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​Abstract

Individualized treatment of acute stroke depends on the timely detection of ischemia and

potentially salvageable tissue in the brain. Using functional MRI (fMRI), it is possible to

characterize cerebral blood flow from blood-oxygen-level-dependent (BOLD) signals without the

administration of exogenous contrast agents. In this study, we applied spatial independent

component analysis to resting-state fMRI data of 37 stroke patients scanned within 24 hours of

symptom onset, 17 of whom received follow-up scans the next day. Our analysis revealed

“Hypoperfusion spatially-Independent Components” (HICs) whose spatial patterns of BOLD

signal resembled regions of delayed perfusion depicted by dynamic susceptibility contrast MRI.

These HICs were detected even in the presence of excessive patient motion, and disappeared

following successful tissue reperfusion. The unique spatial and temporal features of HICs

allowed them to be distinguished with high accuracy from other components in a

user-independent manner (AUC = 0.95, accuracy = 0.96, sensitivity = 1.00, specificity = 0.96).

Our study therefore presents a new, non-invasive method for assessing blood flow in acute stroke

that minimizes interpretative subjectivity and is robust to severe patient motion.

Keywords:

blood oxygenation level dependent signal, perfusion, resting-state functional magnetic resonance

imaging, spatial independent component analysis, stroke
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1​ Introduction

Imaging blood flow in acute ischemic stroke is important in directing treatment decisions. In

clinical practice, MRI-based blood flow imaging is typically performed using dynamic

susceptibility contrast MRI (DSC-MRI). This method is well-established and correlates well with

the in-vivo perfusion imaging gold-standard, 15O-water positron emission tomography (PET)

(Zaro-Weber et al., 2010, 2016). However, it requires the use of intravenously administered

contrast agents, which are contraindicated in patients with kidney impairment (Khawaja et al.,

2015) and can accumulate in tissues with repeated use (Gulani et al., 2017).

BOLD functional MRI has been proposed as an alternative to DSC-MRI. At rest, BOLD signal

oscillations reflect a combination of different signal sources, including the hemodynamic

response to spontaneous neural activity (neurovascular coupling), peripheral physiology

(respiratory and cardiac function), fluctuations in blood carbon dioxide (Golestani et al., 2015;

Wise et al., 2004), and head motion (T. T. Liu, 2016). Disturbed cerebral blood flow is associated

with changes in BOLD signal fluctuations in multiple ways. One of the best studied

perfusion-related changes in the BOLD signal is BOLD delay (Amemiya et al., 2014; Q. Chen et

al., 2018; Christen et al., 2015; Khalil et al., 2017, 2020; Lv et al., 2013, 2018; Ni et al., 2017;

Siegel et al., 2016; J. Wu et al., 2017), which are relative phase lags in low frequency oscillations

(LFOs) of the BOLD signal originating from outside the brain (systemic LFOs) in underperfused

brain regions (Tong et al., 2019). Disturbed perfusion is known to affect other BOLD signal

features, including a shift to lower LFO frequencies (Y. Liu et al., 2007; Tsai et al., 2014; Yao et

al., 2012) and a reduction in LFO amplitude (Wang et al., 2008). These findings suggest that

regions of disturbed perfusion may have a unique set of BOLD signal characteristics that
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distinguish them from normally perfused tissue. Using this BOLD “signature” to rapidly and

reliably identify abnormally perfused tissue would be of great diagnostic and prognostic utility.

Spatial independent component analysis (spatial ICA) is a data-driven method for decomposing

complex signals into statistically-independent subcomponents (Beckmann & Smith, 2004). In

fMRI, it has been used to remove non-neuronal signal contributions such as head motion, large

vessel pulsations, and scanner instabilities (Thomas et al., 2002). Using spatial ICA, researchers

can isolate functionally distinct resting-state networks (RSNs) such as visual cortical areas and

the sensory-motor cortex (Beckmann et al., 2005).

Considering spatial ICA’s ability to separate statistically-independent sources of variance in the

BOLD signal, we investigated whether spatial ICA would be able to detect hypoperfusion-related

changes in the BOLD signal in acute stroke patients. Specifically, we aimed 1) to identify spatial

ICA components corresponding to tissue hypoperfusion, 2) to characterize the temporal and

spatial properties of these “Hypoperfusion spatially-Independent Components” (HICs), and 3) to

determine whether these properties allow the automated identification of HICs.

6

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 19, 2021. ; https://doi.org/10.1101/2020.07.17.208058doi: bioRxiv preprint 

https://paperpile.com/c/m8dEzB/qfOc2
https://paperpile.com/c/m8dEzB/kkM2m
https://paperpile.com/c/m8dEzB/1csXa
https://doi.org/10.1101/2020.07.17.208058
http://creativecommons.org/licenses/by-nc/4.0/


Hu et al.

​2​ Materials and Methods

​2.1​ Patients

This study analyzes data from a subset of ischemic stroke patients from 1000Plus (Hotter et al.,

2009) (clinicaltrials.gov identifier: NCT00715533) and LOBI-BBB (clinicaltrials.gov identifier:

NCT02077582), two prospective cohort imaging studies conducted at Charité

Universitätsmedizin Campus Benjamin Franklin (Berlin, Germany) between January 2009 and

March 2016.

The patients included in this study had a clinical and radiological diagnosis of acute

supratentorial ischemic stroke, and had received both dynamic susceptibility contrast magnetic

resonance imaging (DSC-MRI) and resting-state functional MRI (rs-fMRI) scans within 24 hours

of symptom onset as part of a standard stroke imaging protocol (Hotter et al., 2009). All patients

showed perfusion deficits on their time-to-maximum (Tmax) maps at baseline. Where available,

follow-up scans from the same patients, acquired approximately 24 hours after the baseline scans,

were also included in the analysis. Exclusion criteria were any contraindications to undergoing an

MRI or receiving a gadolinium contrast agent.

Thirty-seven acute ischemic stroke patients who met our inclusion criteria were included in this

study, fourteen of whom had follow-up scans. A total of 51 scans were thus included in data

analysis. The baseline scans of twenty-two of these patients were previously analyzed in a

comparison between time shift analysis of rs-fMRI data (BOLD delay) and DSC-MRI (Khalil et

al., 2017) and twelve patients (and their follow-up scans) from the current study were previously
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investigated in a study of the longitudinal evolution of perfusion deficits detected using BOLD

delay (Khalil et al., 2020).

​2.2​ Ethics statement

Patients provided written informed consent prior to participation, and all procedures were

approved by the local ethics committee (EA4/026/08 for the 1000plus study and EA1/200/13 for

LOBI-BBB) and were performed according to the Declaration of Helsinki.

​2.3​ Imaging

​2.3.1​ Acquisition

All imaging was performed on a Siemens (Erlangen, Germany) Tim Trio 3 Tesla MRI scanner.

The sequence parameters were as follows, rs-fMRI; repetition time (TR) = 2300 ms, echo time

(TE) = 30 ms, flip angle (FA) = 90°, matrix = 64 x 64, voxel dimensions = 3 x 3 x 3 mm3, 1 mm

slice gap, 33 slices and 150 volumes (acquisition time=5 min. and 50 s). The rs-fMRI scan was

performed prior to the administration of the contrast agent and patients were requested to relax,

lie still, and close their eyes for the duration of the scan.

DSC-MRI was performed after injection of a bolus of 5ml Gadovist ® (Gadobutrol, 1M, Bayer

Schering Pharma AG, Berlin, Germany) followed by a saline flush at a flow rate of 5ml/s. The

sequence parameters were: TR = 1390 ms, TE = 29 ms, FA = 60, matrix = 128 x 128, voxel

dimensions = 1.8 x 1.8 x 5 mm, 0.5 mm slice gap, 21 slices and 80 volumes (acquisition time = 1

min and 58 s).
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Other imaging included diffusion-weighted imaging (DWI), time-of-flight MR angiography, and

fluid-attenuated inversion recovery (FLAIR) scans, as described previously (Hotter et al., 2009).

​2.3.2​ Dynamic susceptibility contrast MRI

Maps of time-to-maximum of the tissue residue function (Tmax) were generated from the

DSC-MRI data using Stroketool (version 2.8; Digital Image Solutions – H.J. Wittsack) after

deconvolution of the concentration-time curve through block-circulant singular value

decomposition (O. Wu et al., 2003). The arterial input function (AIF) was selected from 5-10

voxels in the distal branches of the middle cerebral artery on the hemisphere contralateral to the

acute infarct (Ebinger et al., 2010). Artifacts in the cerebrospinal fluid (CSF) were automatically

removed from the Tmax maps using CSF masks derived from T2-weighted B0 images.

​2.3.3​ Resting-state functional MRI

​2.3.3.1​ Preprocessing

Preprocessing of the resting-state data was performed using tools from Analysis of Functional

NeuroImages (AFNI) (Cox, 1996) and the FMRIB Software Library (FSL). The first four

volumes of each time series were discarded for signal equilibration. After correcting for

slice-timing effects, the remaining volumes were skull-stripped, realigned to the mean functional

image of each individual, and linear and quadratic trends were removed. Images were spatially

smoothed (Gaussian kernel of full-width-at-half-maximum = 6 mm), but left temporally

unfiltered to include the full range of signal frequencies for spatial ICA.

​2.3.3.2​ ICA decomposition

Spatial ICA is a data-driven approach for multivariate data analysis and representation. It was

implemented in this study using FSL’s Multivariate Exploratory Linear Optimized

9

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 19, 2021. ; https://doi.org/10.1101/2020.07.17.208058doi: bioRxiv preprint 

https://paperpile.com/c/m8dEzB/fYuk3
https://paperpile.com/c/m8dEzB/q1zFO
https://paperpile.com/c/m8dEzB/B0QtY
https://paperpile.com/c/m8dEzB/EWEGA
https://doi.org/10.1101/2020.07.17.208058
http://creativecommons.org/licenses/by-nc/4.0/


Hu et al.

Decomposition into Independent Components - MELODIC (Beckmann & Smith, 2004). Spatial

ICA models four-dimensional fMRI data as a linear combination of unknown source signals

(referred to as “independent components”), each described by a spatial map and a mean time

course across all voxels in the spatial map. It dissects out the different source signals by assuming

their mutual, statistical independence and non-Gaussianity (Beckmann & Smith, 2004). In this

study, spatial ICA was implemented using MELODIC’s default Bayesian dimensionality

estimation, which estimates the number of source signals within the data automatically

(Beckmann & Smith, 2004). This means that the number of independent components outputted

by MELODIC can differ between patients and scanning sessions in the study.

​2.3.3.3​ Manual classification of independent components

For a subset of the data (20 out of 37 baseline scans; the FIX training dataset, see below), two

raters (A.A.K and J-Y.H) together (i.e. not independently) manually classified the independent

components from MELODIC into the following classes: resting-state networks (RSNs), likely

hypoperfusion independent components (HICs), noise (including head motion and scanner noise),

or “unknown” if the independent component could not be clearly identified. Manual classification

of the RSNs, noise, and unknown components was carried out according to published guidelines

(Kelly et al., 2010) by inspecting the thresholded spatial maps (|Z| > 2.33), the power spectrum,

and the time courses. HICs were identified as unilateral components that were present in, and

largely restricted to, the vascular territory in which the patient’s infarct was found (guided by the

DWI).

A total of 896 independent components were generated using MELODIC from the subjects in the

FIX training dataset. The median number of independent components per subject was 45 (IQR =
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43 – 47) (Supplementary Figure 1). The mean (± SD) contribution of each component class (%

out of the total number of components) for subjects in the FIX-training dataset are as follows:

noise (79.8% ± 9.4%), resting-state networks (9.2% ± 5.9%), and likely hypoperfusion

independent component(s) (HIC; 2.6% ± 1.5%). “Other” components that could not be

unambiguously classified into any of the other three categories formed 8.4% ± 4.8% of the

training dataset. Of the 20 subjects in the FIX training dataset, 14 had a single HIC, 3 had two

HICs, 1 had three HICs, and 2 had no HICs. Examples of our classifications are provided in

Supplementary Figure 2.

​2.3.3.4​ Data denoising

To reduce the number of components by removing non-signal independent components, we used

FMRIB’s ICA-based X-noiseifier (FIX), a machine-learning algorithm that automatically

classifies signal and artifact components in rs-fMRI data using 186 spatial and temporal features

(Salimi-Khorshidi et al., 2014). Minor modifications were made to FIX to accommodate our data:

we substituted T1-weighted magnetization-prepared rapid gradient-echo (MPRAGE) scans used

in calculations of FIX features with B0 images (T2-weighted spin-echo EPI), as MPRAGEs are

not routinely acquired as part of our acute stroke MR imaging protocol (Hotter et al., 2009).

Tissue segmentation maps needed for these features were generated from these images using

FSL’s FMRIB Automated Segmentation Tool (FAST). All segmentations were visually assessed

for quality.

FIX was trained on the FIX training dataset. The accuracy of FIX for separating signal from noise

in the FIX training dataset was investigated using leave-one-out cross-validation. A threshold of

20 was selected for the classification of independent components in our training data, as this was
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the highest threshold at which no HICs were incorrectly classified by FIX as noise (see

Supplementary Table 1). At this threshold, FIX achieved a mean true positive rate (TPR; percent

of true signal independent components correctly classified) of 90.9%, and a mean true negative

rate (TNR; percent of true noise independent components correctly classified) of 84.6%. The

output of FIX denoising was a “shortlist” of components classified by FIX as being “non-noise”.

After training, FIX was applied to the full dataset (n = 2337 independent components from 51

scans). FIX reduced the number of independent components to a list of likely-signal independent

components by 77.4% (total, n = 528 independent components from 51 scans, see Supplementary

Figure 3).

2.3.3.5 Time shift analysis

For a visual comparison between HICs and a more established measure of perfusion derived from

rs-fMRI, we performed time shift analysis (TSA) of the preprocessed rs-fMRI data (Amemiya et

al., 2014; Christen et al., 2015; Khalil et al., 2017, 2020; Lv et al., 2013). TSA maps were

generated by assigning each voxel the value of the time shift (ranging between −20 to +20

seconds) that achieves maximum cross-correlation between the voxel's time series and a

recursively refined regressor derived from the global mean time series after univariate

interpolation of the time series. A long tracking range was applied because time shift delays in

acute stroke patients are very prolonged (Khalil et al., 2017, 2020; Tanrıtanır et al., 2020) TSA

was performed using a set of Python tools (https://github.com/bbfrederick/rapidtide)(Frederick,

2016).

​2.3.4​ Image registration

All images (including Tmax maps, resting-state data, and spatial ICA maps) were registered to a

custom echo planar imaging (EPI) template in MNI 152 standard space using a rigid body spatial

transformation (3 rotations and 3 translations, implemented using FSL FLIRT) for further
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processing. This template was derived from the EPI scans of 103 stroke patients and details of

how it was generated can be found in the Supplementary Materials of (Khalil et al., 2017). This

template was used instead of standard templates, such as the MNI template, to account for

differences in brain and ventricular system size between the study’s population and younger,

healthy individuals.

​2.4​ Feature extraction

We extracted a set of relevant spatial and temporal features from the shortlisted independent

components (i.e. after data denoising by FIX) to examine how HICs may differ from other signal

components. The following features were extracted:

1. Temporal delay to a reference signal: Temporally delayed BOLD signals, calculated using

time shift analysis (Lv et al., 2013), have been found to correspond to hypoperfused brain

regions. We thus explored whether the temporal delay between the time courses of each

independent component and a reference time course was different between HICs and

independent components representing normally perfused tissue. We used two different

reference time courses: the whole brain (global) signal (Amemiya et al., 2014; Lv et al.,

2013) and the signal from within the major venous sinuses (Aso et al., 2017; Christen et

al., 2015; Khalil et al., 2017), the latter of which was automatically extracted using a

venous sinus template in MNI space (details described in the Supplementary Materials of

(Khalil et al., 2017)). Positive delay values indicate the component’s BOLD signal time

course followed the reference time course, while negative delay values indicate the

component’s BOLD signal time course preceded the reference time course.
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2. Power in frequency bands: Ischemia shifts BOLD signal oscillations towards lower

frequencies (Y. Liu et al., 2007; Tsai et al., 2014; Yao et al., 2012). For each independent

component, we calculated the percentage of total spectral power in six different frequency

ranges (0 – 0.01 Hz, 0.01 – 0.025 Hz, 0.025 – 0.05 Hz, 0.05 – 0.1 Hz, 0.1 – 0.15 Hz, 0.15

– 0.20 Hz) after fast Fourier transform of the time courses (Salimi-Khorshidi et al., 2014).

3. Percent restriction to a single vascular territory: Ischemic stroke-related hypoperfusion is

most commonly restricted to a vascular territory supplied by a single major artery. This

makes the percent restriction of an independent component’s spatial map to a single

vascular territory a potential feature of interest. We thus calculated the percentage of each

independent component’s volume that exists within a single vascular territory. For this

analysis, only independent components with >50% of their volume within a single

vascular territory were considered. The vascular territories were defined according to a

custom vascular territory atlas in MNI template space, described in further detail in the

Supplementary Materials of (Khalil et al., 2017).

4. Mean Tmax delay: To compare the results of the spatial ICA with the level of perfusion

revealed by DSC-MRI in the area covered by each independent component, we calculated

the mean Tmax delay of all voxels in the Tmax map overlapped by the independent

component’s spatial map.
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​2.5​ Automated identification of HICs

​2.5.1​ Model training

We used a Generalized Linear Model (GLM) on the extracted features to estimate the probability

that a given independent component is a HIC. To mitigate multicollinearity effects we applied

elastic net regularization to our GLM (Zou & Hastie, 2005).

Disregarding components classified as noise, HICs consisted approximately 10% of the

components per dataset. To address this problem of extreme class imbalance (Krawczyk, 2016),

which can bias GLM results, we first sub-sampled our dataset to contain 50% HICs (number of

components = 57), and 50% non-HICs (number of components = 57). From this model dataset,

which undersamples the majority (non-HIC) class, we randomly selected 80% of the independent

components to be the training dataset (containing 43 HICs and 48 non-HICs).

For the model training, components were classified as HICs if their model probabilities were

above a probability threshold determined by Youden’s index, which gives equal weight to

sensitivity and specificity. The shrinkage parameter lambda was estimated using leave-one-out

cross-validation on the training dataset.

​2.5.2​ Model testing

The test dataset contained all the HICs (number of components = 14) and non-HICs (number of

components = 414) remaining after selection of the training dataset. From this, we randomly

subsampled 5 HICs and a set of non-HICs according to the mean ratio between HICs and

non-HICs in individual MELODIC outputs in the FIX shortlist (about 1:10). This random
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selection was repeated 50 times and the model’s performance is reported as the median of these

iterations (see below for metrics of model performance).

​2.6​ Statistical analysis

Radar plots were created using the “radarchart” function from the fmsb R package (Nakazawa,

2018) to visualize feature values. Raincloud plots, which combine dot plots, box plots, and violin

plots, are used to visualize the distribution of continuous variables (Allen et al., 2019).

The elastic net regularized GLM used in this study was implemented using the “cv.glmnet”

function from the glmnet R package (Friedman et al., 2010).

Model performance is reported using the following metrics:

● Area-under-the-curve of the receiver operating ROC curve (AUC): The probability that

the model will assign a higher probability of being a HIC to a randomly chosen HIC than

to a randomly chosen non-HIC. ROC curves were visualized and their AUCs were

calculated using the pROC R package (Robin et al., 2011)

● Sensitivity: The true positive rate, or the proportion of HICs correctly classified by the

model as being HICs

● Specificity: The true negative rate, or the proportion of non-HICs correctly classified by

the model as being non-HICs

● Balanced accuracy: (Sensitivity + specificity) / 2. Balanced accuracy was chosen instead

of regular accuracy due to the unbalanced nature of our test dataset (Brodersen et al.,

2010).
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● Cohen’s kappa: The agreement between the model’s classification and the

“true”/”reference” classification, beyond that expected due to random chance. This was

calculated using the irr R package (Gamer et al., 2019).

The GLM coefficients were converted into Odds ratios (Odds ratio = ecoefficient). Since elastic net,

like all penalized regression models, provides biased estimators, no meaningful standard errors

can be calculated (Kyung et al., 2010) and therefore p-values are not reported in this analysis.

Instead, the model produces penalized coefficients through bootstrapped cross-validation.

Variables whose contribution to the outcome is negligible have penalized coefficients of zero (i.e.

Odds ratios of 1).

​2.7​ Data/code availability

The data and code for the training and testing of the model can be found at

https://github.com/ahmedaak/spatial_ICA_stroke.
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​3​ Results

​3.1​ Patients

The study sample consisted of 17 women and 20 men (mean age = 71 years, SD = 14 years).

Their median NIHSS was 7 (IQR 3 - 14) and the median time from symptom onset to MRI was 7

hours (IQR 2 - 16 h). Intravenous thrombolysis was administered to 19 (51%) patients. Fourteen

patients received follow-up scans on the second day following stroke onset, resulting in a total of

51 scans. Tissue reperfusion was successful in 3 of the 14 patients with follow-up scans, as

demonstrated by the complete resolution of time-to-maximum (Tmax) lesions observed on their

baseline scans.

Head motion was quantified using framewise displacement (FD), which is the sum of the

absolute value of individual subjects’ six translational and rotational realignment parameters

(Power et al., 2012). Twelve out of the 51 rsfMRI scans exhibited severe head motion, defined

according to previous studies on the use of rsfMRI for assessing cerebral hemodynamics as a

mean FD of >0.4 mm across the scan or a maximum FD of >3 mm (Khalil et al., 2017, 2020).

Median FD (mean across all scan volumes) in the sample was 0.23 mm (IQR: 0.15 mm) for

rs-fMRI, and 0.29 mm (IQR: 0.19 – 0.47 mm) for DSC-MRI. Median FD (maximum across all

scan volumes) were 1.28 mm (IQR: 0.61 – 2.86 mm) and 0.82 (IQR: 0.49 – 1.89 mm) for

rs-fMRI and DSC-MRI scans, respectively. The distribution of mean and maximum FD for the

rs-fMRI scans is shown in Supplementary Figure 4.
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​3.2​ Hypoperfusion independent components reflect tissue hypoperfusion

Of the 37 baseline scans, 34 showed at least one HIC (6 scans showed 2 HICs, 2 scans showed 3

HICs). Figure 1 shows the DWI, Tmax, and HIC of three example patients. Maps for the other 31

patients can be found in Supplementary Figure 5. Together, these figures reveal the striking

spatial similarities between HICs and perfusion deficits on Tmax maps.

Figure 1. Spatial independent component analysis (spatial ICA) of resting-state fMRI detects

post-stroke perfusion deficits in the form of hypoperfusion independent components (HICs).

The figure shows (from left to right) diffusion-weighted imaging (visualization of infarcted

tissue), hypoperfusion independent components (HICs), and time-to-maximum of the residual

curve from dynamic susceptibility contrast MRI (Tmax; reflecting perfusion), from three

representative acute stroke patients with a right-sided posterior cerebral artery infarct (patient

A), right-sided middle cerebral artery infarct (patient B), and left-sided middle cerebral artery

infarct (patient C). A corresponding perfusion deficit is seen in the affected vascular territory of
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each patient on the Tmax maps. In each case, spatial ICA reveals a HIC with striking spatial

resemblance to the perfusion deficit visible on the Tmax maps obtained using a contrast agent.

In addition, 10 out of the 14 follow-up scans showed HICs. Figure 2 illustrates the relationship

between the spatial ICA results and vessel status (recanalization or persistent vessel occlusion) in

two patients with follow-up scans. In patient A, we observe the resolution of HICs following

vessel recanalization and tissue reperfusion, while in patient B, HICs persist with continued

vessel occlusion and tissue hypoperfusion. This finding suggests that HICs dynamically respond

to changes in vessel status and perfusion dynamics over time.
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Figure 2. Perfusion assessed using spatial independent component analysis (spatial ICA)

evolves with vessel status. Baseline images were obtained within 24 hours of symptom onset,

while follow-up images were acquired the next day. Patient A had a left-sided acute posterior

cerebral artery (PCA) infarct due to occlusion of the P2 segment of the PCA, seen on

time-of-flight magnetic resonance angiography (TOF-MRA) and diffusion weighted imaging
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(DWI). A perfusion deficit as seen on a contrast-enhanced Tmax map and a corresponding

hypoperfusion independent component (HIC) were observed among 13 other independent

components (after automatic denoising) at baseline. Following recanalization of the PCA, there

is a normalization of the perfusion deficit in the PCA vascular territory on the contrast-enhanced

Tmax map. Spatial ICA on follow-up imaging generated 20 independent components after

automatic denoising, mostly corresponding to resting-state networks, and no HICs. Patient B had

a right-sided acute PCA infarct due to occlusion of the P1 segment. A perfusion deficit and

corresponding HIC are seen at baseline. Spatial ICA also produced 10 other independent

components that mostly corresponded to resting-state networks (RSNs). Unlike in patient A,

patient B’s PCA remained occluded at follow-up. The perfusion deficit in the posterior cerebral

artery territory persisted on the Tmax map, and a HIC was observed along with RSN independent

components. This demonstrates that HICs follow longitudinal perfusion dynamics corresponding

to clinically-relevant events such as changes in vessel status.

22

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 19, 2021. ; https://doi.org/10.1101/2020.07.17.208058doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.17.208058
http://creativecommons.org/licenses/by-nc/4.0/


Hu et al.

HICs were identified in 10 out of 12 subjects with high head motion during their rs-fMRI scans,

as shown in an example patient in Figure 3. The images and head motion traces of all 12 subjects

with high head motion can be interactively viewed here:

https://doi.org/10.6084/m9.figshare.13676779. Overall, there were 4 false negative cases, in

which no HIC was visible despite the presence of a perfusion deficit on Tmax maps (these cases

can be interactively viewed here https://doi.org/10.6084/m9.figshare.13664384). In two of the

false negative cases, extremely severe motion was present in the rs-fMRI data, exceeding 20 mm

maximum framewise displacement (see Supplementary Figure 4). In the other two false negative

cases, motion during the rs-fMRI scan was much lower (mean FD = 0.25 and 0.14 mm, max FD

= 0.56 and 0.44 mm).

HICs identified multiple perfusion deficits located in different vascular territories within the same

patient (Figure 4). The fact that multiple, spatially remote areas of hypoperfusion within an

individual patient are captured in a single independent component suggests that these areas share

a BOLD signal signature that sets them apart from other components.
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Figure 3. Hypoperfusion independent components (HICs) are detected using spatial ICA

despite high head motion. In this patient with a right-sided middle cerebral artery infarct (red

circles on the diffusion-weighted image), the top row demonstrates the framewise displacement of

the patient’s head over the duration of the resting-state functional MRI scan (maximum motion =
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3.2 mm, mean motion = 0.35 mm). Despite the high motion, a HIC was detected that

corresponded to the patient’s perfusion deficit as detected by contrast-enhanced Tmax maps on

dynamic susceptibility contrast MRI. No perfusion deficit is seen on the time shift analysis map,

derived from the same scan as the HIC. Of note, this patient has two distinct perfusion deficits

within the same vascular territory (right middle cerebral artery)—one frontal and one

temporoparietal—both of which are reflected in the HIC.
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Figure 4. Hypoperfusion independent components (HICs) detect multiple perfusion deficits

affecting different vascular territories in the same patient. This patient has multiple infarcts

(with corresponding perfusion deficits on the contrast-enhanced Tmax maps - bottom row) - in

the left posterior cerebral artery (PCA) territory (right) and in the right posterior inferior

cerebellar artery (PICA) territory (left). Spatial independent component analysis reveals a single

HIC (middle row) that corresponds to both perfusion deficits in this patient. This implies that

these areas of hypoperfusion, although spatially distanced from each other, share a common

BOLD signal signature. Note that, in the left column, the DWI slice showing the PCA infarct does

not correspond to the same slice on the Tmax and HIC images, as the infarct is not visible on the

DWI at the level shown on the Tmax and HIC images.
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​3.3​ HICs show unique characteristics

Table 1 shows the feature values (mean across patients) extracted from the independent

components.

For each patient, min-max normalization was applied to the values of the features extracted from

each of the independent components using the following equation:

𝑧
𝑖
= (𝑥

𝑖
− 𝑚𝑖𝑛(𝑆))/(𝑚𝑎𝑥(𝑆) − 𝑚𝑖𝑛(𝑆))

where z is the normalized feature value, x is the original feature value, i refers to the independent

component in question, and S refers to the feature values of the entire set of independent

components from a single patient.

The means of the normalized feature values across patients are shown on the radar plot in Figure

5. HICs have a unique feature signature compared to non-HICs, characterized by delayed low

frequency oscillations compared to the whole-brain and venous sinus references, greater

restriction to a single vascular territory, greater overlap with areas of hypoperfusion (as assessed

using Tmax), and more power in the lowest frequency bands (0 - 0.025 Hz).
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Figure 5. Hypoperfusion independent components (HICs) are characterized by distinct features

that distinguish them from non-HICs independent components. This radar plot shows the

feature values for HICs (n=57) and non-HICs (n=471). Solid lines represent the mean feature

value and dashed lines represent the 95% confidence interval around the mean. Compared to

non-HICs within the same patient, HICs have specific characteristics: higher percentage

occupancy within a single vascular territory, presence in regions of higher Tmax delay, time

courses that show a higher temporal delay to the whole-brain and the venous sinus time courses,

and higher signal power in the lowest frequency bands (0 - 0.01 Hz and 0.01 - 0.025 Hz). This

combination of features represents a unique signature for HICs.
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​3.4​ Hypoperfusion independent components can be automatically identified

Elastic net regularized GLM was applied to the FIX-shortlisted independent components (i.e. the

independent components that were classified by FIX as being non-noise) to determine the

predictive power of a set of features on HIC classification. The model discriminated HICs from

non-HICs with a median accuracy of 0.96, sensitivity of 1.00, and specificity of 0.96. The median

Cohen’s kappa for agreement between the model’s classification and the reference classification

was 0.78 and the median AUC was 0.95. Figure 6 shows the distribution of these performance

metrics across 50 iterations of the model, using different combinations of HICs and non-HICs.
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Figure 6. Hypoperfusion independent components (HICs) can be automatically distinguished

from other independent components using machine-learning. Using independent test data of

different combinations of HICs and non-HICs (that were not used for model training), we ran 50

iterations of the elastic net regularized generalized linear model (GLM) to classify HICs. The

overall model performance is shown in the receiver operating characteristic (ROC) curve (A).

Each iteration of the model is shown in blue and the mean ROC curve is shown as a black dashed

line. The ROC curve depicts the true positive and false positive rates for each classification

threshold in the model. The raincloud plot in (B) shows the distribution of different metrics of

model performance across the 50 model iterations. The lower and upper hinges of the box plot

represent the 25th and 75 percentiles, respectively and the horizontal bar represents the median

value. Across all model iterations, the values of area-under-the-ROC-curve (AUC), balanced

accuracy, sensitivity, specificity, and Cohen’s kappa are depicted.
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Table 1. Mean across patients and 95% confidence interval of the feature values

(non-normalized) for HICs and non-HICs

Feature HICs Non-HICs

Delay to whole-brain signal (s) 7.2 (5.4 - 9.1) -0.5 (-0.8 - -0.1)

Delay to venous sinus signal (s) 5.9 (4.1 - 7.6) -2.2 (-2.6 - -1.9)

Tmax delay (s) 2.15 (1.8 - 2.5) 1.3 (1.2 - 1.4)

Vascular territory occupancy (%) 51.6 (44.3 - 58.9) 6.2 (4.6 - 7.8)

Power in frequency bands (%)

0 - 0.01 Hz

21.7 (19.1 - 24.3) 17.9 (17.3 - 18.5)

0.01 - 0.025 Hz 23.9 (22.1 - 25.7) 21.4 (20.9 - 22.0)

0.025 - 0.05 Hz 22.6 (21.2 - 24.0) 25.8 (25.4 - 26.3)

0.05 - 0.1 Hz 15.1 (13.6 - 16.7) 17.4 (17.0 - 17.9)

0.1 - 0.15 Hz 12.5 (11.2 - 13.8) 13.3 (12.9 - 13.8)

0.15 - 0.2 Hz 4.2 (3.6 - 4.8) 4.0 (3.8 - 4.2)
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A useful feature of elastic net regularized GLM is that it performs implicit variable selection, and

thus enhances model interpretability by allowing the assessment of each feature’s relative

importance for the classification (Zou & Hastie, 2005). Table 2 shows that 7 out of the 9

extracted features were used by the model to distinguish HICs from non-HICs (i.e. have an Odds

ratio ≠ 1). These features included a larger delay in the low frequency oscillations of the HIC

relative to the whole-brain and venous sinus signals, a larger restriction to a single vascular

territory by the HICs, a higher power in the 0 - 0.01 Hz and 0.01 - 0.025 Hz frequency bands in

the HICs, and a higher power in the 0.025 - 0.05 Hz and 0.1 - 0.15 Hz frequency bands in the

non-HICs. Note that the implausibly high Odds ratio for the 0.15 - 0.2 Hz variable (2.21 x 1016)

likely reflects the multicollinearity between the variables describing the power in different

frequency ranges (which necessarily exists because these are proportions that sum up to 100%).

Importantly, while this means the exact Odds ratios should be interpreted with caution, it does not

affect the ability of the model to make predictions (Kutner, MH Nachtsheim, CJ Neter, J Li, W,

n.d.).
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Table 2. Results of the elastic net regularized generalized linear model for the classification of

hypoperfusion independent components (HICs) based on spatial and temporal features.

Feature Odds ratio

Delay to whole brain signal 1.16

Delay to venous sinus signal 1.15

Vascular territory occupancy 1.05

Power in frequency bands

0 - 0.01 Hz

1.64

0.01 - 0.025 Hz 1.00

0.025 - 0.05 Hz 0.02

0.05 - 0.1 Hz 1.00

0.1 - 0.15 Hz 0.005

0.15 - 0.2 Hz 2.21 x 1016
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​4​ Discussion

In this study, we present a novel approach for identifying areas of disturbed perfusion in ischemic

stroke without the use of contrast agents. We demonstrate that, using this method, areas of

hypoperfusion can be extracted from resting-state fMRI data in a manner that is user-independent

and robust to patient motion. The results of this study have important implications from both a

clinical and methodological standpoint.

We provide several lines of evidence that certain independent components isolated from rs-fMRI

data using spatial ICA reflect regions of hypoperfused brain tissue. Firstly, there is high visual

similarity between the spatial maps of HICs and the Tmax maps of individual patients. This is

noticeable even when patients had multiple perfusion deficits within (Figure 3) and across

(Figure 4) vascular territories. Secondly, HICs were present in areas of much higher Tmax delay

than other independent components (Figure 5). Thirdly, HICs observed at baseline disappeared at

follow-up in patients with successful recanalization and reperfusion, paralleling the reversal of

patients’ DSC-MRI Tmax lesions (Fig 2). Finally, HICs show BOLD signal characteristics that

are consistent with those previously described in hypoperfused tissue (Y. Liu et al., 2007; Lv et

al., 2013; Tsai et al., 2014; Yao et al., 2012).

These spatial and temporal features of HICs help distinguish them from resting-state networks

(Figure 5). BOLD oscillations associated with HICs were more temporally delayed in relation to

the global and venous sinus signals than oscillations associated with resting-state networks.

Although temporal delays in BOLD LFOs have been shown to occur under physiological

conditions (Aso et al., 2017) and differ between resting-state networks (Tong et al., 2015), the

largest delays are seen in areas of pathologically reduced perfusion (Khalil et al., 2017, 2020).
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Additionally, HICs showed more signal power in very low frequency ranges (0 - 0.025 Hz) and

less signal power in the 0.025 - 0.05 Hz range than resting-state networks. This finding is

consistent with previous studies showing increased signal power in the <0.01 Hz range in

hypoperfused tissue (Y. Liu et al., 2007; Tsai et al., 2014; Yao et al., 2012). Our study adds to this

by finding that oscillations associated with resting-state networks exist largely towards the higher

end of the low frequency range than oscillations associated with disturbed perfusion.

One disadvantage of spatial ICA is that it can output potentially dozens of components, and

browsing through them to visually identify those likely reflecting hypoperfusion can be

time-consuming, require expertise, and be subject to bias. We therefore combined the

aforementioned component features with the degree of restriction of the component’s spatial map

to a single vascular territory and used this set of features to train an algorithm to automatically

distinguish HICs from resting-state networks. The algorithm did this with high (>95%) accuracy,

sensitivity and specificity, showing that HICs can be automatically extracted from the rest of the

components of spatial ICA.

In this study, the spatial agreement between HICs and hypoperfusion is reflected in the fact that

the areas covered by the HICs on Tmax maps showed by far the highest Tmax delay (after

removal of artifactual Tmax delays in the CSF). Although quantitative metrics of spatial overlap

between Tmax perfusion deficits and HICs could have been calculated, this approach would be

susceptible to delineation errors or inconsistencies and the limitations inherent to these metrics

(such as a high sensitivity to disagreements), and would depend on the Tmax threshold selected.

We believe that the high Tmax delay in the areas covered by HICs, as well as the visual similarity

between HICs and Tmax maps (which can be interactively viewed here:
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https://doi.org/10.6084/m9.figshare.13686931), to be more appropriate evidence for their spatial

agreement.

Spatial ICA has certain advantages over existing methods for assessing perfusion using rs-fMRI.

Instead of assessing the individual characteristics of hypoperfusion-related signals separately,

spatial ICA extracts components that reflect a combination of changes in frequency, amplitude,

and temporal delay. In addition, we show that spatial ICA is capable of identifying perfusion

deficits even in the presence of severe patient motion, where methods based on cross-correlation,

such as time shift analysis (Lv et al., 2013), often fail (Figure 3 and

https://doi.org/10.6084/m9.figshare.13676779.v1). Finally, unlike time shift analysis, spatial ICA

does not require the specification of a reference signal, the choice of which can substantially

affect the calculated maps (Christen et al., 2015; Khalil et al., 2017; J. Wu et al., 2017).

This study’s findings have two major implications. From a clinical perspective, it provides a

proof-of-concept for a new method of assessing blood flow in acute stroke patients that may be

relevant for informing decision-making regarding recanalization and reperfusion therapies. This

method is safer, as it does not require the use of exogenous contrast agents, which are particularly

problematic in this patient population, who are generally older and have a higher prevalence of

chronic kidney disease (Sadowski et al., 2007). The acquisition of the rs-fMRI data, upon which

this method is based, is simple and widely available on clinical scanners. Although the rs-fMRI

data acquisition took substantially longer than DSC-MRI in this study (about six minutes vs two

minutes), recent evidence suggests that extracting perfusion-related information from rs-fMRI

can be achieved with much shorter acquisitions (Tanrıtanır et al., 2020). The method is also

user-independent, thereby avoiding the subjective assessment of perfusion maps that often leads
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to inconsistencies between and within experts (Campbell et al., 2010) and allows it to be

seamlessly integrated in routine clinical practice. Finally, the robustness of the method to head

motion is a substantial practical advantage, as patients scanned during acute illnesses tend to

exhibit a lot of motion, which diminishes scan quality and interpretability (Andre et al., 2015).

For further clinical validation of this method, detailed comparisons to quantitative perfusion

thresholds derived from DSC-MRI and to imaging and clinical outcomes should be made in

future studies.

From a methodological perspective, this study underscores the importance of accounting for

disturbed perfusion as a potential source of confounding in rs-fMRI studies, particularly in

patients with cerebrovascular diseases. Studies investigating functional connectivity in patients

with potentially abnormal cerebral perfusion should therefore attempt to disentangle the effects of

disturbed perfusion on the BOLD signal (e.g. due to vessel pathology) from components of the

BOLD signal that reflect neuronal activity via local neurovascular coupling. So far, suggestions

on how to do this have included regressing out the time delays (relative to a reference) from the

rs-fMRI data (Erdoğan et al., 2016) and temporally realigning the BOLD signal time courses

according to each voxel’s time delay value (Jahanian et al., 2018).

While the spatial distribution of physiological vascular processes overlap with, and are often

indistinguishable from, the spatial distribution of resting-state networks (Bright et al., 2018; J. E.

Chen et al., 2020; Tong et al., 2015), we show that the influence of disturbed perfusion on the

BOLD signal in stroke patients can be readily disentangled from other components of the BOLD

signal using spatial ICA. There are two potential explanations for this. The first is that, in stroke,

hypoperfusion is spatially restricted to either a vascular territory or part of a vascular territory. On
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the other hand, physiological vascular processes are spatially distributed in a manner similar to

resting-state networks (Bright et al., 2018; J. E. Chen et al., 2020; Tong et al., 2015), which may

make their separation using spatial ICA less likely. The second possible explanation has to do

with the large difference in the temporal BOLD signal characteristics between hypoperfused and

normally perfused tissue, which may also facilitate their separation by spatial ICA. In stroke,

disturbed perfusion tends to be severe compared to the physiological delays in perfusion across

different brain regions, and this leads to relatively large changes in the temporal characteristics of

the BOLD signal in hypoperfused regions (Khalil et al., 2017, 2020; Y. Liu et al., 2007; Tsai et

al., 2014; Yao et al., 2012).

As the first study to describe this method for assessing perfusion, the study has some limitations.

The study sample is relatively small, owing to the fact that it includes an established, albeit

relatively invasive, reference standard for assessing perfusion (DSC-MRI) as a comparison.

Because of the novelty of the method, we chose to have the two raters perform the ratings

together and therefore could not quantify interrater agreement on the identification of HICs in

this study. Future studies should test the algorithm we developed on larger cohorts with different

MR sequence parameters and more heterogeneous patient cohorts, assess practical aspects of the

method, such as the required computing time and power, and investigate the minimum scan

length required for the method to deliver reliable results as has recently been done for time shift

analysis (Tanrıtanır et al., 2020). Larger cohorts would also allow the investigation of the clinical

significance of perfusion assessed using this method, in terms of how it relates to clinical and

imaging outcomes and how it potentially influences clinical decision-making in acute stroke

patients (Fisher & Albers, 2013). Only two of the four cases in our cohort where spatial ICA
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could not identify the perfusion deficit could be explained by severe head motion. Therefore,

larger studies should investigate in more detail the causes of such false negative cases. Finally,

the nature of ICA means that, depending on the properties of the algorithm used, individual signal

sources (such as a resting state network or hypoperfused tissue) can be spread across multiple

components (Esposito et al., 2002). Therefore, it is important to note that the term

“hypoperfusion independent component” is an operationalization and that other independent

components might also partially reflect hypoperfused tissue.

In summary, spatial independent component analysis is a novel approach for identifying

hypoperfused tissue in ischemic stroke. It does not require the use of exogenous contrast agents,

its data can be analyzed without user input, and its results are robust to patient motion. It

therefore presents a convenient and promising new alternative to existing perfusion imaging

methods in acute stroke.
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