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Abstract. The analysis of 3D facial shape in medicine is motivated by
the fact that certain diseases and syndromes are associated to specific
facial dysmorphologies. In this context, 3D facial shape analysis con-
stitutes a promising and non-invasive support to traditional diagnostic
methods. In this work, we explore the use of head magnetic resonances
to obtain accurate 3D facial meshes that enable subsequent facial shape
analysis. We present a fully automatic method that normalizes the orien-
tation and alignment of 3D point clouds corresponding to head magnetic
resonances by detecting salient facial features. Moreover, using cluster-
ing techniques, our method also allows to eliminate noise and artifacts
appearing in magnetic resonance imaging. Finally, through bidirectional
ray tracing, we obtain a dense 3D facial mesh that accurately captures
facial shape. The proposed method has been built and evaluated on a
dataset of 185 head magnetic resonances, and it has demonstrated its
ability to successfully orient, align and obtain a dense 3D facial mesh
with a high accuracy rate.
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1 Introduction

Accumulating evidence suggests that 3D facial shape analysis can be used as a
clinical biomarker in genetic disorders that present with specific facial dysmor-
phologies [4, 5].

Examples of this include early diagnosis of fetal alcohol spectrum disorder
[12], epilepsy [1], Down syndrome [11] or schizophrenia [6].

In this context, 3D facial shape analysis constitutes a promising and non-
invasive support to traditional diagnostic methods [3]. Often, this analysis is
based on the detection of facial landmarks at distinctive facial features (eyes,
nose, mouth) and the computation of facial biomarkers based on statistical shape
analysis tools such as geometric morphometrics [8].

Typical means to obtain 3D facial data include i) photogrammetry systems,
which combine the images captured simultaneously by several cameras to recon-
struct a facial scan in the form of a 3D mesh [7], ii) structured light imaging,
which uses the distortion suffered by a light pattern when it falls upon on a 3D
object to infer the surface shape of the latter [9], or iii) line laser scanners, which
use triangulation theory to obtain feature data of the surface from a laser sweep
of the facial surface [15].

Albeit less common, magnetic resonance imaging (MRI) can be used as a
source of 3D anatomical data [2]. Indeed, under appropriate scanning conditions,
the resulting facial reconstructions are as accurate as 3D surface laser scans or
3D photographs [10].

This work describes an automatic method for obtaining 3D facial meshes
from head magnetic resonances (HMR). The proposed method is capable of ori-
enting, aligning and denosing, in a fully unsupervised manner, 3D point clouds
corresponding to HMR. Then, it applies bidirectional ray tracing to obtain a
dense mesh of the facial surface, which ultimately captures face shape, discard-
ing unnecessary data points of the HMR. Thus, in scenarios where large volumes
of data must be processed, our proposal gives an automatic alternative to cum-
bersome and error-prone manual processing, while saving both labor and time.

2 Materials and methods

2.1 Data collection and pre-processing

The proposed method was developed and evaluated using 185 HMR obtained
at the Hospital Sant Joan de Déu in a 1.5T GE Sigma scanner. High-resolution
structural 3D T1 MRI were obtained with the following acquisition parameters:
matrix size 512×512; 180 contiguous axial slices; voxel resolution 0.47×0.47×1
mm3; echo (TE), repetition (TR) and inversion (TI) times, (TE/TR/TI)=3.93ms/
2000ms/ 710ms, respectively; flip angle 15.
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(a) Y + (top of head to
Z+)

(b) Y + (top of head to
Z−) (c) Z+

Fig. 1: Examples of the three HMR orientations found in the data set.

Orientation Number of instances

Y + (top of head to Z+) 35

Y + (top of head to Z−) 65

Z+ 85

Table 1: Number of instances in the data set according to their orientation.

The stacked sets of images were loaded to the 3D analysis software for sci-
entific data Amira (http://www.fei.com/software/amira-3d-for-life-sciences/) to
manually reconstruct the 3D surfaces of the anatomy of the participants. Since
the grayscale value of each voxel in MRI is correlated with the density of the
tissue, a threshold was manually adjusted for each participant to optimize skin
segmentation and eliminate the glasses they wore during the scan due to the
MRI protocol, while preserving their facial anatomy. However, even after this
manual process noisy residuals are still present in the HMR.

Finally, the thresholded HMR were stored as PLY files containing approx-
imately 1 million (x, y, z)-coordinates points each. These constitute a discrete
and highly dense representation of a human head including its internal organs.

In the data set, the HMR appear arbitrarily oriented towards the Z+ axis
or the Y + axis. And among the latter, around half of the HMR have the top
of the head pointing towards the Z+ axis, and the other half, towards the Z−

axis. Figure 1 presents three examples of these different orientations, and Table
1 shows the number of instances in the data set with each particular orientation.

2.2 Orientation normalization

Our method first orients the faces of the HMR automatically towards the Y +

axis with the top of the head pointing towards the Z+ axis, following these steps:

1. Centering The coordinates of the HMR point cloud centroid ~c = (xc, yc, zc)
are computed and subtracted from each point, so that the point cloud center
becomes the origin (0,0,0).
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2. Nose and chin detection To automatically determine face orientation,
points located in the nose and chin areas are detected in an unsupervised
fashion. The tips of the nose and the chin i) are among the farthest features
from the head centroid, and ii) have a characteristic pointy shape. For this
reason, the Euclidean distance of each point to the origin is computed, and
the 5% of the points with greater distance are considered to form point set
Pfar, which always contains points located near the chin and/or nose. De-
pending on the subject head anatomy, Pfar may also contain points located
near the crown of the head. To discriminate these points, the peakness score
(PS) of each point p = (xp, yp, zp) ∈ Pfar is computed as a local estima-
tor of curvature. PS(p) is defined as the ratio of neighbours of p (within a
pre-specified radius) that are located closer to the origin than p. Thus, if
p is a pointy feature, PS(p) will tend to 1, while it will tend to 0.5 if it is
located on a flat area. Next, points are ranked according to their PS, and
only the highest ranked 15% subset of Pfar are included in the new point
set Pfar+peak. In most cases, using PS is enough to remove points near the
crown of the head from set Pfar+peak. In cases where this is not sufficient,
we apply clustering [14] to unequivocally detect nose and/or chin points: the
points in Pfar+peak are grouped according to their coordinates to discover
spatial clusters with a minimum Euclidean distance of 20 between points
from different clusters. This results in one or two clusters of points. If only
one cluster is found, it contains points close to the nose or chin tips. When
two clusters are obtained, we discern which one corresponds to the facial
region by fitting spheres to the points in each cluster using the M-estimator
SAmple Consensus (MSAC) algorithm [13]. The sphere with the smallest
radius is the one corresponding to the nose/chin, thus enabling the unequiv-
ocal detection of the facial region. The set of points resulting from this step
is denoted as Pnose/chin.

3. Orientation correction The maximum coordinate of the points in Pnose/chin
indicates face orientation. Then, the whole HMR point cloud is rotated by
applying a 3D affine geometric transformation that depends on the initial
face orientation:
a) If the initial orientation was towards Z+, the point cloud is rotated π

radians about the Z axis and then π
2 radians about the X axis.

b) If the initial orientation was towards Y + with the top of the head towards
Z−, the point cloud is rotated π radians about the Y axis.

2.3 Alignment

Once all the HMR point clouds are faced towards the Y + axis, the next step
consists in aligning them uniformly. To this aim, the point cloud is rotated about
the X and Z axes as required until the line that goes from the origin to the nose
tip is perfectly aligned with the Y axis. The process consists in the following
steps:

1. Nose tip detection The HMR point cloud is trimmed on its upper and
lower parts (Z axis), to eliminate the top of the head and the mandible
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Fig. 2: Example of noisy residuals in the HMR.

region, respectively. All those points whose z component ranges between
the top 15% and the bottom 15% are included in the point set Pnosetip.
Among them, the nose tip point is detected as the point with the maximum
y component, whose coordinates are (xnose tip, ynose tip, znose tip).

2. Rotation about the Z and X axes To align the nose tip with the Y axis,
and given the coordinates of the nose tip point, the rotation angles about
the X and Z axes are computed as:

α = arctan

(
znose tip
ynose tip

)
β = arctan

(
xnose tip
ynose tip

)
(1)

Finally, the alignment step is completed by rotating the HMR point cloud
about the X and Z axes applying the Mx and Mz 3D rotation matrices:

Mx =


1 0 0 0
0 cos(α) sin(α) 0
0 − sin(α) cos(α) 0
0 0 0 1

Mz =


cos(β) sin(β) 0 0
− sin(β) cos(β) 0 0

0 0 1 0
0 0 0 1

 (2)

2.4 Denoising

The manual thresholding step described in Section 2.1, which is intended to re-
move the glasses worn by the patients and reconstruct their 3D facial anatomy,
sometimes is unable to remove them completely. As a consequence, noisy resid-
uals often appear in the HMR of our data set. Figure 2 presents an example of
a noisy HMR.

To automatically eliminate these residuals, clustering is applied to segment
the point cloud. In this case, as the goal is to separate the main structure in
the HMR (the head of the patient) from the noisy residuals that may surround
it, the minimum Euclidean distance between points from different clusters is
reduced to 1.
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(a) Frontal ray tracing (b) Lateral ray tracing

Fig. 3: Bidirectional ray tracing.

2.5 Facial mesh extraction

The HMR contain points corresponding to internal head organs. This informa-
tion is irrelevant to facial shape analysis. For this reason, the last step of the
method consists in extracting the 3D facial mesh from the HMR.

It consists in the following steps:

1. Frontal region filtering As the HMR is now oriented towards the Y + axis,
the points corresponding to the frontal region are obtained by discarding
those with a negative Y coordinate, thus cutting the point cloud size nearly
by half.

2. Bidirectional ray tracing To ensure coverage of all facial areas, a dense set
of uniformly distributed rays are traced from two orthogonal planes: the XZ
(frontal ray tracing) and the YZ planes (lateral ray tracing). Figure 3 shows
a small subset of 10 rays (drawn in green) in each direction for visualization
purposes only. Each beam of parallel rays is generated by creating a uniform
grid of adjustable horizontal and vertical resolution, and a ray is traced from
each point of the grid. The intersection between each ray and the surface of
the HMR allows to reconstruct the facial mesh. To that end, an α-shape is
built upon the HMR point cloud, and the first point of each ray to intersect
the α-shape is deemed as a facial mesh point.

3 Results

3.1 Orientation normalization

Figure 4 presents partial and final results of the orientation normalization pro-
cess. To detect the facial region (nose and chin points), we first present two
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examples of the Pfar point sets, highlighted in magenta: containing only facial
points (Figure 4a) and facial plus crown of the head points (Figure 4b).

Next, also highlighted in magenta, we present two examples of the Pfar+peak
sets, containing only facial points (Figure 4c) and facial plus crown of the head
points (Figure 4d).

In this latter case, the detection of the frontal region is completed by fitting
the spheres to the chin (Figure 4e) and crown of the head points (Figure 4f).

From a quantitative perspective, our method detects the facial region with a
98% accuracy, thus enabling the automatic orientation normalization of the vast
majority of our data set.

3.2 Alignment

Figure 5 presents partial and final results of the HMR alignment process, which
relies on nose tip detection.

First, Figure 5a depicts the point set Pnosetip used for nose tip detection.
Next, the point in Pnosetip with the maximum y component is detected as

the nose tip (marked with a red dot in Figure 5b).
In quantitative terms, nose tip point is detected with a 99% accuracy, thus

allowing to automatically align nearly all the HMR in our data set.
Finally, Figures 5c to 5f present the result of rotating the HMR about the X

and Z axes, obtaining the aligned version of the HMR.

3.3 Denoising

Figure 6a depicts the clustered HMR, with each cluster represented with a dif-
ferent color.

Only the points assigned to the largest cluster (corresponding to the head)
are kept, while the points in the less populated clusters are discarded.

Figure 6b shows an example of the results obtained by denoising via cluster-
ing.

3.4 Facial mesh extraction

Figure 7a depicts (in magenta) the intersection points between the dense beam
of frontally traced rays and the HMR. In this case, the resolution of the ray
tracing grid is 0.55, which results in over 96000 frontal rays.

Notice that i) most points are located on the face surface, ii) some rays do
not intersect with the head due to the geometry of the head or the presence of
remaining artifacts (thus, ray tracing also allows eliminating unwanted noise),
and iii) the coverage on some areas (like nose wings) is lower, which is later
compensated by the lateral ray tracing.

Figure 7b presents the final 3D facial mesh obtained after bidirectional ray
tracing. Using the aforementioned resolution, a dense mesh formed by over
164000 points is obtained. It is important to notice that the structure of the
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(a) Pfar contains only chin points
(b) Pfar contains chin and crown
of the head points

(c) Pfar+peak contains only chin
points

(d) Pfar+peak contains chin and
crown of the head points

(e) Sphere fitted to the chin points
cluster

(f) Sphere fitted to the crown of
the head points cluster

Fig. 4: Orientation normalization results.
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(a) Pnosetip point set (repre-
sented in red)

(b) Nose tip point detection
(shown as a red dot)

(c) Pre-alignment, YZ plane (d) Pre-alignment, XY plane

(e) Post-alignment, YZ plane (f) Post-alignment, XY plane

Fig. 5: Alignment results.

most salient facial features (eyes, nose and mouth) is accurately retrieved, thus
allowing the detection of landmarks for subsequent 3D facial shape analysis
based on geometric morphometrics.

4 Conclusions

Head magnetic resonances are a source for obtaining accurate 3D facial data.
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(a) Clustered HMR (b) Denoised HMR

Fig. 6: Denoising results.

This work has introduced a fully automatic method for obtaining normalized
facial 3D meshes from head magnetic resonances.

Our proposal, evaluated on a testbed of 185 head magnetic resonances, suc-
cessfully normalizes the orientation and alignment of the magnetic resonance
images. Moreover, the method uses bidirectional ray tracing of adjustable reso-
lution, thus allowing to obtain dense facial 3D meshes that capture face shape
accurately.

This method simplifies the use of HMR for 3D facial shape analysis that
enables clinical diagnostic applications for many syndromes with associated facial
dysmorphologies [3].

Our next steps are oriented towards the automatic detection of facial land-
marks on the obtained 3D facial meshes, and the use of artificial intelligence for
the diagnosis of diseases with associated subtle facial phenotypes.
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(b) Facial 3D mesh

Fig. 7: Ray tracing results.
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