally presented lines to the left of the veridical midline, overestimating the right side of
space. Further studies (Benwell et al., 2014) have also identified possible neural origins of such
bias (“pseudoneglect’) and identify task independent activity in the ventral attention network as
one of the main modulating factors behind this shift. However these studies did not probe
whether trial to trial alertness of individuals was modulated. Several studies (Corbetta and
Shulman, 2011; Robertson et al., 1998) have shown that activity in the ventral attention network
interacts with the arousal system (tonic alertness). Hence arousal instability, as shown directly
in this study, could be a cause for these effects.

Evidence accumulation is delayed by decreases in alertness

To characterise more general aspects of decision making modulated by alertness, we decided to
dissect the different elements of the decision-making process. Using signal detection theory to
identify the changes in sensory signal and noise distributions due to alertness, we found that
sensitivity (d”) was reliably modulated by alertness whereas criterion (response bias) was not.
This suggests that the sensory representations have indeed been modulated by alertness, and
that participants were not arbitrarily pressing more rightward responses (in the face of
uncertain stimuli) as their alertness decreases. To complement signal detection theory and
further characterise how arousal modulates decision making, we used the rich variability in
reaction times produced by awake and drowsy trials in a drift diffusion model, under the
assumption that in each trial noisy evidence is slowly accumulated over time until criterion to
make a decision is reached (Ratcliff et al., 2016). We constructed several models that allowed
independent variation of parameters, such as starting point (bias) and drift rate (evidence
accumulation), based on stimulus type and alertness levels of the participant. The statistical
model with the higher evidence showed that drift rate was modulated by both alertness levels
and stimulus type, whereas the starting point was only affected by stimulus type (left or right
tone). Further analysis of the winning model also revealed that the evidence for modulation of
the starting point was weak while that for drift rate was reliably different for stimuli from the
left side compared to the right side. This shows that alertness indeed differentially modulates
evidence coming from the left side of space compared to the right side. Decision making studies
in the visual modality (Smith and Ratcliff, 2009) have shown that drift rates are closely related
to the strength of stimulus encoding (attentional strength) and evidence accumulation to a
decision threshold. Further studies have also shown neural correlates of such parameters in the
EEG (Nunez et al., 2017; O’Connell et al., 2012). Hence we consider the effect of alertness
modulation on drift rate as acting specifically on spatial attention itself, as well as general
mechanisms by which partially independent systems, arousal and decision making, interact.
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Alertness delays the neural signatures of perceptual decision making and alters the
dynamics of the neural networks temporally and spatially

We probed the neural signatures of decision making processes using decoding analysis. The
primary aim was to understand how the brain decodes information to “decide” if the stimuli
presented was ‘left’ or ‘right” under alert and drowsy conditions. Under alert conditions the
decoding starts early, at 160 ms and lasts until 720 ms, however, under drowsy conditions
decoding starts later, at 420 ms and lasts till 730 ms. This ~260 ms delay may indicate that,
under lower arousal, the brain requires a longer time to decipher the direction of stimuli as
suggested by slower reaction times and a change in the drift (evidence accumulation) of the
diffusion model. Furthermore, the overall strength of decoding of the alert condition was
systematically higher than that of drowsy, which may suggest that the brain processes
responsible for decision making are less variable under the alert condition compared to the
drowsy condition, or it may indicate less efficient decision processing during low alertness.

Furthermore, we aimed to understand how such neural signatures are depicted at the sensor
level. For this purpose, we identified classifier patterns, which are neurophysiologically
interpretable (Haufe et al., 2014) from classifier weights. In the alert condition, the early pattern
(180-220 ms) indicates activity over frontal, central sites, further shifting to more central and
parietal sites later on. In the drowsy condition, the pattern initially starts at frontal sites (though
not enough to be decoded) and shifts to the more central and parietal sites later on from 380 ms
onwards. This indicates that the formation of central, parietal patterns takes longer in drowsy
periods compared to alert. Thus the activity over central and parietal electrodes could be
considered vital for deployment of spatial attention and evidence accumulation. The spatial and
temporal distribution of the decoding pattern resembles both a classic P300, which has been
dubbed as the build-to-threshold signal (Twomey et al., 2015), and the centro-parietal positivity
(CPP), a more specific signal of evidence accumulation (Loughnane et al., 2016; O’Connell et al.,
2012). O’Connell et al showed that the CPP (an EEG evoked response) tracked evidence
accumulation in perceptual decision making and was sensitive to perturbation, opening the
window for the tracking of signals with sufficient temporal resolution to map the dynamics of
decision making in humans (O’Connell et al., 2012) beyond what we have learnt in monkeys
(Shadlen and Newsome, 2001). Following this line of thought, our results highlight the neural
dynamics of decision making when the external world remains unaltered, physical evidence
held constant, but the internal milieu fluctuates exerting a modulatory influence on the
cognitive decision making systems that caused them to reconfigure to solve the task at hand.

As we identified the differences in the classifier patterns across alert and drowsy periods at both
the sensor and source space level, the sensor level showed early and late clusters with only the
late cluster showing reliable decoding in drowsy metastable states. To identify the spatial
location of these patterns we projected the data at the sensor level to the source space in the two
clusters. The early cluster mainly revealed a dominance in the right hemisphere, superior and
inferior parietal, temporo-parietal junctions along with regions of the central gyrus. This adds
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evidence to a body of attention studies across modalities (Dietz et al., 2014; Shulman et al., 2010)
where right-hemisphere dominance is shown to occur in frontal, parietal and temporal sites
(specifically in the temporo-parietal junction). The later cluster reveals mainly frontal regions of
the left hemisphere, sometimes associated with fronto-parietal interaction that has been shown
as early correlates of decision making. Here we have identified the neural signatures of decision
making during alert periods and how it is distinctly different from the drowsy periods. It must
also be noted that alertness itself, in the classic attentional aspect (Posner, 2008), has been
associated to right hemisphere networks (Petersen and Posner, 2012; Sturm and Willmes, 2001)
and the current results could be interpreted in that framework as a reconfiguration of those
attentional network. Alternatively, we could interpret our findings as an indication for the
alerting network impacting the evidence accumulation network, where the neural
reconfiguration is a reflection of neural resilience and compensatory mechanisms that the
human brain develops to maintain performance when challenged (Canales-Johnson et al.). We
think that aspects of wakefulness (Bekinschtein et al., 2009; Goupil and Bekinschtein, 2012) and
cognitive flexibility should be called upon to gain explanatory power in light of other
frameworks.

Evidence accumulation reveals a late and extended frontoparietal neural network to
resolve the decision when challenged by arousal

The decoding analysis is not guided by parameters that directly test mechanistic hypotheses,
and the decoding score of the alert periods are always higher than drowsy periods, shielding
any contrast to only reveal signatures of the primacy of the alert patterns. To overcome this
issue and guide neural exploration with a direct readout of evidence accumulation of the
decision, we developed a novel method wherein we use regression patterns that identified
differences in drift rate across alert and drowsy periods into the neural dynamics. We
performed a cluster permutation test to identify regions in the brain where regression patterns
of drowsy periods dominate over the alert periods. This revealed clusters in the early time
period (70 to 330 ms) and a later (380 - 680 ms) one, matching the direct decoding results.
Unsurprisingly the early cluster was not reliable in source space as evidence accumulation in
the drowsy periods started later (around 420 ms from decoding analysis). However, the later
cluster showed frontal electrodes in sensor space, and source space parietal regions (superior,
inferior) in both the left and right hemispheres and a frontal region in the right hemisphere are
associated exclusively with low alertness. This evidence suggests the processing has shifted
from right hemisphere dominant (in alert periods) to both the right and left hemisphere. Such a
signature of processing agrees closely with the inter-hemispheric model of competition
(Kinsbourne, 1970, 1977), wherein under conditions of low alertness, there is competition
between left and right hemisphere for attention. The brain thus reconfigures from being right
hemisphere dominant to one involving inter-hemispheric communication as it becomes drowsy.
From a decision making perspective the neural reconfiguration seems to expand to bilateral
parietal sources with arousal fluctuations, and from inferior and dorsolateral prefrontal areas
into the frontal pole, consistent with an increase in cognitive demand proposed by the Multiple
Demand system (Duncan, 2010). Another line of evidence suggesting neural fluctuations
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influencing evidence accumulation comes from Summerfield and Wyart (Wyart et al.,, 2012)
where the phase of ongoing parietal delta oscillations impacted choice. We interpret that the
neural reconfiguration occurring in the transition to lower states of consciousness (inattentive,
mildly drowsy) brings slower rhythms and suppresses fast oscillatory events (disappearing
alpha and beta), and that this changes the nature of the noise in the brain, forcing the cognitive
system to exchange information differently.

As we lose consciousness, the neural system responsible for decision making adapts to the
internal challenge of decreasing arousal and shows its resilience, exerting homeostatic
regulations at the cognitive level to maintain performance. The attention and wakefulness
fluctuations experienced in humans (and animals) are common during the day and they are not
only dependent on the circadian and sleep-wake regulation pressure (Borbély et al., 2016), but
also on genetic, epigenetic, environmental and life history factors that shape the alertness
aspects of attention as well as the alertness aspect of arousal (Bekinschtein et al., 2009; Mitchell,
2020).

Concluding remarks

In this study we investigated the effects of arousal fluctuation on decision making and proposed
that despite the internally generated pressure due to the conscious state change, the decision
making system is flexible enough to maintain functional performance by reallocating neural
resources. We defined measures of tonic alertness in pre-trial neural EEG signatures by
separating each trial between awake and early drowsy arousal metastable levels, and evaluated
the changes in behavioural model parameters and its relationship with neural decoding features
and neural dynamics of perceptual decision-making. We found that the decision becomes more
liberal (in terms of performance) as alertness decreases, showing lower sensitivity with a less
steep psychophysics curve. We further show that an evidence accumulation parameter (drift
rate) explains the change in the patterns of responses with decreased alertness. At the neural
level we demonstrate a delay in the processing of the decision both by direct decoding of the
neural dynamics, and when guided by the evidence accumulation behaviour in each trial.

Transition of consciousness in the near-awake to light-decrease of alertness is emerging as a
model for internally caused interactions (Canales-Johnson et al.; Comsa et al., 2019; Noreika et
al; Song and Tagliazucchi, 2020; Tagliazucchi and Laufs, 2014). With lesion and
pharmacological challenges, neuropsychology and cognitive neuroscience have tried to define
the necessary and sufficient brain networks, areas and dynamics of the brain to implement
cognition, revealing compensation, reconfiguration and plasticity (Adolphs, 2016; Valero-Cabré
et al.,, 2017; Yeung et al., 2018). Semi-causal effect of the internal interference exerted by the
arousal system in the cognitive process paves the way for the use of wakefulness and arousal
challenges in a principled manner, adding new tools for cognitive brain research. Cognitive
neuroscience uses models, correlational and causal methods to reach consensus about the
underlying mechanism of thought (Krakauer et al, 2017). Here, we have followed a
theoretically motivated question about perceptual decision making systems using behavioural
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modelling to understand the system, but at the same time causally modulated the neural
networks with arousal to uncover the mechanisms of brain function.

EXPERIMENTAL PROCEDURES

Stimuli and Protocol

Forty-one healthy subjects (no auditory, neurological or psychiatric abnormalities) participated
in this study. Data from nine subjects was discarded due to a) technical problems with
headphone amplifier (8) b) Not following task instructions (1). Thus only data from 32 subjects
(24.46 + 3.72 years old, 14 males) was considered for further analysis. All participants were
self-reported to be right-handed and the same was also established by using Edinburgh
Handedness Scale (Oldfield, 1971). Each subject had a handedness score of above 0
(right-handed) with mean 80.26 + 23.59. Only easy sleepers (as per self report) were recruited
and further they were administered with the Epworth Sleepiness scale (Johns, 1991) on the day
of the experiment. 29 subjects had a sleepiness score >= 7 (classified as easy sleepers) and 3 of
them had a sleepiness score >=4. All subjects were asked not to consume any stimulant like
Coffee/Tea before the experiment that day. The study and the experimental protocol was
approved by the cambridge psychology research ethics committee and written informed
consent was provided by all subjects. A monetary compensation of £30 was provided for
participation in the study.

Each subject underwent two experimental sessions a) Alert b) Drowsy.

Alert session: Subjects were presented with 124 complex harmonic tones (guitar chord) that fell
on the left or right side of their veridical midline (0°) ranging from -59.31° to +59.31°. These
tones were recorded using in-ear microphones in free-field (Bareham et al., 2014). Six tones from
-59.31° to -39.26° were presented two times each; twelve tones from -35.24° to - 1.86° were
presented four times each. A similar pattern was repeated on the right side with twelve tones
from 1.86° to 35.24° presented four times each, six tones from 39.26° to 59.31° presented two
times each. The tones in the midline (0°) were presented four times, resulting in a total of 124
tones. The order of tones presented was randomized per subject. Further, subjects were
instructed to keep their eyes closed and respond (as quickly and as accurately as possible) with
a button press (using left/right thumb) indicating the location of the tone (left or right). Each
trial began after a random interval of 2-3 seconds and if the subject did not respond for 5
seconds, the next trial was started. The subjects were also instructed to stay awake throughout
this session.

Drowsy session: Subjects were presented with 740 complex harmonic tones (as above) that fell

on the left or right of their veridical midline (0°) again ranging from -59.31° to +59.31°. Six tones
from -59.31° to -39.26° were presented twenty times each; twelve tones from -35.24° to -1.86°
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were presented twenty times each. Similar pattern was repeated on the right side with twelve
tones from 1.86° to 35.24° being presented twenty times each, six tones from 39.26° to 59.31°
presented twenty times each. The tone in the midline (0°) was presented twenty times, resulting
in a total of 740 tones. The order of tones was again randomized per subject as in the alert
session. Subjects were again instructed to keep their eyes closed and respond (as quickly and as
accurately as possible) with a button press (by left/right thumb) indicating the direction of the
tone (left or right). Each trial began after a random interval of 4-5 seconds and if the subject did
not respond for 5 seconds, the next trial was started. In this session, the subjects were allowed to
fall asleep (and become drowsy) and were gently awoken if they didn’t respond to more than 3
trials consecutively.

Before the start of the experiment, the subjects were allowed a practise session to familiarise
with the task.

Preprocessing

EEG data was acquired with 129 Ag/AgCl electrodes (Electrical Geodesics Inc) using Cz as the
reference electrode. The impedances of all electrodes were kept below 100 K2 (to ensure higher
signal to noise ratio) and data was acquired at a sampling rate of 500 Hz. EEG data was
pre-processed with custom made scripts in MATLAB (MathWorks Inc. Natick, MA, USA) using
EEGLAB toolbox (Delorme and Makeig, 2004). The preprocessing steps are as follows: First, the
peripheral electrodes that covered the regions of forehead, cheeks and neck were removed to
reduce artifacts related to eye and muscle movements, thus retaining only 92 channels that
covered the scalp. Second, the data was bandpass filtered with zero phase shift between 1 and
40 Hz using hamming windowed-sinc FIR filter and further resampled to 250 Hz. Third,
pre-trial and post-trial epochs per trial were created. For the pre-trial epochs, the data was
epoched from -4000ms to Oms prior to the onset of the stimuli. The pre-trial epochs were created
only in the drowsy session and not in the alert session (details below). For the post-trial epochs,
the data was epoched from -200ms to 800ms to the onset of the stimuli for both the alert and
drowsy sessions. Fourth, the trials that exceeded the amplitude threshold of +250 uV were
removed in a semi-automatic fashion. Fifth, the bad channels were detected in a two-step
fashion: a) channels are considered bad (zero activity) if channel variance is below 0.5. b) The
normalized power spectrum of the remaining channels was computed and any channel that
exceeded the mean power spectrum by +3 standard deviations was marked bad. Sixth, to
remove further artifacts related to eye-blink and muscle movement, independent component
analysis (ICA) was performed on the channels not marked as bad in the previous step. ICA
components that correspond to artifacts were rejected by manual inspection. Seventh, the bad
channels were now interpolated using spherical interpolation. Eighth, the bad trials were
detected again using an amplitude threshold of +250 pV and bad electrodes (those exceeding
the threshold) in such trials were interpolated in a trial-by-trial fashion. Ninth, the post-trial
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epochs were re-referenced to the average of all channels (whereas the pre-trial epochs were
maintained with the recorded reference - Cz).

Alertness levels

The preliminary step in both behavioural and neural analysis is to classify periods of data into
‘alert” and ‘drowsy’. The data from the pre-trial epochs were used to classify each trial into alert
or drowsy. For the alert session, all pre-trial periods were considered to be awake as subjects
were explicitly instructed to stay awake (and none of the subjects failed to respond to any of the
trials in the alert session). In the drowsy session, the subjects were allowed to fall asleep and
hence some trials would be considered as alert and some would be drowsy. For each trial in the
drowsy session, pre-trial epochs were analysed using the micro-measures algorithm
(Jagannathan et al., 2018). Each trial was classed as ‘alert’, ‘drowsy(mild)’ , ‘drowsy(severe)’.
Further only trials that were classified as ‘drowsy(mild)” were used as drowsy trials. The other
trials were excluded because usually subjects don’t respond when under ‘drowsy(severe)’ trials.
We similarly excluded the ‘alert’ trials in the drowsy session to instead compare the drowsy
trials of the drowsy session to all of the trials in the alert session.

Behavioral analysis

Error proportion

In order to understand how the rate of errors differs across different stimuli (tones to the left or
right side of midline) and how it is modulated by change in alertness levels we performed the
following analysis. First, we computed the proportion of errors made by each subject under
each alertness level (‘awake’, ‘drowsy’) and under each stimulus type (‘left’” or ‘right” tone). If
the total number of trials for any participant under any condition is less than 5, then the
corresponding error proportion (for that condition) is ignored in the further analysis. We
defined 4 different multilevel models to understand the modulation of error proportion by state
of participant (‘alert’, ‘drowsy’) and stimulus (‘left’, ‘right’). We used multilevel models, as
different subjects had different levels of alertness (differing number of alert, drowsy trials). In
the null model, the error proportion depends only on the mean per subject (fixed effect) and the
subject id (random effect). In the second model (state model), the error proportion depends only
on the state of the subject (“alert” or ‘drowsy” as fixed effect) and individual subject (subject id is
used as random effect). In the third model (stimulus model), the error proportion depends only
on the stimulus (‘left” or ‘right” as fixed effect) and individual subject (subject id is used as
random effect). In the fourth model (state-stimulus model), the error proportion depends on a
combination of state of subject (‘alert’ or ‘drowsy’) and the stimulus (‘left” or ‘right’), both used
as fixed effects and individual subjects (subject id is used as random effect). These 4 models
were fitted using the ‘Imer” function (‘ImerTest” package) in R (Kuznetsova et al., 2017) and the
winning model is identified as the one with the highest log-likelihood by comparing it with the
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null model and performing a likelihood ratio chi-square test (x 2). Finally the top two winning
models were compared against each other using ‘anova’ function in R (Fox and Weisberg, 2018),
to validate whether the winning model (if it is more complex) is actually better than the losing
model (if it is simpler). The state-stimulus model emerged as the winning model.

The different models along with their log-likelihood values are shown below:

Model comparison:

Model Parameters Log-likelihood | Pr(> x2)
Null Fixed: mean, Random: subject id 61.24 -

State Fixed: state, Random: subject id 66.62 <0.001
Stimulus Fixed: stimulus, Random: subject id 68.45 <0.001
State-Stimulus | Fixed: state*stimulus, Random: subject id 77.98 <0.001

Type III Analysis of Variance Table with Satterthwaite's method of the winning model
(State-Stimulus):

Model elements Sum Sq | Mean Sq | NumDF | DenDF | F value Pr(>F)

State 0.21023 021023 |1 95.07 14.0465 0.0003061
Stimulus 0.28140 0.28140 1 95.07 18.8018 3.607e-05
State:Stimulus 0.10312 0.10312 1 95.07 6.8897 0.0101019

The state-stimulus (winning model) was further analysed with the ‘anova’ function and it was
found that there was a reliable main effect of both state (p<0.001) and stimulus (p<0.0001) on
error proportion and also the interaction between state and stimulus also had a reliable effect
(p<0.05) on error proportion. Estimated marginal means were computed using the ‘emmeans’
package in R to perform post-hoc tests using tukey adjustment for multiple comparisons.

Subjective midline shifts
The change in subjective midline was quantified by fitting psychometric functions to the
responses produced by each subject under alert and drowsy conditions.

The proportion of rightward responses for each subject under each stimulus condition from -60°
to +60° was fitted with a cumulative normal function using the generalized linear model ‘glm’
function in R. The link function used in the model was ‘probit” which quickly asymptotes to the
axes compared to the ‘logit” function. The fit also constrained in such a way the number of trials
under each stimulus angle weighed the shape of the function. The mean of such a cumulative
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normal function (the point where the curve crosses 0.5 in the y-axis) is referred to as the
subjective midline (‘bias’). The subjective midline is the stimulus (angle) at which the subject
performs at chance (0.5), which in an ideal world would be closer to the veridical midline (0°).
This fitting procedure was performed for each subject separately under each condition (alert,
drowsy). Examples of fits for two subjects are shown in the supplemental information (Figure
s1). The standard deviation of the cumulative function (slope or steepness) represents the
‘sensitivity’ of the system. In general, large variations in the bias point tend to reduce the
sensitivity of the system. Further we also ignored subjects (leaving 11 subjects) in the drowsy
condition that had a bias point of more than 60° (as the overall stimulus angle can vary only
between -60° to +60°) and standard deviation of more than 30°.

Drift-diffusion modelling

The different elements of the decision-making process can be teased apart by using the
drift-diffusion model. The primary parameters of this model include

i) drift-rate - ‘v’ -- rate of evidence accumulation

ii) bias point - ‘z" -- starting point of the decision making process

iii) boundary separation distance —‘a” -- distance between the two decision boundaries

iv) non-decision time —Ter” -- for accounting other processes like stimulus encoding (before the
start of evidence accumulation process), response execution (after the end of evidence
accumulation).

We implemented the drift diffusion process using hierarchical drift diffusion model (HDDM)
(Wiecki et al., 2013) (version 0.7.1) that allows for a hierarchical Bayesian procedure to estimate
the model parameters. The principal reason for using such hierarchical procedures is because
different subjects fall asleep in different ways (differing number of alert and drowsy trials).
Using a hierarchical bayesian procedure allows for robust estimation of model parameters
under such limited conditions of trials available (Zhang et al., 2016). We used the response of
each subject (‘left” or ‘right” button press) instead of accuracy (‘correct” or ‘incorrect’) to fit the
HDDM. Such a procedure is referred to as Stimulus-coding and allows for robust estimation of
‘z" without being biased by accuracy. To identify the best parameters, we identified 8 different
models where in each model allows the parameters (‘z’,’v’) to vary depending on state (‘alert’
or ‘drowsy’) or stimulus (‘left’ or ‘right’). In each model, 15000 samples from the posterior
distribution were estimated using Markov chain Monte Carlo methods. 5000 samples were
further discarded as burn-in to discard the effect of initial values on the posterior distribution
estimation. The winning model was chosen as the one with the lowest deviance information
criterion (DIC). DIC allows for computing model accuracy while penalising for model
complexity (Spiegelhalter et al., 2002). Further the winning model was also checked for model
convergence using the Gelman-Rubin statistic. The convergence statistic was computed for 5
different model runs and was found to be closer to 0.99 (values closer to 1 but less than 1.2
indicate convergence) (Gelman et al., 2013; Spiegelhalter et al., 2002). Posterior predictive fits for
a few sample subjects are shown in the supplemental information (Figure s2). The DIC scores
for different models are given below
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Model | Drift-rate (v) Bias-point (z) DIC score
1 ‘state’ ‘state’ 22516.09
2 ‘state’ ‘stim’ 22474.67
3 ‘state’ ‘state’,’stim’ 22273.48
4 ‘stim’ ‘state’ 24057.42
5 ‘stim” ‘stim” 23901.97
6 ‘stim’ ‘state’,’stim’ 22110.07
7 ‘state’,’stim’ ‘state’ 21713.90
8 ‘state’,’stim’ ‘stim’ 21700.95

Neural analysis

Decoding

We used multivariate pattern analysis (MVPA) techniques to analyse the divergent pattern in
EEG data. Decoding is a form of MVPA in which we analyse patterns of brain activity in order
to predict the experimental condition (or stimuli) under which that pattern was generated.
Traditional ERP (Event related potentials) analyses rely on using a-priori identified spatial
locations or temporal segments in the data to measure the differences across conditions.
However decoding techniques do not rely on a-priori definitions and perform much better in
detecting differences across experimental conditions (Fahrenfort et al., 2018).

Temporal decoding:

Temporal decoding involves using EEG data (X ) composed of size: [Electrodes x Time points x
Trials] to predict the experimental condition (Y ). The experimental condition predicted here
was the direction of the stimuli presented e.g. left or right stimuli. The first step in the decoding
analysis consists of fitting an estimator (w) to a subset of the data (X') called (Xtrain) to predict
a subset of the experimental condition (Y ) called (Y train). The second step involves using this
trained estimator on another subset of the data (.X) called (Xtest) to predict subset of the
experimental condition (Y ) called (Y fest). The third step involves evaluating the performance
of this estimator using a measure (e.g. accuracy) by comparing the prediction (Ytest) with the
actual label (Ytest).

Estimator construction:

First, the EEG data is subjected to a standard scaler (using StandardScaler() from scikit-learn
version 0.22) that removes the mean of the data and scales it by its variance. Second, we used
logistic regression to estimate the model parameters for maximally separating the different
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experimental conditions. Third, we implemented temporal decoding by using the sliding
estimator (using SlidingEstimator() from scikit-learn) to fit the logistic regression model per
time-point.

Cross-validation:

The EEG data was first downsampled to 100 Hz and further binary classification was performed
between two conditions (‘left” and ‘right” stimuli) separately across alert and drowsy conditions
per individual subject. As the target of the classification was stimuli being presented we only
considered the trials wherein the subject made the correct decision. The subject was considered
for classification only if they had at least 25 trials under each condition. Further 5-fold cross
validation was performed such that 4 folds were used for training and the last fold was used as
a testing set.

Validation measure:

The classifier performance was evaluated using Area Under the Curve (AUC) of the
receiver-operating characteristic (ROC). It is implemented using ‘roc_auc’ in the sliding
estimator function in scikit-learn. When AUC is about 0.5 the classifier performs at chance,
while the AUC score of 1 has a very good separability across classes. We computed the
AUC-ROC score per subject as the average of the score across all the cross-validation folds.

Group statistics:

In order to identify the reliability of the AUC score at the group level, we performed a cluster
permutation test (subjects x timepoints) using MNE version 0.19.2 (spatio_temporal_
cluster_lsamp_test) (Gramfort et al., 2013). Thus producing p-values per time point at the group
level, from which time points wherein we can infer those regions wherein AUC is reliably
different from chance (0.5) at the group level.

Coefficients of patterns:

The parameters of the decoding model are not neurophysiologically interpretable in a
straightforward way (Haufe et al, 2014). Hence the parameters of the backward model
(decoding) need to be transformed to produce the forward model. This is done by obtaining the
coefficients of the estimator model per subject using the ‘get_coef’ function from
MNE(’_patterns’). For performing group statistics in electrode space, we used the same cluster
permutation based approach as described earlier.

Source reconstruction of patterns:

The coefficients created above can be projected into the source space to infer the brain regions
involved in the pattern activity. Source reconstruction was achieved using a combination of
Freesurfer (Fischl, 2012) and MNE. First, the surface was reconstructed using ‘recon-all’
(Freesurfer) using the default ICBM152 template for the structural magnetic resonance image
(MRIs). Next, the Boundary element model (BEM) was created using ‘make_watershed_bem’
from MNE. Further, scalp surfaces for the different element boundaries were created using
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‘make_scalp_surface’” from MNE. Second, we performed the registration of the scalp surface
with the default EEG channel locations (with fiducials as markers) manually using
‘coregistration” from MNE. Third, forward solution was computed using ‘make_bem_model’
from MNE with conductivity = [0.3, 0.006, 0.3]. Fourth, to test if the source reconstruction of the
electrode data is accurate we projected the ERP data of a sample subject into source space and
analysed data from different regions of interest to confirm its validity as shown in the
supplemental information (Figure s4). The classifier patterns of each subject were then projected
into source space in the following manner. First, we computed the noise covariance using the
baseline data from -0.2 to 0 ms. Second, we used the forward solution (8196 vertices) and the
noise covariance to create an inverse operator using ‘minimum_norm.make_inverse_operator’
from MNE (loose=0.2). Third, used the individual classifier pattern per subject and applied the
inverse operator on it (method = MNE, SNR = 3, lambda2 = 1/(SNR)?) to produce the source
reconstruction of the classifier patterns per subject. For performing group statistics in the source
space we used the same cluster permutation based approach as described earlier.

Neuro-behavioural analysis

Regression with drift diffusion model

To identify the correlates of the evidence accumulation process, we used the model parameters
generated by the drift diffusion model (winning model #8). First, the ERP data (post trial
epochs) were z-scored per electrode per trial. Second, the ERP data was baseline corrected with
pre-trial data from -200ms to Oms. Third, the ERP data was averaged every 50ms per electrode
per trial to create 20 time points (-200ms to 800ms) per electrode per trial. Fourth, the ERP data
were entered into a regression with trial by trial estimation of the drift rate using the
HDDMRegressor from the HDDM toolbox (Wiecki et al., 2013). The drift rate was allowed to
vary per trial based on the ERP data per state (‘alert’ or ‘drowsy’) per stimuli (‘left” or ‘right’).
Fifth, the traces were computed per condition (state and stimuli combination). Sixth, the
differences in drift rate (between left and right stimuli) per time point per electrode were
computed in both alert and drowsy condition. This difference represents the discriminability of
the electrode in identifying the left and right stimuli at that time point. Thus this analysis
yielded differences in drift rate per electrode, per time point, per condition, per subject. The
differences can then be considered similar to the classifier patterns and can be analysed both in
electrode and source spaces. Further we also computed group level differences using the cluster
permutation techniques described earlier.
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SUPPLEMENTAL INFORMATION

Subjective midline by sigmoid fits

A midline shifting towards left side B midline shifting towards right side
1.00 ® 09000 1.00 © 008000
°e
w 7]
@ @
E w
g 0.75 g 0.75
=3 -3
w ]
E &
= =
S S
< 0.50 | £ 0.50
C ¥/ s
: 90 :
: f g
;- ¥ £
o 11 °
£0.25 ] i i . Alert £ 0.25
= =
o . O —— Drowsy &
° i
1 .
0.00 F—eoesee0eo II 0.00 * o000 00
-60 -40 -20 0 20 40 60 -60 -40 -20 0 20 40 60
Stimulus angle Stimulus angle

Figure s1: Example fits of two different subjects are shown. For each subject under each condition (‘alert’,
‘drowsy’), the proportion of rightward responses were fitted to the stimulus angle varying from -60° to
+60°. The ‘glm’ fit was constrained in such a way that the number of responses under each angle was
used as weights. The size of the dots represent the normalised (per condition) number of trials under each
angle. A) Here, we notice that the bias point (dotted line) shifts towards the left side as the subject
becomes drowsy. In other words, as the subject becomes drowsy they overestimate the right side of
space. B) Here, we notice that the bias point (dotted line) shifts towards the right side as the subject
becomes drowsy. In other words, as the subject becomes drowsy they overestimate the left side of space
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Posterior predictive fits from the best model

posterior predictive distributions from the best model
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Figure s2: Posterior predictive fits for the best model (#8) in hddm for some sample subjects are shown.
The x-axis in each plot represents the reaction times in seconds, the positive values are times for a ‘left’
button presses, whereas those on the negative x-axis are for ‘right” button presses. The histograms (in red)
represent distributions of the observed data, whereas the blue lines represent model prediction. A)
Posterior predictive distributions when the subject is ‘alert’ and the stimulus presented was ‘left” tone. B)
Posterior predictive distributions when the subject is ‘alert” and the stimulus presented was ‘right’ tone.
C) Posterior predictive distributions when the subject is ‘drowsy’ and the stimulus presented was ‘left’
tone. D) Posterior predictive distributions when the subject is ‘drowsy” and the stimulus presented was
‘right” tone.
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Event related potential (ERP) values at significant electrodes from classifier patterns
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Figure s3: The spatio-temporal clustering of the classifier patterns across alert and drowsy periods reveals
significant clusters at different time periods (From Figure 4 A,B). Here the significant electrodes are taken
and their corresponding ERP values are plotted. The time course of the ERP values look similar to the
time course of the classifier patterns itself.

Validation of source reconstruction

To verify the accuracy of the spatial localization procedure, we used the following
methodology. First, we used EEG data from a sample subject (in the drowsy periods, as it has a
larger number of trials) and computed noise covariance from 0.2 sec to 0 sec (pre stimulus
period) using the ‘shrunk’” method in mne. Next the computed covariance was regularised.
Second, the forward solution was computed using the transformation file, source space,
beamformer solution as described in the methods section. Third, we computed the inverse
operator using the noise covariance and the forward solution. Fourth, we applied the inverse
operator on the raw data with parameters of snr = 12, lambda2 = 1.0 / snr?, method = 'MNE'.
For validation we used the ‘MNE’ method instead of ‘dSPM’ used in the decoding analysis, as
we wanted to have a positive and negative amplitude in the source signals. Further we only
picked the source signals whose orientations were normal to the surface. Fifth, we used labels
from the left hemisphere in the source space and extracted signals in the regions of auditory,
occipital, middle temporal, and frontal pole using the mode ‘mean_flip’. Sixth, we extracted
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mean time courses inside each ROI and plotted the same in Figure s3. We identified N100 (peak
negative signal 100 ms followed by stimulus presentation) only in the time course from the
auditory region, whereas the other ROIs displayed weaker N100 amplitudes as shown below.
This validates the accuracy of source localization as N100 is ERP amplitude is known to be
localised in the auditory region.

source localization in left hemisphere ROIs in a sample subject

le-11
1.5
\.
1.0
g
E 05
Z / 1 \/
E 0.0 I""?“ ol vl \\
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Figure s4: Source localization performed in a sample subject clearly reveals N100 presence in auditory
regions at 100 ms after stimulus presentation. However occipital regions do not reveal the presence of
N100 thereby validating the source localization methods used.
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