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12 Abstract

13 Germline mutations in the BRCA1 or BRCA2 genes predispose to hereditary breast and ovarian cancer
14  and, mostly in the case of BRCA2, are also prevalent in cases of pancreatic and prostate malignancies.
15  Tumours from these patients tend to lose both copies of the wild type BRCA gene, which makes them
16  exquisitely sensitive to platinum drugs and PARP inhibitors (PARPi), treatments of choice in these
17  disease settings. Reversion secondary mutations with the capacity of restoring BRCA protein
18  expression have been documented in the literature as bona fide mechanisms of resistance to these
19 treatments. Here, we perform a detailed analysis of clinical cases of reversion mutations described in
20  BRCA1 and BRCA2, which underlines the different importance of BRCA protein domains in contributing
21  to resistance and the potential key role of mutagenic end-joining DNA repair pathways in generating
22 reversions. Our analyses suggest that pharmacological inhibition of these repair pathways could
23 improve durability of drug treatments and highlights potential interventions to both prevent the

24 appearance of reversions and provide new therapeutic opportunities after their acquisition.

25

26 Highlights

27 - Comprehensive analysis of reversion mutations in BRCA genes identified in clinical cases of
28 resistance to platinum or PARPi

29 - Revertant proteins devoid of parts of the original sequence, identifying key protein functions
30 involved in resistance

31 - Hypomorph revertant BRCA proteins suggest potential new therapeutic opportunities to
32 overcome resistance

33 - Prevalence of mutational end-joining DNA repair mechanisms leading to reversions, especially
34 in those affecting BRCA2

35 - Pharmacological inhibition of mutational end-joining DNA repair could improve durability of
36 drug treatments

37
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42 Introduction

43 Mutations in the breast cancer susceptibility genes BRCAI1 and BRCA2 have been associated since the
44 1990s to hereditary cases of breast and ovarian cancers. Patients with inactivating germline mutations
45 in these genes — usually, small insertion-deletions (INDELs) or single-nucleotide variants (SNV) causing
46  frameshifts in the open reading frame (ORF) and premature STOP codons - have an increased risk of
47  developing breast cancers and, to a lesser extent, ovarian cancers. Following the classical ‘two-hit’
48 model of tumour suppressor inactivation, tumours from these patients tend to lose functionality of
49  the remaining BRCA wild type allele, usually by loss of heterozygosity[1]. Loss of BRCA genes fosters
50 genomic instability in tumours due to the key role BRCA1 and BRCA2 proteins play in DNA replication-
51  fork protection and homologous recombination repair (HRR), a high-fidelity DNA repair pathway

52 involved in the repair of DNA double-strand breaks and other genotoxic lesions[2].

53  Although loss of BRCA function could be beneficial for tumour development, it also makes tumour
54  cells exquisitely sensitive to DNA crosslinkers such as platinum drugs. DNA crosslinks, particularly the
55 ones formed in between the two DNA strands, rely on HRR for their efficient repair, explaining why
56 platinum-based therapies have proven beneficial in BRCA mutant patients[3]. More recently, it was
57  discovered that inhibition of poly(ADP-ribose) polymerase (PARP) shows synthetic lethality with BRCA
58  deficiency, again linked to HRR defects[4, 5]. PARP inhibitors (PARPi) have been developed clinically

59  and are now approved in breast, pancreatic, prostate and ovarian settings[6-8].

60  Platinum or PARPi treatments are effective in tumours with BRCA mutations but resistance arises.
61  Although several different mechanisms of platinum and PARPi resistance have been described pre-
62 clinically[2, 9], acquisition of secondary mutations in BRCA genes restoring the open reading frame
63 and detected upon treatment progression is the only resistance mechanism currently validated in the
64  clinic, with the first examples described more than a decade ago[10-12]. In this study, we analyse
65 clinical examples of secondary mutations acquired in BRCA genes described in the literature[10-39] to
66  gain insights into the mutational mechanisms driving their acquisition, and the importance of the

67 different BRCA protein domains in generating resistance to drug treatment.
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68 Results
69 Patients progressing on platinum or PARPj treatment accumulate reversion mutations in BRCA genes

70  We analysed sequencing data available in the literature from tumour or ctDNA paired samples
71  collected from 327 patients with mutations in BRCA1 or BRCA2 on progression after platinum or PARPi
72  treatment (Supp Table S1). This patient cohort is heavily biased towards ovarian cancer (234/327
73 patients), explained by germline mutations in BRCA genes being prevalent in this tumour type[40],
74 and by platinum and PARPi being approved standard of care therapies in that disease setting[41] (Fig
75 1a). Response to PARPi in this cohort is predominantly for olaparib (93/241 patients) and rucaparib
76  (73/241 patients; Supp Table S2).

77 299 secondary mutations on BRCA genes on progression after treatment with platinum or PARPi were
78 identified in 99 patients (46 carrying primary BRCA1 mutations; 53 carrying primary BRCA2 mutations;
79  Supp Table S1). 269 of these secondary mutations (70 detected in 40 BRCA1 mutant patients; 199 in
80 46 BRCA2 mutant patients) corrected the original mutation in the tumour or re-established the BRCA
81  open reading frame that was disrupted by it (Supp Table S1). As a consequence, these secondary
82 mutations had the potential to restore BRCA protein expression, and we will refer to them as
83 reversions (Supp Table S2). The percentage of BRCA patients accumulating reversion mutations on
84 progression after platinum or PARPi across the different tumour types analysed was 26.3%. The
85 percentage of patients with detectable reversions in BRCA1 was lower than of those in BRCA2 (22.6%
86  vs 30.7%), although this was not statistically significant (two-tailed two-proportions test p value 0.12)
87 (Fig 1a).

88 Primary mutations in BRCA genes in this patient cohort are predominantly from germline origin (24/33
89  cases for BRCA1; 40/46 for BRCA2; Fig 1b; Supp Table S3). They are mostly insertions or deletions
90 (25/33 cases for BRCA1; 39/46 for BRCA2) causing frameshifts leading to premature STOP codon gains
91 (23/25 cases for BRCA1; 38/39 for BRCA2; Fig. 1c; Supp Table S3). They are preferentially located in
92  the hot spot mutated regions encoding the RING or BRCT domains of the BRCA1 protein or in the
93 sequence comprising exon 11 of the gene, and for BRCA2, in the regions encoding the BRC repeats or
94  the N-terminal part of the protein, between the PALB2-interacting domain and the BRC repeats[40].
95 Particularly well represented are the Ashkenazi Jew founder germline mutations[42] BRCA1 185delAG
96 (c.68_69delAG; E23Vfs*; 9 cases) and 5382insC (c.5266insC; Q1756Pfs*; 4 cases) (Fig 1d), and BRCA2
97 6174delT (c.5946delT; S1982Rfs*; 5 cases) (Fig. 1e). As expected, all reversions occurring in tumours
98  where the primary mutation caused a frameshift consisted of a secondary insertion or deletion
99 restoring the ORF. Reversions where the primary mutation was a SNV occurred through a secondary

100  mutation involving another SNV (17/23 BRCA1 cases; 6/14 in BRCA2), but also through deletions (6/23
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101 BRCA1 cases; 8/14 in BRCA2) (Supp Table S3). For SNVs, the nature of the reversion mutation seemed
102  to be dependent on the genomic location of the primary mutation (see below). The type of treatment
103 received did not seem to result in secondary mutations and reversions being preferentially
104  accumulated in specific regions of either BRCA1 or BRCA2 proteins, although the limited number of

105 patients analysed brings caution to the interpretation of the data (Fig 1d,e).
106
107  Importance of the different BRCA protein domains in conferring resistance to platinum or PARPi

108 Mapping of the consequences of reversion mutations on the BRCA proteins shed light on the
109  functional importance of the different protein domains to confer resistance to treatment. In BRCA1,
110 reversion mutations in the exon 11 region resulted in deletions of considerable amino acid length (Fig
111 1f). Two extreme cases resulted in deletions of 860 bp (286 aa) and 1170 bp (389 aa) in patients with
112 ovarian cancer progressing on platinum or PARPI, respectively[24, 25] (Supp Table S2). This suggests
113  that most of the protein region encoded by exon 11 is dispensable with regards to the BRCA1 function
114 required to confer resistance to platinum or PARPi, most likely HRR. These data are in agreement with
115 studies performed in vitro, where expression of a BRCA1 protein hypomorph lacking most or the entire
116  sequence encoded by BRCA1 exon 11 was shown to confer resistance to these drugs[43]. On the
117 contrary, reversions on the RING, coiled-coil and BRCT domains of BRCA1 resulted in smaller deletions
118  or mutations in the amino acid sequence (Fig 1f), suggesting that there is less flexibility to the scale of
119  amino acid changes that can take place in these regions without fundamentally affecting BRCA1
120  function. Importantly, the RING domain is required for BRCA1 protein stability and ubiquitin E3 ligase
121 activity through its interaction with BARD1[44], while the BRCT domains are also required for stability
122 and protein-protein interactions[45, 46]. It will be important to determine experimentally the
123 functional consequences of such deletions and mutations on BRCA1l function in HRR to fully
124 understand what the minimum requirements for a revertant protein are to produce resistance to

125 platinum drugs or PARPi.

126  Similar to the BRCAI cases, significant deletions affected the region encoded by exon 11 in BRCA2
127 reversions. This region encodes the BRC repeats, which are the binding domains for the RAD51
128 recombinase, essential for the BRCA2 function in HRR[47](Fig 1g). One extreme case of such deletions
129 (2541 bp) in a breast cancer patient not responding to olaparib resulted in the deletion of 6 of the 8
130 BRC repeats[16] (Supp Table S2). No reversion, however, has been described resulting in the complete
131 elimination of all BRC repeats, suggesting that there is a minimum of at least two of these required to
132 preserve BRCA2 function in conferring resistance to platinum or PARPi[48]. In fact, mice carrying

133 homozygous deletion of BRCA2 exon 11 are inviable[49]. The N-terminal or the DNA-binding region of
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134 BRCA2 only accumulated reversions with smaller deletions or mutations, suggesting that there are
135 more constraints around amino acid changes in these regions, despite the fact that in vitro some
136  reversion events resulted in the complete removal of the DNA-binding region of BRCA2[10] (Fig 1g;
137  Supp Table S4).

138
139  Different types of secondary mutations in BRCA1 and BRCA2 patients

140  Secondary mutations were classified as pure insertions or deletions (either of 1 bp or more), SNVs or
141 cases where both insertions and deletions occurred (named for convenience as DELINs). Distribution
142 of the type of secondary mutations observed in BRCA genes differed between BRCA1 and BRCA2 in
143 this cohort. While deletions accounted for most of the secondary mutations detected in both genes,
144 prevalence of these in BRCA2 mutant patients was higher (77.6% vs 58.8% in BRCA1, two-tailed two-
145 proportions test p value 0.001), especially of deletions of more than 1 bp (37.5% in BRCA1 vs 68.0% in
146 BRCA2, two-tailed two-proportions test p value 3.56E-06; Fig 2a). This is despite the fact that
147 prevalence of primary mutations in exon 11, the most flexible region to accommodate amino acid
148  changes in BRCA genes (see above), is similar between both genes in this patient cohort (55.1% in
149  BRCA1 vs 54.7% in BRCA2, two-tailed two-proportions test p value NS; Supp Table S3). The type of
150 treatment after which the secondary mutations were detected did not seem to affect the type of
151 mutation acquired except for deletions of 1 bp that were enriched in BRCA2 after PARPi treatment
152 (1.5% after platinum vs 15.2% after PARPI, two-tailed two-proportions test p value 0.007; Fig 2b,c;

153 Supp Table S2). The limited number of cases, however, warrants caution when analysing these results.

154 Regarding the type of secondary mutations affecting the different domains of BRCA proteins, deletions
155 of more than 1 bp concentrated in the exon 11 region of BRCA1 (Fig 2d; Supp Table S2), as expected
156 by the accumulation of substantial deletion reversions in that area (Fig 2e) and the in vitro data
157  showing that most of the exon 11 sequence is not required for the function of BRCA1 in generating
158 resistance[43]. A more homogenous distribution was observed in the case of BRCA2 (Fig 2f), probably
159  due to the fact that most secondary mutations in this gene were deletions of more than 1 bp (Fig 2a).
160 Interestingly, however, the biggest deletions causing reversions in BRCA2 affected the BRC repeats,
161  again suggesting that maintaining only a subset of these could be sufficient to generate resistance (Fig

162 2g; Supp Table S2; see above).

163  The analysis of secondary mutation types depending on the specific locations of primary mutations
164  showed that mutations affecting the 185delAG region (c.68_69delAG; E23Vfs*) in the RING domain of

165 BRCA1 tend to be small deletions (1 bp; 3 out of 10 cases from 9 patients) or insertions (2 bp; 6 out of
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166 10 cases from 9 patients), similar to what is observed in the 5382insC region (c.5266insC; Q1756Pfs*)
167 in the BRCT domains of BRCA1, with 1 bp deletions (3 out of 5 cases from 4 patients), 2 bp insertions
168 (1 out of 5 cases from 4 patients) and a DELIN (4 bp deletion + 3 bp insertion) accounting for all cases
169  described (Fig 2d; Supp Table S2), in line with these domains not being particularly permissive to
170  drastic amino acid changes (Fig 1f, 2e). Secondary mutations around the BRCA2 6174delT (c.5946delT;
171  S1982Rfs*) region showed more variety, with small insertions (3 out of 13 cases from 5 patients) and
172  deletions ranging from 8 to 137 bp (7 out of 13 cases from 5 patients) (Fig 2f; Supp Table S2), as
173  expected due to the flexibility observed in the exon 11 region of the gene (Fig 1g, 2g).

174 In cases of primary mutations caused by SNVs, a clearer correlation between mutation location and
175 mutational mechanisms driving reversion acquisition could be established. For example, the BRCA1
176  c.188T>A (L63*) mutation in the RING domain was always reverted through a secondary SNV (2/2
177  cases), while the BRCA1 ¢.1045G>T (E349*) mutation in the exon 11 region was reverted through a
178  secondary SNV (5/7 cases) or a deletion removing the STOP codon (2/7 cases) (Fig 2d; Supp Table S3).
179  Particularly interesting is the BRCA2 primary mutation c.5614A>T (K1872%*), which was always
180 reverted though deletions ranging from 27-619 bp (7/7 cases; Fig 2f; Supp Table S$3). This is in line
181 with the previous observations suggesting less flexibility for amino acid changes in the BRCA1 RING

182 domain, compared to the exon 11 region of both BRCA1 and BRCA2 (see above).

183 Collectively, these data suggest that both location and nature of the primary mutation can determine
184  to some extent the type of repair event leading to the acquisition of secondary mutations, even in

185 events detected in different patients and on different treatments.
186

187  Secondary mutations involving large deletions have features of microhomology-mediated end-joining

188 (MMEJ) repair

189 Deletions accounted for the majority of secondary mutations studied, both in BRCA1 (58.7%) and
190 BRCA2 (77.6%) (Fig 2a). Most deletion events can be explained by the use of error-prone DNA repair
191 mechanisms of end joining, usually classical non-homologous end joining (NHEJ) or alternative end-
192  joining (alt-EJ). A particular sub-pathway of alt-EJ makes use of small sequence microhomologies
193 surrounding the break point, and consequently has been named microhomology-mediated end-
194  joining (MMEJ)[50]. The analysis of microhomologies surrounding secondary deletions detected them
195 in 70.9% cases, and 50.6% involved microhomologies of more than 1 bp, suggestive of MMEJ
196 repair[51] (Fig 3a; Supp Table S2).
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197  The cases of deletions of more than 1 bp ranged from small deletions of 2 bp to large ones involving
198  as many as almost 3000 bp. The number of base pairs of microhomology detected around breakpoints
199 ranged from 2 to 6 bp (Supp Table S2), with no apparent correlation observed between deletion and
200  microhomology lengths (Fig 3b). Microhomology lengths in secondary deletions were distributed
201  similarly in BRCA1 and BRCAZ2 cases (Fig 3c). Interestingly, we observed an increase in microhomology
202 length usage in secondary mutations in BRCA genes (Fig 3c; Supp Table $2) when compared to primary
203 mutations (Fig 3d; Supp Table S3), although this was not statistically significant (two-tailed two-
204 proportions test, p value NS). Importantly, deletions in BRCA2 were significantly enriched in MME)
205 signatures compared to those in BRCA1, regardless of their origin being primary or secondary (two-
206  tailed two-proportions test p value = 0.0001; Fig 3e,f; Supp Table S2 and S3). These results are in
207  agreement with previous reports suggesting that loss of HRR capacity in BRCA deficient tumours

208 upregulates the use of alternative repair pathways, like MMEJ[52].

209
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210 Discussion

211 In this report, we have carried out a retrospective analysis of secondary mutations acquired in tumour
212 and ctDNA samples from patients with mutations in BRCA1 or BRCA2 genes and on progression after
213 treatment with platinum or PARPi. Analysis of this cohort, where ovarian cancer was the most
214 represented disease type, detected reversion mutations in 26.3% of cases (Fig 1a). This is probably an
215 overestimation of the frequency of reversions in BRCA mutant tumours, as several reported in this
216  study come from case report examples or from cohorts with very limited patient numbers (Supp Table
217  S1). However, it is also important to note that secondary mutations not directly restoring the open
218 reading frame (and hence not classified as reversions in our analysis; 10 in BRCA1 mutant patients, 22
219 in BRCA2; Supp Table S2), could still allow regaining of protein function through alternative
220  mechanisms. Notwithstanding, BRCA reversions are the only confirmed mechanism of resistance
221 identified in clinical samples and their exact prevalence will be better defined with the acquisition of

222 more clinical data from patients progressing on platinum drugs or PARPi.

223 It is interesting to note that, although it did not reach significance, reversions in BRCA2 seemed to be
224 more prevalent than in BRCA1 (Fig 1a). This has not translated into patients with BRCA2 mutated
225  tumours responding worse to treatment, however, as rather the opposite has been observed in some
226  cases[3]. In addition, other mechanisms of resistance may operate more frequently in BRCA1 mutant
227  tumours, as suggested by pre-clinical studies identifying a wider variety of resistance mechanisms in
228  this genetic background[9]. Whatever the case, it is significant that in both BRCAI and BRCA2
229 reversions the putative proteins that could be expressed can lack several hundred amino acids (Fig
230 1f,g). The ability of BRCA1 hypomorphic proteins to confer resistance to drug treatment is well
231 documented in vitro[43, 53, 54] and has also been recently described in patient-derived xenograft
232 models[19, 55, 56]. Importantly, it has been shown that the protein domains of BRCA1 and BRCA2
233 play different functions in the roles these proteins have in preserving genomic stability[57-60],
234 suggesting that PARPi-resistant tumours expressing hypomorphic forms of BRCA proteins could be
235  treated with combinations of other targeted agents. For example, the TR2 domain of BRCA2 or
236 isomerization of the RING domain of BRCA1 are required for their function in DNA replication fork
237 protection, but not for HRR[60, 61], which would suggest that reversions affecting the functionality of
238  theseregions could be targeted by agents causing replication stress. Some ongoing clinical trials where
239  the PARPi olaparib is being combined with inhibitors of the replication stress response pathway, most
240 notably of the checkpoint kinase ATR (NCT03462342, NCT02576444, NCT04239014,
241 NCT03330847)[62], will provide clinical data where to explore this hypothesis. Our data also suggest
242  that in a post-PARPi treatment scenario, understanding the molecular events leading to reversions

243 could help identifying the best treatment options going forward.
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244 It was surprising to see that the prevalence of type of secondary mutation is different between BRCA1
245 and BRCA2. Although in both cases deletions were the most frequent event, BRCA2 secondary
246  mutations are significantly more enriched for deletions, especially of more than 1 bp (Fig 2a). Although
247 it did not reach statistical significance, a similar trend was also observed when analysing the primary
248 mutations carried from the germline in this patient cohort (Fig 1c; Supp Table S3, two-tailed two-
249 proportions test p value=NS), which could suggest that variables such as chromosomal location and/or
250  chromatin landscape around BRCA1 and BRCAZ2 genes could be important in determining the repair
251  pathways at play when genetic alterations occur in these genes[63]. Although we did not focus on
252 mutational mechanisms driving reversions through SNVs due to the smaller number of cases, it will be
253 interesting to understand the contribution of other DNA repair pathways such as translesion synthesis,

254 nucleotide excision repair, base excision repair or mismatch repair to such outcomes.

255  The prevalence of deletions as the main mechanism of acquisition of reversion mutations in BRCA
256  genes suggests the presence of a DNA double-strand break intermediate that is repaired by end-
257  joining mechanisms. Mutational signatures of NHEJ usually involve generation of small INDELs by
258 limited DNA-end resection imposed by the presence of the Ku heterodimer bound to the ends of the
259 DNA break. On the other hand, signatures of MMEJ repair involve more extensive DNA-end resection
260  and the use of microhomologies (2-6 bp) flanking the break site. These can be placed several hundred
261 base pairs apart, which can lead to sizable deletions and chromosomal translocations[50]. Strikingly,
262 we observed significant microhomology usage in deletions affecting BRCA genes, suggestive of
263 prevalence of MMEJ repair mechanisms, especially in BRCA2 (Fig 3c-e). A key player in MMEJ repair is
264 DNA polymerase theta, encoded by the POLQ gene[64], which has been shown to be essential for cell
265 survival in BRCA-deficient cell lines and to compete with HRR proteins for similar DNA repair
266  substrates[52, 65]. Compounds inhibiting DNA-PK, the key protein kinase involved in NHEJ, are
267  entering the clinic[66, 67]. It will be interesting to test whether blockage of NHEJ and/or MMEJ repair
268 in BRCA mutant backgrounds has the potential to prevent the accumulation of reversion mutations,

269  and hence the appearance of resistance to drug treatments.

270
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275 Methods

276 Primary and secondary mutation data from BRCA genes were collected from the literature and
277  formatted in the standard coding DNA reference sequence (Supp Table S2 and references therein).
278 For the analysis of types of secondary mutations, we analysed the presence of microhomologies in
279  deletions by following the strategy described by Taheri-Ghahfarokhi et al[51]. In short, when the
280 mutation was a pure deletion, we first located the deleted sequence in the full gene sequence and
281 adjusted its position if the nucleotides before the deletion were the same as the last nucleotides of
282  the deleted sequence. Then, we checked how many contiguous nucleotides at the beginning of the
283 deleted sequence could be matched after the deletion. The number of contiguously matched
284 nucleotides is equal to the length of the microhomology, with a maximum length equal to the length
285 of the deletion. Microhomologies of at least 2 bp were considered compatible with MMEJ repair (see

286  example below).

BRCA2: c.781_787delGCTGCAA
781 787

Ref: TCAAAGAGAAGCTGCAAGTCATGGTAA
Del: TCAAAGAGAA------- GTCATGGTAA

<—I <—| adjustment

Ref: TCAAAGAGAAGCTGCAAGTCATGGTAA
Del: TCAAAGAG------- AAGTCATGGTAA

Ref: TCAAAGAGAAGCTGCAAGTCATGGTAA
Del: TCAAAGAG------- AAGTCATGGTAA
T

microhomology

287

288 Figure caption. Procedure for microhomology identification. First, the reported deletion is matched
289  to the reference sequence. If necessary, the position of the deletion is adjusted. In this example,
290 reporting the deletion as ¢.781_787del or ¢.779_785del would result in the same deleted sequence,
291 so we redefined the position in which the deletion happened. Finally, the length of the microhomology
292 is determined by comparing the nucleotides at the beginning of the deleted sequence with those after
293  the deletion. Without the adjustment procedure, only a microhomology of length 2 would have been

294 reported, when a microhomology of length 3 could be reported.

295 The analysis was done in R (https://www.R-project.org/) version 3.6.0 and sequences were retrieved

296 using the biomaRt package[68, 69]. We used the reference sequences NM_007294 for BRCA1 and
297 NM_000059 for BRCA2. For cases in which the break points of the secondary mutation fell very close

298  to the primary mutation, we checked the outcome manually with the help of Mutalyzer[70].
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299 A test of Equal or Given Proportions was used to assess if an observed difference in proportion
300 between two groups is statistically significant. The analysis was done in R (https://www.R-

301 project.org/) version 3.6.0 using the prop.test function.

302
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475 Figure legends
476

477 Figure 1. (a) Patients analysed in this study and number of secondary mutations and reversions
478  identified. (b) Origin of primary mutations. (c) Type of primary mutations. SNV: single-nucleotide
479  variant. DELIN: deletion + insertion. (d) Distribution of secondary mutations on the domain structure
480  of BRCA1 and their outcome (reversion vs no reversion) depending on type of treatment received and
481 position of the primary mutation. Each square/dot represents a patient. (e) Same as in d but for
482 BRCA2. (f) Position and outcome (mutation vs deletion) of reversion mutations identified in this
483 patient cohort on the domain structure of BRCA1. (g) Same as in f but for BRCA2. Reversions identified

484 in vitro are depicted in grey for comparative purposes.
485

486 Figure 2. (a) Distribution of type of secondary mutations identified in BRCA1 and BRCA2. (b)
487 Distribution of type of secondary mutations identified in BRCA2 depending on whether they were
488  detected on platinum (left pie chart) or PARPi (right pie chart) progression. (c) Same as in b but in
489  BRCAI1. (d) Distribution of type of secondary mutations on the domain structure of BRCA1 depending
490 on the position of the primary mutation harboured by the patient. (e) Length in base pairs of all
491 reversion deletions in BRCA1, assigned to each of the protein domains. (f) Same as in d but for BRCA2.
492 (g) Same as in e but for BRCA2. SNV: single-nucleotide variant. DELIN: deletion + insertion. Each
493 square/dot represents a patient. Squares with more than one colour reflect different types of

494  secondary mutations identified in the same patient.
495

496 Figure 3. (a) Type of deletions and microhomology usage in secondary mutations identified in this
497 patient cohort. (b) Lack of correlation between deletion length and microhomology usage in BRCA1
498 (top panel) and BRCA2 (bottom panel) secondary deletions. (c) Distribution of microhomology usage
499 in BRCA1 (left panel) and BRCAZ2 (right panel) secondary deletions. (d) Distribution of microhomology
500 usage in BRCAI1 (left panel) and BRCA2 (right panel) primary deletions. (e) Prevalence of MMEJ
501 signatures in BRCA1 (left pie chart) and BRCA2 (right pie chart) secondary mutations. (f) Prevalence of
502 MMEJ signatures in BRCA1 (left pie chart) and BRCA2 (right pie chart) primary mutations. MMEJ:

503 microhomology-mediated end joining.

504
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