July 12, 2020

Acidosis, Zinc and HMGB1 in Sepsis: A Common Connection Involving Sialoglycan Recognition

Shoib S. Siddiqui^{1,2*#}, Chirag Dhar^{1,2*}, Venkatasubramaniam Sundaramurthy^{1,2##},

Aniruddha Sasmal^{1,2}, Hai Yu³, Esther Bandala-Sanchez^{4,5}, Miaomiao Li⁶,

Xiaoxiao Zhang⁶, Xi Chen³, Leonard C. Harrison^{4,5}, Ding Xu⁶, Ajit Varki^{1,2**}

¹Departments of Medicine and Cellular and Molecular Medicine, ²Glycobiology Research and Training Center, University of California, San Diego, CA, USA, ³Department of Chemistry, University of California, Davis, CA, 95616, USA ⁴The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia, ⁵Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia, ⁶Department of Oral Biology, School of Dental Medicine, University at Buffalo, The State University of New York, USA [#]Current Address: Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah, PO-10021, UAE [#]Current Address: Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030.

*Equal contribution

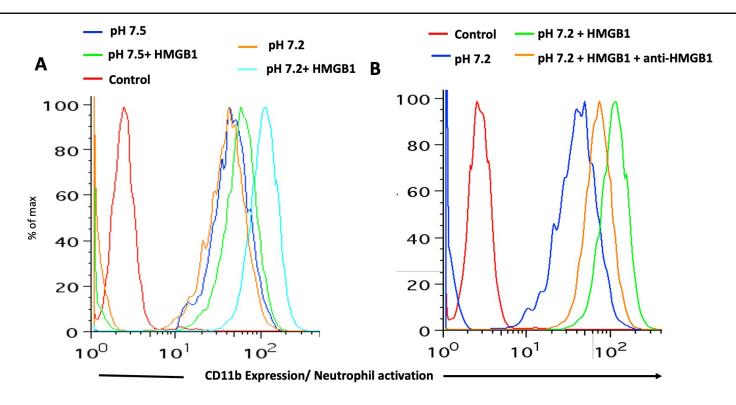
**Address correspondence to Ajit Varki, Glycobiology Research and Training Center, University of California, San Diego, 9500 Gilman Drive, University of California, San Diego, La Jolla, CA 92093-0687, Tel: (858) 534-2214, Fax: (858) 534-5611, E-mail: <u>alvarki@ucsd.edu</u>

Abstract (125 words)

Blood pH is tightly regulated between 7.35-7.45, with values below 7.3 during sepsis being associated with lactic acidosis, low serum zinc, and release of proinflammatory HMGB1 from activated and/or necrotic cells. Using an *ex vivo* whole blood system to model lactic acidosis, we show that while HMGB1 does not engage leukocyte receptors at physiological pH, lowering pH with lactic acid facilitates binding. At normal pH, micromolar zinc supports plasma sialoglycoprotein binding by HMGB1, which is markedly reduced when pH is adjusted with lactic acid to sepsis levels. Glycan array studies confirmed zinc and pH-dependent HMGB1 binding to sialoglycans typical of plasma glycoproteins. Thus, proinflammatory effects of HMGB1 are suppressed via plasma sialoglycoproteins until drops in pH and zinc release HMGB1 to trigger downstream immune activation.

Short title: regulation of HMGB1 by pH and zinc.

Significance Statement.: HMGB1 sequestered by plasma sialoglycoproteins at physiological pH is released when pH and zinc concentrations fall in sepsis.


Introduction

The pH of body fluids in healthy individuals spans a very broad range in different tissue types and organs, ranging from pH 1.5 (stomach contents), to 8.0 (urine). Human cells in tissue culture can also tolerate a wide range of pH values. In contrast, blood pH is tightly regulated between 7.35-7.45 (1), and departure out of this range (acidosis or alkalosis) can be very detrimental. For example, in the recent COVID-19 pandemic, 30% of non-survivors had acidosis, compared to 1% among survivors (2). Acidosis in sepsis is partly due to lactic acid release from anoxic tissues, which overwhelms the buffering capacity of circulating blood (3). A "cytokine storm" of proinflammatory mediators in sepsis triggers a cascade of destructive outcomes such as multiple organ failure (4–8) as currently seen in severe cases of COVID-19 infection (9). The mechanisms underlying lethality associated with low blood pH are not clear, but include low zinc levels and release from apoptotic or necrotic cells of HMGB1, a damage-associated molecular pattern (DAMP) defined as one of the late mediators of sepsis, further upregulating many other proinflammatory cytokines (10–12). Importantly, a recent study indicates HMGB1 levels are strongly associated with mortality in patients infected with SARS-CoV-2 (13). Here we show that sialylated plasma glycoproteins bind HMGB1 to suppress its ability to promote inflammatory responses in a zinc and pH-dependent manner. This finding provides an avenue for developing a new therapeutic strategy for treating sepsis.

Results

Mimicking lactic acidosis *ex vivo* in hirudin-anticoagulated whole blood. *In vivo* studies of acidosis and sepsis involve many complex factors and interactions. On the other hand, *ex vivo* reconstitution of purified blood components can result in artifacts, e.g., neutrophils get activated when separated away from erythrocytes and plasma (14). To study the significance of tightly regulated blood pH *ex vivo*, we sought to create a whole blood system mimicking lactic acidosis. Conventional anticoagulation with EDTA or citrate abrogates divalent cation functions, and heparin has many biological effects independent of anticoagulation. We have previously shown that the leech protein hirudin can be used to obtain whole blood, the pH first rose until a concentration of about 1 mM lactic acid was reached. Further addition then caused a sharp drop in blood pH. Such an initial rise in blood pH followed by a subsequent drop is seen in patients with sepsis (16). To further develop this model, we introduced HMGB1, a DAMP (17–19) associated with poor prognosis in late sepsis (20, 21).

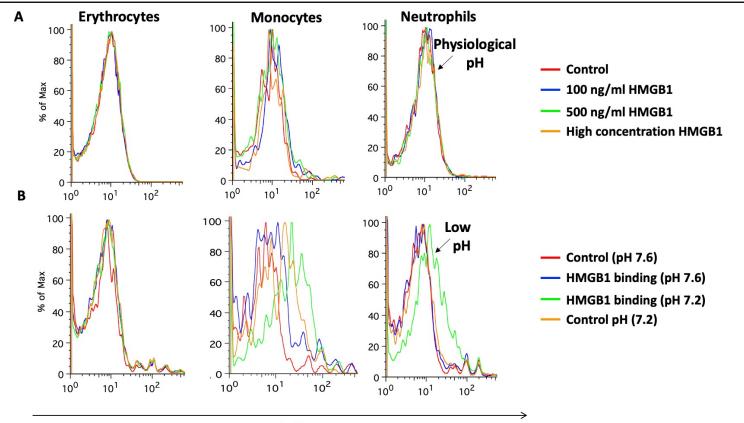

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.15.198010; this version posted July 15, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

Fig 1: Mimicking sepsis by adding lactic acid to whole blood triggers activation of neutrophils by HMGB1, which is partially attenuated by an HMGB1-blocking antibody: CD11b expression was determined by flow cytometry after incubating whole blood with/without HMGB1 (1 μg/ml). A) Neutrophils are activated when incubated with HMGB1 in whole blood at pH 7.2 (Chromatograms: Red- Control, Blue- whole blood at pH 7.5, Orange- whole blood at pH 7.2, Green- whole blood at pH 7.5 with HMGB1, Cyan- whole blood at pH 7.2 with HMGB1). B) Activation is partially attenuated with an HMGB1-blocking antibody (50 μg/ml) (Chromatograms: Red- Isotype control, Blue- whole blood at pH 7.2, Green- whole blood at pH 7.2 with HMGB1, Orange- whole blood at pH 7.2, Green- whole blood at pH 7.2 with HMGB1, Orange- whole blood at pH 7.2 with HMGB1 and an HMGB1-block

Neutrophils in whole blood are activated by HMGB1 at low pH due to better binding, and activation is attenuated with an HMGB1 blocking-antibody. Interaction of HMGB1 with Toll-like receptors (TLRs) during sepsis is well documented (22). The proinflammatory activity of HMGB1 is due to binding to targets such as TLR-2, TLR-4, TLR-9 and RAGE that are expressed on leukocytes and endothelial cells (23, 24). We, therefore, introduced exogenous HMGB1 into our whole blood acidosis model and tracked CD11b expression on neutrophils, as a sensitive marker of activation triggered by HMGB1. Increased neutrophil activation was noted when HMGB1 was incubated with whole blood at low pH as compared to physiological pH (Figure 1A). This effect was partially attenuated by adding HMGB1 blocking antibody (Figure 1B). Enhanced activation at low pH coincides with increased HMGB1 binding to neutrophils and monocytes (compare upper and lower panels of Figure 2A and B). Thus, physiological blood pH limits interaction of HMGB1 with leukocyte receptors,

suggesting natural inhibitor(s) of HMGB1 interaction in blood. Looking for candidate inhibitors, we noted earlier evidence that HMGB1 can interact with CD24 and CD52, two heavily sialylated proteins (25, 26) in a trimolecular complex with Siglec-10, a known sialic acid-binding protein. CD52-Fc bound specifically to the proinflammatory Box B domain of HMGB1, and this, in turn, promoted binding of the CD52 N-linked glycan sialic acid with Siglec-10 (26). Furthermore, sialidase treatment abolished CD52 binding to HMGB1, indicating that it might be a sialic acid-binding lectin. Since normal blood plasma contains ~2 mM sialic acid attached to glycans on plasma proteins, (27), we hypothesized that the unknown natural inhibitor might be the sialome (the total sum of all sialic acids presented on plasma glycoproteins).

HMGB1 Binding

Fig 2: Mimicking sepsis by adding lactic acid to whole blood triggers binding of HMGB1 to leukocytes: A) Ability of HMGB1 to bind to different cell types of the blood (erythrocytes, monocytes and neutrophils) was determined by using different concentrations (100 ng/ml, 500 ng/ml and 5 μ g/ml) of HMGB1 at physiological conditions. B) Different cell types of blood were used for binding with HMGB1 (100 ng/ml) at physiological and lower pH (pH 7.2, adjusted with lactic acid).

Among divalent cations, only zinc supported the robust binding of HMGB1 with sialylated glycoproteins at physiological pH. The binding buffer used in prior HMGB1 studies included millimolar concentrations of manganese cation (Mn^{2+}), a feature likely carried over from the unrelated function of nuclear HMGB1 binding to DNA. Looking at earlier studies of the interaction of HMGB1 with CD24 and CD52, we noticed that all those experiments were performed in a buffer containing millimolar Mn^{2+} concentrations (25, 28–30). These concentrations were very high in comparison with the physiological levels of Mn^{2+} in the blood (4-15 µg/L). We predicted that there might be other divalent cation(s) that are better co-factor(s) for HMGB1 and facilitate its binding with sialic acids. Indeed, upon testing micromolar concentrations of many divalent cations, we found that only zinc cation (Zn^{2+}) supported robust binding with sialylated glycoproteins (Figure 3A). We tested α_1 -acid glycoprotein and 3'-sialyllactose as binding partners for HMGB1 in the presence of different cations and again found that only Zn^{2+} facilitated binding. There was a modest binding of 3'-sialyllactose with HMGB1 in the presence of Mn^{2+} , but robust binding was only seen with Zn^{2+} -containing buffer (Figure 3B).

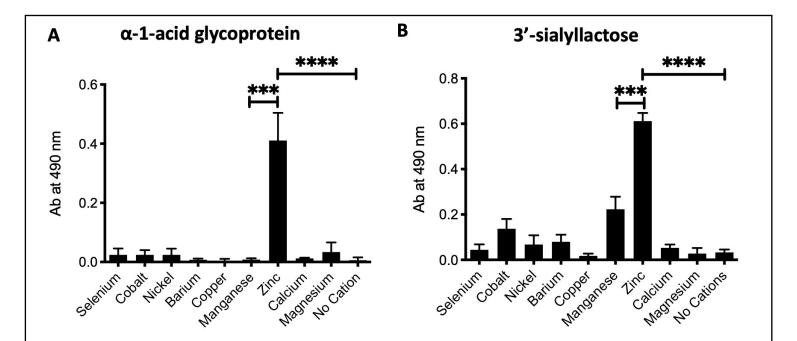


Fig 3: Among divalent cations, only zinc supported robust binding of HMGB1 with sialylated glycoproteins: A, B) Many divalent cations were used in binding buffer with concentration 500 μ M and binding with human α 1-acid glycoprotein and 3'-sialyllactose was determined using ELISA. The experiments were performed in triplicates where data shows mean±SD.

Replacing plasma with buffer at physiological pH allows HMGB1 to activate neutrophils, suggesting sequestration by plasma sialoglycoproteins. We next asked which whole blood components were preventing neutrophil activation under physiological conditions. Hirudin-anticoagulated whole blood at physiological pH was spun down and plasma either replaced with HEPES buffer (pH 7.5) supplemented with Zn^{2+} or with the same plasma that had been removed. After incubating with HMGB1, neutrophils were in a more activated state when incubated in the buffer as compared to when plasma was added back (Figure 4A). Independent studies have shown that HMGB1 binds to sialic acid on glycoproteins (26, 31) and we posited that the ~2 mM bound sialic acid present on plasma glycoproteins might lead to sequestration of HMGB1 under physiological condition. We also tested the effect of pH on the binding of HMGB1 to α_1 -acid glycoprotein and found that optimal binding was at physiological pH, with less binding at pH 7.2 with buffer containing Zn^{2+} (Figure 4B).

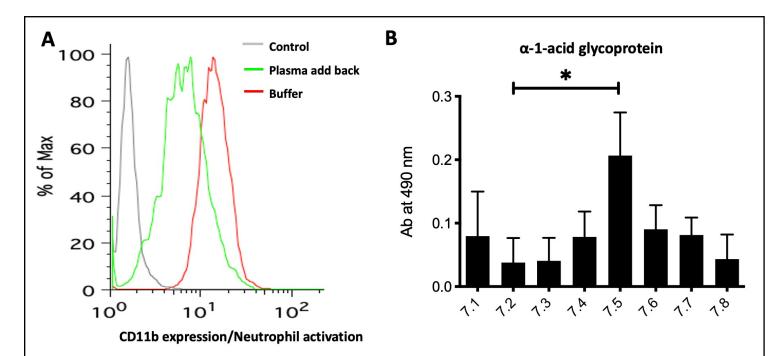


Fig 4: Replacing plasma with a buffer at physiological pH allows HMGB1 to activate neutrophils A) 1 ml of blood was drawn from a healthy individual and spun down. The plasma was replaced with HEPES buffer containing zinc (500 μ M of Zn²⁺) or plasma was added back. The CD11b expression as a marker of neutrophil activation was measured. B) The binding of HMGB1 to α 1-acid glycoprotein was checked with a binding buffer using different pH ranging from 7.1 to 7.8.

Sialoglycan array studies of HMGB1 confirm that it is a sialic acid-binding lectin with optimal binding at physiological blood pH in the presence of zinc cations. We previously reported a sialoglycan microarray platform used to identify, characterize, and validate the Sia-binding properties of proteins, lectins, and antibodies (32–34). After identifying Zn²⁺-dependent HMGB1 binding to sialoglycoproteins, we next investigated the ability of HMGB1 to bind with multiple sialoglycans abundantly found in plasma proteins. We performed sialoglycan

array studies of HMGB1 under four different conditions: 1) At physiological pH with Zn^{2+} , 2) At physiological pH without Zn^{2+} , 3) At pH 7.2 with Zn^{2+} 4) At pH 7.2 without Zn^{2+} . These array studies further confirmed the binding of HMGB1 with multiple sialylated glycan sequences that are typically found on plasma glycoproteins, in pH- and Zn^{2+} -dependent fashion (Figure 5A and 5B respectively). Additionally, we checked the binding of HMGB1 to sialic acids in sialoglycan microarray using 0, 15 and 150 μ M concentrations of Zn^{2+} and observed a dose-dependent effect (Figure 5B). This assay showed the relevance of Zn^{2+} in this binding phenomenon at a physiological concentration (~15 μ M). On resolving the binding of HMGB1 at physiological pH and in the presence of zinc, the binding on the microarray was exclusively to sialylated glycans confirming our findings (Figure 5C). A heat map representation of all these findings and HMGB1 binding to individual glycosides is provided in supplementary figures 3 and 4 respectively.

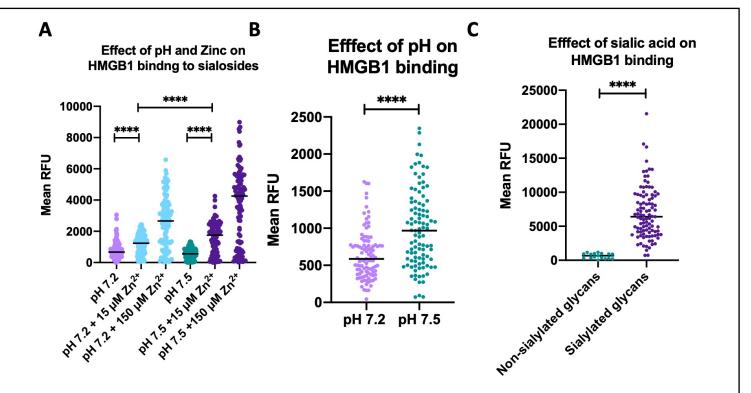
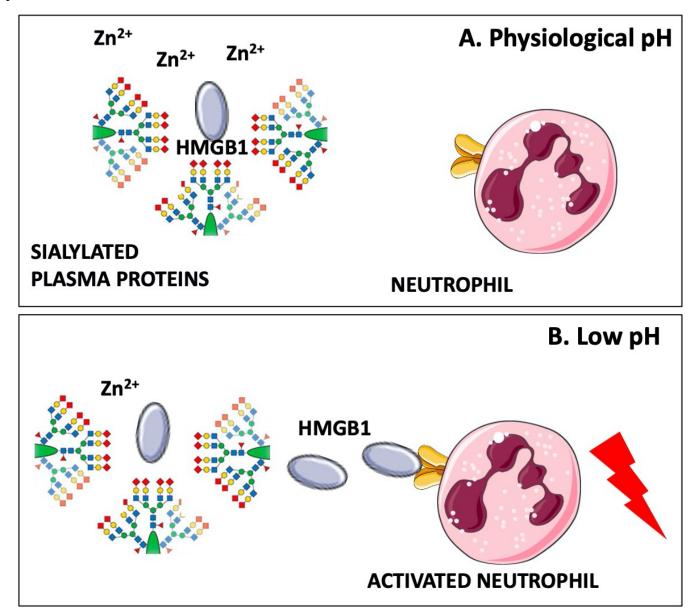


Fig 5: Sialoglycan array studies of HMGB1 confirm that it is a sialic acid-binding lectin with optimal binding at physiological blood pH in the presence of zinc: A) The sialoglycan array was performed to test the binding of HMGB1 with multiple sialylated probes. The binding buffer used for the assay either contained zinc and pH 7.5, no zinc, pH 7.5, with zinc, pH 7.2 and no zinc at pH 7.2. The concentration of zinc used was 15 μ M and 150 μ M. (Representative image of a single experiment. Wilcoxon matched pairs signed rank test used. **** represents p-value < 0.0001) B) Additional microarray experiments with 500 μ M further resolve the pH-dependent binding difference. (Representative image of the mean of two experiments. Unpaired t-test with Welch's correction used to compare the two groups. **** represents p-value < 0.0001) C) The difference of HMGB1 to sialosides and non-sialosides at physiological pH in the presence of 500 μ M zinc. (Representative image of a single experiment of 500 μ M. Kolmogorov-Smirnov test used. **** represents p-value < 0.0001)


Heparin, a previously known anionic glycan binding partner of HMGB1, does not exhibit pH sensitivity, and Zn^{2+} only partially facilitates binding. HMGB1 is known to bind heparin, a heavily sulfated glycan carrying many negatively charged groups (35, 36). We checked the binding of HMGB1 with heparin at different pH values and found that unlike binding with Sia, it was not pH-sensitive (Supplementary Figure 1A). Moreover, there was appreciable baseline binding of HMGB1 with heparin that only increased partially with Zn^{2+} supplementation (Supplementary Figure 1B). This data indicates that the binding of heparin and sialic acid are very different. The B-Box of HMGB1 that mediates sialic acid binding (26) has three arginine residues (26) that might be involved in sialic acid recognition. We made single mutants of arginine residues at positions 97, 110 and 163. When we checked the sialic acid binding, we could not find any difference between either of the mutants and WT HMGB1 (Supplementary Fig 2). We suspect other positively charged residues and/or multiple arginines to mediate sialic acid binding.

Discussion

Here we report one plausible explanation for the tight regulation of blood pH between 7.35-7.45, showing that even a slight reduction to pH 7.2 abolishes the zinc-dependent sequestration of HMGB1 by plasma sialoglycoproteins, releasing it to bind to activating receptors on neutrophils. HMGB1 was originally discovered in the cell nucleus (37–40), playing a role in DNA bending, replication and transcription (41, 42). Much later, HMGB1 was found to be passively or actively released in conditions like sepsis, leading to inflammation (21, 41, 43). i.e, it is as a DAMP (44). HMGB1 retention inside the nucleus is dictated by conserved lysine residues (45). Inflammatory stimuli trigger acetylation of these lysine residues and trafficking of HMGB1 to the cytosol, and eventually to the extracellular space. The different domains of HMGB1 are Box A, Box B and an acidic tail. While Box A and Box B possess many arginine and lysine residues, the acidic tail is enriched with glutamic and aspartic acid residues. Box B is proinflammatory whereas Box A behaves like an antagonist and mimics an anti-HMGB1 antibody (26, 46).

While TNF- α and IL-1 β are released early during sepsis, HMGB1 is a late mediator expressed only after about 24 hours and remains at elevated levels before death occurs (47). Many preclinical studies show protection against sepsis upon injection of blocking antibodies of HMGB1 or just injection of Box A protein (48). The proinflammatory activity of HMGB1 is well studied. However, the anti-inflammatory activity of HMGB1 also has been documented in multiple studies (49–51). Recently, it was shown that HMGB1 binds soluble CD52 and this complex binds with Siglec-10 on T-cells leading to SHP-1 (phosphatase) recruitment that dephosphorylates LCK and Zap70, thus activating an anti-inflammatory cascade (26, 52). In addition, haptoglobin (49), C1q and TIM3 also show anti-inflammatory activity of HMGB1 (50, 51).

In this study, we found that at physiological blood pH, there is no interaction of HMGB1 with its receptors on leukocytes. Surprisingly, when we lowered the pH using lactic acid (to mimic lactic acidosis, a characteristic feature of sepsis), the interaction was restored. Furthermore, the high concentration of sialic acids in plasma glycoproteins was found to be the likely inhibitor of interactions between HMGB1 and TLRs. We further characterized the role of HMGB1 as a sialic acid-binding lectin and found that zinc is a required co-factor. Moreover, we confirmed all our findings with lipopolysaccharide (LPS)-free HMGB1 and used a glycan array that detected the binding of HMGB1 with several sialic acid probes (See Supplemental Table 1) in a pH and zinc-dependent manner.

Fig 6: Proposed model of sequestration of HMGB1 by sialoglycoproteins to prevent HMGB1 binding to receptors on leukocytes: A, B) A schematic showing the binding of HMGB1 to sialic acid under physiological pH and binding to leukocyte receptors at low pH.

Taken together, our findings lead us to propose that under physiological conditions (pH 7.35-7.45) and normal zinc concentrations, there is a potent binding of HMGB1 with plasma sialoglycoproteins (Figure 6A). Under septic conditions, drops in pH and zinc concentration decrease interactions between HMGB1 and plasma sialoglycoproteins leading to the liberation of HMGB1 to bind with TLRs, to enhance inflammation (Figure 6B). Therefore, proinflammatory and anti-inflammatory activities of HMGB1 are the two sides of the same coin and are dependent on the different physiological conditions. While the proinflammatory role of HMGB1 is very well studied, recent studies have reported an anti-inflammatory role for HMGB1 (25, 50–52). The exact mechanism that enables HMGB1 to switch from its proinflammatory to anti-inflammatory role and vice-versa is not very well described. One factor known to enable its switch from being proinflammatory to anti-inflammatory is its oxidative state. The disulfide form of HMGB1 is proinflammatory, and the sulfonate form is involved in the resolution of inflammation (53–55). In the current study, we have identified another mechanism by which HMGB1 switches from its proinflammatory to anti-inflammatory role in a pH- and zinc-dependent manner. Sepsis is characterized by a decrease in pH and zinc concentration of the blood. We hypothesize that under physiological conditions, HMGB1 binds with sialoglycoproteins of blood keeping it in a quiescent state. During sepsis, the drop in pH and zinc concentration of the blood leads to disruption of HMGB1's binding with sialic acid, enabling the free HMGB1 to bind with TLRs and RAGE present on immune cells and the endothelium. This activates a cascade of the inflammatory response, which if untreated, might lead to multiple organ failure or even death.

Also consistent with our hypothesis are the findings that survival in mouse models of sepsis can be improved by infusion of soluble CD52(56), and that the sialic acid binding feature of HMGB1 is restricted to the disulfide-form of HMGB1 (26), which is expected to be formed when the cytosolic reduced form is released into the oxidizing environment of the bloodstream. We suggest that the potent proinflammatory effects of HMGB1 are normally kept in check via sequestration by plasma sialoglycoproteins at physiological pH and zinc levels and is triggered when pH and zinc levels fall in the late stages of sepsis. In this regard, it is notable that the acute phase response to inflammation results in high production of hypersialylated molecules such as al-acid glycoprotein from the liver and endothelium, which may then act as a negative feedback loop (57–59). Current clinical trials that are independently studying zinc supplementation (ClinicalTrials.gov Identifier: NCT01328509 NCT02130388) or pH normalization (NCT03530046) may be more successful if these approaches are combined, and perhaps supplemented by infusions of heavily sialylated molecules like CD52. Additionally, studies evaluating plasma exchange in subjects with septic shock (example NCT03366220) may show superior efficacy if supplemented with zinc infusions and pH correction. Pre-clinical studies are presently evaluating a function blocking anti-HMGB1 antibody (60). We performed our assays with HMGB1 purchased from HMG biotech, also produced it in *E. coli* and finally confirmed findings using HMGB1 expressed in 293 Freestyle cells. In order to recapitulate the characteristics of HMGB1 in septic conditions, we used the disulfide linked form in all our assays. Future studies should address whether other post-translational modifications such as acetylation, methylation, phosphorylation or oxidation have any further effect on HMGB1's propensity to bind sialic acids.

Numerous studies have shown that zinc is protective against sepsis (61–63). Additionally, blood zinc levels usually decrease during inflammation because it is sequestered to the nucleus where it is required as a co-factor for expression of proinflammatory genes and proteins (61, 64, 65). Thus, lowering of the zinc level in blood is detrimental. The mechanism of action for the anti-inflammatory effect of zinc is extensively studied. These include effect impact on the microbiome, lowering of NF- κ B levels, chemotaxis and phagocytosis by immune cells, anti-oxidative stress and adaptive immune response (61).

In this regard, it is notable that a recent study also shows the role of zinc, pH and ionic strength on the oligomerization of HMGB1 (66). We did not investigate any role of zinc or pH on the structural changes or oligomerization of HMGB1. It seems that at particular pH and zinc concentration, a positively charged residue of HMGB1 is exposed for binding with sialic acid. This residue may not be surface available at lower pH and low zinc concentration. In this study, we could not pinpoint the critical residue that is important for sialic acid binding.

HMGB1 has been reported to bind many ligands and some of which are highly negatively charged molecules such as heparin/heparan sulfate (35). We wanted to determine if the interaction of HMGB1 with sialic acid, which is also negatively charged, is a generic electrostatic charge-based interaction. Therefore, we tested the binding of HMGB1 with the acidic glycosaminoglycan, hyaluronan, but could not detect any binding (data not shown). Upon testing with heparin, we found that while HMGB1 did bind with heparin, it did not show any pH dependency. Moreover, binding was only partially enhanced in the presence of zinc. This shows that a different set of amino acid(s) might be required for binding to heparin and sialic acid. Notably, under physiological conditions, sialic acid is present in the blood, but the concentrations of other anionic glycans (heparan sulfate, hyaluronic acid etc.) are low.

Our findings, if confirmed in randomized clinical trials, have broad implications in the management of sepsis and possibly other types of acidosis. Sepsis is a significant cause of mortality, with a recent study implicating it as the cause of twice as many deaths as earlier estimated (67). These findings are of particular importance in light of the present COVID-19 pandemic/survivorship in these patients. Acute respiratory distress syndrome (ARDS), a deadly complication of the SARS-CoV-2 and SARS-CoV-1, has been linked with HMGB1 production (68–70). Recent articles suggest a potential link between HMGB1 and the pathogenesis of COVID-19 (71, 72). A recent study showed that HMGB1 strongly correlates with mortality in COVID-19 patients (13). Additionally, another recent study showed 100% of COVID-19 non-survivors had sepsis and 30% of these had acidosis (2). While the Surviving Sepsis Campaign does not suggest the use of convalescent plasma in critically ill patients, (73), the FDA has approved its use as an investigational new drug. A small study of five critically ill COVID-19 patients treated with convalescent plasma showed improvements in sepsis related SOFA scores (74). A clinicaltrials.gov search for "COVID" and "convalescent plasma" on April 6, 2020 yielded 9 results of trials ranging from phase 1 to phase 3. While the circulating antibodies are likely to be beneficial on their own, the HMGB1-sequestering

properties of plasma sialoglycoproteins may also contribute to suppressing the "cytokine storm". These effects are likely to be further enhanced if plasmapheresis is supplemented with aggressive pH correction and zinc supplementation.

Material and Methods

ELISA for binding of HMGB1 with α_1 -acid glycoprotein or 3'-sialyllactose: 500 ng-1µg of HMGB1 recombinant protein (HMG Biotech) diluted with the binding buffer (20 mM HEPES, 150 mM NaCl, 500 µM ZnCl₂) was immobilized by applying on a 96 well flat bottom plate (Corning co-star, Catalogue number 9018) and incubating overnight at 4 °C. The wells were washed thrice with 200 µl of binding buffer per well, followed by blocking with 150 µl of 5% BSA (prepared in binding buffer). The plate was then incubated at room temperature (RT) for 1 hour with shaking. The blocking solution was removed by flicking plate and tapping at a dry paper towel. Then 1 µg/well of biotinylated α_1 -acid glycoprotein (Sigma, Catalogue number-112150) or 3'sialyllactose-PAA-biotinylated (Glycotech, Catalogue number-01-038), diluted in binding buffer, was applied on every well except the secondary antibody control wells which were left with only binding buffer. The plate was incubated 1-2 hours at RT on the shaker. The solution was removed, and wells were washed thrice with 200 µl binding buffer per well. The secondary antibody (Streptavidin-HRP, abcam, Catalogue number- ab7403-500) was applied at a dilution of 1:20000 in binding buffer and the plate was incubated for 1 hour at RT with shaking. Then O-phenylenediamine (OPD) based substrate solution for HRP was prepared by adding 5 mg of OPD and 25 µl of 30% H₂O₂ to 15 ml of Citrate-PO₄.buffer. 140 µl of OPD substrate solution was added to each well and incubated in the dark until color development. Upon color development, the reaction was stopped using 40 µl of 2N H₂SO₄ and the absorbance was acquired at 490 nm with a plate reader. For the ELISA with different divalent cations, the binding buffer was prepared using the particular cation containing salt instead of ZnCl₂. Each incubation and wash was performed using the respective binding buffer.

Hirudin-anticoagulated whole blood assays

Informed consent was obtained from healthy individuals as per a protocol approved by the UCSD Human Research Protection Programs Institutional Review Board and venous blood was collected in hirudin coated tubes (ThermoFischer catalogue number-NC1054637). Hirudin was chosen as the anticoagulant as EDTA and heparin interferes with normal bioprocesses (chelation by EDTA and binding to and modulating cell-surface proteins by heparin). The pH of blood, when measured at the start of various assays varied between 7.5 and 7.6 and is referred to as the "physiological" pH.

Flow cytometry analysis for HMGB1 activation of/binding to leukocytes:

To test for neutrophill activation, 100 μ l of whole blood was incubated with 1 μ g/ml of HMGB1 for 30 minutes at 37 °C. CD11b expression was measured by flow cytometry as described earlier (14, 75). Blocking with an anti-

HMGB1 antibody (Clone 3E8, BioLegend, catalogue number- 651402) was performed with 50 µg/ml antibody as described earlier (60). For plasma addback studies, whole blood was spun down at 500 x g for 5 minutes and replaced with HEPES buffer supplemented with 500 μ M ZnCl₂. Binding assays were performed with 500 μ l of whole blood. The required amount of HMGB1 (0, 100, 500, 5000 ng/ml) was added to 500 µl of blood and incubated at 37° C for 60 minutes with rotation. After centrifuging at 600 x g for 5 minutes, the cells were washed with 1 ml of PBS and finally resuspended in 100 µl of FACS buffer (1% BSA in PBS with Ca²⁺/Mg²⁺) with anti-HMGB1 antibody (10µg/ml, BioLegend, catalogue number-651402). The cells were incubated at 4 °C for 30 minutes on ice and were washed with 1 ml PBS (containing Ca^{2+}/Mg^{2+}). The cells were subsequently resuspended in 100 µl of FACS buffer with a secondary anti-mouse-APC antibody (BioLegend, catalogue number-405308). The cells were incubated at 4 °C for 30 minutes on ice and washed with PBS as before. 10 µl was taken from each sample for RBC analysis and the rest of the sample was fixed with 4% paraformaldehyde (PFA) and incubated on ice for 20 min. The sample was then washed with PBS and subsequently treated with ACK lysis buffer (Gibco, catalogue number-A10492-01) to perform analysis of RBCs. The sample was washed and resuspended in 500 µl of FACS buffer. In the forward and side scatter profile, monocytes and neutrophils were gated for the analysis. For gating of monocytes forward and side scatter pattern was used. The surface markers were not used for this gating.

Glycan array analysis for the binding of HMGB1 with sialic acids:

Chemoenzymatically synthesized sialyl glycans were quantitated utilizing DMB-HPLC analysis and were dissolved in 300 mM sodium phosphate buffer (pH 8.4) to a final concentration of 100 μ M. ArrayIt SpotBot[®] Extreme was used for printing the sialoglycans on NHS-functionalized glass slides (PolyAn 3D-NHS slides from Automate Scientific; catalogue number-PO-10400401). Purified mouse anti-HMGB1 antibody (BioLegend; catalogue number-651402, Lot# B219634) and Cy3-conjugated goat anti-mouse IgG (Jackson ImmunoResearch; catalogue number-115-165-008) were used. Fresh HEPES buffer (20mM HEPES, 150mM NaCl ± 500 μ M ZnCl₂) was prepared immediately before starting the microarray experiments.

Method described in (34) was adapted to perform the microarray experiment. Each glycan was printed in quadruplets. The temperature (20 °C) and humidity (70%) inside the ArrayIt[®] printing chamber was rigorously maintained during the printing process. The slides were left for drying for an additional 8 h. Printed glycan microarray slides were blocked with pre-warmed 0.05 M ethanolamine solution (in 0.1 M Tris-HCl, pH 9.0), washed with warm Milli-Q water, dried, and then fitted in a multi-well microarray hybridization cassette (ArrayIt, CA) to divide it into 8 subarrays. Each subarray well was treated with 400 µl of ovalbumin (1% w/v) dissolved in freshly prepared HEPES blocking buffer \pm 500 µM of Zn²⁺ (pH adjusted for individual experiments) for 1h at ambient temperature in a humid chamber with gentle shaking. Subsequently, the blocking solution was discarded, and a solution of HMGB1 (40 µg/ml) in the same HEPES buffer (\pm Zn²⁺, defined pH) was added to the subarray. After incubating for 2 hours at room temperature with gentle shaking, the slides were extensively washed (first

with PBS buffer with 0.1%Tween20 and then with only PBS, pH 7.4) to remove any non-specific binding. The subarray was further treated with a 1:500 dilution (in PBS) of Cy3-conjugated goat anti-mouse IgG (Fc specific) secondary antibody and then gently shaken for 1 hour in the dark, humid chamber followed by the same washing cycle described earlier. The developed glycan microarray slides were then dried and scanned with a Genepix 4000B (Molecular Devices Corp., Union City, CA) microarray scanner (at 532 nm). Data analysis was performed using the Genepix Pro 7.3 analysis software (Molecular Devices Corp., Union City, CA).

Purification of HMGB1 from *E. coli* and HEK293 freestyle:

Expression and purification of full-length murine His-HMGB1 in *E. coli* were performed as described before (35). Mutagenesis was performed using a QuikChange site-directed mutagenesis kit (Agilent).

For HMGB1 expression in mammalian cells, the complete open reading frame of murine HMGB1 was cloned into pcDNA3.1(+)-C-6His vector (GenScript). Transfection was performed using FectoPRO transfection reagent (Polyplus transfection). Recombinant His-HMGB1 was produced in 293-freestyle cells (ThermoFisher Scientific). Purification of His-HMGB1 from 293-freestyle cell lysate was carried out using Ni SepharoseTM 6 Fast Flow gel (GE Healthcare). After purification, His-HMGB1 was 99% pure as judged by silver staining.

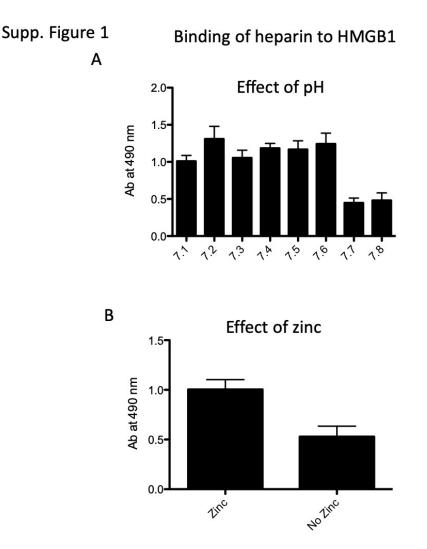
Acknowledgments: We thank Sandra Diaz and Patrick Secrest for their excellent technical help with the work.

Author contributions: SS Siddiqui, C Dhar, V Sundaramurthy and A Varki wrote the manuscript. SS Siddiqui, C Dhar, V Sundaramurthy, A Sasmal, H Yu, X Chen, E Bandala-Sanchez, LC Harrison, X Zhang, M Li and D Xu designed and performed the experiments. All authors reviewed the manuscript and approved it.

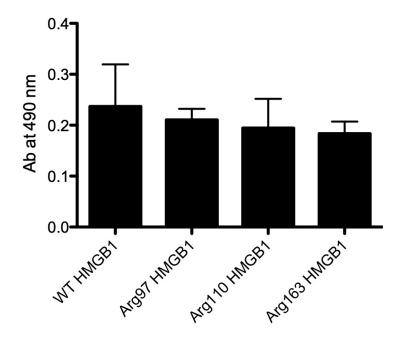
Conflict of interest: The authors have no conflicts of interest with the contents of this manuscript.

Funding: NIH R01GM32373 (A.V.)

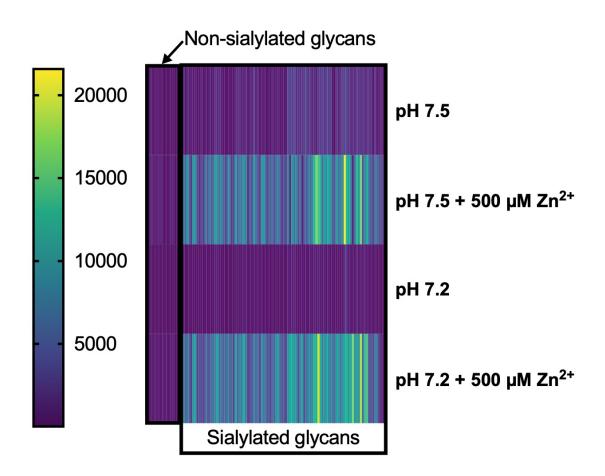
References


- 1. Hamm LL, Nakhoul N, Hering-Smith KS. Acid-Base Homeostasis. Clin J Am Soc Nephrol. 2015;10:2232-42.
- 2. Zhou F, Yu T, Du R et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020
- 3. Kraut JA, Madias NE. Lactic acidosis. N Engl J Med. 2014;371:2309-19.
- 4. Garcia-Alvarez M, Marik P, Bellomo R. Sepsis-associated hyperlactatemia. Crit Care. 2014;18:503.
- 5. Cai B, Deitch EA, Ulloa L. Novel insights for systemic inflammation in sepsis and hemorrhage. Mediators Inflamm. 2010;2010:642462.
- 6. Namas R, Zamora R, Namas R et al. Sepsis: Something old, something new, and a systems view. J Crit Care. 2012;27:314.e1-11.
- 7. Rittirsch D, Flierl MA, Ward PA. Harmful molecular mechanisms in sepsis. Nat Rev Immunol. 2008;8:776-87.
- 8. van der Poll T, van de Veerdonk FL, Scicluna BP, Netea MG. The immunopathology of sepsis and potential therapeutic targets. Nat Rev Immunol. 2017;17:407-20.
- 9. Ragab D, Salah Eldin H, Taeimah M, Khattab R, Salem R. The COVID-19 Cytokine Storm; What We Know So Far. Front Immunol. 2020;11:1446.
- 10. Wang H, Ward MF, Sama AE. Targeting HMGB1 in the treatment of sepsis. Expert Opin Ther Targets. 2014;18:257-68.
- Huang W, Tang Y, Li L. HMGB1, a potent proinflammatory cytokine in sepsis. Cytokine. 2010;51:119-26.
- 12. Andersson U, Wang H, Palmblad K et al. High mobility group 1 protein (HMG-1) stimulates proinflammatory cytokine synthesis in human monocytes. J Exp Med. 2000;192:565-70.
- 13. Chen L, Long X, Xu Q et al. Elevated serum levels of S100A8/A9 and HMGB1 at hospital admission are correlated with inferior clinical outcomes in COVID-19 patients. Cell Mol Immunol. 2020
- 14. Lizcano A, Secundino I, Döhrmann S et al. Erythrocyte sialoglycoproteins engage Siglec-9 on neutrophils to suppress activation. Blood. 2017;129:3100-10.
- 15. Wahrenbrock M, Borsig L, Le D, Varki N, Varki A. Selectin-mucin interactions as a probable molecular explanation for the association of Trousseau syndrome with mucinous adenocarcinomas. J Clin Invest. 2003;112:853-62.
- 16. Maggio PM. Sepsis and Septic Shock. In: Beers MH, Fletcher AJ, editors. Merck Manual: Professional Edition. Whitehouse Station, NJ: Merck Research Laboratories; 2003.
- 17. Roh JS, Sohn DH. Damage-Associated Molecular Patterns in Inflammatory Diseases. Immune Netw. 2018;18:e27.
- 18. Gong T, Liu L, Jiang W, Zhou R. DAMP-sensing receptors in sterile inflammation and inflammatory diseases. Nat Rev Immunol. 2020;20:95-112.
- 19. Schaefer L. Complexity of danger: the diverse nature of damage-associated molecular patterns. J Biol Chem. 2014;289:35237-45.
- 20. Charoensup J, Sermswan RW, Paeyao A et al. High HMGB1 level is associated with poor outcome of septicemic melioidosis. Int J Infect Dis. 2014;28:111-6.
- 21. Wang H, Bloom O, Zhang M et al. HMG-1 as a late mediator of endotoxin lethality in mice. Science. 1999;285:248-51.
- 22. Yu M, Wang H, Ding A et al. HMGB1 signals through toll-like receptor (TLR) 4 and TLR2. Shock. 2006;26:174-9.
- Yang H, Hreggvidsdottir HS, Palmblad K et al. A critical cysteine is required for HMGB1 binding to Tolllike receptor 4 and activation of macrophage cytokine release. Proc Natl Acad Sci U S A. 2010;107:11942-7.
- 24. Sims GP, Rowe DC, Rietdijk ST, Herbst R, Coyle AJ. HMGB1 and RAGE in inflammation and cancer. Annu Rev Immunol. 2010;28:367-88.
- 25. Chen GY, Tang J, Zheng P, Liu Y. CD24 and Siglec-10 selectively repress tissue damage-induced immune responses. Science. 2009;323:1722-5.

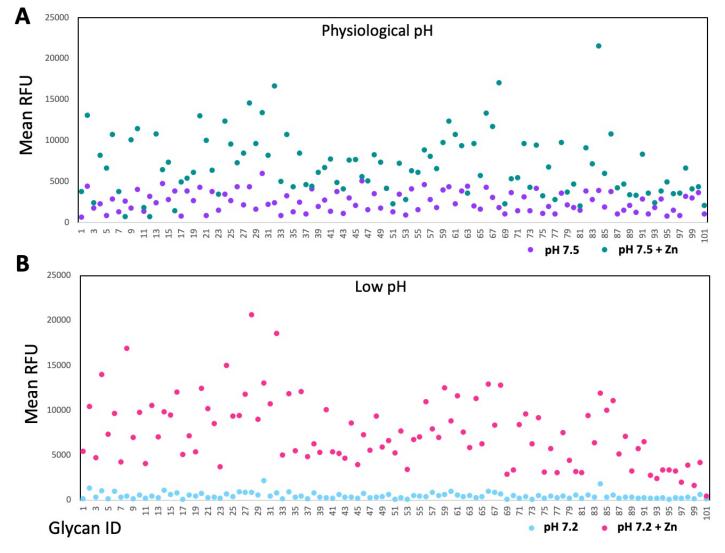
- 26. Bandala-Sanchez E, G Bediaga N, Goddard-Borger ED et al. CD52 glycan binds the proinflammatory B box of HMGB1 to engage the Siglec-10 receptor and suppress human T cell function. Proc Natl Acad Sci U S A. 2018;115:7783-8.
- 27. Sillanaukee P, Ponnio M, Jaaskelainen IP. Occurrence of sialic acids in healthy humans and different disorders. Eur J Clin Invest. 1999;29:413-25.
- 28. Kriatchko AN, Bergeron S, Swanson PC. HMG-box domain stimulation of RAG1/2 cleavage activity is metal ion dependent. BMC Mol Biol. 2008;9:32.
- 29. Polianichko AM, Chikhirzhina EV, Kostyleva EI, Vorob'ev VI. [The structure of the complexes of DNA with non-histone chromosomal protein HMGB1 in the presence of manganese ions]. Mol Biol (Mosk). 2004;38:1041-9.
- Polyanichko AM, Andrushchenko VV, Chikhirzhina EV, Vorob'ev VI, Wieser H. The effect of manganese(II) on DNA structure: electronic and vibrational circular dichroism studies. Nucleic Acids Res. 2004;32:989-96.
- 31. Shathili AM, Bandala-Sanchez E, John A et al. Specific Sialoforms Required for the Immune Suppressive Activity of Human Soluble CD52. Front Immunol. 2019;10:1967.
- 32. Song X, Yu H, Chen X et al. A sialylated glycan microarray reveals novel interactions of modified sialic acids with proteins and viruses. J Biol Chem. 2011;286:31610-22.
- 33. Padler-Karavani V, Hurtado-Ziola N, Pu M et al. Human xeno-autoantibodies against a non-human sialic acid serve as novel serum biomarkers and immunotherapeutics in cancer. Cancer Res. 2011;71:3352-63.
- 34. Padler-Karavani V, Song X, Yu H et al. Cross-comparison of protein recognition of sialic acid diversity on two novel sialoglycan microarrays. J Biol Chem. 2012;287:22593-608.
- 35. Xu D, Young J, Song D, Esko JD. Heparan sulfate is essential for high mobility group protein 1 (HMGB1) signaling by the receptor for advanced glycation end products (RAGE). J Biol Chem. 2011;286:41736-44.
- 36. Arnold K, Xu Y, Sparkenbaugh EM et al. Design of anti-inflammatory heparan sulfate to protect against acetaminophen-induced acute liver failure. Sci Transl Med. 2020;12
- 37. Goodwin GH, Sanders C, Johns EW. A new group of chromatin-associated proteins with a high content of acidic and basic amino acids. Eur J Biochem. 1973;38:14-9.
- 38. Martinotti S, Patrone M, Ranzato E. Emerging roles for HMGB1 protein in immunity, inflammation, and cancer. Immunotargets Ther. 2015;4:101-9.
- 39. Kang R, Chen R, Zhang Q et al. HMGB1 in health and disease. Mol Aspects Med. 2014;40:1-116.
- 40. Dintilhac A, Bernués J. HMGB1 interacts with many apparently unrelated proteins by recognizing short amino acid sequences. J Biol Chem. 2002;277:7021-8.
- 41. Venereau E, De Leo F, Mezzapelle R, Careccia G, Musco G, Bianchi ME. HMGB1 as biomarker and drug target. Pharmacol Res. 2016;111:534-44.
- 42. Sessa L, Bianchi ME. The evolution of High Mobility Group Box (HMGB) chromatin proteins in multicellular animals. Gene. 2007;387:133-40.
- 43. Scaffidi P, Misteli T, Bianchi ME. Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature. 2002;418:191-5.
- 44. Matzinger P. Tolerance, danger, and the extended family. Annu Rev Immunol. 1994;12:991-1045.
- 45. Bonaldi T, Talamo F, Scaffidi P et al. Monocytic cells hyperacetylate chromatin protein HMGB1 to redirect it towards secretion. EMBO J. 2003;22:5551-60.
- 46. Yang H, Antoine DJ, Andersson U, Tracey KJ. The many faces of HMGB1: molecular structurefunctional activity in inflammation, apoptosis, and chemotaxis. J Leukoc Biol. 2013;93:865-73.
- 47. Wang H, Zhu S, Zhou R, Li W, Sama AE. Therapeutic potential of HMGB1-targeting agents in sepsis. Expert Rev Mol Med. 2008;10:e32.
- 48. Yang H, Ochani M, Li J et al. Reversing established sepsis with antagonists of endogenous high-mobility group box 1. Proc Natl Acad Sci U S A. 2004;101:296-301.
- 49. Yang H, Wang H, Levine YA et al. Identification of CD163 as an antiinflammatory receptor for HMGB1haptoglobin complexes. JCI Insight. 2016;1
- 50. Son M, Porat A, He M et al. C1q and HMGB1 reciprocally regulate human macrophage polarization. Blood. 2016;128:2218-28.


- 51. Chiba S, Baghdadi M, Akiba H et al. Tumor-infiltrating DCs suppress nucleic acid-mediated innate immune responses through interactions between the receptor TIM-3 and the alarmin HMGB1. Nat Immunol. 2012;13:832-42.
- 52. Bandala-Sanchez E, Zhang Y, Reinwald S et al. T cell regulation mediated by interaction of soluble CD52 with the inhibitory receptor Siglec-10. Nat Immunol. 2013;14:741-8.
- 53. Venereau E, Casalgrandi M, Schiraldi M et al. Mutually exclusive redox forms of HMGB1 promote cell recruitment or proinflammatory cytokine release. J Exp Med. 2012;209:1519-28.
- 54. Tang Y, Zhao X, Antoine D et al. Regulation of Posttranslational Modifications of HMGB1 During Immune Responses. Antioxid Redox Signal. 2016;24:620-34.
- 55. Bianchi ME, Crippa MP, Manfredi AA, Mezzapelle R, Rovere Querini P, Venereau E. High-mobility group box 1 protein orchestrates responses to tissue damage via inflammation, innate and adaptive immunity, and tissue repair. Immunol Rev. 2017;280:74-82.
- 56. Rashidi M, Bandala-Sanchez E, Lawlor KE et al. CD52 inhibits Toll-like receptor activation of NF-κB and triggers apoptosis to suppress inflammation. Cell Death Differ. 2018;25:392-405.
- 57. Fournier T, Medjoubi-N N, Porquet D. Alpha-1-acid glycoprotein. Biochim Biophys Acta. 2000;1482:157-71.
- 58. Martìnez Cordero E, Gonzàlez MM, Aguilar LD, Orozco EH, Hernàndez Pando R. Alpha-1-acid glycoprotein, its local production and immunopathological participation in experimental pulmonary tuberculosis. Tuberculosis (Edinb). 2008;88:203-11.
- 59. Nakano M, Kakehi K, Tsai MH, Lee YC. Detailed structural features of glycan chains derived from alpha1-acid glycoproteins of several different animals: the presence of hypersialylated, O-acetylated sialic acids but not disialyl residues. Glycobiology. 2004;14:431-41.
- 60. Zhou H, Wang Y, Wang W et al. Generation of monoclonal antibodies against highly conserved antigens. PLoS One. 2009;4:e6087.
- 61. Souffriau J, Libert C. Mechanistic insights into the protective impact of zinc on sepsis. Cytokine Growth Factor Rev. 2018;39:92-101.
- 62. Hoeger J, Simon TP, Beeker T, Marx G, Haase H, Schuerholz T. Persistent low serum zinc is associated with recurrent sepsis in critically ill patients A pilot study. PLoS One. 2017;12:e0176069.
- 63. Mertens K, Lowes DA, Webster NR et al. Low zinc and selenium concentrations in sepsis are associated with oxidative damage and inflammation. Br J Anaesth. 2015;114:990-9.
- 64. Wessels I, Cousins RJ. Zinc dyshomeostasis during polymicrobial sepsis in mice involves zinc transporter Zip14 and can be overcome by zinc supplementation. Am J Physiol Gastrointest Liver Physiol. 2015;309:G768-78.
- 65. Liuzzi JP, Lichten LA, Rivera S et al. Interleukin-6 regulates the zinc transporter Zip14 in liver and contributes to the hypozincemia of the acute-phase response. Proc Natl Acad Sci U S A. 2005;102:6843-8.
- 66. Anggayasti WL, Mancera RL, Bottomley S, Helmerhorst E. The effect of physicochemical factors on the self-association of HMGB1: A surface plasmon resonance study. Biochim Biophys Acta. 2016;1864:1620-9.
- 67. Rudd KE, Johnson SC, Agesa KM et al. Global, regional, and national sepsis incidence and mortality, 1990-2017: analysis for the Global Burden of Disease Study. Lancet. 2020;395:200-11.
- 68. Kudo D, Toyama M, Aoyagi T et al. Involvement of high mobility group box 1 and the therapeutic effect of recombinant thrombomodulin in a mouse model of severe acute respiratory distress syndrome. Clin Exp Immunol. 2013;173:276-87.
- 69. Cognasse F, Sut C, Hamzeh-Cognasse H, Garraud O. Platelet-derived HMGB1: critical mediator of SARs related to transfusion. Ann Transl Med. 2020;8:140.
- 70. Chen G, Chen DZ, Li J et al. Pathogenic role of HMGB1 in SARS. Med Hypotheses. 2004;63:691-5.
- 71. Andersson U, Ottestad W, Tracey KJ. Extracellular HMGB1: a therapeutic target in severe pulmonary inflammation including COVID-19. Mol Med. 2020;26:42.
- 72. Street ME. HMGB1: A Possible Crucial Therapeutic Target for COVID-19. Horm Res Paediatr. 20201-3.
- 73. Alhazzani W, Møller MH, Arabi YM et al. Surviving Sepsis Campaign: guidelines on the management of critically ill adults with Coronavirus Disease 2019 (COVID-19). Intensive Care Med. 2020

- 74. Shen C, Wang Z, Zhao F et al. Treatment of 5 Critically Ill Patients With COVID-19 With Convalescent Plasma. JAMA. 2020
- 75. Secundino I, Lizcano A, Roupé KM et al. Host and pathogen hyaluronan signal through human siglec-9 to suppress neutrophil activation. J Mol Med (Berl). 2016;94:219-33.


Supplementary data

Supplementary Fig 1: Previously known binding partner of HMGB1, another anionic glycan heparin does not exhibit this extreme pH sensitivity, and zinc only partially facilitates binding: A) The binding of HMGB1 with heparin was determined by ELISA using a binding buffer at different pH ranges (7.1-7.8) B) The binding assay of HMGB1 and heparin was also performed with a binding buffer with and without zinc. The experiment was performed in triplicate, where data shows mean±SD.



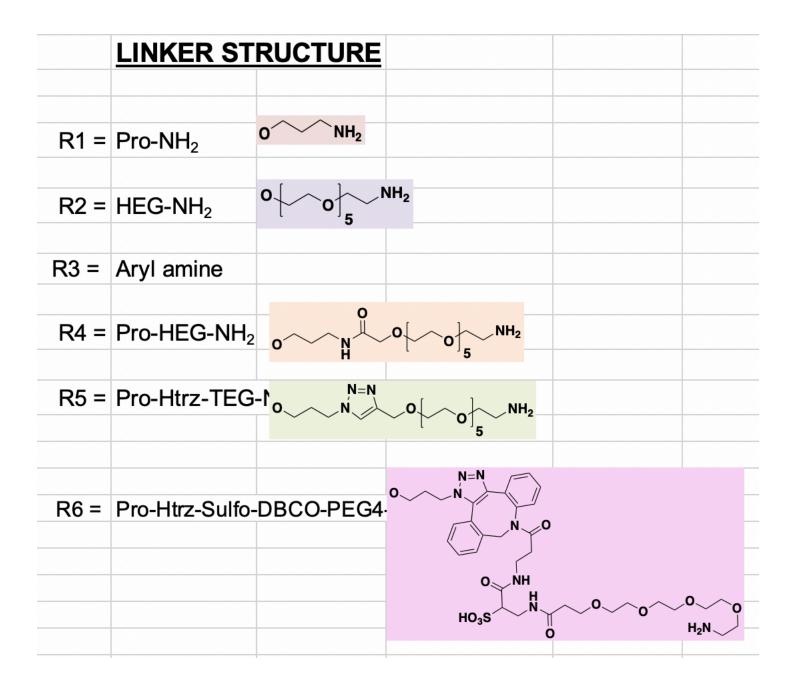
Supplementary Fig 2: Binding of sialic acid with different arginine mutants of HMGB1: Different arginine mutants of HMGB1 B-box were generated and binding of these mutants with 3'- sialyllactose was measured by ELISA. The experiment was performed in triplicate, where data shows mean±SD.

Supplementary Fig 3: Heatmap representing average RFUs of HMGB1 binding to sialosides and nonsialosides under various conditions.

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.15.198010; this version posted July 15, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

Supplementary Fig 4: Binding of HMGB1 with sialic acids at physiological zinc concentration: The binding of HMGB1 with sialoglycan probes on a glycan array was performed using different zinc concentrations. The data shows mean $RFU \pm SD$.

Old Glycan IL	Compound	Sialic acid Type	Linkage	Acetylation / Sulfation	Linear / Branched	Glycan Type	MW
1	Neu5,9Ac2a3Galβ4GlcNAcβR1	Ac	2-3	9OAc	L	LacNAcβ/Type 2	795.72
2	Neu5Gc9Acα3Galβ4GlcNAcβR1	Gc	2-3	9OAc	L	LacNAcβ/Type 2	811.72
	Neu5,9Ac2α6Galβ4GlcNAcβR1	Ac	2-6	9OAc	L	LacNAcβ/Type 2	795.72
4	Neu5Gc9Aca6Galβ4GlcNAcβR1	Gc	2-6	9OAc	L	LacNAcβ/Type 2	811.72
Ę	Neu5Aca6GalNAcaR1	Ac	2-6	0	L	STn	633.58
	Neu5Gca6GalNAcaR1	Gc	2-6		L	(Neu5Gc)-STn	649.57
	Neu5,9Ac2α3Galβ3GlcNAcβR1	Ac	2-3	9OAc	L	Туре1	795.72
5	Neu5Gc9Aca3Galβ3GlcNAcβR1	Gc	2-3	90Ac	L	Туре1	811.72
	Neu5,9Ac2a3Galβ3GalNAcaR1	Ac	2-3	90Ac	L	Core1/Type 3	795.72
	· · ·						
	Neu5Gc9Acα3Galβ3GalNAcαR1	Gc	2-3	9OAc	L	Core1/Type 3	811.72
	Neu5Acα3Galβ4GlcNAcβR1	Ac	2-3		L .	LacNAcβ/Type 2	753.68
	Neu5Gcα3Galβ4GlcNAcβR1	Gc	2-3		L	LacNAcβ/Type 2	769.68
	Neu5Aca3Galβ3GlcNAcβR1	Ac	2-3		L	Туре1	753.68
14	Neu5Gcα3Galβ3GlcNAcβR1	Gc	2-3	0	L	Туре1	769.68
15	Neu5Aca3Galβ3GalNAcaR1	Ac	2-3	0	L	Core1/Type 3	753.68
16	Neu5Gca3Galβ3GalNAcαR1	Gc	2-3	0	L	Core1/Type 3	769.68
17	Neu5Acα6Galβ4GlcNAcβR1	Ac	2-6	0	L	LacNAcβ/Type 2	753.68
18	Neu5Gcα6Galβ4GlcNAcβR1	Gc	2-6	0	L	LacNAcβ/Type 2	769.68
19	Neu5Aca6Galβ4GlcβR1	Ac	2-6	0	L	Lactoseβ	712.63
20	Neu5Gcα6Galβ4GlcβR1	Gc	2-6	0	L	Lactoseβ	728.63
21	Neu5Acα3Galβ4GlcβR1	Ac	2-3	0	L	Lactoseβ	712.63
22	Neu5Gcα3Galβ4GlcβR1	Gc	2-3	0	L	Lactoseβ	728.63
23		Ac	2-6	9OAc	L	GalNAca	633.58
24		Gc	2-6	90Ac	-	GalNAca	649.57
25		Ac	2-3	0	1	Galactoseß	550.49
	Neu5Gcα3GalβR1	Gc	2-3		L	Galactoseß	566.49
						· .	
ot certified by peer review) is the	/2020.07.15.198010; this version posted July 15, 2020. The authomatical display to a license to display to available under a CC-BY 4.0 International license.	hereprint in perpetuit	y.4t 19 made	0		Galactoseβ	550.49
28	Neu5Gcd6GalβR1	GC	2-6	0	L	Galactoseβ	566.49
29	· ·	Ac	2-3	9OAc	L	Galactoseβ	592.52
30	Neu9Ac5Gcα3GalβR1	Gc	2-3	9OAc	L	Galactoseβ	608.52
31	Neu5,9Ac2α6GalβR1	Ac	2-6	9OAc	L	Galactoseβ	592.52
32	Neu9Ac5Gcα6GalβR1	Gc	2-6	9OAc	L	Galactoseβ	608.52
33	Neu5Aca3Galβ3GalNAcβR1	Ac	2-3	0	L	Туре 4	753.68
34	Neu5Gcα3Galβ3GalNAcβR1	Gc	2-3	0	L	Туре 4	769.68
35	Neu5,9Ac2α3Galβ3GalNAcβR1	Ac	2-3	9OAc	L	Туре 4	795.72
36	Neu9Ac5Gcα3Galβ3GalNAcβR1	Gc	2-3	90Ac	L	Туре 4	811.72
37	ν Neu5,9Ac2α6Galβ4GlcβR1	Ac	2-6	9OAc	L		754.66
38	Neu9Ac5Gca6Galβ4GlcβR1	Gc	2-6	9OAc	L		770.66
39	Neu5,9Ac2α3Galβ4GlcβR1	Ac	2-3	9OAc	L		754.66
	Neu9Ac5Gcα3Galβ4GlcβR1	Gc	2-3	9OAc	L		770.66
41		Ac-Ac	2-8/2-3		L	GD3-short linker	1025.86
42	· · ·	Ac-Ac-Ac	2-8/2-8/2-3	0		GT3- short linker	1339.1
		Sc	0	0		Lactose (Lac)- short linker	399.39
44		Sc	0	0		Lac- amine	341.31
	Galβ4GlcNAcβR1	Sc	0	0		N-acetyl Lactosamine (LacNAc)	440.44
	Galβ-NH2	Sc	0	0			179.17
47	GalNAcαR1	Sc	0	0			278.3
48	GalβR2	Sc	0	0			443.49
49	GalβR1	Sc	0	0			237.25
50	Galβ4GlcβR2	Sc	0	0		Lac- long linker	605.63
51	Galβ3GalNAcβR1	Sc	0	0		T-antigen Core 1 (β)	440.44
52	Galβ3GalNAcαR1	Sc	0	0		T-antigen Core 1	440.44
53	Galβ3GlcNAcβR1	Sc	0	0			440.44
54		Sc	0	SO3		6-O-sulfo LacNAc	542.49
55		Ac	2-3		В	(Neu5Ac)-LewisX	899.82
	Neu5Gca3Galβ4(Fuca3)GlcNAcβR1	Gc	2-3		B	(Neu5Gc)-LewisX	915.82
50	Neu5Aca3Galβ4(Fuca3)GlcNAc6SβR1	Ac	2-3	SO3	B	(Neu5Ac)-6-O-sulfo LewisX	1001.86
-				1 1 4 1			


Glycan Inventory 03162020-HMGB1

1			-		_		<i></i>	
-	59	Galβ3GlcNAcβ3Galβ4GlcβR1	Sc	0		L	Lacto-N-tetraose (LNT)	764.72
-		Neu5Acα3Galβ3GlcNAcβ3Galβ4GlcβR1	Ac	2-3		L	(Neu5Ac)-LNT	1077.96
-	61		Gc	2-3	0		(Neu5Gc)-LNT	1093.96
-	62	· · ·	Ac	2-3	SO3		(Neu5Ac)-6-O-sulfo LacNAc	855.72
-	63		Gc	2-3	SO3		(Neu5Gc)-6-O-sulfo LacNAc	871.72
-	64	· · ·	Ac-Ac	2-8/2-3	0		GD3- long linker	1347.23
-	65		Ac-Ac-Ac	2-8/2-8/2-3	0		GT3-long linker	1660.47
	66		Ac(Ac)	2-3(2-6)		В		1025.86
	67	Neu5Gca3(Neu5Aca6)Galβ4GlcβR1	Gc(Ac)	2-3(2-6)		В		1041.86
-	68	Kdna3(Neu5Aca6)Galβ4GlcβR1	Kdn(Ac)	2-3(2-6)	0	В		984.81
-	69	Neu5Gca8Neu5Aca3Galβ4GlcβR1	Gc-Ac	2-8/2-3	0			1041.86
-	70	Kdnα8Neu5Aca3Galβ4GlcβR1	Kdn-Ac	2-8/2-3	0			984.81
-	71	Neu5Acα8Kdnα6Galβ4GlcβR1	Ac-Kdn	2-8/2-6	0			984.81
	72	Neu5Aca8Neu5Gca3Galβ4GlcβR1	Ac-Gc	2-8/2-3	0			1041.86
	73	Neu5Aca8Neu5Gca6Galβ4GlcβR1	Ac-Gc	2-8/2-6	0			1041.86
	74	Kdnα8Neu5Gcα3Galβ4GlcβR1	Kdn-Gc	2-8/2-3	0			1000.81
	75	Neu5Gca8Neu5Gca3Galβ4GlcβR1	Gc-Gc	2-8/2-3	0			1057.86
	76	Neu5Aca8Neu5Aca6Galβ4GlcβR1	Ac-Ac	2-8/2-6	0			1025.86
	77	Neu5GcMea8Neu5Aca3Galβ4GlcβR1	GcMe-Ac	2-8/2-3	Ме			1055.89
	78	Galα3Galβ4GlcNAcβR1	Sc	0	0			602.58
	79	Neu4,5Ac2α3Galβ4GlcNAcβR1	Ac		4OAc			
	80	Neu5Acα3Galβ4GlcβR3	Ac					
	81	Legα3Galβ4GlcβR3	Leg					
	82	Neu5Ac9NAcα3Galβ4GlcβR1	Ac		9NAc			
	83	Gal6Sβ4(Fucα3)GlcNAcβR1			SO3	В	6'-O-Sulfo LewisX	688.63
	84	Neu5Aca3Gal6Sβ4(Fuca3)GlcNAcβR1	Ac		SO3	В	6'-O-Sulfo Neu5Ac-LewisX	1001.86
	85	Neu5Gcα3Gal6Sβ4(Fucα3)GlcNAcβR1	Gc		SO3	В	6'-O-Sulfo Neu5Gc-LewisX	1017.86
	86	Gal6Sβ4(Fucα3)GlcNAc6SβR1			SO3	В	6,6'-di-O-Sulfo LewisX	790.67
bioRxiv preprint doi: http	os://doi.org/10.11 87 /2	സ്ലാറ്റ്റോളില്ലെട്ടും പ്രാത്തില് പ്രത്തിന്റെ പ്രാത്തിന്റെ പ്രാത്തിന്ന പ്രാത്തിന്റെ പ്രാത്തിന്റെ പ്രാത പ്രാത്തിന്റെ പ്രാത്തിന്റെ പ്രാത്തിന്റെ പ്രാത്തിന്റെ പ്രാത്തിന്റെ പ്രാത്തിന്റെ പ്രാത്തിന്റെ പ്രാത്തിന്നെ പ്രാത്തിന	corright holder for this	preprint (which	SO3	В	6,6'-di-O-Sulfo Neu5Ac LewisX	1103.9
was not certified by	peer review) is the a 88		he preprint in perpetuity GC	y. It is made	SO3	В	6,6'-di-O-Sulfo Neu5Ac LewisX	1119.9
	89	Galβ4GlcNAcβ3Galβ4GlcβR1						764.73
	90		Ac					1077.97
	91	Neu5Gca3Galβ4GlcNAcβ3Galβ4GlcβR1	Gc					1093.96
	92	Neu5,9Ac2α3Galβ4GlcNAcβ3Galβ4GlcβR1	Ac		9OAc			1120
		Neu5Gc9Acα3Galβ4GlcNAcβ3Galβ4GlcβR1	Gc		90Ac			1136
-	94	Kdnα3Galβ4GlcβR1	Kdn					
-	95		Kdn					754.67
-		Neu5Acα3(GalNAcβ4)Galβ4GlcβR1	Ac			В	GM2	1120
-	97	Neu5Gcα3(GalNAcβ4)Galβ4GlcβR1	Gc			B	GM2	795.72
	98		Ac-Ac			B	GD2	795.72
	99		Ac-Ac	2-3	40Ac	D	GD2	795.72
	100		Ac	2-3	40Ac			795.72
-	100	Neu4,5Ac2α3Galβ3GlcNAcβR1	Ac	2-3	40Ac			811.72
-								
-		Neu4,5Ac2α3Galβ3GlcNAcαR1	Ac	2-3	40Ac			770.67
-	103	Neu4,5Ac2α3Galβ3GalNAcβR1	Ac	2-3	40Ac			1136
		Neu4,5Ac2α3Galβ3GalNAcαR1	Ac	2-3	40Ac			811.72
		Neu4Ac5Gca3Galβ4GlcNAcβR1	Gc	2-3	40Ac			811.72
		Neu4Ac5Gcα3Galβ4GlcβR1	Gc	2-3	4OAc			811.72
-	107	Neu4Ac5Gcα3Galβ4GlcNAcβ3Galβ4GlcβR1	Gc	2-3	40Ac			811.72
Ţ	108		Gc	2-3	4OAc			753.68
Ţ	109	,	Gc	2-3	4OAc			591.54
-		Neu4Ac5Gcα3Galβ3GalNAcβR1	Gc	2-3	4OAc			591.54
		Neu4Ac5Gcα3Galβ3GalNAcαR1	Gc	2-3	4OAc			794.74
	112	Neu5Ac9NAcα6Galβ4GlcβR1	Ac	2-6	9NAc			794.74
		Neu5Ac9NAca3GalßR1	Ac	2-3	9NAc			794.74
	113	· · · · · · · · · · · · · · · · · · ·		0.6	9NAc			794.74
	113	Neu5Ac9NAcα6GalβR1	Ac	2-6				
	113 114	· · · · · · · · · · · · · · · · · · ·	Ac Ac	2-0	9NAc			794.74
	113 114 115	Neu5Ac9NAcα6GalβR1						794.74 794.74
	113 114 115 116	Neu5Ac9NAcα6GalβR1 Neu5Ac9NAcα3Galβ4GlcNAcβR1	Ac	2-3	9NAc			

		•	Ac	2-3	9NAc			
		•	Ac	2-6	9NAc			
		·	Ac	2-3	9NAc			
	122		Ac	2-6	9NAc			
	123	· ·	Ac	2-3				988.98
	124	Neu5Acα6Galβ4GlcNAcβR5	Ac	2-6				988.98
	125	Neu5Acα6Galβ4GlcβR5	Ac	2-6				947.93
	126	Neu5Aca3Galβ4GlcβR5	Ac					947.93
	127	Neu5Ac9NAcα3Galβ3GalNAcβR1	Ac		9NAc			794.74
	128	Neu5Ac9NAcα6Galβ3GalNAcβR1	Ac		9NAc			794.74
	129	Neu5Ac9NAca6Galβ3GlcNAcaR1	Ac		9NAc			794.74
	130	Neu5Ac9NAca8Neu5Aca3Galβ4GlcβR1	Ac-Ac		9NAc		GD3	1066.92
	131	Neu5Ac7NAcα3Galβ4GlcβR1	Ac		7NAc			753.68
	132	Kdnα3GalβR1	Kdn					509.44
	133	Kdnα6GalβR1	Kdn					509.44
	134	Kdnα3Galβ4GlcNAcβR1	Kdn					712.63
	135	Kdnα6Galβ4GlcNAcβR1	Kdn					712.63
	136	Kdnα3Galβ3GlcNAcβR1	Kdn					712.63
	137	Kdnα6Galβ3GlcNAcβR1	Kdn					712.63
			Kdn					712.63
	139		Kdn					712.63
			Kdn					712.63
			Kdn					712.63
			Kdn					550.49
			Kdn					1036.91
			Kdn				LewisX	858.77
			Kdn	0.0//0.0		D	LewisA	858.77
	140	Neu5Aca3Galβ3(Neu5Aca6)GalNAcβR5	Ac-(Ac)	2-3/(2-6)		В		1279.52
			Δ			R		1010 50
bioRxiv preprint doi: https was not certified by p	s://doi.org/10.11147/2 beer review) is the a	Calβ4GICNAcββ(Neu5AcaG)Galβ4 Gcββ5. The c uthor/funder, who has granted bioRxiv a license to display the provide under a CoGV to interaction bioRxiv a license.		preprint (which . It is made		В		1312.53
bioRxiv preprint doi: https was not certified by p	148	Newskewskamskewskewskewskewskewskewskewskewskewskew	Ac	preprint (which . It is made		L		1312.53
bioRxiv preprint doi: https was not certified by p	148 149	NæijsAeuoGanβ4GičNAcβ3Gaiβ4GicβR5 Galβ4GlcNAcβ3Galβ4GlcNAcβ3(Neu5Acα6)G	Ac Ac	preprint (which . It is made		L B		1312.53 1677.67
bioRxiv preprint doi: https was not certified by p	148 149 150	NetilsActorsafβ4GičNAcβ3Gaiβ4GicβF5 Galβ4GlcNAcβ3Galβ4GlcNAcβ3(Neu5Aca6)Galβ4GlcNAcβ3(Neu5Aca6)Galβ4GlcNAcβ3Galβalβ4GlcNAcβ3Galβ4GlcNAcβ3Galβ4GlcNAcβ3Galβ4GlcNAcβ3Galβ4GlcNAcβ3Galβalβ4GlcNAcβ3Galβalβalβalβalβalβalβalβalβalβalβalβalβa	Ac Ac Ac	preprint (which . It is made		L B B		1312.53 1677.67 1677.67
bioRxiv preprint doi: https was not certified by p	148 149 150 151	NetisAetoGafβ4GičNAcβ3Gafβ4GicβF5 Galβ4GlcNAcβ3Galβ4GlcNAcβ3(Neu5Acα6)Ga Galβ4GlcNAcβ3(Neu5Acα6)Galβ4GlcNAcβ3Ga Neu5Acα6Galβ4GlcNAcβ3Galβ4GlcNAcβ3Ga	Ac Ac Ac Ac	preprint (which . It is made		L B B L		1312.53 1677.67 1677.67 1677.67
bioRxiv preprint doi: https was not certified by p	148 149 150 151 152	NetilsActorsafβ4GičNAcβ3Gaiβ4GicβF5 Galβ4GicNAcβ3Galβ4GicNAcβ3(Neu5Acα6)Ga Galβ4GicNAcβ3(Neu5Acα6)Galβ4GicNAcβ3Ga Neu5Acα6Galβ4GicNAcβ3Galβ4GicNAcβ3Ga Galβ4GicNAcβ3(Neu5Acα6)Galβ4GicNAcβ3(N	Ac Ac Ac Ac (Ac)-(Ac)	preprint (which . It is made		L B B L B		1312.53 1677.67 1677.67 1677.67 1968.76
bioRxiv preprint doi: https was not certified by p	148 149 150 151 152 153	NeuisAeuoGaiβ4GičNAcβ3Gaiβ4GicβF5 Galβ4GicNAcβ3Galβ4GicNAcβ3(Neu5Aca6)Ga Galβ4GicNAcβ3(Neu5Aca6)Galβ4GicNAcβ3Ga Neu5Aca6Galβ4GicNAcβ3Galβ4GicNAcβ3Ga Galβ4GicNAcβ3(Neu5Aca6)Galβ4GicNAcβ3(N Neu5Aca6Galβ4GicNAcβ3(Neu5Aca6)Galβ4G	Ac Ac Ac Ac (Ac)-(Ac) Ac-(Ac)	preprint (which . It is made		L B B L B B		1312.53 1677.67 1677.67 1677.67 1968.76 1968.76
bioRxiv preprint doi: https was not certified by p	148 149 150 151 152 153 154	NeuisAeuoGaiβ4GičNAcβ3Gaiβ4GicβF5 Galβ4GicNAcβ3Galβ4GicNAcβ3(Neu5Aca6)Ga Galβ4GicNAcβ3(Neu5Aca6)Galβ4GicNAcβ3Ga Neu5Aca6Galβ4GicNAcβ3Galβ4GicNAcβ3Ga Galβ4GicNAcβ3(Neu5Aca6)Galβ4GicNAcβ3(N Neu5Aca6Galβ4GicNAcβ3(Neu5Aca6)Galβ4G Neu5Aca6Galβ4GicNAcβ3(Neu5Aca6)Galβ4G	Ac Ac Ac Ac (Ac)-(Ac) Ac-(Ac) Ac-(Ac)	preprint (which . It is made		L B B L B B B		1312.53 1677.67 1677.67 1677.67 1968.76 1968.76 1968.76
bioRxiv preprint doi: https was not certified by p	148 149 150 151 152 153 154	NeuisAeuoGaiβ4GičNAcβ3Gaiβ4GicβF5 Galβ4GicNAcβ3Galβ4GicNAcβ3(Neu5Aca6)Ga Galβ4GicNAcβ3(Neu5Aca6)Galβ4GicNAcβ3Ga Neu5Aca6Galβ4GicNAcβ3Galβ4GicNAcβ3Ga Galβ4GicNAcβ3(Neu5Aca6)Galβ4GicNAcβ3(N Neu5Aca6Galβ4GicNAcβ3(Neu5Aca6)Galβ4G	Ac Ac Ac Ac (Ac)-(Ac) Ac-(Ac) Ac-(Ac)	preprint (which . It is made		L B B L B B		1312.53 1677.67 1677.67 1677.67 1968.76 1968.76
bioRxiv preprint doi: https was not certified by p	148 149 150 151 152 153 154 155	Neuis Acurca Aβ4GicNAcβ3Gaiβ4GicβF5 Galβ4GicNAcβ3Galβ4GicNAcβ3(Neu5Aca6)Ga Galβ4GicNAcβ3(Neu5Aca6)Galβ4GicNAcβ3Ga Neu5Aca6Galβ4GicNAcβ3Galβ4GicNAcβ3Ga Galβ4GicNAcβ3(Neu5Aca6)Galβ4GicNAcβ3(N Neu5Aca6Galβ4GicNAcβ3(Neu5Aca6)Galβ4Gi Neu5Aca6Galβ4GicNAcβ3(Neu5Aca6)Galβ4GicNAcβ3(Ne	Ac Ac Ac Ac (Ac)-(Ac) Ac-(Ac) Ac-(Ac) (Ac)-(Ac)	preprint (which . It is made		L B B L B B B		1312.53 1677.67 1677.67 1677.67 1968.76 1968.76 1968.76
bioRxiv preprint doi: https was not certified by p	148 149 150 151 152 153 154 155	Neuis Acurca Aβ4GicNAcβ3Gaiβ4GicβF5 Galβ4GicNAcβ3Galβ4GicNAcβ3(Neu5Aca6)Ga Galβ4GicNAcβ3(Neu5Aca6)Galβ4GicNAcβ3Ga Neu5Aca6Galβ4GicNAcβ3Galβ4GicNAcβ3Ga Galβ4GicNAcβ3(Neu5Aca6)Galβ4GicNAcβ3(N Neu5Aca6Galβ4GicNAcβ3(Neu5Aca6)Galβ4Gi Neu5Aca6Galβ4GicNAcβ3(Neu5Aca6)Galβ4GicNAcβ3(Ne	Ac Ac Ac Ac (Ac)-(Ac) Ac-(Ac) Ac-(Ac) (Ac)-(Ac) (Ac)-(Ac)	preprint (which . It is made		L B B L B B B B B		1312.53 1677.67 1677.67 1677.67 1968.76 1968.76 1968.76 1968.76 1968.76
bioRxiv preprint doi: https was not certified by p	148 149 150 151 152 153 154 155 156	Neuiskeutsanß4GicNAcβ3Gaip4GicpF5 Galβ4GicNAcβ3Galβ4GicNAcβ3(Neu5Aca6)Ga Galβ4GicNAcβ3(Neu5Aca6)Galβ4GicNAcβ3Ga Neu5Aca6Galβ4GicNAcβ3Galβ4GicNAcβ3Ga Galβ4GicNAcβ3(Neu5Aca6)Galβ4GicNAcβ3(N Neu5Aca6Galβ4GicNAcβ3(Neu5Aca6)Galβ4GicNAcβ3(Ne Galβ4GicNAcβ3(Neu5Aca6)Galβ4GicNAcβ3(Ne Galβ4GicNAcβ3(Neu5Aca6)Galβ4GicNAcβ3(Ne Galβ3GicNAcβ3(Neu5Aca6)Galβ4GicNAcβ3(Ne	Ac Ac Ac Ac Ac (Ac)-(Ac) Ac-(Ac) Ac-(Ac) (Ac)-(Ac) (Ac)-(Ac) Gc-(Ac)	preprint (which . It is made		L B B L B B B B B B B B B B B B B B B B		1312.531677.671677.671677.671968.761968.761968.761968.761968.761968.761968.76
bioRxiv preprint doi: https was not certified by p	148 149 150 151 152 153 154 155 156 157	Neuiskeutsanß4GicNAcβ3Gaip4GicpR5 Galβ4GicNAcβ3Galβ4GicNAcβ3(Neu5Aca6)Ga Galβ4GicNAcβ3(Neu5Aca6)Galβ4GicNAcβ3Ga Neu5Aca6Galβ4GicNAcβ3Galβ4GicNAcβ3Ga Galβ4GicNAcβ3(Neu5Aca6)Galβ4GicNAcβ3(N Neu5Aca6Galβ4GicNAcβ3(Neu5Aca6)Galβ4GicNAcβ3(Ne Galβ4GicNAcβ3(Neu5Aca6)Galβ4GicNAcβ3(Ne Galβ4GicNAcβ3(Neu5Aca6)Galβ4GicNAcβ3(Ne Galβ3GicNAcβ3(Neu5Aca6)Galβ4GicNAcβ3(Ne Neu5Gca6Galβ4GicNAcβ3Galβ4GicNAcβ3(Ne	Ac Ac Ac Ac Ac (Ac)-(Ac) Ac-(Ac) (Ac)-(Ac) (Ac)-(Ac) (Ac)-(Ac) (Ac)-(Ac) Ac-(Gc)	preprint (which . It is made		L B B L B B B B B B B B B B B B B B B B		1312.53 1677.67 1677.67 1677.67 1968.76 1968.76 1968.76 1968.76 1968.76 1968.76 1968.76 1968.76 1968.76 1968.76 1968.76 1968.76
bioRxiv preprint doi: https was not certified by p	148 149 150 151 152 153 154 155 156 157 158 159	Neuiskeutsanß4GicNAcβ3Gaip4GicpR5 Galβ4GicNAcβ3Galβ4GicNAcβ3(Neu5Aca6)Ga Galβ4GicNAcβ3(Neu5Aca6)Galβ4GicNAcβ3Ga Neu5Aca6Galβ4GicNAcβ3Galβ4GicNAcβ3Ga Galβ4GicNAcβ3(Neu5Aca6)Galβ4GicNAcβ3(N Neu5Aca6Galβ4GicNAcβ3(Neu5Aca6)Galβ4GicNAcβ3(Ne Galβ4GicNAcβ3(Neu5Aca6)Galβ4GicNAcβ3(Ne Galβ4GicNAcβ3(Neu5Aca6)Galβ4GicNAcβ3(Ne Galβ3GicNAcβ3(Neu5Aca6)Galβ4GicNAcβ3(Ne Neu5Gca6Galβ4GicNAcβ3Galβ4GicNAcβ3(Ne	Ac Ac Ac Ac (Ac)-(Ac) (Ac)-(Ac) Ac-(Ac) (Ac)-(Ac) (Ac)-(Ac) (Ac)-(Ac) Cac-(Ac) Ac-(Gc) Ac-(Gc)	preprint (which . It is made		L B B C C B B B B B B B B B B B B B B B		1312.53 1677.67 1677.67 1677.67 1968.76 1968.76 1968.76 1968.76 1968.76 1968.76 1968.76 1968.76 1968.76 1968.76 1984.76 1984.76
bioRxiv preprint doi: https was not certified by p	148 149 150 151 152 153 154 155 156 157 158 159	Neuis Aeuro Gaiß 4 Gic NAcß 3 Gaiß 4 Gic PR5 Galß 4 Gic NAcß 3 Galß 4 Gic NAcß 3 (Neu 5 Aca6) Ga Galß 4 Gic NAcß 3 (Neu 5 Aca6) Galß 4 Gic NAcß 3 Ga Neu 5 Aca6 Galß 4 Gic NAcß 3 Galß 4 Gic NAcß 3 Ga Galß 4 Gic NAcß 3 (Neu 5 Aca6) Galß 4 Gic NAcß 3 (N Neu 5 Aca6 Galß 4 Gic NAcß 3 (Neu 5 Aca6) Galß 4 Gic NAcß 3 (Neu Galß 4 Gic NAcß 3 (Neu 5 Aca6) Galß 4 Gic NAcß 3 (Ne Galß 4 Gic NAcß 3 (Neu 5 Aca6) Galß 4 Gic NAcß 3 (Ne Galß 4 Gic NAcß 3 (Neu 5 Aca6) Galß 3 Gic NAcß 3 (Ne Galß 3 Gic NAcß 3 (Neu 5 Aca6) Galß 4 Gic NAcß 3 (Ne Neu 5 Gca6 Galß 4 Gic NAcß 3 Galß 4 Gic NAcß 3 (Ne Neu 5 Aca6 Galß 4 Gic NAcß 3 Galß 4 Gic NAcß 3 (Ne Neu 5 Aca6 Galß 4 Gic NAcß 3 Galß 4 Gic NAcß 3 (Ne Neu 5 Aca6 Galß 4 Gic NAcß 3 Galß 4 Gic NAcß 3 (Ne	Ac Ac Ac Ac (Ac)-(Ac) (Ac)-(Ac) Ac-(Ac) (Ac)-(Ac) (Ac)-(Ac) (Ac)-(Ac) Cac-(Ac) Ac-(Gc) Ac-(Gc) Ac-(Gc) Kdn-(Gc-Ac)	preprint (which . It is made		L B B C B B B B B B B B B B B B B B B B		1312.53 1677.67 1677.67 1677.67 1677.67 1968.76 1968.76 1968.76 1968.76 1968.76 1968.76 1968.76 1968.76 1984.76 2234.83
bioRxiv preprint doi: https was not certified by p	148 149 150 151 152 153 154 155 156 157 158 159 160 161	Neuis Aeuro Gaiß 4 Gic NAcß 3 Gaiß 4 Gic PR5 Galß 4 Gic NAcß 3 Gaiß 4 Gic NAcß 3 (Neu 5 Aca6) Gaiß 4 Gic NAcß 3 (Neu 5 Aca6) Ga	Ac Ac Ac Ac (Ac)-(Ac) (Ac)-(Ac) Ac-(Ac) (Ac)-(Ac) (Ac)-(Ac) (Ac)-(Ac) Cac-(Ac) Ac-(Gc) Ac-(Gc) Ac-(Gc) Kdn-(Gc-Ac)	preprint (which . It is made		L B B C B B B B B B B B B B B B B B B B		1312.53 1677.67 1677.67 1677.67 1968.76 1968.76 1968.76 1968.76 1968.76 1968.76 1968.76 1968.76 1968.76 2234.83 2234.83
bioRxiv preprint doi: https was not certified by p	148 149 150 151 152 153 154 155 156 157 158 159 160 161	Neuis Aeuro Gaiß 4 Gic NAcß 3 Gaiß 4 Gic PR5 Galß 4 Gic NAcß 3 Galß 4 Gic NAcß 3 (Neu 5 Aca6) Ga Galß 4 Gic NAcß 3 (Neu 5 Aca6) Galß 4 Gic NAcß 3 Ga Neu 5 Aca6 Galß 4 Gic NAcß 3 Galß 4 Gic NAcß 3 Ga Galß 4 Gic NAcß 3 (Neu 5 Aca6) Galß 4 Gic NAcß 3 (Neu 5 Aca6 Galß 4 Gic NAcß 3 (Neu 5 Aca6) Galß 4 Gic NAcß 3 (Neu 5 Gca6 Galß 4 Gic NAcß 3 Galß 4 Gic NAcß 3 (Neu 5 Aca6) Galß 4 Gic NAcß 3 Galß 4 Gic NAcß 3 (Neu 5 Aca6) Galß 4 Gic NAcß	Ac Ac Ac Ac (Ac)-(Ac) (Ac)-(Ac) Ac-(Ac) (Ac)-(Ac) (Ac)-(Ac) (Ac)-(Ac) Cac-(Ac) Ac-(Gc) Ac-(Gc) Ac-(Gc) Kdn-(Gc-Ac)	preprint (which . It is made		L B B C B B B B B B B B B B B B B B B B		1312.53 1677.67 1677.67 1677.67 1968.76 1968.76 1968.76 1968.76 1968.76 1968.76 1968.76 1984.76 2234.83 2275.85
bioRxiv preprint doi: https was not certified by p	148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163	Neuiskeutsatβ4GicNAcβ3Gaip4GicpFt5 Galβ4GicNAcβ3Galβ4GicNAcβ3(Neu5Aca6)Ga Galβ4GicNAcβ3(Neu5Aca6)Galβ4GicNAcβ3Ga Neu5Aca6Galβ4GicNAcβ3Galβ4GicNAcβ3Ga Galβ4GicNAcβ3(Neu5Aca6)Galβ4GicNAcβ3(Neu5Aca6Galβ4GicNAcβ3(Neu5Aca6)Galβ4GicNAcβ3(Neu5Aca6)Galβ4GicNAcβ3(Ne Galβ4GicNAcβ3(Neu5Aca6)Galβ4GicNAcβ3(Ne Galβ4GicNAcβ3(Neu5Aca6)Galβ4GicNAcβ3(Ne Galβ3GicNAcβ3(Neu5Aca6)Galβ4GicNAcβ3(Ne Neu5Gca6Galβ4GicNAcβ3Galβ4GicNAcβ3(Ne Neu5Aca6Galβ4GicNAcβ3Galβ4GicNAcβ3(Ne Neu5Gca6Galβ4GicNAcβ3Galβ4GicNAcβ3(Ne Neu5Gca6Galβ4GicNAcβ3Galβ4GicNAcβ3(Ne Neu5Gca6Galβ4GicNAcβ3Galβ4GicNAcβ3(Ne Kdna6Galβ4GicNAcβ3Galβ4GicNAcβ3(Neu5G Neu5Gca6Galβ4GicNAcβ3Galβ4GicNAcβ3(Neu5G Galβ4GicNAcβ3Galβ4GicNAcβ3(Neu5G Galβ4GicNAcβ3Galβ4GicNAcβ3(Neu5G	Ac Ac Ac Ac (Ac)-(Ac) (Ac)-(Ac) Ac-(Ac) (Ac)-(Ac) (Ac)-(Ac) (Ac)-(Ac) Cac-(Ac) Ac-(Gc) Ac-(Gc) Ac-(Gc) Kdn-(Gc-Ac)	preprint (which . It is made		L B B C B B B B B B B B B B B B B B B B		1312.53 1677.67 1677.67 1677.67 1677.67 1968.76 1968.76 1968.76 1968.76 1968.76 1968.76 1984.76 2234.83 2235.85 697.74
bioRxiv preprint doi: https was not certified by p	148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164	Neuiskeutsatß4GicNAcβ3Gaip4GicpFs Galβ4GicNAcβ3Galβ4GicNAcβ3(Neu5Aca6)Ga Galβ4GicNAcβ3(Neu5Aca6)Galβ4GicNAcβ3Ga Neu5Aca6Galβ4GicNAcβ3Galβ4GicNAcβ3Ga Galβ4GicNAcβ3(Neu5Aca6)Galβ4GicNAcβ3(Neu5Aca6)Galβ4GicNAcβ3(Neu5Aca6)Galβ4GicNAcβ3(Neu5Aca6)Galβ4GicNAcβ3(Ne Galβ4GicNAcβ3(Neu5Aca6)Galβ3GicNAcβ3(Ne Galβ3GicNAcβ3(Neu5Aca6)Galβ4GicNAcβ3(Ne Galβ3GicNAcβ3(Neu5Aca6)Galβ4GicNAcβ3(Ne Neu5Gca6Galβ4GicNAcβ3Galβ4GicNAcβ3(Ne Neu5Gca6Galβ4GicNAcβ3Galβ4GicNAcβ3(Ne Neu5Aca6Galβ4GicNAcβ3Galβ4GicNAcβ3(Ne Neu5Gca6Galβ4GicNAcβ3Galβ4GicNAcβ3(Ne Kdna6Galβ4GicNAcβ3Galβ4GicNAcβ3(Neu5G Neu5Gca6Galβ4GicNAcβ3Galβ4GicNAcβ3(Neu5G Galβ4GicNAcβ3Galβ4GicNAcβ3(Neu5G Neu5Gca6Galβ4GicNAcβ3Galβ4GicNAcβ3(Neu5G Neu5Gca6Galβ4GicNAcβ3Galβ4GicNAcβ3(Neu5G Neu5Gca6Galβ4GicNAcβ3Galβ4GicNAcβ3(Neu5G Neu5Gca6Galβ4GicNAcβ3Galβ4GicNAcβ3(Neu5G Neu5Gca6Galβ4GicNAcβ3Galβ4GicNAcβ3(Neu5G Neu5Gca6Galβ4GicNAcβ3Galβ4GicNAcβ3(Neu5G Galβ4GicNAcβ2ManaR5 Neu5Aca3Galβ4GicNAcβ2ManaR5	Ac Ac Ac Ac (Ac)-(Ac) (Ac)-(Ac) Ac-(Ac) (Ac)-(Ac) (Ac)-(Ac) (Ac)-(Ac) (Ac)-(Ac) (Ac)-(Ac) (Ac)-(Ac) (Ac-(Gc) (Ac-(Gc) (Ac-(Ac)	preprint (which . It is made		L B B C B B B B B B B B B B B B B B B B		1312.53 1677.67 1677.67 1677.67 1677.67 1968.76 1968.76 1968.76 1968.76 1968.76 1984.76 2234.83 2275.85 697.74 859.39
bioRxiv preprint doi: https was not certified by p	148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165	Neuiskeutsatß4GicNAcβ3Gaip4GicpFs Galβ4GicNAcβ3Galβ4GicNAcβ3(Neu5Aca6)Ga Galβ4GicNAcβ3(Neu5Aca6)Galβ4GicNAcβ3Ga Neu5Aca6Galβ4GicNAcβ3Galβ4GicNAcβ3Ga Galβ4GicNAcβ3(Neu5Aca6)Galβ4GicNAcβ3(Neu5Aca6)Galβ4GicNAcβ3(Neu5Aca6)Galβ4GicNAcβ3(Neu5Aca6)Galβ4GicNAcβ3(Ne Galβ4GicNAcβ3(Neu5Aca6)Galβ3GicNAcβ3(Ne Galβ3GicNAcβ3(Neu5Aca6)Galβ4GicNAcβ3(Ne Galβ3GicNAcβ3(Neu5Aca6)Galβ4GicNAcβ3(Ne Neu5Gca6Galβ4GicNAcβ3Galβ4GicNAcβ3(Ne Neu5Gca6Galβ4GicNAcβ3Galβ4GicNAcβ3(Ne Neu5Aca6Galβ4GicNAcβ3Galβ4GicNAcβ3(Ne Neu5Gca6Galβ4GicNAcβ3Galβ4GicNAcβ3(Ne Kdna6Galβ4GicNAcβ3Galβ4GicNAcβ3(Neu5G Neu5Gca6Galβ4GicNAcβ3Galβ4GicNAcβ3(Neu5G Galβ4GicNAcβ3Galβ4GicNAcβ3(Neu5G Neu5Gca6Galβ4GicNAcβ3Galβ4GicNAcβ3(Neu5G Neu5Gca6Galβ4GicNAcβ3Galβ4GicNAcβ3(Neu5G Neu5Gca6Galβ4GicNAcβ3Galβ4GicNAcβ3(Neu5G Neu5Gca6Galβ4GicNAcβ3Galβ4GicNAcβ3(Neu5G Neu5Gca6Galβ4GicNAcβ3Galβ4GicNAcβ3(Neu5G Neu5Gca6Galβ4GicNAcβ3Galβ4GicNAcβ3(Neu5G Galβ4GicNAcβ2ManaR5 Neu5Aca3Galβ4GicNAcβ2ManaR5	Ac Ac Ac Ac (Ac)-(Ac) (Ac)-(Ac) Ac-(Ac) (Ac)-(Ac) (Ac)-(Ac) (Ac)-(Ac) (Ac)-(Ac) (Ac)-(Ac) (Ac)-(Ac) (Ac)-(Ac) (Ac) (Ac) (Ac) (Ac) (Ac) (Ac) (Ac)	preprint (which . It is made		L B B C B B B B B B B B B B B B B B B B		1312.53 1677.67 1677.67 1677.67 1677.67 1968.76 1968.76 1968.76 1968.76 1968.76 1968.76 1984.76 2234.83 2235.85 697.74 859.39 1150.49
bioRxiv preprint doi: https was not certified by p	148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166	Νæйðlæððlæððlæðlæðlæðlæðlæðlæðlæðlæðlæðlæðl	Ac Ac Ac Ac (Ac)-(Ac) (Ac)-(Ac) Ac-(Ac) (Ac)-(Ac) (Ac)-(Ac) (Ac)-(Ac) (Ac)-(Ac) (Ac)-(Ac) (Ac)-(Ac) (Ac)-(Ac) (Ac) (Ac) (Ac) (Ac) (Ac) (Ac) (Ac)	preprint (which . It is made		L B B C C C C C C C C C C C C C C C C C		1312.53 1677.67 1677.67 1677.67 1677.67 1968.76 1968.76 1968.76 1968.76 1968.76 1968.76 1984.76 2234.83 2235.85 697.74 859.39 1150.49 1166.48
bioRxiv preprint doi: https was not certified by p	148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167	Νæйðlæððlæððlæðlæðlæðlæðlæðlæðlæðlæðlæðlæðl	Ac Ac Ac Ac (Ac)-(Ac) (Ac)-(Ac) Ac-(Ac) (Ac)-(Ac) (Ac)-(Ac) (Ac)-(Ac) (Ac)-(Ac) (Ac)-(Ac) (Ac)-(Ac) (Ac)-(Ac) (Ac) (Ac)-(Ac) (Ac) (Ac) (Ac) (Ac) (Ac) (Ac) (Ac)	preprint (which . It is made		L B B C B C B C C C C C C C C C C C C C		1312.53 1677.67 1677.67 1677.67 1677.67 1968.76 1968.76 1968.76 1968.76 1968.76 1968.76 1984.76 2234.83 2234.83 2234.83 2234.83 1959.39 1150.49 1166.48 1005.45
bioRxiv preprint doi: https was not certified by p	148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167	Neuisia Galβ4GlcNAcβ3Galβ4GlcNAcβ3(Neu5Aca6)Gal Galβ4GlcNAcβ3(Neu5Aca6)Galβ4GlcNAcβ3Gal Neu5Aca6Galβ4GlcNAcβ3Galβ4GlcNAcβ3Gal Galβ4GlcNAcβ3(Neu5Aca6)Galβ4GlcNAcβ3Gal Galβ4GlcNAcβ3(Neu5Aca6)Galβ4GlcNAcβ3Gal Neu5Aca6Galβ4GlcNAcβ3(Neu5Aca6)Galβ4GlcNAcβ3(Ne Neu5Aca6Galβ4GlcNAcβ3(Neu5Aca6)Galβ4GlcNAcβ3(Ne Galβ4GlcNAcβ3(Neu5Aca6)Galβ4GlcNAcβ3(Ne Galβ4GlcNAcβ3(Neu5Aca6)Galβ4GlcNAcβ3(Ne Galβ3GlcNAcβ3(Neu5Aca6)Galβ4GlcNAcβ3(Ne Galβ3GlcNAcβ3(Neu5Aca6)Galβ4GlcNAcβ3(Ne Neu5Gca6Galβ4GlcNAcβ3Galβ4GlcNAcβ3(Ne Neu5Gca6Galβ4GlcNAcβ3Galβ4GlcNAcβ3(Ne Neu5Gca6Galβ4GlcNAcβ3Galβ4GlcNAcβ3(Ne Galβ4GlcNAcβ3Galβ4GlcNAcβ3(Ne Galβ4GlcNAcβ3Galβ4GlcNAcβ3(Ne Galβ4GlcNAcβ3Galβ4GlcNAcβ3(Ne Galβ4GlcNAcβ3Galβ4GlcNAcβ3(Ne Galβ4GlcNAcβ3Galβ4GlcNAcβ3(Ne Galβ4GlcNAcβ2ManaR5 Neu5Aca3Galβ4GlcNAcβ2ManaR5 Neu5Aca3Galβ4GlcNAcβ2ManaR5 Neu5Gca3Galβ4GlcNAcβ2ManaR5 Neu5Gca3Galβ4(Fuca3)GlcNAcβ2ManaR5 Neu5Gca3Galβ4(Fuca3)GlcNAcβ2ManaR5 Neu5Gca3Galβ4(Fuca3)GlcNAcβ2ManaR5 Neu5Gca3Galβ4(Fuca3)GlcNAcβ2ManaR5 Neu5Gca3Galβ4(Fuca3)GlcNAcβ2ManaR5 <	Ac Ac Ac Ac (Ac)-(Ac) (Ac)-(Ac) Ac-(Ac) (Ac)-(Ac) (Ac)-(Ac) (Ac)-(Ac) (Ac)-(Ac) (Ac)-(Ac) (Ac)-(Ac) (Ac)-(Ac) (Ac) (Ac)-(Ac) (Ac) (Ac) (Ac) (Ac) (Ac) (Ac) (Ac)	preprint (which . It is made		L B B C B C B C C C C C C C C C C C C C		1312.53 1677.67 1677.67 1677.67 1968.76 1968.76 1968.76 1968.76 1968.76 1968.76 1968.76 1984.76 2234.83 2234.83 2234.83 2234.83 1959.39 1150.49 1166.48 1005.45 1312.54
bioRxiv preprint doi: https was not certified by p	148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 164 165 166 167	ΝæйðAedðGafβ4GičNAcβ3Gaifβ4GicpR5 Galβ4GicNAcβ3Gaiβ4GicNAcβ3(Neu5Aca6)Gai Galβ4GicNAcβ3(Neu5Aca6)Gai Neu5Aca6Gai Galβ4GicNAcβ3(Neu5Aca6)Gai Gai Gai Gai Gai Gai Neu5Aca6Gai Gai Gai <	Ac Ac Ac Ac (Ac)-(Ac) (Ac)-(Ac) (Ac)-(Ac) (Ac)-(Ac) (Ac)-(Ac) (Ac)-(Ac) (Ac)-(Ac) (Ac)-(Ac) (Ac)-(Ac) (Ac)-(Ac) (Ac) (Ac)-(Ac) (Ac) (Ac) (Ac) (Ac) (Ac) (Ac) (Ac)	preprint (which . It is made		L B B C B C B C C C C C C C C C C C C C		1312.53 1677.67 1677.67 1677.67 1968.76 1968.76 1968.76 1968.76 1968.76 1968.76 1968.76 1968.76 1968.76 1968.76 1984.76 2234.83 2234.83 2234.83 2234.83 697.74 859.39 1166.48 1005.45 1312.54 697.34 859.39
bioRxiv preprint doi: https was not certified by p	148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 165 166 167 168	ΝαίβΑ ΑσίβΑ Galβ4GlcNAcβ3Galβ4GlcNAcβ3(Neu5Aca6)Galβ4GlcNAcβ3Galβ4GlcNAcβ3Galβ4GlcNAcβ3Galβ4GlcNAcβ3Galβ4GlcNAcβ3Galβ4GlcNAcβ3Galβ4GlcNAcβ3Galβ4GlcNAcβ3Galβ4GlcNAcβ3(Neu5Aca6)Galβ4GlcNAcβ3(Neu5Aca6)Galβ4GlcNAcβ3(Neu5Aca6)Galβ4GlcNAcβ3(Neu5Aca6)Galβ4GlcNAcβ3(Neu5Aca6)Galβ4GlcNAcβ3(Neu5Aca6)Galβ4GlcNAcβ3(Neu5Aca6)Galβ4GlcNAcβ3(Neu5Aca6)Galβ4GlcNAcβ3(Neu5Aca6)Galβ4GlcNAcβ3(Neu5Aca6)Galβ4GlcNAcβ3(Neu5Aca6)Galβ4GlcNAcβ3(Neu5Aca6)Galβ4GlcNAcβ3(Neu5Aca6)Galβ4GlcNAcβ3(Neu5Gca6Galβ4GlcNAcβ3Galβ4GlcNAcβ3(Neu5Gca6Galβ4GlcNAcβ3Galβ4GlcNAcβ3(Neu5GCa6Galβ4GlcNAcβ3Galβ4GlcNAcβ3(Neu5GCa6Galβ4GlcNAcβ3Galβ4GlcNAcβ3(Neu5GCa6Galβ4GlcNAcβ3Galβ4GlcNAcβ3(Neu5GCa6Galβ4GlcNAcβ3Galβ4GlcNAcβ3(Neu5GGalβ4GlcNAcβ3Galβ4GlcNAcβ3(Neu5GCa3Galβ4GlcNAcβ2ManαR5 Neu5Aca3Galβ4GlcNAcβ2ManαR5 Galβ4GlcNAcβ2ManαR5 Galβ4GlcNAcβ6ManαR5 Galβ4GlcNAcβ6ManαR5	Ac Ac Ac Ac (Ac)-(Ac) (Ac)-(Ac) Ac-(Ac) (Ac)-(Ac) (Ac)-(Ac) (Ac)-(Ac) (Ac)-(Ac) (Ac)-(Ac) (Ac-(Gc) (Ac-(Gc) (Ac-(Ac) (Ac) (Ac) (Ac) (Ac) (Ac) (Ac) (Ac)	preprint (which . It is made		L B B B B B B B B B B B B B B B B B B B		1312.53 1677.67 1677.67 1677.67 1677.67 1968.76 1968.76 1968.76 1968.76 1968.76 1968.76 1968.76 1984.76 2234.83 2234.83 2234.83 2234.83 2234.83 1984.76 1984.76 1984.76 1984.76 1984.76 1984.76 1984.76 1984.76 1984.76 1984.76 1984.76 1984.76 1984.76 1984.76 1984.76 1984.76 1984.76 697.74 859.39 11150.49 1150.49 1150.49 1150.49
bioRxiv preprint doi: https was not certified by p	148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170	Næijskætsiski GičNAcbsGaipstGicpR5 Galβ4GlcNAcβ3Galβ4GlcNAcβ3(Neu5Aca6)Galβ4GlcNAcβ3Gal Galβ4GlcNAcβ3(Neu5Aca6)Galβ4GlcNAcβ3Gal Neu5Aca6Galβ4GlcNAcβ3Galβ4GlcNAcβ3Gal Galβ4GlcNAcβ3(Neu5Aca6)Galβ4GlcNAcβ3Gal Galβ4GlcNAcβ3(Neu5Aca6)Galβ4GlcNAcβ3Gal Neu5Aca6Galβ4GlcNAcβ3(Neu5Aca6)Galβ4GlcNAcβ3(Neu5Aca6)Galβ4GlcNAcβ3(Neu5Aca6)Galβ4GlcNAcβ3(Neu5Aca6)Galβ4GlcNAcβ3(Neu5Aca6)Galβ4GlcNAcβ3(Neu5Aca6)Galβ4GlcNAcβ3(Neu5Aca6)Galβ4GlcNAcβ3(Neu5Aca6)Galβ4GlcNAcβ3(Neu5Aca6)Galβ4GlcNAcβ3(Neu5Gca6Galβ4GlcNAcβ3Galβ4GlcNAcβ3(Neu5GCa6Galβ4GlcNAcβ3Galβ4GlcNAcβ3(Neu5GCa6Galβ4GlcNAcβ3Galβ4GlcNAcβ3(Neu5GCa6Galβ4GlcNAcβ3Galβ4GlcNAcβ3(Neu5GCa6Galβ4GlcNAcβ3Galβ4GlcNAcβ3(Neu5GCa6Galβ4GlcNAcβ3Galβ4GlcNAcβ3(Neu5GCa6Galβ4GlcNAcβ2ManαR5 Neu5Gcca6Galβ4GlcNAcβ2ManαR5 Neu5Gcca3Galβ4GlcNAcβ2ManαR5 Neu5Gcca3Galβ4GlcNAcβ2ManαR5 Galβ4(Fuca3)GlcNAcβ2ManαR5 Galβ4GlcNAcβ6ManαR5 Neu5Gcca3Galβ4GlcNAcβ2ManαR5 Neu5Gcca3Galβ4GlcNAcβ2ManαR5 Neu5Aca3Galβ4GlcNAcβ2ManαR5 Neu5Aca3Galβ4GlcNAcβ6ManαR5 Neu5Aca3Galβ4GlcNAcβ6ManαR5 Neu5Aca3Galβ4GlcNAcβ6ManαR5 Neu5Aca3Galβ4GlcNAcβ6ManαR5 Neu5Aca3Galβ4GlcNAcβ6ManαR5 Neu5Aca3Galβ4GlcNAcβ6ManαR5	Ac Ac Ac Ac (Ac)-(Ac) (Ac)-(Ac) (Ac)-(Ac) (Ac)-(Ac) (Ac)-(Ac) (Ac)-(Ac) (Ac)-(Ac) (Ac)-(Ac) (Ac)-(Ac) (Ac)-(Ac) (Ac) (Ac)-(Ac) (Ac) (Ac) (Ac) (Ac) (Ac) (Ac) (Ac)	preprint (which . It is made		L B B B B B B B B B B B B B B B B B B B		1312.53 1677.67 1677.67 1677.67 1677.67 1968.76 1968.76 1968.76 1968.76 1968.76 1968.76 1968.76 1968.76 1968.76 1984.76 2234.83 2234.83 2234.83 2234.83 697.74 859.39 1150.49 1312.54 697.34 859.39 11166.48 1005.45 1312.54 697.34 1150.49 1150.49 1150.49
bioRxiv preprint doi: https was not certified by p	148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171	Neuisskeatesatesatesatesatesatesatesatesatesate	Ac Ac Ac Ac (Ac)-(Ac) (Ac)-(Ac) Ac-(Ac) (Ac)-(Ac) (Ac)-(Ac) (Ac)-(Ac) (Ac)-(Ac) (Ac)-(Ac) (Ac) (Ac)-(Ac) (Ac) (Ac) (Ac) (Ac) (Ac) (Ac) (Ac)	preprint (which . It is made		L B B B B B B B B B B B B B B B B B B B		1312.53 1677.67 1677.67 1677.67 1968.76 1968.76 1968.76 1968.76 1968.76 1968.76 1968.76 1968.76 1968.76 1968.76 1968.76 1968.76 1984.76 2234.83 2234.83 2234.83 2234.83 1984.76 1984.76 1984.76 1984.76 1984.76 1984.76 1984.76 1984.76 1984.76 1984.76 1984.76 697.74 859.39 1166.48 1005.45 1160.49 1166.48 1005.45
bioRxiv preprint doi: https was not certified by p	148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171	Neuisskeatesatesatesatesatesatesatesatesatesate	Ac Ac Ac Ac-(Ac) Ac-(Ac) Ac-(Ac) (Ac)-(Ac) (Ac)-(Ac) (Ac)-(Ac) Gc-(Ac) Ac-(Gc) Gc-(Ac)-(Ac) Gc-(Ac) Ac-(Gc) Gc-(Ac-Ac) Gc Ac Gc Ac Gc Ac Gc Ac Gc Ac Gc Ac Ac <tr td=""> <tr td=""></tr></tr>	preprint (which . It is made		L B B B B B B B B B B B B B B B B B B B		1312.53 1677.67 1677.67 1677.67 1968.76 1968.76 1968.76 1968.76 1968.76 1968.76 1968.76 1968.76 1968.76 1968.76 1968.76 1968.76 1984.76 2234.83 2234.83 2234.83 2234.83 1984.76 697.74 859.39 1150.49 1312.54 697.34 859.39 1150.49 1150.49 1150.49 1150.49 1150.49 1150.49 1150.49 1166.48 1005.45 1166.48 1005.45 1166.48 1005.45 1166.48 1005.45 1166.48 1005.45 1005.45
bioRxiv preprint doi: https was not certified by p	148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172	Neuisskeatesatesatesatesatesatesatesatesatesate	Ac Ac Ac Ac (Ac)-(Ac) (Ac)-(Ac) Ac-(Ac) (Ac)-(Ac) (Ac)-(Ac) (Ac)-(Ac) (Ac)-(Ac) (Ac)-(Ac) (Ac) (Ac)-(Ac) (Ac) (Ac) (Ac) (Ac) (Ac) (Ac) (Ac)	preprint (which . It is made		L B B B B B B B B B B B B B B B B B B B		1312.53 1677.67 1677.67 1677.67 1968.76 1968.76 1968.76 1968.76 1968.76 1968.76 1968.76 1968.76 1968.76 1968.76 1968.76 1968.76 1984.76 2234.83 2234.83 2234.83 2234.83 1984.76 697.74 859.39 1150.49 1312.54 697.34 859.39 1150.49 1150.49 1150.49 1150.49 1150.49 1150.49 1150.49 1166.48 1005.45 1166.48 1005.45 1166.48 1005.45 1166.48 1005.45 1296.54 1312.54
bioRxiv preprint doi: https was not certified by p	148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 168 169 170 171 172 173	Neuisiake.awdaafs4GicNAcβ3Galβ4GicNAcβ3(Neu5Aca6)Gal Galβ4GicNAcβ3(Neu5Aca6)Galβ4GicNAcβ3Gal Neu5Aca6Galβ4GicNAcβ3Galβ4GicNAcβ3Gal Neu5Aca6Galβ4GicNAcβ3Galβ4GicNAcβ3Gal Neu5Aca6Galβ4GicNAcβ3Galβ4GicNAcβ3Gal Neu5Aca6Galβ4GicNAcβ3(Neu5Aca6)Galβ4GicNAcβ3(Ne Neu5Aca6Galβ4GicNAcβ3(Neu5Aca6)Galβ4GicNAcβ3(Ne Galβ4GicNAcβ3(Neu5Aca6)Galβ4GicNAcβ3(Ne Galβ4GicNAcβ3(Neu5Aca6)Galβ4GicNAcβ3(Ne Galβ3GicNAcβ3(Neu5Aca6)Galβ4GicNAcβ3(Ne Neu5Gca6Galβ4GicNAcβ3Galβ4GicNAcβ3(Ne Neu5Gca6Galβ4GicNAcβ3Galβ4GicNAcβ3(Ne Neu5Gca6Galβ4GicNAcβ3Galβ4GicNAcβ3(Ne GicNAcβ2ManaR5 Neu5Gca3Galβ4GicNAcβ2ManaR5 Neu5Gca3Galβ4GicNAcβ2ManaR5 Neu5Gca3Galβ4GicNAcβ2ManaR5 Galβ4GicNAcβ2ManaR5 Neu5Gca3Galβ4GicNAcβ2ManaR5 Galβ4GicNAcβ6ManaR5 Neu5Gca3Galβ4GicNAcβ6ManaR5 Galβ4GicNAcβ6ManaR5 Neu5Aca3Galβ4GicNAcβ6ManaR5 Neu5Aca3Galβ4GicNAcβ6ManaR5 Neu5Aca3Galβ4GicNAcβ6ManaR5 Neu5Aca3Galβ4GicNAcβ6ManaR5 Neu5Aca3Galβ4GicNAcβ6ManaR5 Neu5Aca3Galβ4GicNAcβ6ManaR5 Neu5Aca3Galβ4GicNAcβ6ManaR5 Neu5Gca3Galβ4(Fuca3)GicNAcβ6Man	Ac Ac Ac Ac-(Ac) Ac-(Ac) Ac-(Ac) (Ac)-(Ac) (Ac)-(Ac) (Ac)-(Ac) Gc-(Ac) Ac-(Gc) Gc-(Ac)-(Ac) Gc-(Ac) Ac-(Gc) Gc-(Ac-Ac) Gc Ac Gc Ac Gc Ac Gc Ac Gc Ac Gc Ac Ac <tr td=""> <tr td=""></tr></tr>	preprint (which . It is made		LBBBBBBBBBBBBBBBBBBBBBBBBBLLBBILBBLBB <td></td> <td>1312.53 1677.67 1677.67 1677.67 1968.76 1968.76 1968.76 1968.76 1968.76 1968.76 1968.76 1968.76 1968.76 1968.76 1968.76 1968.76 1984.76 2234.83 2234.83 2234.83 2234.83 697.74 859.39 1150.49 1005.45 1312.54 697.34 859.39 1150.49 1150.49 1150.49 1150.49 1150.49 1150.49 1150.49 1150.49 1150.49 1150.49 1150.49 1150.49 1166.48 1005.45 1296.54 1312.54 900.42</td>		1312.53 1677.67 1677.67 1677.67 1968.76 1968.76 1968.76 1968.76 1968.76 1968.76 1968.76 1968.76 1968.76 1968.76 1968.76 1968.76 1984.76 2234.83 2234.83 2234.83 2234.83 697.74 859.39 1150.49 1005.45 1312.54 697.34 859.39 1150.49 1150.49 1150.49 1150.49 1150.49 1150.49 1150.49 1150.49 1150.49 1150.49 1150.49 1150.49 1166.48 1005.45 1296.54 1312.54 900.42
bioRxiv preprint doi: https was not certified by p	 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 	National State Galβ4GlcNAcβ3Galβ4GlcNAcβ3(Neu5Aca6)Galβ4GlcNAcβ3Galβ4GlcNAcβ2ManaR5 Galβ4GlcNAcβ2ManaR5 Galβ4GlcNAcβ2ManaR5 Neu5Gca3Galβ4GlcNAcβ2ManaR5 Galβ4GlcNAcβ2ManaR5 Neu5Gca3Galβ4GlcNAcβ2ManaR5 Galβ4GlcNAcβ2ManaR5 Galβ4GlcNAcβ6ManaR5 Galβ4GlcNAcβ6ManaR5 Galβ4GlcNAcβ6ManaR5 Neu5Gca3Galβ4GlcNAcβ6ManaR5 Neu5Gca3Galβ4GlcNAcβ6ManaR5 Neu5Gca3Galβ4GlcNAcβ6ManaR5 Galβ4(Fuca3)GlcNAcβ6ManaR5 Neu5Aca3Galβ4(Fuca3)GlcNAcβ6ManaR5 Neu5Aca3Galβ4(Fuca3)GlcNAcβ6ManaR5 Neu5Aca3Galβ4(Fuca3)GlcNAcβ6ManaR5 Neu5Aca3Galβ4(Fuca3)GlcNAcβ6ManaR5	Ac Ac Ac Ac-(Ac) Ac-(Ac) Ac-(Ac) (Ac)-(Ac) (Ac)-(Ac) (Ac)-(Ac) Gc-(Ac) Ac-(Gc) Gc-(Ac)-(Ac) Gc-(Ac) Ac-(Gc) Gc-(Ac-Ac) Gc Ac Gc Ac Gc Ac Gc Ac Gc Ac Gc Ac Ac <tr td=""> <tr td=""></tr></tr>	preprint (which . It is made		LBBBBBBBBBBBBBBBBBBBBBBBBCLLBBCLBBB <td></td> <td>1312.53 1677.67 1677.67 1677.67 1968.76 1968.76 1968.76 1968.76 1968.76 1968.76 1968.76 1968.76 1968.76 1968.76 1968.76 1968.76 1984.76 2234.83 2234.83 2234.83 2234.83 697.74 859.39 1150.49 1312.54 697.34 859.39 1150.49 1312.54 697.34 859.39 1150.49 1312.54 697.34 859.39 1150.49 1150.49 1150.49 1150.49 1150.49 1166.48 1005.45 1296.54 1312.54 900.42 900.42</td>		1312.53 1677.67 1677.67 1677.67 1968.76 1968.76 1968.76 1968.76 1968.76 1968.76 1968.76 1968.76 1968.76 1968.76 1968.76 1968.76 1984.76 2234.83 2234.83 2234.83 2234.83 697.74 859.39 1150.49 1312.54 697.34 859.39 1150.49 1312.54 697.34 859.39 1150.49 1312.54 697.34 859.39 1150.49 1150.49 1150.49 1150.49 1150.49 1166.48 1005.45 1296.54 1312.54 900.42 900.42
bioRxiv preprint doi: https was not certified by p	 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 	Neuisiake.awdaafs4GicNAcβ3Galβ4GicNAcβ3(Neu5Aca6)Gal Galβ4GicNAcβ3(Neu5Aca6)Galβ4GicNAcβ3Gal Neu5Aca6Galβ4GicNAcβ3Galβ4GicNAcβ3Gal Neu5Aca6Galβ4GicNAcβ3Galβ4GicNAcβ3Gal Neu5Aca6Galβ4GicNAcβ3Galβ4GicNAcβ3Gal Neu5Aca6Galβ4GicNAcβ3(Neu5Aca6)Galβ4GicNAcβ3(Ne Neu5Aca6Galβ4GicNAcβ3(Neu5Aca6)Galβ4GicNAcβ3(Ne Galβ4GicNAcβ3(Neu5Aca6)Galβ4GicNAcβ3(Ne Galβ4GicNAcβ3(Neu5Aca6)Galβ4GicNAcβ3(Ne Galβ3GicNAcβ3(Neu5Aca6)Galβ4GicNAcβ3(Ne Neu5Gca6Galβ4GicNAcβ3Galβ4GicNAcβ3(Ne Neu5Gca6Galβ4GicNAcβ3Galβ4GicNAcβ3(Ne Neu5Gca6Galβ4GicNAcβ3Galβ4GicNAcβ3(Ne GicNAcβ2ManaR5 Neu5Gca3Galβ4GicNAcβ2ManaR5 Neu5Gca3Galβ4GicNAcβ2ManaR5 Neu5Gca3Galβ4GicNAcβ2ManaR5 Galβ4GicNAcβ2ManaR5 Neu5Gca3Galβ4GicNAcβ2ManaR5 Galβ4GicNAcβ6ManaR5 Neu5Gca3Galβ4GicNAcβ6ManaR5 Galβ4GicNAcβ6ManaR5 Neu5Aca3Galβ4GicNAcβ6ManaR5 Neu5Aca3Galβ4GicNAcβ6ManaR5 Neu5Aca3Galβ4GicNAcβ6ManaR5 Neu5Aca3Galβ4GicNAcβ6ManaR5 Neu5Aca3Galβ4GicNAcβ6ManaR5 Neu5Aca3Galβ4GicNAcβ6ManaR5 Neu5Aca3Galβ4GicNAcβ6ManaR5 Neu5Gca3Galβ4(Fuca3)GicNAcβ6Man	Ac Ac Ac Ac-(Ac) Ac-(Ac) Ac-(Ac) (Ac)-(Ac) (Ac)-(Ac) (Ac)-(Ac) Gc-(Ac) Ac-(Gc) Gc-(Ac)-(Ac) Gc-(Ac) Ac-(Gc) Gc-(Ac-Ac) Gc Ac Gc Ac Gc Ac Gc Ac Gc Ac Gc Ac Ac <tr td=""> <tr td=""></tr></tr>	preprint (which . It is made		LBBBBBBBBBBBBBBBBBBBBBBBBBLLBBILBBLBB <td></td> <td>1312.53 1677.67 1677.67 1677.67 1968.76 1968.76 1968.76 1968.76 1968.76 1968.76 1968.76 1968.76 1968.76 1968.76 1968.76 1968.76 1984.76 2234.83 2234.83 2234.83 2234.83 697.74 859.39 1150.49 1005.45 1312.54 697.34 859.39 1150.49 1150.49 1150.49 1150.49 1150.49 1150.49 1150.49 1150.49 1150.49 1150.49 1150.49 1150.49 1166.48 1005.45 1296.54 1312.54 900.42</td>		1312.53 1677.67 1677.67 1677.67 1968.76 1968.76 1968.76 1968.76 1968.76 1968.76 1968.76 1968.76 1968.76 1968.76 1968.76 1968.76 1984.76 2234.83 2234.83 2234.83 2234.83 697.74 859.39 1150.49 1005.45 1312.54 697.34 859.39 1150.49 1150.49 1150.49 1150.49 1150.49 1150.49 1150.49 1150.49 1150.49 1150.49 1150.49 1150.49 1166.48 1005.45 1296.54 1312.54 900.42

	79 2,6-[Galβ4(Fucα3)GlcNAcβ]2ManαR5				В		1516.64
	80 2,6-[Neu5Acα3Galβ4(Fucα3)GlcNAcβ]2Manc				В		2098.83
	81 2,6-[Neu5Gcα3Galβ4(Fucα3)GlcNAcβ]2Mano	1R5			В		2130.82
	82 Galβ4GlcNAcβ2(GlcNAcβ6)ManαR5				В		1062.47
	83 Galβ4(Fuca3)GlcNAcβ2(GlcNAcβ6)ManαR5				В		1208.53
	84 Neu5Aca3Galβ4GlcNAcβ2(GlcNAcβ6)ManαF	35			В		1353.57
	85 Neu5Gca3Galβ4GlcNAcβ2(GlcNAcβ6)Manαl	75			В		1369.56
	86 Neu5Acα3Galβ4GlcNAcβ2(Galβ4GlcNAcβ6)	ManaR5			В		1515.62
	87 Neu5Gcα3Galβ4GlcNAcβ2(Galβ4GlcNAcβ6)	ManαR5			В		1531.61
	88 Galβ4(Fucα3)GlcNAcβ2(Galβ4GlcNAcβ6)Mar	naR5			В		1370.58
	89 Neu5Aca3Galβ4(Fuca3)GlcNAcβ2(GlcNAcβ6)ManaR5			В		1499.62
	90 Neu5Gca3Galβ4(Fuca3)GlcNAcβ2(GlcNAcβ6	δ)ManαR5			В		1515.62
	91 Neu5Aca3Galβ4(Fuca3)GlcNAcβ2(Galβ4GlcI	NAcβ6)ManαR5			В		1661.68
	92 Neu5Gcα3Galβ4(Fucα3)GlcNAcβ2(Galβ4Glc	NAcβ6)ManαR5			В		1677.67
	93 NeuAca3Galβ4GlcNAcβ2(Neu5Gca3Galβ4G	cNAcβ6)ManαR5			В		1822.71
	94 NeuGca3Galβ4GlcNAcβ2(Neu5Aca3Galβ4G	cNAcβ6)ManαR5			В		1822.71
	95 Neu5Acα3Galβ4GlcNAcβ2[Galβ4(Fucα3)Glcl	NAcβ6]ManαR5			В		1661.68
	96 Neu5Gcα3Galβ4GlcNAcβ2[Galβ4(Fucα3)Glc	NAcβ6]ManαR5			В		1677.67
	97 Neu5Aca3Galβ4(Fuca3)GlcNAcβ2[Galβ4(Fuc	α3)GlcNAcβ6]Manc	aR5		В		1807.73
	98 Neu5Gca3Galβ4(Fuca3)GlcNAcβ2[Galβ4(Fuc	ca3)GlcNAcβ6]Mano	aR5		В		1823.73
	99 Neu5Aca3Galβ4(Fuca3)GlcNAcβ2(Neu5Aca3	3Galβ4GlcNAcβ6)M	anaR5		В		1952.77
	Neu5Gca3Galβ4(Fuca3)GlcNAcβ2(Neu5Gca	3Galβ4GlcNAcβ6)M	1anαR5		В		1984.76
	201 Neu5Aca3Galβ4(Fuca3)GlcNAcβ2(Neu5Gca	3Galβ4GlcNAcβ6)M	lanαR5		В		1968.77
	Neu5Gcα3Galβ4(Fucα3)GlcNAcβ2(Neu5Acα	3Galβ4GlcNAcβ6)M	lanaR5		В		1968.77
	Neu5Aca3Galβ4(Fuca3)GlcNAcβ2[Neu5Gca	3Galβ4(Fucα3)GlcN	Acβ6]ManαR5	5	В		2114.82
	Neu5Gca3Galβ4(Fuca3)GlcNAcβ2[Neu5Aca	3Galβ4(Fucα3)GlcN	Acβ6]ManαR5	5	В		2114.82
	205 Galβ4GlcNAcβ6(GlcNAcβ2)ManαR5				В		1062.47
	CO6 Galβ4(Fucα3)GlcNAcβ6(GlcNAcβ2)ManαR5				В		1208.53
bioRxiv preprint doi: https://doi.org/10.	07/20/2015Accc3Gcl/B4GlcNAcβ6(GlcNAcβ2)Manuf he author/funder, who has granted bioRxiv a license to display	35000 vright holder for this	s preprint (which		В		1353.57
	he author/funder, who has granted bioRxiv a license to display 108 በዊህዓዊ የመጀመሪ የአካሪቲያ የመጀመሪ በ በተለም የመጀመሪ በ 10 μ	the preprint in perpetuit	y. It is made		В		1369.56
	CO9 Galβ4(Fucα3)GlcNAcβ6(Galβ4GlcNAcβ2)Mar	naR5			В		1370.58
	10 Neu5Acα3Galβ4GlcNAcβ6(Galβ4GlcNAcβ2)				В		1515.62
	11 Neu5Gcα3Galβ4GlcNAcβ6(Galβ4GlcNAcβ2)				В		1531.61
	12 Neu5Aca3Galβ4(Fuca3)GlcNAcβ6(GlcNAcβ2				В		1499.62
	13 Neu5Gca3Galβ4(Fuca3)GlcNAcβ6(GlcNAcβ2	•			B		1515.62
	14 Neu5Acα3Galβ4GlcNAcβ6[Galβ4(Fucα3)Glcl				В		1661.68
	15 Neu5Gcα3Galβ4GlcNAcβ6[Galβ4(Fucα3)Glc				В		1677.67
	16 Neu5Aca3Galβ4(Fuca3)GlcNAcβ6(Galβ4Glcl	• -			B		1661.68
	17 Neu5Gca3Galβ4(Fuca3)GlcNAcβ6(Galβ4Glc	. ,			B		1677.67
	18 Neu5Aca3Galβ4(Fuca3)GlcNAcβ6[Galβ4(Fuc		nB5		B		1807.73
	19 Neu5Gcα3Galβ4(Fucα3)GlcNAcβ6[Galβ4(Fuc	,			B		1823.73
	 Neu5Aca3Galβ4(Fuca3)GlcNAcβ6[Neu5Aca3 	,			B		1952.77
	221 Neu5Gca3Galβ4(Fuca3)GlcNAcβ6[Neu5Gca				B		1984.76
	22 Neu5Gca3Galβ4(Fuca3)GlcNAcβ6[Neu5Aca3				B		1968.77
	222 Neu5Aca3Galβ4(Fuca3)GlcNAcβ6[Neu5Aca3				B		1968.77
	223 Πουσκουσιστιστά το	ͻͻͼͱϼ϶ϴ៲ϾͱͽϻϾϼϩϳ៲Ͷ			L		1100.16
	22 Galβ4GlcNAcβR6						1141.21
	· · ·				L		1141.21
	226 Galβ3GalNAcαR6	Δ <u>ρ</u>	0_3		L		
	27 Neu5Acα3Galβ4GlcβR6 28 Neu5Aca6Calβ4GlcβR6	Ac	2-3		L		1391.41
	28 Neu5Acα6Galβ4GlcβR6 29 Neu5Acα3Calβ4GlcβR6	Ac	2-6				1391.41
	29 Neu5Acα3Gal β 4GlcNAc β R6 20 Neu5Acα3Gal β 4GlcNAc β R6	Ac	2-3				1432.47
	30 Neu5Acα6Galβ4GlcNAcβR6 10 Neu5Acα6Galβ4GlcNAcβR6	Ac	2-6		L		1432.47
	Neu5Aca3Galβ3GalNAcaR6	Ac	2-3		L		1432.47
	Legα3Galβ4GlcβR6	Leg	2-3		L		1416.47
	Legα3Galβ4GlcNAcβR6	Leg	2-3		L .		1457.52
	Legα6Galβ4GlcNAcβR6	Leg	2-6		L .		1457.52
	Legα3Galβ3GalNAcαR6	Leg	2-3		L		1457.52
	Galβ3(Fucα4)GlcNAcβR1					LewisA	586.59
					_	· · · ·	
	37 Fuca2Galβ3(Fuca4)GlcNAcβR138 Neu5Aca3Galβ3(Fuca4)GlcNAcβR1	Ac	2-3			LewisB LewisA	732.73 899.83

			_			_		
	239		Gc	2-3		В	LewisA	915.82
	240	Neu5,9Ac2α3Galβ3(Fucα4)GlcNAcβR1	Ac	2-3	9OAc	В	LewisA	941.86
	241	Neu5Ac9NAca3Galβ3(Fuca4)GlcNAcβR1	Ac	2-3	9NAc	В	LewisA	940.87
	242	GlcNAcβ4Galβ4GlcβR1				L	GA2	602.58
	243	Neu5,9Ac2a8Neu5Aca3Galβ4GlcβR1	Ac-Ac	2-8	9OAc	L	GD3	1044.92
	244	Neu5Aca8Neu5Aca3(Galβ3GalNAcβ4)Galβ4G	Ac-Ac	2-8		В	GD1b	1368.21
	245	Neu5Acα3(Galβ3GalNAcβ4)Galβ4GlcβR1	Ac	2-3		В	GM1	1077.97
	246	Neu5Gca3(Galβ3GalNAcβ4)Galβ4GlcβR1	Gc	2-3		В	GM1	1093.96
	247	Neu5Aca3(Fuca2Galβ3GalNAcβ4)Galβ4GlcβF	Ac	2-3		В	Fuc-GM1	1224.11
	248	Neu5Gca3(Fuca2Galβ3GalNAcβ4)Galβ4GlcβF	Gc	2-3		В	Fuc-GM1	1240.11
	249	Neu5Ac7NAca3Galβ4GlcNAcβR1	Ac	2-3	7NAc	L	LacNAcβ/Type2	772.76
	250	Neu5Aca3Galβ3GlcNAcaR1				L		753.68
		Neu5Aca6Galβ3GlcNAcβR1				1		753.68
		Neu5Gca6Galβ3GlcNAcβR1				L		769.68
	252	Neu5Aca6Galβ3GalNAcβR1						753.68
		Neu5Gca6Galβ3GalNAcβR1				-		769.68
						- I		726.66
		Neu5Ac8Mea3Galβ4GlcβR1				L		
	256	Neu5Ac8Meα6Galβ4GlcβR1				L		726.66
	257	Neu5GcMeα3Galβ4GlcβR1				L		742.66
	258	Neu5GcMeα6Galβ4GlcβR1				L		742.66
	259	Kdn5Meα3Galβ4GlcβR1				L		685.6
		Kdn5Meα6Galβ4GlcβR1				L		685.6
	261	Kdn5Acα6Galβ4GlcβR1				L		713.61
	262	Neu5GcAcα6Galβ4GlcβR1				L		770.67
	263	Kdn9Acα6Galβ4GlcβR1				L		713.61
	264	Neu5Ac9Ltα6Galβ4GlcβR1				L		784.69
	265	Kdn9Meα3Galβ4GlcβR1				L		685.6
	266	Kdn9Meα6Galβ4GlcβR1				L		685.6
bioRxiv preprint doi: https://d was not certified by pee	/doi.org/10. 267 /2 er review) is the a	<mark>ለ አወስ 8 ተ e e o sty ග හි ශා කා කිය</mark> හි කියි කර හැකි හැකි හැකි හැකි හැකි හැකි හැකි හැකි	pyright holder for this e preprint in perpetuity	preprint (which . It is made		L		655.58
	268	καήθΕα Scalp4GieβA International license.				L		673.57
	269	Kdn9Fα6Galβ4GlcβR1				L		673.57
	270	Kdn5Fα3Galβ4GlcβR1				L		673.57
	271	Kdn5Fα6Galβ4GlcβR1				L		673.57
	272	Neu5TFAα3Galβ4GlcβR1				L		766.6
	273	4,6-bis-epi-Kdoα6Galβ4GlcβR1				L		641.55
	274	Kdn8-deoxyα6Galβ4GlcβR1				L		655.58
	275	Neu5,7,9triNAca2-3LacbProNH2	Ac			L		794.74
	276	Neu5,7,9triNAca2-6LacbProNH2	Ac			L		794.74
	277	Neu5,7diNAca2-6LacbProNH2	Ac			L		753.68
	278	Neu5,7diNAca2-3LacbProNH2	Ac			L		753.68
	279		Ac			L		632.6
			Ac			L		673.65
	281		Leg			L		737.68
	282		Leg			L		778.74
			Leg			L		778.74
			Ac			-		753.68
						- I		794.74
	285		Ac			L		(34.14

