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Abstract 1 

DNA methylation profiles of aggressive behavior may capture lifetime cumulative effects of 2 

genetic, stochastic, and environmental influences associated with aggression. Here, we 3 

report the first large meta-analysis of epigenome-wide association studies (EWAS) of 4 

aggressive behavior (N=15,324 participants). In peripheral blood samples of 14,434 5 

participants from 18 cohorts with mean ages ranging from 7 to 68 years, 13 methylation sites 6 

were significantly associated with aggression (alpha=1.2x10-7; Bonferroni correction). In cord 7 

blood samples of 2,425 children from five cohorts with aggression assessed at mean ages 8 

ranging from 4 to 7 years, 83% of these sites showed the same direction of association with 9 

childhood aggression (r=0.74, p=0.006) but no epigenome-wide significant sites were found. 10 

Top-sites (48 at a false discovery rate of 5% in the peripheral blood meta-analysis or in a 11 

combined meta-analysis  of peripheral blood and cord blood) have been associated with 12 

chemical exposures, smoking, cognition, metabolic traits, and genetic variation (mQTLs). 13 

Three genes whose expression levels were associated with top-sites were previously linked 14 

to schizophrenia and general risk tolerance. At six CpGs, DNA methylation variation in blood 15 

mirrors variation in the brain. On average 44% (range=3-82%) of the aggression–methylation 16 

association was explained by current and former smoking and BMI. These findings point at 17 

loci that are sensitive to chemical exposures with potential implications for neuronal 18 

functions. We hope these results to be a starting point for studies leading to applications as 19 

peripheral biomarkers and to reveal causal relationships with aggression and related traits.  20 
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Introduction 1 

Aggression encompasses a range of behaviors, such as bullying, verbal abuse, fighting, and 2 

destroying objects. Early life social conditions, including low parental income, separation 3 

from a parent, family dysfunction, and maternal smoking during pregnancy are risk factors for 4 

childhood aggression1,2,3. High levels of aggression are a characteristic of several psychiatric 5 

disorders and may also be caused by traumatic brain injury3, neurodegenerative diseases4 6 

and alcohol and substance abuse5,6.  7 

 DNA methylation mediates effects of genetic variants in regulatory regions on gene 8 

expression7 and is modifiable by early life social environment, as demonstrated by animal 9 

studies8,9, and by chemical exposures including (prenatal) exposure to cigarette smoke, as 10 

illustrated by numerous human studies10. Despite the large tissue-specificity of DNA 11 

methylation, effects of genetic variants on nearby DNA methylation (cis mQTLs) correlate 12 

strongly between blood and brain cells11. DNA methylation signatures of chemical 13 

exposures12 and maternal rearinging9 show a certain (but less understood) degree of 14 

conservation across tissues.  15 

 Large-scale epigenome-wide association studies (EWASs) have become feasible 16 

through DNA methylation microarrays applied to blood samples from large cohorts, 17 

identifying thousands of loci where methylation in cord blood is associated with maternal 18 

smoking13. Methylation in blood is associated with depressive symptoms14 and brain 19 

morphology15, with some evidence for blood DNA methylation signatures being a marker for 20 

methylation levels15 or gene expression14 in the brain. For several traits, DNA methylation 21 

scores based on multiple CpGs from EWAS show better predictive value than currently 22 

available polygenic scores16,17.  23 

 Small-scale studies (maximum sample size=260) have provided some evidence that 24 

DNA methylation differences in blood, cord blood, and buccal cells are associated with 25 

severe forms of aggressive behavior and related problems in children and adults, including 26 

(chronic) physical aggression and early onset conduct problems18–20, but studies on violent 27 

aggression in schizophrenia patients (N=134)21 and a population-based study of continuous 28 

aggression symptoms in adults (N=2,029)22 did not detect epigenome-wide significant sites.  29 

 We performed an EWAS meta-analysis of aggressive behavior and closely related 30 

constructs. We chose to meta-analyze multiple measures of aggression across ages and sex 31 

to maximize sample size. The contribution of genetic influences to aggression is largely 32 

stable, at least throughout childhood23, whereas epigenetic signatures may be dynamic and 33 

may differ across cell types and age. Therefore, we performed separate meta-analyses of 34 

peripheral blood collected after birth (N=14,434) and cord blood (N=2,425), followed by a 35 
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combined meta-analysis (N=15,324) including an examination of heterogeneity of effects. 1 

Next, we tested the relationship between aggressive behavior and epigenetic clocks, as 2 

associations of lifetime stress24, exposure to violence25, and psychiatric disorders26,27 with 3 

accelerated epigenetic ageing have been reported. We performed extensive functional 4 

follow-up by integrating our findings with data on gene expression, mQTLs and DNA 5 

methylation in brain samples.  6 
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Methods 1 

Cohorts 2 

Demographic information for the cohorts is provided in Table 1. Detailed cohort information 3 

is provided in eAppendix 1. Informed consent was obtained from all participants. The 4 

protocol for each study was approved by the ethical review board of each institution.  5 

Aggressive behavior 6 

Aggressive behavior was assessed by self-report or reported by parents and teachers. 7 

Multiple instruments were used (eTable 1): ASEBA Child Behavior Check List (CBCL)28, 8 

Strengths and Difficulties Questionnaire (SDQ) conduct problem scale29, multidimensional 9 

Peer Nomination Inventory (MNPI) aggression scale30, ASEBA adult self-report (ASR) 10 

aggression scale31, DSM-IV Conduct Disorder Symptom Scale32, Multidimensional 11 

Personality Questionnaire (MPQ) aggression scale33, and the Hunter-Wolf aggressive 12 

behavior scale34,35. In four cohorts, a single aggression-related item from personality 13 

questionnaires was used. Distributions of aggression scores are provided in eFigure 1. 14 

DNA Methylation BeadChips  15 

DNA methylation was assessed with Illumina BeadChips: the llumina Infinium 16 

HumanMethylation450 BeadChip (450k array; majority of cohorts), or the Illumina 17 

MethylationEPIC BeadChip (EPIC array). Most cohorts analyzed DNA methylation β-values, 18 

which range from 0 to 1, indicating the proportion of DNA that is methylated at a CpG in a 19 

sample. Cohort-specific details about DNA methylation profiling, quality control, and 20 

normalization are described in eAppendix 1 and summarized in eTable 2.  21 

Epigenome-wide Association Analysis  22 

EWAS analyses were performed according to a standard operating procedure 23 

(http://www.action-euproject.eu/content/data-protocols). In each cohort, the association 24 

between DNA methylation level and aggressive behavior was specified under a linear model 25 

with DNA methylation as outcome, and correction for relatedness of individuals where 26 

applicable. Two models were tested. Model 1 included aggressive behavior, sex, age at 27 

blood sampling (not in cohorts with invariable age), white blood cell percentages (measured 28 

or imputed), and technical covariates. Model 2 included the same predictors plus body-mass-29 

index (BMI) and smoking status in adolescents and adults (current smoker, former smoker or 30 

never smoked). Cohort-specific details and R-code are provided in eAppendix 1 and eTable 31 

3, respectively. The relationship between aggressive behavior and covariates is provided in 32 

eTable 4 based on data from the Netherlands Twin Register (N=2059). 33 
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 Quality control and filtering of cohort-level EWAS summary statistics is described in 1 

eAppendix 2. The following probes were removed: on sex chromosomes, methylation sites 2 

with more than 5% missing data in a cohort, probes overlapping SNPs affecting the CpG or 3 

single base extension site with a minor allele frequency (MAF) > 0.01 in the 1000G EU or 4 

GONL population7, and ambiguous mapping probes reported with an overlap of at least 47 5 

bases per probe36. The R package Bacon was used to compute the Bayesian inflation factor 6 

and to obtain bias- and inflation-corrected test statistics (eFigure 2) prior to meta-analysis37. 7 

Meta-analysis 8 

Fixed-effects meta-analyses were performed in METAL38. We used the p-value-based 9 

(sample size-weighted) method because the measurement scale of aggressive behavior 10 

differs across studies. First, results based on peripheral blood and cord blood data were 11 

meta-analyzed separately. Second, a combined meta-analysis was performed of all data. 12 

The following cohorts had data available for both cord blood and peripheral blood (from the 13 

same children): INMA (which is part of HELIX) and ALSPAC. In the combined meta-analysis, 14 

the cord blood data from ALSPAC and INMA were excluded to avoid sample overlap. 15 

Statistical significance was assessed considering Bonferroni correction for the number of 16 

sites tested (alpha=1.2x10-7). Methylation sites that were associated with aggression at the 17 

less conservative false discovery rate (FDR) threshold (5%) were included in follow-up 18 

analyses. The I2 statistic from METAL was used to describe heterogeneity. 19 

Follow-up Analyses 20 

DNA methylation score analyses and epigenetic clock analyses are described in eAppendix 21 

3 and eAppendix 4. Follow-up analyses (eAppendix 5- eAppendix 10) were performed on 22 

meta-analysis top-sites (FDR<0.05), including a comparison of top-sites with all previously 23 

reported associations in the EWAS atlas39, follow-up analysis of top-sites in two clinical 24 

cohorts with blood methylation data (Table 2), a cross-tissue analysis (blood, buccal, brain), 25 

and association with gene expression level and mQTLs. Analyses of differentially methylated 26 

regions (DMRs) are described in eAppendix 8.  Finally, we performed replication analysis of 27 

a previously reported DMR associated with aggression20 (eAppendix 9). 28 

  29 
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Results 1 

Peripheral blood meta-analysis 2 

We performed a meta-analysis of 13 studies with peripheral blood DNA methylation data 3 

(N=14,434). The meta-analysis test statistics showed no inflation (eTable 5, eFigure 3). In 4 

model 1, methylation at 13 CpGs was associated with aggression (Bonferroni correction; 5 

alpha=1.2x10-7), and 35 passed a less conservative threshold (FDR 5%; Figure 1a). At 28 6 

out of the 35 sites (80%), higher levels of aggression were associated with lower methylation 7 

levels. Top-sites showed varying degrees of between-study heterogeneity (mean I2=50%; 8 

range=0- 86%, eTable 6). Five sites showed significant heterogeneity (alpha=1.2x10-7).  9 

 10 

Cord blood meta-analysis 11 

The meta-analysis of cord blood (five cohorts; N=2,425) detected no significant CpGs 12 

(eTable 7). Examining top-sites from the peripheral blood meta-analysis, 12 of the 13 

significant, and 33 of the FDR top-sites were assessed in cord blood; 10 (83%), and 25 14 

(71%), respectively, showed the same direction of association (Figure 1b). Effect sizes in 15 

cord blood correlated significantly with effect sizes in peripheral blood (r=0.74, p=0.006 for 16 

epigenome-wide significant and r=0.51,p=0.003 for FDR top-sites).  17 

 18 

Combined meta-analysis 19 

In the combined meta-analysis of peripheral and cord blood data (total sample size=15,324, 20 

eTable 6), methylation at 13 CpGs was associated with aggression after Bonferroni 21 

correction, including ten CpGs from the peripheral blood meta-analysis, and 43 passed a 22 

less conservative threshold (FDR 5%, Table 3). Among FDR top-sites from both analyses, 23 

13 CpGs  were only found in the combined meta-analysis but not in the peripheral blood 24 

meta-analysis, while five CpGs from the peripheral blood meta-analysis were no longer 25 

significant in the combined meta-analysis (Figure 1c). 26 

 27 

CBCL meta-analysis 28 

We compared our meta-analysis results to a meta-analysis of cohorts that applied the same 29 

aggression instrument; i.e. CBCL (four studies; N=2,286; Table 1). No epigenome-wide 30 

significant sites were detected (eFigure 4a). Examining top-sites from the overall meta-31 

analysis (Model 1), 38 (79%) showed the same direction of association for CBCL aggression 32 

in children, and effect sizes correlated strongly (r=0.75, p=6.8x10-10, eFigure 4b).  33 

 34 

Overlap with CpGs detected in previous EWASs 35 

We performed enrichment analyses against all previously reported associations with 36 

diseases and environmental exposures recorded in the EWAS Atlas39. The top ten most 37 
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strongly enriched traits are shown in Figure 1e. CpGs associated with aggressive behavior 1 

showed large overlap with CpGs previously associated with smoking (37 CpGs; 2 

corresponding to 77% of aggression-associated CpGs and 0.3% of CpGs that have been 3 

previously associated with smoking), and smaller overlap with other smoking traits (e.g. 4 

maternal smoking), other chemical exposures (e.g. perinatal exposure to polychlorinated 5 

biphenyls (PCBs) and polychlorinated dibenzofurans (PCDFs)). Further overlap includes 6 

CpGs associated with alcohol consumption, cognitive function, educational attainment, 7 

ageing, and metabolic traits (eTable 8).  8 

 9 

Controlling for smoking and BMI 10 

Model 2 was fitted to test whether the association between DNA methylation and aggressive 11 

behavior attenuated after adjusting for the most important postnatal lifestyle factors that 12 

influence DNA methylation (smoking and BMI). Examining the 35 CpGs associated with 13 

aggression at FDR 5% in peripheral blood, all CpGs showed the same direction of 14 

association after adjusting for smoking and BMI (eTable 6, Figure 1d). Effect sizes were 15 

attenuated to varying degrees (mean reduction=44%, range=3-83%). Changes in effect sizes 16 

are likely primarily driven by the correction for smoking, since only one top-site has been 17 

associated previously with BMI. Some CpGs showed little attenuation, in particular CpGs that 18 

have not been previously associated with smoking (e.g.; cg02895948; PLXN2A, 19 

cg00891184; KIF1B, cg1215892; intergenic, and cg05432213; ACT1). In model 2, between-20 

study heterogeneity at top-sites was greatly reduced (adjusted: mean I2=28%, range=0-21 

77%). No CpGs were epigenome-wide significant or FDR-significant in the adjusted meta-22 

analyses.  23 

 24 

DNA methylation scores 25 

We computed weighted sumscores in NTR (peripheral blood, mean age=36.4, SD=12, 26 

N=2,059) based on summary statistics from the peripheral blood meta-analysis without NTR 27 

(Figure 2). The best score, based on CpGs with p<1x10-3 in model 2 (745 CpGs), explained 28 

0.29% of the variance in aggression (p=0.02, not significant after multiple testing correction). 29 

This effect was attenuated when age and sex were added to the prediction equation. 30 

Epigenetic clocks  31 

Horvath and Hannum epigenetic age acceleration were not associated with aggression 32 

(eTable 9) in a meta-analysis of 12 studies with peripheral blood DNA methylation data 33 

(N=9,554), five studies with cord blood DNA methylation (N=2,225), or in a combined meta-34 
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analysis of 15 studies (N=9,740). There was no significant heterogeneity between cohorts 1 

(mean I2=16%, range=0-60%). 2 

 3 

Follow-up in clinical cohorts 4 

To assess the translation of our observations to aggression-related problem behavior in 5 

psychiatric disorders that show comorbidity with aggression, we performed follow-up 6 

analyses of top-sites in two clinical cohorts (Table 2): the NeuroIMAGE40 cohort of ADHD 7 

cases and controls (Ntotal=71) and the FemNAT-CD41 cohort of female conduct disorder 8 

cases and controls (Ntotal=100). Results did not replicate (eAppendix 6, eTable 10, eTable 9 

11, eFigure 5, eFigure 6). 10 

 11 

Cross-tissue analysis 12 

To assess the generalizability of our observations in blood to other tissues, we examined the 13 

association with CBCL aggression in buccal DNA methylation data (EPIC array), available for 14 

38 top-sites, in children (N=1237) and a child clinical cohort (N=172;Table 2, eTable 12) 42. . 15 

We also tested associations with maternal smoking and with child nervous system 16 

medication (as indexed by the Anatomical Therapeutic Chemical classification system (ATC 17 

N-class)) 18 

 Correlations between DNA methylation levels in blood and buccal cells, based on 19 

450k data from matched samples (N=22, age=18 years)43 were available for 36 of these 20 

CpGs. The average correlation was weak (r=0.25, range=-0.40-0.76). Five CpGs showed a 21 

strong correlation between blood and buccal cells (r>0.5, eTable 13), of which three have 22 

been previously associated with (maternal) smoking.  23 

 In line with the weak correlation between blood and buccal cell methylation for most 24 

top-sites, none of the top-sites was associated with aggression in buccal samples 25 

(alpha=0.001, eTable 14). Regression coefficients based on analyses in buccal cells and 26 

blood overall showed no directional consistency (twin cohort: r=0.03, p=0.86; concordant 27 

direction: 47%, p=0.87, binomial test, clinical cohort: r=0.27, p=0.10; concordant direction: 28 

61%, p=0.26). Exclusion of ancestry outliers did not change these results (eTable 14). Of the 29 

five CpGs with a large blood-buccal correlation, three showed the same direction of 30 

association with aggression in buccal cells from twins, four in clinical cases, and one CpG 31 

was nominally associated with aggression in buccal samples from twins; cg11554391 32 

(AHRR), rblood-buccal=0.69, βaggression=-0.0002, p=0.007. 33 
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 One CpG was significantly associated with maternal smoking in both cohorts: 1 

cg04180046 (MYO1G), NTR: βmaternalsmoking=0.041, p=6.0x10-6, Curium: βmaternalsmoking=0.048, 2 

p=7.9x10-5 (eTable 14). None of the CpGs was associated with medication use (eTable 14).  3 

 We examined the correlation between DNA methylation levels in blood and brain 4 

(N=122)44 in published DNA methylation data from matched blood samples and four brain 5 

regions. Six aggression top-sites (13%) showed significantly correlated DNA methylation 6 

levels between blood and one or multiple brain regions: mean r=0.52; range=0.45-0.63, 7 

alpha=2.6x10-4, eTable 15, eFigure 7), two of which have not been previously associated 8 

with smoking or BMI: cg14560430(TRIM71), and cg20673321(ZNF541). 9 

 10 

DMRs 11 

DMR analysis showed that 14 DMPs from our combined meta-analysis reside in regions 12 

where multiple correlated methylation sites showed evidence for association with aggressive 13 

behavior. DMR analysis also detected additional regions that were not significant in DMP 14 

analysis (eTable 16- eTable 21). These analyses are described in detail in eAppendix 8. 15 

 16 

Replication analysis 17 

A previous EWAS based on Illumina array data detected a significant DMR in DRD4 in 18 

buccal cells associated with engagement in physical fights20. This locus did not replicate in 19 

our meta-analyses or in the two cohorts with buccal methylation data (eTable 22, eAppendix 20 

9). 21 

 22 

Gene Expression  23 

Based on peripheral blood RNA-seq and DNA methylation data (N=2,101)7, 17 significant 24 

DNA methylation-gene expression associations were identified among 15 CpGs and ten 25 

transcripts (Table 3, eTable 23). For most transcripts, a higher methylation level at a CpG 26 

site in cis correlated with lower expression (82.4%): cg03935116 and FAM60A, cg00310412 27 

and SEMA7A, cg03707168 and PPP1R15A, cg03636183 and F2RL3, two intergenic CpGs 28 

on chromosome 6, where methylation level correlated negatively with expression levels of 29 

FLOT1, TUBB,  LINC00243, and six CpGs annotated to AHRR  were negatively associated 30 

with EXOC3 expression level. Positive correlations were observed between methylation 31 

levels at 2 CpGs on chromosome 7 and levels of RP4-647J21.1 (novel transcript, 32 

overlapping MYO1G) and between cg02895948 and PLXNA2. 33 

 34 

 35 

 36 
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mQTLs 1 

To gain insight into genetic causes of variation underlying top-sites, we obtained whole-blood 2 

mQTL data (N=3,841)7. In total, 75 mQTL associations were identified among 34 aggression 3 

top-sites (70.8%) and 66 SNPs at the experiment-wide threshold applied by the mQTL study 4 

FDR<0.05): 80% were cis mQTLs and 20% were trans mQTLs (eTable 24).  5 

 6 

 7 

 8 

 9 

 10 

 11 

 12 

 13 

 14 

 15 

 16 

 17 

 18 

 19 

 20 

 21 

 22 

 23 

 24 

 25 

 26 

 27 

 28 
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Discussion 1 

We identified 13 epigenome-wide significant sites (Bonferroni corrected) in the meta-analysis 2 

of blood and 13 in the combined meta-analysis of blood and cord blood (16 unique sites). We 3 

prioritized 48 top-sites (FDR 5%) for follow-up analyses. Methylation level at three top-sites 4 

was associated with expression levels of genes that have been previously linked to 5 

psychiatric or behavioral traits in GWASs: FLOT1 (schizophrenia45), TUBB (schizophrenia)45, 6 

and PLXNA2 (general risk tolerance)46. Several other loci have functions in the brain and six 7 

CpGs showed correlated methylation levels between blood and brain.  8 

The majority of top-sites (77%) were associated with smoking, 46% were associated 9 

with maternal smoking, 25% were associated with alcohol consumption, and 15% were 10 

associated with perinatal PCB and PCDF exposure. This overlap of aggression top-sites with 11 

smoking and other chemical exposures is noteworthy. Methylation levels of top-sites in the 12 

Aryl-Hydrocarbon Receptor Repressor gene AHRR and several other genes are known to be 13 

strongly associated with exposure to cigarette smoke13,47 and persistent organic pollutants48. 14 

The best characterized exogenous ligands of the widely expressed Aryl-Hydrocarbon 15 

Receptor are environmental contaminants such as benzo[a]pyrene (B[a]P), and TCDD 16 

(dioxin), whose neurotoxic and neuro-endocrine effects, including disruption of neuronal 17 

proliferation, differentiation, and survival, have been well-characterized49. Human prenatal 18 

exposure to B[a]P is associated with delayed mental development, lower IQ, anxiety and 19 

attention problems50. Research on B[a]P neurotoxicity in adults is scarce but a study on coke 20 

oven workers found that occupational B[a]P exposure correlates with reduced monoamine, 21 

amino acid and choline neurotransmitter levels and with impaired learning and memory51.   22 

On average 44% (range=3-82%) of the aggression–methylation association was 23 

explained by current and former smoking and BMI. Our findings do not merely reflect effects 24 

of own smoking: 71% of the top-sites showed the same direction for the prospective 25 

association of cord blood methylation at birth and aggression in childhood, and 46% have 26 

been associated with maternal prenatal smoking. There is a weak observational association 27 

between maternal smoking and child aggression52. Our analyses did not adjust for prenatal 28 

and postnatal second-hand smoking. Future studies can examine if the link between prenatal 29 

maternal smoking and aggression is mediated by DNA methylation.  30 

 We found that DNA methylation scores for aggression explained less variation 31 

compared to DNA methylation scores for traits such as BMI, smoking and educational 32 

attainment. For these traits, EWASs tended to identify more epigenome-wide significant 33 

hits16,17. The variance in aggression explained by DNA methylation scores was in the same 34 

order of magnitude as the variance in height explained by DNA methylation scores (based on 35 
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EWASs of height in smaller samples), i.e. less than 1%16. More research is needed in 1 

particular to delineate if there is a causal link between these methylation sites and 2 

aggressive behaviour, since our results may also reflect (residual) confounding by (exposure 3 

to second-hand) smoking. One approach to address this could be Mendelian Randomization, 4 

in which genetic information (SNPs) is used for causal inference of the effect of an exposure 5 

(e.g. DNA methylation) on an outcome (e.g. aggression). This approach previously supported 6 

a causal effect of maternal smoking-associated methylation sites in blood on various traits 7 

and diseases for which well-powered GWASs have been performed, including 8 

schizophrenia53,54. For aggressive behavior, the currently available55 largest GWASs of 9 

aggressive behavior included ~16,000 56 and ~75,000 participants (Ip et al, Multivariate GWA 10 

meta-analysis in over 500K observations on aggressive behavior and ADHD symptoms, 11 

submitted) , respectively. The GWAS by Ip et al detected 3 significant genes in gene-based 12 

analysis, but both GWASs did not detect genome-wide significant SNPs and are likely still 13 

underpowered. In the future, larger GWASs of aggressive behavior and larger mQTL 14 

analyses will allow for powerful Mendelian Randomization for aggression-associated 15 

methylation sites.  16 

 17 

Strengths and limitations 18 

This is the largest EWAS of aggressive behavior to date. The large sample size was 19 

achieved by applying a broad phenotype definition, including participants from multiple 20 

countries and all ages in a meta-analysis, and analyzing DNA methylation data from blood. A 21 

limitation of this approach is that it reduces power to detect age-, sex-, and symptom-specific 22 

effects, and that genetic and environmental backgrounds of different populations, as well as 23 

non-identical processing methods of methylation data play a role. A limitation of population-24 

based cohorts and even clinical populations is that individuals with extreme levels of 25 

aggressive behavior who cause most societal problems are likely underrepresented. 26 

Moreover, some studies used measures that tapped features that overlap with but are not 27 

necessarily indicative of aggression (e.g. personality traits, anger, oppositional defiant 28 

disorder). Future EWASs that specifically focus on more homogeneous aggression 29 

measures are therefore warranted. Our meta-analysis approach may identify a common 30 

epigenomic signature of aggression-related problems.  31 

 Follow-up analysis in independent datasets indicated that these findings do not 32 

generalize strongly to buccal cells, and results did not replicate in two clinical cohorts. These 33 

were small, used different aggression measures, and one used a different technology 34 

(sequencing) in females only.  35 

   36 
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Conclusions 1 

We identified associations between aggressive behavior and DNA methylation in blood at 2 

CpGs whose methylation level is also associated with exposure to smoking, alcohol 3 

consumption, other chemical exposures, and genetic variation. Methylation levels at three 4 

top-sites were associated with expression levels of genes that have been previously linked to 5 

psychiatric or behavioral traits in GWAS. Our study illustrates both the merit of EWASs 6 

based on peripheral tissues to identify environmentally-driven molecular variation associated 7 

with behavioral traits and their challenges to tease-out confounders and mediators of the 8 

association, and causality. Pursuing full control of potential confounders in behavioral EWAS 9 

meta-analyses (including smoking-exposure and other substance-use across the life course, 10 

socioeconomic conditions and other, perhaps less obvious, ones) might be unrealistic, and 11 

has the potential disadvantage of over-correction. Future studies, including those that 12 

integrate EWAS results for multiple traits and exposures, DNA methylation in multiple 13 

tissues, and GWASs of multiple traits are warranted to unravel the utility of our results as 14 

peripheral biomarkers for pathological mechanisms in other tissues (such as neurotoxicity) 15 

and to unravel possible causal relationships with aggression and related traits. We consider 16 

this study to be the starting point for such follow-up studies. 17 
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Figure 1 DNA methylation associated with aggressive behavior in a large blood-based meta-1 

analysis 2 

a) Manhattan plot showing the fixed effects meta-analysis p-values for the association 3 

between aggressive behavior and DNA methylation level based on the meta-analysis 4 

of peripheral blood. The blue horizontal line denotes the FDR-threshold (5%) and the red 5 

line indicates the Bonferroni threshold. b) Effects sizes of top-sites from the meta-analysis 6 

of aggression in peripheral blood (x-axis) versus effects sizes from the meta-analysis 7 

of aggression in cord blood (y-axis). c) Venn diagram showing the numbers and overlap of 8 

CpGs detected at FDR 5% in the meta-analysis of peripheral blood and the combined meta-9 

analysis and cord blood and peripheral blood. d) Effects sizes of top-sites from the meta-10 

analysis of aggression in peripheral blood model 1 (x-axis) versus effects sizes from the 11 

meta-analysis of aggression in peripheral blood model 2; adjusted for smoking and BMI (y-12 

axis). e) Top enriched traits based on enrichment analysis with all 48 top-sites. The third 13 

column shows how many of the 48 CpGs have been previously associated with the trait in 14 

the first column. The last column shows the overlap as a percentage of the total number of 15 

CpGs previously associated with the trait in column 1 (e.g. 0.3% of all CpGs previously 16 

associated with smoking are also associated with aggression in the current meta-analysis. d)  17 

In panel b and d, CpGs that have not been previously associated with smoking in the meta-18 

analysis by Joehanes et al47 are plotted in red. 19 

 20 

Figure 2 Prediction of aggression by DNA methylation scores 21 

The bars indicate how much of the variance in ASEBA adult self-report (ASR) aggression 22 

scores were explained by DNA methylation scores in NTR (N=2059, peripheral blood, 450k 23 

array). Scores were created based on weights from the peripheral blood meta-analysis with 24 

NTR excluded (N=12,375). The y-axis shows percentage of variance explained. Different 25 

colors denote DNA methylation scores created with different numbers of CpGs that were 26 

selected on their p-value in the meta-analysis (see legend). From left to right, the first three 27 

plots show DNA methylation scores created based on weights obtained from the meta-28 

analysis of EWAS model 1, and plots 4 till 6 show DNA methylation scores created based on 29 

weights obtained from the meta-analysis of EWAS model 2. Each DNA methylation score 30 

was tested for association with aggression in three model: the simplest model (first plot) 31 

included aggression as outcome variable, and DNA methylation score as predicted plus 32 

technical covariates and cell counts. The second model additionally included sex and age as 33 

predictors. The third model additionally included sex, age, and smoking as predictors. Stars 34 

denote nominal p-values < 0.05 (not corrected for multiple testing). 35 
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Table 1 Discovery cohorts 1 

ALSPAC=Avon Longitudinal Study of Parents and Children, Dunedin= Dunedin Multidisciplinary Health and Development Study, E-Risk= E-Risk Twin Study, 2 

FinnTwin12=Finnish Twin Cohort,  GS:SFHS= Generation Scotland: Scottish Family Health Study, GLAKU= Glycyrrhizin in Licorice cohort,HELIX=The Human Early-Life 3 

Exposome, LLD= LifeLines-DEEP, NFBC1966=Northern Finland Birth Cohort 1966, NFBC1986= Northern Finland Birth Cohort 1986, NTR= Netherlands Twin 4 

Register,  SATSA= Swedish Adoption/Twin Study of Aging, YFS= Young Finns Study, GECKO= Groningen Expert Center for Kids with Obesity, Generation 5 

R=Generation R Study, INMA= The INMA-INfancia y Medio Ambiente (Environment and Childhood) Project. Poseidon= Pre-, peri- and postnatal Stress in 6 

human and non-human offspring: A translational approach to study Epigenetic Impact on DepressiON. SDQ= Strengths and Difficulties Questionnaire (SDQ), 7 

conduct problems. MPQ=  Multidimensional Personality Questionnaire aggression. DSM-IV Conduct Disorder =DSM-IV Conduct Disorder Symptom Scale. 8 

MNPI= Multidimensional Peer Nomination Inventory, aggression. CBCL= Child Behavior Checklist, Aggressive Behavior scale. GHQ= General Health 9 

Questionnaire. TCI-NS4=Temperament and Character Inventory- Novelty Seeking. ASR=Adult self-report, aggression scale. EAS= Emotionality, activity, 10 

sociability scale. Hunter-Wolf= Hunter-Wolf aggressive behavior scale. aHave you recently been getting edgy and bad-tempered? bCould you indicate to what 11 

Cohort  N, M1 N, M2 % 
female 

% 
current 
smoker 

% 
former 
smoker 

DNA age, 
Mean (SD), 
ye 

Aggression survey  Array Aggression, 
Mean (SD) 

Time between survey and 
DNA, Mean (min, max), yf 

Peripheral blood 
ALSPAC57 865 865 49.4 0 0 7.5 (0.2) SDQ29  450k  1.5 (1.4) 0.7 (0.0, 2.1) 
Dunedin58 767 764 46.3 33.8 13.7 26.0 (0) MPQ33  450k  23.3 (19.3) 0 
E-Risk59 1629 1601 49.8 22.7 0 18.0 (0) DSM-IV Conduct Disorder32  450k  2.2 (2.3) 0 
FinnTwin1260 757 757 59.2 46.0* NA 22.4 (0.7) MNPI30 450k 0.6 (0.7) 10.4 (9.0,13.0) 
GS:SFHS61 4609 4421 67.9 18.9 29.5 46.6 (14.0) 1 item, from GHQ 2862a EPIC 0.1(0.3) 0 

GLAKU63 192 177 56.3 1.7 0 12.3 (0.5) CBCL28  EPIC 3.9 (3.8) 0 

HELIX64 1058 1058 44.9 NA NA 8.0 (1.6) CBCL28 450k 5.2 (5.0) 0 
LLD65 683 683 59.4 19.0 33.1 43.9 (11.6) 1 item, personality 

questionnaireb 
450k 1.9 (0.9) 0.1, (0.0,0.3) 

NFBC196666 740 740 56.9 29.9 23.8 31.0 (0) 1 item, from TCI-NS4c  450k 0.8 (0.4) 0.6 (0.0,10) 

NFBC198666 517 517 53.8 36.7 41.9 16.0 (0) ASR31  450k 4.3 (2.6) 0.6 (0.0,10) 

NTR67 2059 2049 69.2 18.3 22.5 36.4 (12.0) ASR31  450k 2.8 (3.1) -2.6 (-10.0, 8.0) 

SATSA68 377 377 60.2 17.0 4.0 70.2 (9.7) 1 item, from EAS69,70d 450k 2.0 (1.07)  -2.0 (-10.0,5.0)  

YFS71 181 181 63.0 30.9 27.5 19.2 (3.3) Hunter-Wolf34,35  450k 3.5 (0.9) 0 

Cord blood  

ALSPAC57 808 808 50.4 0 0 0 (0) SDQ29  450k 1.5 (1.4) -6.8 (-6.8,-6.8) 
GECKO72 196 186 51.5 0 0 0 (0) SDQ29  450k 1.1 (1.4) -5.9(-5.1,- 6.9) 
Generation R73 806 718 49.4 0 0 0 (0) CBCL28  450k 5.2 (5.1) -5.9 (-5.2, -8.3) 
INMA74  385 385 48.8 0 0 0 (0) SDQ29  450k 1.8 (1.7) -6,9 (-8,3,-6,2) 
Poseidon75 230 230 54.3 0 0 0 (0) CBCL28 450k 9.4 (5.9) -3.8 (-3.6, -4) 

w
as not certified by peer review

) is the author/funder. A
ll rights reserved. N

o reuse allow
ed w

ithout perm
ission. 

T
he copyright holder for this preprint (w

hich
this version posted July 22, 2020. 

; 
https://doi.org/10.1101/2020.07.22.215939

doi: 
bioR

xiv preprint 

https://doi.org/10.1101/2020.07.22.215939


20 

 

extent the following statement applies to you? I am known for being short-tempered and irritable? cI lose my temper more quickly than most people. dPeople 1 

think I am hot-tempered an temperamental. eAge at DNA sample collection. fTime between DNA sample collection and phenotype measure: DNA  minus 2 

phenotype. M1=model1. M2=model2. Model 1 included the following predictors: aggressive behavior, sex, age at blood sampling (if applicable), white blood 3 

cell percentages (measured or imputed), and technical covariates. Model 2 included the same predictors as model 1 plus BMI and smoking status (smoking 4 

status was not included in model 2 in cohorts that assessed DNA methylation in children). *The percentage shows current and former smokers combined. 5 

NA=not assessed. 6 
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Table 2 Follow-up cohorts 1 

Cohort Type DNA 

methylation 

Phenotype N % 

female 

Mean age 

(SD) 

Aggression 

mean (SD) 

NeuroIMAGE40 Clinical cohort; 

ADHD 

Illumina EPIC  Callous 

Traits 

71 28.2 21 (2.9) 9.3 (4.4) 

FemNAT-CD41 Clinical cohort; 

Conduct disorder   

HpaII 

methylation 

Sequencing  

Case-

control 

status 

Total: 100  

Cases: 50 

Controls:50 

100 Cases: 

16.1(1.6)  

Controls: 

15.8(1.5) 

NA 

ACTION –

NTR42 

Twin cohort, 

selected on 

aggression (high-

low) 

Illumina EPIC  CBCL 

aggression 

1237 47.4 9.6 (1.9) 5.0 (5.4) 

ACTION-

Curium-

LUMC42 

Clinical cohort; 

children with severe 

and complex mental 

health problems 

Illumina EPIC  CBCL 

aggression 

172 25.6 9.6 (1.7) 13.1 (7.6) 

NeuroIMAGE=The NeuroIMAGE study is a follow-up of the Dutch part of the International Multicenter ADHD 2 

Genetics (IMAGE) project. FemNAT-CD= Neurobiology and Treatment of Adolescent Female Conduct Disorder. 3 

ACTION= Aggression in Children: Unraveling gene-environment interplay to inform Treatment and InterventiON 4 

strategies. NTR= Netherlands Twin Register. 5 
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Table 3 Top-sites associated with aggressive behavior from the combined EWAMA of cord 1 

blood and peripheral blood (FDR 5%) 2 

CpG ID CHR Position* Gene 

Gene 
Expression 
Associated 
With CpGs 

N M1 
Zscore 
M1 

P value 
M1 

Zscore 
M2 

P value 
M2 

cg05575921 5 373378 AHRR EXOC3  15666 -8.995 2.36E-19 -4.159 3.20E-05 

cg21161138 5 399360 AHRR EXOC3  15661 -7.573 3.66E-14 -3.155 1.61E-03 

cg26703534 5 377358 AHRR EXOC3  15665 -6.695 2.16E-11 -2.058 3.96E-02 

cg14753356 6 30720108 FLOT1  15666 -6.672 2.52E-11 -3.342 8.33E-04 

cg22132788 7 45002486 MYO1G 10847 6.313 2.74E-10 3.637 2.76E-04 

cg06126421 6 30720080 

FLOT1, 
TUBB,  
LINC00243 10864 -6.196 5.78E-10 -2.154 3.13E-02 

cg07826859 7 45020086 MYO1G 10863 -6.017 1.77E-09 -3.665 2.48E-04 

cg09935388 1 92947588 GFI1 15661 -5.906 3.51E-09 -3.222 1.27E-03 

cg25648203 5 395444 AHRR  EXOC3 15657 -5.583 2.37E-08 -2.233 2.55E-02 

cg12062133 8 142548839 14482 5.462 4.71E-08 4.881 1.06E-06 

cg05951221 2 233284402 10864 -5.443 5.25E-08 -1.679 9.32E-02 

cg14817490 5 392920 AHRR EXOC3 10863 -5.407 6.43E-08 -2.152 3.14E-02 

cg14179389 1 92947961 GFI11 15666 -5.35 8.80E-08 -3.888 1.01E-04 

cg05432213 15 35086985 ACTC1 15666 5.144 2.68E-07 4.87 1.12E-06 

cg03636183 19 17000585 F2RL3 F2RL3 15666 -5.124 3.00E-07 -0.909 3.63E-01 

cg09022230 7 5457225 TNRC18 15666 -5.071 3.95E-07 -3.024 2.49E-03 

cg12803068 7 45002919 MYO1G 
RP4-
647J21.1 15666 4.93 8.22E-07 2.493 1.27E-02 

cg23916896 5 368804 AHRR 15652 -4.915 8.86E-07 -2.332 1.97E-02 

cg04180046 7 45002736 MYO1G 
 RP4-
647J21.1 15665 4.884 1.04E-06 2.989 2.80E-03 

cg02228160 5 143192067 HMHB1 10852 4.867 1.13E-06 3.451 5.58E-04 

cg03519879 14 74227499 C14orf43 15663 -4.859 1.18E-06 -3.609 3.08E-04 

cg00310412 15 74724918 SEMA7A SEMA7A  15666 -4.854 1.21E-06 -2.608 9.11E-03 

cg13165240 17 3715743 C17orf85 15664 4.838 1.31E-06 4.436 9.16E-06 

cg02895948 1 208204062 PLXNA2  PLXNA2 10865 -4.811 1.51E-06 -4.448 8.68E-06 

cg12147622 10 74021432 15662 -4.796 1.62E-06 -3.312 9.26E-04 

cg26883434 5 111091560 C5orf13 14540 4.773 1.81E-06 4.739 2.15E-06 

cg03991871 5 368447 AHRR  EXOC3 10857 -4.753 2.01E-06 -2.374 1.76E-02 

cg06946797 16 11422409 15666 -4.75 2.03E-06 -3.317 9.08E-04 

cg00891184 1 10272185 KIF1B 15662 4.746 2.07E-06 4.421 9.82E-06 

cg09243533 1 19281949 IFFO2 15666 -4.74 2.14E-06 -4.003 6.26E-05 

cg03935116 12 31476565 FAM60A FAM60A 15665 -4.735 2.19E-06 -3.664 2.48E-04 

cg11554391 5 321320 AHRR 15666 -4.717 2.39E-06 -2.731 6.32E-03 

cg19825437 3 169383292 15664 -4.663 3.12E-06 -3.094 1.98E-03 

cg00624037 12 89315201 15663 4.633 3.61E-06 4.081 4.49E-05 

cg01940273 2 233284934 15666 -4.621 3.82E-06 -0.305 7.61E-01 

cg25949550 7 145814306 CNTNAP2 15666 -4.615 3.94E-06 -2.333 1.96E-02 

cg23067299 5 323907 AHRR 10865 4.615 3.94E-06 3.21 1.33E-03 

cg04387347 16 88537187 ZFPM1 9563 4.603 4.17E-06 2.678 7.42E-03 
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cg02325250 5 131409289 CSF2 15664 -4.597 4.28E-06 -3.635 2.78E-04 

cg14560430 3 32863175 TRIM71 15665 -4.569 4.90E-06 -3.924 8.70E-05 

cg03844894 15 35086967 ACTC1 15666 4.567 4.94E-06 4.176 2.97E-05 

cg21611682 11 68138269 LRP5 14859 -4.561 5.08E-06 -1.721 8.53E-02 

cg20673321 19 48049233 ZNF541 15666 4.538 5.67E-06 4.672 2.98E-06 

*Genome build 37. M1=Model 1. M2=Model 2 1 
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