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ABSTRACT

The probabilistic consideration of the global pairwise
sequence alignment of two RNAs tied with their global
single secondary structures, or global pairwise structural
alignment, is known to predict more accurately global
single secondary structures of unaligned homologs by
discriminating between conserved local single secondary
structures and those not conserved. However, conducting
rigorously this consideration is computationally impractical
and thus has been done to decompose global pairwise
structural alignments into their independent components,
i.e. global pairwise sequence alignments and single secondary
structures, by conventional methods. ConsHomfold
and ConsAlifold, which predict the global single and
consensus secondary structures of unaligned and aligned
homologs considering consistently preferable (or sparse)
global pairwise structural alignments on probability
respectively, were developed and implemented in this
study. These methods demonstrate the best trade-off of
prediction accuracy while exhibiting comparable running
time compared to conventional methods. ConsHomfold
and ConsAlifold optionally report novel types of loop
accessibility, which are useful for the analysis of sequences
and secondary structures. These accessibilities are average
on sparse global pairwise structural alignment and can be
computed to extend the novel inside-outside algorithm
proposed in this study that computes pair alignment
probabilities on this alignment.

INTRODUCTION

Investigating the (global secondary) structures of potentially
functional ncRNAs is an important key to discover functional
ncRNAs and uncover their functional details, because single
structures are often conserved among homologs even in
the case where the sequences of these homologs are
nonconserved. (1, 2, 3) Methods that predict a structure from
only a sequence (or mono-foldings), such as RNAfold (4),
Mfold (5), Pfold (6), Sfold (7), CONTRAfold (8), and
CentroidFold (9), have aided experimental single structure
probing methods, such as Cryo-EM (10), icSHAPE (11),
SHAPE-MaP (12), PARS (13), and PARIS (14), to provide
input model single structures and predict single structures
constrained by single structure probing data (15, 16, 17).
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Mono-foldings suffer from the limited accuracy of
predicted single structures, because there is no room
for exploiting information other than single sequences.
(Figure 1c) In order to predict more accurate structures, other
sequences that share homology with a sequence are used.
Predicting the (global) sequence alignment of RNAs tied with
their single structures, or (global) structural alignment (18),
is one of the most effective ways to predict more precise
structures of homologs, which are informed by (base-)pairing
substitutions (1, 19), though many methods that predict
structural alignments report consensus structures, rather than
single structures. Consensus structures are a set of column
pairs on sequence alignment that contain pairings conserved
among homologs. The serious problem of predicting rigorous
structural alignments is the impractical running time and
memory usage of this prediction, even if this prediction
is pairwise, which are bounded by O(L3R) and O(L2R),
respectively, where L and R are the maximum length and
the number of sequences, respectively. (18) This problem
is solved by utilizing the progressive alignment (20) and
sparsification, which filters out candidates that do not satisfy
certain thresholds from consideration to set the scores of these
candidates to −∞, by many popular methods that predict
structural alignments, such as PMcomp (21), Foldalign (22,
23), Murlet (24), MXSCARNA (25), LocARNA (26),
RAF (27), DAFS (28), and SPARSE (29).

As other ways to predict more precise structures from
homologs, the following methods are available:

• hom-folding: predicting the single structure of each
unaligned homolog considering pairwise structural
alignments between this homolog and the remaining
unaligned homologs on the probability distributions
of these alignments as CentroidHomfold (30) and
TurboFold (31)

• ali-folding: predicting the consensus structure of
aligned homologs as RNAalifold (32), PETfold (33),
and CentroidAlifold (34).

The above foldings are more reasonable than structural
alignment predictions, because the progressive alignment,
which is not required for these foldings, is computationally
complex and heavy. The conventional hom-foldings
(CentroidHomfold and TurboFold) decompose pairwise
structural alignments on probability into their independent
components, i.e. pairwise sequence alignments and single
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structures. (Figure 1d) Also, the conventional ali-foldings
(RNAalifold, PETfold, and CentroidAlifold) do not consider
pairwise structural alignments on probability, which will
improve the prediction accuracy of these ali-foldings.
(Figure 1c) There is possibly room for improving the
prediction accuracy of hom-foldings and ali-foldings to
exploit more accurately the homology among homologs.

Contributions of this study
A hom-folding and an ali-folding that consider consistently
likely (or sparse) pairwise structural alignments on probability
were proposed in this study as ConsHomfold and ConsAlifold
(Figure 1a), respectively. (Figure 1d) These foldings are of the
maximum expected accuracy principle whose prediction is in
general more accurate than that of the maximum likelihood
principle, because the number of all possible references
grow exponentially to sequence length and thus results in
the extremely high dimension of predictive space (35, 36).
(Figure 1c) ConsHomfold and ConsAlifold compute pair
alignment probabilities (or pair match probabilities) on sparse
pairwise structural alignment that were proposed including
the computation of them in LocARNA-P (37). The scores
to calculate these probabilities in these foldings are based
on Turner’s (nearest neighbor physics) model, which scores
single structures in terms of the free energy of their loops (38),
and are expected to be more suitable to score structural
alignments than those that are used in LocARNA-P. An
algorithm to compute the probabilities was developed in this
study, though this algorithm shares the framework of inside-
outside algorithm with LocARNA-P. The novel algorithm
requires (quadratic) less computational complexities than
those quartic of LocARNA-P to impose more hard sparsity.

Also, novel types of the loop accessibility (= structural
profile = structural context) proposed in CapR (39), which
is useful for the analysis of RNAs and their structures,
and an algorithm to compute the novel accessibilities
were proposed in this study to extend that of the novel
alignment probabilities. These novel accessibilities are based
on sparse pairwise structural alignment, whereas those in
CapR are based on local single structure. ConsHomfold and
ConsAlifold output optionally the novel accessibilities.

MATERIALS AND METHODS

Pairwise structural alignment
Let SR, AR, and AR be the structure of the sequence R,
the sequence alignment between the pair of sequences R,
and the structural alignment between the pair R, respectively.
An alignment AR is composed of the alignment AR
and the structures SR and SR′ , i.e. AR=(SR,SR′ ,AR)
where R=(R,R′). (Figure 1b) Assume collinear pairwise
sequence alignments (40) and single structures without any
pseudoknots (41) to avoid larger computational complexities.

A position u is said to be accessible from (or closed by)
pairing positions i and j if i<u<j and the position pair
(i,j) is the closest to the position u of all pairing position
pairs. A position set about pairing positions i and j (= Lij=
{u|I loopij (u)=1}) is the loop of the positions i and j where

I loopij (u) is 1 if the position u is accessible from the positions

i and j and 0 otherwise. A loop Lij is a b-loop if the loop
Lij contains b−1 pairing position pairs accessible from the
positions i and j. A loop Lij is said to be internal and
external (or outer) if the positions i and j are accessible
from the loops of other positions and the pseudo-positions
(= the virtual positions closing the both ends of the sequence
R), respectively. (Figure 2) (Internal) b-loop is divided into
three classes on Turner’s model, which approximates the free
energy of structure on thermodynamics (38): 1-loop (= hairpin
loop), 2-loop (= stacking (loop), bulge loop, and interior
loop), and (b>2)-loop (= multi-loop).

Assume structural alignments without any indels of 2-
loops (Figure 1b), which are required to align stem (loops)
(= lines of successive stackings) of different lengths keeping
pairings (18, 29), to prevent scoring structural alignments from
becoming further complicated though scoring these indels
does not increase computational complexities (29). Two sets
of position pairs are said to be pair-aligned if these sets are
pairing and aligned. Two positions are said to be loop-aligned
if these positions are unpaired and aligned.

Posterior pair alignment probability matrix
Let AR and sA be a set of all possible alignments AR
and the score of the alignment A, respectively. Assume that
the probability of any alignment A∈AR (= pA) obeys a
Boltzmann (probability) distribution, i.e. pA=

exp(sA)
Z where

Z=
∑

Aexp(sA). Z is called a partition function.
Let PPA

R be the pair alignment probability matrix given the
pair R. Let IPAijkl(A) be 1 if the pairs (i,j) and (k,l) are pair-
aligned in the alignment A and 0 otherwise, where i and j are
two positions in the sequence R, k and l are two positions in
the other sequence R′, i<j, and k<l. The matrix PPA

R can be
written by the probabilities pA: PPA

R =(pPAijkl) where pPAijkl=

pPAijkl(R)=
∑

A|IPAijkl(A)=1pA. pPAijkl is the probability that the

pairs (i,j) and (k,l) are pair-aligned.

Composition of pairwise structural alignment score sA
Let eS be the free energy of the structure S. Score sAR
is decomposed into additional components: sAR =−eSR

−
eSR′

+sAR+s
PA+sLA. Here, sAR , sPA, and sLA are the

score of the alignment AR, the sum score of the pair
alignments in the alignment AR, and the sum score of the loop
alignments in the alignment AR, respectively.

The components eSR
and eSR′

can be computed by the
estimated parameters of Turner’s model. On it, energy eS
is decomposed into four categories of additional component:
eS=

∑
ijλ|Ipairij (S)Iλij=1

eλij where λ∈{1,2,multi,outer} and

Ipairij (S) returns 1 if the positions i and j are pairing in

the structure S. Here, Iλij is 1 if the loop Lij is a λ-
loop and eλij is the free energy of the loop Lij when the
loop Lij is a λ-loop. Energy e2ij depends on the pairing
positions m and n accessible from the positions i and j:
e2ij=e

2
ijmn where e2ijmn is the energy e2ij parameterized with

the positions m and n. Turner’s model restricts the number
of unpaired positions of the 2-loop Lij , (m−i)+(j−n)+2:
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Figure 1. (a) The proposed workflow of ConsHomfold and ConsAlifold. ConsHomfold predicts single structures from its input unaligned homologs.
ConsAlifold predicts a consensus structure from its input aligned homologs. The methods do not produce structural alignments. The methods consist of
two steps to (i) estimate probabilities and (ii) predict structures after this estimation. For ConsAlifold, the estimation step ignores the gaps in the alignment.
(1) First, pair alignment probabilities on sparse pairwise structural alignment for each pair of input homologs are computed. (2) Then, the probabilities are
marginalized to be pairing and unpairing probabilities of each homolog. (3) As the final process of the estimation step, average pairing and unpairing probabilities
between each homolog and the remaining homologs are gained. These probabilities are utilized to incorporate more than one support homolog into the subsequent
predictions of structures. (4) Finally, ConsHomfold predicts the single structure of each input homolog and ConsAlifold predicts the consensus structure of the
input alignment. (b) Examples of a structure SR, a sequence alignment AR, and a structural alignment AR. A structure SR and an alignment AR are
color-coded based on types of loop. (c) The underlying problems on conventional mono-foldings and ali-foldings. The maximum likelihood principle, which
is equivalent to the free energy minimization on structure predictions (e.g. RNAfold and RNAalifold), exerts less prediction accuracy in general compared
to the maximum expected accuracy principle, which is based on Bayes’ theorem (e.g. CONTRAfold, CentroidFold, CentroidHomfold, TurboFold, PETfold,
CentroidAlifold, ConsHomfold, and ConsAlifold), because the most probable references have their probabilities, which decay exponentially to sequence length.
CONTRAfold, CentroidFold (conventional mono-foldings), PETfold, and CentroidAlifold (conventional ali-foldings) consider not pairwise structural alignments
but single structures. (d) Considering all possible pairwise structural alignments costs O(N3M3) long hours and O(N2M2) huge memory where N
and M are the lengths of homologs. The conventional hom-foldings, CentroidHomfold and TurboFold, decompose all pairwise structural alignments into their
independent pairwise sequence alignments and single structures. ConsHomfold and ConsAlifold take consistently sparse pairwise structural alignments into
account.

(m−i)+(j−n)+2≤30 to reduce the time complexities of
prediction algorithms. Energy emulti

ij is decomposed into the
terms of the closing and accessible pairings: emulti

ij =eCBP+∑
mn|Ipairmn (S)=1,m,n∈Lij

eABP where eCBP and eABP are
free energy per closing and accessible pairing, respectively.
Energy eouterij does not influence the entire free energy eS :
eouterij =0.

As the components eSR
and eSR′

, many conventional
methods scoring structural alignments such as PMcomp,
LocARNA, RAF, SPARSE, and LocARNA-P employ the
posterior model. It scores the components eSR

and eSR′
with posterior pairing probability matrices on structure
(estimated by inside-outside algorithms such as McCaskill’s
algorithm (42) and its variant algorithms (43, 44, 45))
to simplify computations although the suitability of these
matrices has not been discussed. (21, 26, 27, 29, 37) Hence,
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Turner’s model is adopted in this study to prevent a reduction
in prediction accuracy due to a matrix PPA

R .
The component sAR is computed by the learned

parameters, including affine gap scores used in CONTRAlign,
which predicts pairwise sequence alignments (46). The
components sPA and sLA can be computed to sum
RIBOSUM scores (1) across all pair-aligned and loop-
aligned positions, respectively: sPA=

∑
ijkl|IPAijkl(A)=1s

PA
ijkl

and sLA=
∑
uv|ILA

uv (A)=1s
LA
uv where sPAijkl and sLAuv are the

RIBOSUM pair and loop alignment scores of the pairs (i,j)

and (k,l) and the positions u and v, respectively and ILAuv (A)
is 1 if the positions u and v are loop-aligned in the alignment
A and 0 otherwise.

Inside-outside algorithm that computes pair alignment
probability matrix PPA

R
In this section, an efficient (however nevertheless impractical)
method that computes a matrix PPA

R in the framework of
inside-outside algorithm is proposed. A probability pPAijkl

can be written with “inside” partition functions αouter,forNM

and αPAijkl and an “outside” partition function βPAijkl: p
PA
ijkl=

αPA
ijklβ

PA
ijkl

αouter,for
NM

where N and M are the lengths of the sequences

R and R′, respectively. Inside and outside partition functions
can be computed with those of shorter and longer substrings,
respectively, and are stored in dynamic programming memory
for the remaining computation. A matrix PPA

R can be
computed by Algorithm 1 with the O(N4M4) time and the
O(N3M3) memory. (Figure 3a)

Algorithm 1 An inside-outside algorithm that computes a
pair alignment probability matrix PPA

R .
1: function INOUTALGO(R)
2: // x and y are partition function labels to represent

which state is considered on positions.
3: Compute inside partition functions αxijkl and αyuv on

the dynamic programming described in Supplementary
section 1.1 // Inside step.

4: Compute outside partition functions βxijkl on the
dynamic programming described in Supplementary
section 1.2 // Outside step.

5: Compute pair alignment probabilities pPAijkl by pPAijkl=
αPA
ijklβ

PA
ijkl

αouter,for
NM

// Final step.

6: return PPA
R

PROOF. Partition functions αPA
ijkl and βPA

ijkl and probabilities pPAijkl
demand the O(N2M2) memory. Partition functions αyuv are stored for all
the combinations of pair-aligned pairs (i,j) and (k,l) that close the positions
u and v, respectively and thus demand the O(N3M3) memory.

Partition functions αyuv include the case where the positions u and v are
pair-aligned and therefore demand the O(N4M4) time. Partition functions
αxijkl are computed from the partition functions αyj−1,l−1 in only the O(1)

time and thus demand the O(N2M2) time as a whole. Partition functions
βxijkl consider the pair-aligned pairs of positions that close the position pairs
(i,j) and (k,l) and therefore demand the O(N4M4) time.
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Figure 2. Different types of loop constitute a single structure. A stacking
does not contain unpairings accessible in it. A bulge loop contains unpairings
accessible in it on either of the 5’ and 3’ sides. An interior loop contains
unpairings accessible in it on both of these sides.

Figure 3. (a) An overview of recursions to compute (1) probabilities pPAijkl
and partition functions (2) αyuv , (3) αxijkl, and (4) βxijkl. (b) An overview
of recursions to compute accessibilities (1) p1u, (2) pouteru , (3) p2u, and (4)
pmulti
u .

Probabilities pPAijkl are computed from the partition functions αxijkl and
βxijkl in only the O(1) time and therefore demand the O(N2M2) time
as a whole. Finally, a matrix PPA

R demands the O(N4M4) time and the
O(N3M3) memory.
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Figure 4. Sparsification lets Algorithm 1 ignore alignments AR
whose contributions to the partition function Z are low. Choosing
sparsification conditions whose dynamic programming reduces effectively
their computational complexities is of extreme importance.

Algorithm 1 is the “simultaneous” solution of Durbin’s
(forward-backward) algorithm, which estimates posterior
alignment probability matrices on sequence alignment (47),
and McCaskill’s algorithm, as expected. Algorithm 1 is also
an inside-outside algorithm version of Sankoff’s algorithm,
which predicts pairwise structural alignments whose score
is maximum (18), as expected. However, desirable time and
memory complexities of Algorithm 1 are quadratic to deal
with long ncRNAs.

Sparsifying pair alignment probability matrix PPA
R

In this section, a solution to make Algorithm 1 lightweight,
sparsifying all possible structural alignments AR, is
introduced. From all the possible alignments AR,
sparsification can pick out those favorable (e.g. with
adequately high scores). It can allow Algorithm 1 to compute
only the partition functions αxijkl, α

y
uv , and βxijkl that satisfy

sparsification conditions. (Figure 4) Let ppairij (R) be the
pairing probability of the positions i and j given the sequence
R. In this study, the following sparsification conditions are
introduced:

• |u−v|≤δgap and |(M−u)−(N−v)|≤δgap for any
positions u and v

• |(j−i)−(l−k)|≤δgap for any pair-aligned pairs (i,j)
and (k,l)

• ppairij (R)≥ε for any pairing positions i and j and any
sequence R

where δgap and ε are sparsification parameters. The first
two banding conditions let Algorithm 1 not consider the
alignments AR with too many gaps. (21, 22, 23, 24, 48)

The last pairing condition makes Algorithm 1 not consider
the alignments AR with pairings difficult to predict (e.g.
distant). (24, 27, 28, 29, 37, 49, 50) If Turner’s model is
replaced with the posterior model and the banding conditions
are removed, Algorithm 1 becomes identical to LocARNA-
P. (37) Algorithm 1 with the above conditions is ideal with the
O(L2) time and the O(L2) memory where L=max(N,M)
if the parameters δgap and ε take sufficiently small and large
values, respectively.

PROOF. The numbers of all the possible pairings of positions u and v
become O(Nδbp) and O(Mδbp) from O(N2) and O(M2), respectively
where δbp=b 1

ε
c and brc returns the greatest integer less than or equal to

the real number r. The number of all the possible combinations of positions
u and v becomes O(Lδgap) from O(NM). The number of all the possible
pair-aligned pairs (i,j) and (k,l) becomesO(#PA) fromO(N2M2) where
#PA=Lδbpδgapδmax and δmax=max(δbp,δgap).

Partition functions αPA
ijkl and βPA

ijkl and probabilities pPAijkl demand the
O(#PA) memory. Partition functions αyuv are stored for all the combinations
of pair-aligned pairs (i,j) and (k,l) that close the positions u and v,
respectively and thus demand the O(#PALδgap) memory.

Partition functions αyuv include the case where the positions u and v are
pair-aligned and therefore demand the O((#PA)2) time. Partition functions
αxijkl are computed from the partition functions αyj−1,l−1 in only the O(1)

time and thus demand theO(#PA) time as a whole. Partition functions βxijkl
consider the pair-aligned pairs of positions that close the position pairs (i,j)
and (k,l) and therefore demand the O((#PA)2) time.

Probabilities pPAijkl are computed from the partition functions αxijkl and
βxijkl in only the O(1) time and therefore demand the O(#PA) time as
a whole. Finally, a matrix PPA

R demands the O((#PA)2) time and the
O(#PALδgap) memory. If the parameters δgap and δbp are sufficiently
small, a matrix PPA

R demands the O(L2) time and the O(L2) memory.

Probabilistic consistency transformation
Probabilistic consistency transformation is the technique
that converts a probability between a target homolog and
each of its support homolog into a metric that summarizes
the phylogeny among all the homologs. (24, 30, 31, 51)
This transformation is required, because the computational
complexities involved in computing posterior probabilities
among all the homologs are NP-complete, as with multiple
rigorous alignment. In this study, methods that transform
probabilities pPAijkl are proposed. To average probabilities

pPAijkl((R
tar,Rsup)) between the target homolog Rtar and

each support homolog Rsup∈Rsup, the average pairing
probability ppairij (Rtar,Rsup) is gained:

ppairij (Rtar,Rsup)=

∑
Rsupklp

PA
ijkl((R

tar,Rsup))

|Rsup|

whereRsup is a set of support homologs of the homolog Rtar.
To sum probabilities ppairij (Rtar,Rsup), an average unpairing
probability punpi (Rtar,Rsup) is obtained:

punpi (Rtar,Rsup)=1−
∑
j:j<i

ppairji (Rtar,Rsup)

−
∑
j:i<j

p
pair
ij (Rtar,Rsup).
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Obviously, the difference between proposed probabilities
p
pair
ij (Rtar,Rsup) and existing probabilities ppairij (Rtar) is

whether support homologs Rsup are considered or not.

Hom-folding that maximizes average expected accuracy
The accuracy of a predicted structure S against a reference
alignment A is measured based on terms of positive and
negative predictions:

a(S,A)=α1TP+α2TN−α3FP−α4FN

where TP , TN , FP , and FN are the numbers of true
positive, true negative, false positive, and false negative
predictions, respectively, and αh are their scale parameters. In
this study, the counts TP , TN , FP , and FN are configured
as

{
TP =

∑
ij I

pair
ij (S)Ipairij (A),TN=

∑
iI

unp
i (S)Iunpi (A)

FP =
∑
iI

pair
i (S)I

unp
i (A),FN=

∑
iI

unp
i (S)I

pair
i (A)

.

Here, Ipairij (S) is 1 if the positions i and j are pairing in the

structure S and 0 otherwise, Ipairij (A) is 1 if the positions i and
j are pairing in the alignment A and 0 otherwise, Iunpi (S) is 1
if the position i is unpaired in the structure S and 0 otherwise,
Iunpi (A) is 1 if the position i is unpaired in the alignment A
and 0 otherwise, Ipairi (S)=1−Iunpi (S), and Ipairi (A)=1−
I
unp
i (A).

Because the accuracy a(S,A) and the γ-dependent
accuracy aγ(S,A)=γTP+TN are equivalent, the expected
accuracy to be maximized is gained:

EAR [a
γ(SR,AR)]=γ

∑
ij|Ipairij (SR)=1

ppairij (1)

+
∑

i|Iunpi (SR)=1

p
unp
i

where γ= α1+2α4
α2+α3

, p
pair
ij =

∑
klp

PA
ijkl, and p

unp
i =

1−
∑
j:j<ip

pair
ji −

∑
j:i<j p

pair
ij .

PROOF.

a(S,A)=α1TP+α2TN−α3FP−α4FN (2)

=α1TP+α2TN−α3(N
∗−TN)−α4(P

∗−2TP )

=(α1+2α4)TP+(α2+α3)TN−α3N
∗−α4P

∗

=(α1+2α4)TP+(α2+α3)TN+const.

where P ∗=2TP+FN=
∑
iI

pair
i (A) and N∗=TN+FP =∑

iI
unp
i (A). To divide the both sides of Equation 2 by the scaler

α2+α3, the equivalence a(S,A)
α2+α3

=γTP+TN+const. is obtained.

LHS=EAR [a
γ(SR,AR)]

=
∑
AR

pAR (γTP+TN)

=
∑
AR

pAR (γ
∑
ij

Ipairij (SR)Ipairij (AR)+
∑
i

Iunpi (SR)Iunpi (AR))

=γ
∑

ij|Ipairij (SR)=1

∑
AR|I

pair
ij (AR)=1

pAR

+
∑

i|Iunpi (SR)=1

∑
AR|I

unp
i (AR)=1

pAR

=γ
∑

ij|Ipairij (SR)=1

ppairij +
∑

i|Iunpi (SR)=1

punpi

=RHS.

Deriving the expected accuracy that makes posterior
probabilities explicit like Equation 1, which enables dynamic
programming to maximize this accuracy, is called posterior
decoding. (52) The predicted structure that maximizes
expected accuracy EAR [a

γ(SR,AR)] can be computed to
conduct Nussinov-type dynamic programming (53) based on
the following recursion:

aij=max


punpi +ai+1,j (i unpairs)

ai,j−1+p
unp
j (j unpairs)

γppairij +ai+1,j−1 (i,j pair)

maxk:i≤k<j(aik+ak+1,j) (Bifurcates)

. (3)

In Equation 3, only the one support homolog R′ of the
target homolog R is considered to predict the single structure
of the homolog R. In order to consider more than one
support homolog, it is sufficient that probabilities ppairij and

punpi are replaced with the probabilities ppairij (Rtar,Rsup)

and punpi (Rtar,Rsup) in Equation 3, respectively. If the
parameter γ is large, Equation 3 emphasizes positives and thus
predicts more pairings. If the parameter γ is small, Equation 3
emphasizes negatives and thus predicts more unpairings.

Ali-folding that maximizes mixed expected accuracy
Let ARhom be the sequence alignment among the set of
homologs Rhom. Single structure prediction is extended
to consensus structure prediction of sequence alignment to
view positions i on a sequence R as columns i on an
alignment ARhom in Equation 3. It is known that pairing
probabilities of columns i and j given an alignment ARhom (=
p
pair
ij (ARhom)), which can be computed by RNAalifold (32),

improve the prediction accuracy of consensus structure. (32,
34) Thus, the mixture of probabilities ppairij (R,Rsup) and

p
pair
ij (ARhom) is used on Equation 3 to predict the consensus
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structure of an alignment ARhom (= SA
Rhom

):

pmix
ij (ARhom)=τ

∑
Rp

pair
i∗j∗(R,R

hom\R)

|Rhom∗|

+(1−τ)ppairij (ARhom)

where 0≤τ≤1, R∈Rhom, Rhom∗ is the subset of the
sequencesRhom that is not mapped to the gaps on the columns
i and j in the alignment ARhom , and i∗ and j∗ are the
positions on the sequence R mapped to the columns i and
j in the alignment ARhom respectively. The parameter τ is
a mixing coefficient. Likewise, the mixture of probabilities
p
unp
i (R,Rsup) and punpi (ARhom) is used on Equation 3:

pmix
i (ARhom)=τ

∑
Rp

unp
i∗ (R,Rhom\R)

|Rhom∗|
+(1−τ)punpi (ARhom)

where punpi (ARhom)=1−
∑
j:j<ip

pair
ji (ARhom)−∑

j:i<j p
pair
ij (ARhom). Finally, the following recursion,

which predicts a structure SA
Rhom

, is obtained:

aij=max


pmix
i (ARhom)+ai+1,j (i unpairs)

ai,j−1+p
mix
j (ARhom) (j unpairs)

γpmix
ij (ARhom)+ai+1,j−1 (i,j pair)

maxk:i≤k<j(aik+ak+1,j) (Bifurcates)

.

Modifying Algorithm 1 to also compute average loop
accessibilities on sparse pairwise structural alignment
The posterior probability that a position u is accessible from
λ-loops is called the loop accessibility of the position u. Let
loop accessibility matrices given a pair R be Ppair,λ∗

R =(pλ
∗
ij )

and Punp,λ
R =(pλu) where λ∗∈{2,multi,outer},

pλ
∗
ij =pλ

∗
ij (R)=

∑
A|IPAijkl(A)I

λ∗
i (A)Iλ∗j (A)=1pA, and

pλu=p
λ
u(R)=

∑
A|Iunpu (A)Iλu (A)=1pA. Here, Iλu (A)

returns 1 if the position u is accessible from a λ-
loop in the alignment A. Accessibilities pλ

∗
ij can be

computed while computing probabilities pPAijkl because∑
klp

PA
ijkl=

∑
λ∗ p

λ∗
ij . (Supplementary section 1.3)

Accessibilities pλu ask Algorithm 1 for additional
computations. (Figure 3b) Matrices PPA

R , Ppair,λ∗

R , and

Punp,λ
R are computed by Algorithm 2 with the O(N4M4)

time and the O(N3M3) memory. The sparsifications applied
to Algorithm 1 are also applied to Algorithm 2. Therefore,
the time and memory complexities of Algorithm 2 become
O(L2) if the parameters δgap and ε take sufficiently small and
large values, respectively as Algorithm 1.

Probabilistic consistency transformation for accessibilities
pλ
∗
ij and pλu are also proposed. To average an accessibility
pλ
∗
ij ((R

tar,Rsup)) between the target homolog Rtar and

Algorithm 2 A variant algorithm of Algorithm 1 that
computes a pair alignment probability matrix PPA

R and
loop accessibility matrices Ppair,λ∗

R and Punp,λ
R .

1: function INOUTALGO*(R)
2: Compute inside partition functions αxijkl and αyuv on

the dynamic programming described in Supplementary
section 1.1

3: Compute outside partition functions βxijkl on the
dynamic programming described in Supplementary
section 1.2

4: Compute pair alignment probabilities pPAijkl by pPAijkl=
αPA
ijklβ

PA
ijkl

αouter,for
NM

5: Compute loop accessibilities pλ
∗
ij and pλu on the

dynamic programming described in Supplementary
section 1.3

6: return PPA
R , Ppair,λ∗

R , Punp,λ
R

each support homolog Rsup, the average accessibility
pλ
∗
ij (R

tar,Rsup) is obtained:

pλ
∗
ij (R

tar,Rsup)=

∑
Rsup pλ

∗
ij ((R

tar,Rsup))

|Rsup|
.

Likewise, the average accessibility pλu(R
tar,Rsup) is gained:

pλu(R
tar,Rsup)=

∑
Rsup pλu((R

tar,Rsup))

|Rsup|
.

Data collection for benchmark
From Rfam, which collects thousands RNA families (54),
1473 RNA families whose reference seed structural
alignments had at most 200 columns and that contained
at most ten sequences were collected as dataset “origin”.
Reference single structures were obtained to map the
reference seed consensus structure of each RNA family
to each sequence on dataset “origin”. The obtained set
which contains the sequences and their single structures of
each RNA family is called test set “unaligned”. Reference
consensus structures were obtained to leave only the reference
seed consensus structure of each RNA family on dataset
“origin”. The obtained set which contains the sequences and
their consensus structure of each RNA family is called test set
“aligned”.

Competitors for benchmark
TurboFold v6.2, CentroidHomfold v0.0.16, CONTRAfold
v2.02, CentroidFold v0.0.16, and RNAfold v2.4.14 (Table 1)
were compared to ConsHomfold using their default
parameters.

RNAfold RNAfold is the most standard mono-folding
and predicts a structure SR to minimize its energy:
arg min

SR

eSR
. (4) This minimization is equivalent to
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the maximum likelihood prediction arg max
SR

pSR
=

exp(−eSR
)∑

S∈SR
exp(−eS)

where SR is a set of all possible structures

SR. (36)

CONTRAfold CONTRAfold is a mono-folding that predicts a
structure SR maximizing its expected accuracy

2γ
∑

ij|Ipairij (SR)=1

ppairij (R)+
∑

i|Iunpi (SR)=1

punpi (R)

where p
unp
i (R)=1−

∑
j:j<ip

pair
ji (R)−∑

j:i<j p
pair
ij (R). (8, 9) This accuracy is based on the

counts

{
TP =

∑
iI

pair
i (S)I

pair
i (S′),TN=

∑
iI

unp
i (S)I

unp
i (S′)

FP =
∑
iI

pair
i (S)Iunpi (S′),FN=

∑
iI

unp
i (S)Ipairi (S′)

where S′∈SR. The count TP does not mind the pairing
partner j of a position i if only the position i is pairing.

CentroidFold CentroidFold is a mono-folding that predicts
a structure SR maximizing its expected accuracy∑
ij|Ipairij (SR)=1

[(γ+1)ppairij (R)−1]. (9) This accuracy

is based on the counts

{
TP =

∑
ij I

pair
ij (S)Ipairij (S′),TN=

∑
ij I

unp
ij (S)Iunpij (S′)

FP =
∑
ij I

pair
ij (S)I

unp
ij (S′),FN=

∑
ij I

unp
ij (S)I

pair
ij (S′)

where Iunpij (S) is 1 if the positions i and j are unpairing in
the structure S and 0 otherwise. The counts TP , TN , FP ,
and FN are biased to negatives since a position i can be
pairing with at most one position j and thus most pairs (i,j)
are unpairing. This bias becomes remarkable when sequences
are long.

TurboFold TurboFold is a hom-folding that iteratively,
alternately estimates posterior probabilities on single structure
and those on pairwise sequence alignment of homologs. (31)
During this estimation (called the turbo decoding (55,
56)), the probabilities estimated currently (e.g. on pairwise
sequence alignment) are incorporated into those estimated
immediately afterwards (e.g. on single structure). After η
iterations of the alternate estimation, TurboFold predicts the
single structures of the homologs to maximize the expected
accuracy based on the posterior probabilities estimated finally
by the turbo decoding. From the viewpoint of structural
alignment, TurboFold is said to decompose a multiple
structural alignment of homologs into its single structures
and pairwise sequence alignments on probability. TurboFold

predicts a structure SRtar maximizing its expected accuracy

2γ
∑

ij|Ipairij (SRtar )=1

ppair,iterij (Rtar,Rsup)

+
∑

i|Iunpi (SRtar )=1

punp,iteri (Rtar,Rsup)

where ppair,iterij (Rtar,Rsup) is the average pairing probability
of the positions i and j given the sequence Rtar and
the sequences Rsup estimated by the turbo decoding and
p
unp,iter
i (Rtar,Rsup)=1−

∑
j:j<ip

pair,iter
ji (Rtar,Rsup)−∑

j:i<j p
pair,iter
ij (Rtar,Rsup). In the benchmark of this study,

TurboFold was retried with the parameter η=1 when this
method failed with its default parameters (including the
parameter η=3).

CentroidHomfold CentroidHomfold is a hom-folding that
extends CentroidFold to incorporate homologs and factorizes
a probability pPAijkl into independent posterior probabilities:

pPAijkl≈p
PA,×
ijkl =p

pair
ij (R)paliik (R)p

ali
jl (R)p

pair
kl (R′)

where paliik (R) is the alignment probability of the positions i
and k given the pair R on pairwise sequence alignment. This
factorization lets CentroidHomfold avoid the computation
of probabilities pPAijkl. (30) CentroidHomfold connects

probabilities pPA,×ijkl into a single metric via probabilistic
consistency transformation as ConsHomfold and then predict
the single structures of the homologs using the metrics
obtained by this transformation. CentroidHomfold predicts a
structure SRtar maximizing its expected accuracy∑
ij|Ipairij (SRtar )=1

[(γ+1)ppair,×ij (Rtar,Rsup)−1]

where ppair,×ij (Rtar,Rsup) is the average pairing probability
of the positions i and j given the sequence Rtar and the
sequences Rsup obtained by this transformation.

CentroidAlifold v0.0.16, RNAalifold v2.4.14, and PETfold
v2.1 (Table 1) were compared to ConsAlifold using their
default parameters.

RNAalifold RNAalifold is the most standard ali-folding and
predicts a structure SA

Rhom
minimizing its average energy

arg min
SA

Rhom

eSA
Rhom

where eSA
Rhom

is the average energy of

the structure SA
Rhom

. (32) This minimization is equivalent
to the maximum likelihood prediction arg max

SA
Rhom

pSA
Rhom

=

exp(−eSA
Rhom

)∑
S∗∈SA

Rhom
exp(−eS∗ )

where SA
Rhom

is a set of all possible

structures SA
Rhom

. (36)
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CentroidAlifold CentroidAlifold is an ali-folding that
predicts a structure SA

Rhom
maximizing its expected

accuracy
∑
ij|Ipairij (SA

Rhom
)=1

[(γ+1)pmix∗
ij (ARhom)−1]

where Ipairij (SA
Rhom

) returns 1 if the columns i and j

are pairing in the structure SA
Rhom

and 0 otherwise and

pmix∗
ij (ARhom)=τ

∑
Rp

pair
i∗j∗ (R)

|Rhom| +(1−τ)ppairij (ARhom). (34)

PETfold PETfold is an ali-folding that predicts a structure
SA

Rhom
to maximize its expected accuracy

∑
ij|Ipairij (SA

Rhom
)=1

pmix∗∗
ij (ARhom)

+γ−1
∑

i|Iunpi (SA
Rhom

)=1

pmix∗∗
i (ARhom)

where pmix∗∗
ij (ARhom)=κ

∑
Rp

pair
i∗j∗ (R)

|Rhom∗| +ppairij (ARhom),

0<κ, Iunpi (SA
Rhom

) returns 1 if the column i is
unpairing in the structure SA

Rhom
and 0 otherwise, and

pmix∗∗
i (ARhom)=κ

∑
Rp

unp
i∗ (R)

|Rhom∗| +punpi (ARhom). (33)
CentroidAlifold and PETFold become equivalent to
McCaskill-MEA (57) when τ=1 and κ→∞ except
their count configuration, respectively.

CapR
CapR v1.1.1 was compared to ConsHomfold and ConsAlifold.
CapR computes loop accessibilities

pλ
∗∗
u (R)=

∑
S|Iλ∗∗u (S)=1exp(−eS)∑

S exp(−eS)

where λ∗∗∈{1,stem,bulge,interior,multi,outer} and
Iλ
∗∗

u (S) returns 1 if the position u is accessible from a
λ∗∗-loop in the structure S. (39) Here, the position u is
said to be in a stem loop if the position u closes a stacking
or is accessible from it. Also, CapR changes the definition
of a (λ∗∗ 6=stem)-loop to exclude pairing positions in the
(λ∗∗ 6=stem)-loop from this definition. To enable genome-
wide analysis, this method considers all possible local
structures S imposing |j−i|≤W on any pairing pairs (i,j)
where W is the maximum span of pairings, which regulates
the structures S (43). In this study, the span W =200 was
used though the length of the sequence applied CapR to was
less than 200, i.e. this method took all possible structures S
into account. CapR does not incorporate support homologs of
a target homolog.

Metrics for prediction accuracy
Positive predictive value (= PPV), sensitivity, false positive
rate (= FPR), the F1 score, and the Matthews correlation

coefficient (= MCC) are calculated from the numbers of true
and false positives and negatives:

PPV = TP
TP+FP ,SENS=

TP
TP+FN ,FPR= FP

TN+FP

F1=2PPV×SENSPPV+SENS

MCC= TP×TN−FP×FN√
(TP+FP )(TP+FN)(TN+FP )(TN+FN)

.

For single structures, the counts TP , TN , FP , and FN are
configured as{

TP =
∑
ij I

pair
ij (S)I

pair
ij (S′),TN=

∑
iI

unp
i (S)I

unp
i (S′)

FP =
∑
iI

pair
i (S)Iunpi (S′),FN=

∑
iI

unp
i (S)Ipairi (S′)

.

For consensus structures, the counts TP , TN , FP , and FN
are configured in two ways as

TP =
∑
ij I

pair
ij (S∗)Ipairij (S∗′)

TN=
∑
iI

unp
i (S∗)Iunpi (S∗′)

FP =
∑
iI

pair
i (S∗)Iunpi (S∗′)

FN=
∑
iI

unp
i (S∗)Ipairi (S∗′)

(called columnwise counts) where S∗′∈SA
Rhom

and


TP =

∑
ijcI

pair
i∗j∗(S

∗
c )I

pair
i∗j∗(S

∗′
c )

TN=
∑
icI

unp
i∗ (S∗c )I

unp
i∗ (S∗′c )

FP =
∑
icI

pair
i∗ (S∗c )I

unp
i∗ (S∗′c )

FN=
∑
icI

unp
i∗ (S∗c )I

pair
i∗ (S∗′c )

(called mapwise counts) where S∗c and S∗′c are the single
structures obtained to map the structures S∗ and S∗′ to the
c-th sequence, respectively.

Implementations and benchmark environments
ConsHomfold and ConsAlifold implemented in Rust employ
multi-threading to give their users more efficient computing.
Probabilities and partition functions are computed under
the log scale using the logsumexp trick log

∑
aexpxa=

log
∑
aexp(xa−maxa(xa))+maxa(xa), which mitigates

the undesirable effect of extremely large and small values (e.g.
the overflow and underflow of floating point values), in these
methods where xa is a real number. Sparse data structures
were implemented by FxHashMap (the fastest, memory-
efficient hash table in Rust to our best knowledge) provided by
https://github.com/Amanieu/hashbrown. The implementation
choice of these structures is critical because the efficiency
of these structures dominates the entire running time and
memory usage of the methods. In this study, the methods used
the parameters

δgap=

{
|N−M |+1 (External loop)
max(min(|N−M |+1,20),2) (Internal loop)

, ε=0.005, and τ=0.5 (used as the default value
of the parameter τ by CentroidAlifold (34)). For the
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Table 1. The profile and benchmark running time of methods that predict structures.

Method Folding type Posterior probability type Running time Time complexity

ConsHomfold Hom-folding Average on sparse pairwise structural alignment
2.95m (Turner)
2.01m (Posterior) O(R2L2+RL3)

TurboFold Hom-folding Average on iterative, alternate pairwise structural alignment 4.48m O(R2L2+RL3)

CentroidHomfold Hom-folding Average on factorized pairwise structural alignment 32.4 s O(R2L3)

CONTRAfold Mono-folding Single structure 8.24 s O(RL3)
CentroidFold Mono-folding Single structure 5.76 s O(RL3)

RNAfold Mono-folding N/A (Free energy minimization) 2.02 s O(RL3)

ConsAlifold Ali-folding Average on sparse pairwise structural alignment + consensus structure 5.23m O(R2L2+RL3)

CentroidAlifold Ali-folding Average on single structure + consensus structure 7.19 s O(RL3)
PETfold Ali-folding Average on single structure + consensus structure 6.29 s O(RL3)

RNAalifold Ali-folding N/A (Average free energy minimization) 1.26 s O(RL3)

The third column shows the type of posterior probabilities used to predict structures. The forth column represents the benchmark running time
of the methods that predict single and consensus structures on test sets “unaligned” and “aligned”, respectively. For the γ-dependent methods
(other than RNAfold and RNAalifold), running time was measured at the parameter γ=1. For the ali-foldings, running time was measured
using ProbCons v1.12 (51) to generate input sequence alignments of the ali-foldings. For ConsHomfold, running time in the case where
Turner’s model is replaced with the posterior model was also measured. All the methods were executed utilizing multiprocessing.Pool
(https://docs.python.org/3/library/multiprocessing.html), a popular Python package that provides running functions under multi-processing, to
relieve the large volume of test sets “unaligned” and “aligned”. Each of ConsHomfold and ConsAlifold was run to combine their multi-threading
and this multi-processing configuring eight processes each to be assigned to eight threads. On the other hand, each of the methods, other than
these methods, was performed utilizing 64 processes though TurboFold supports multi-threading (with the low saturation of thread utilization
on test set “unaligned” resulting in longer running time). The rightmost column shows rough time complexities of these methods. R and L are
the number and the maximum sequence length of homologs, respectively.

comparison with Turner’s model, the posterior model was
also implemented in ConsHomfold to use the scoring eS=

−
∑
ij|Ipairij (S)=1

lnppairij (R). For the benchmark of running

time, programs were run on a computer composed of an “Intel
Xeon CPU” CPU with 64 threads and a clock rate of 2.30GHz
and 240GB of RAM. Otherwise, programs were run on a
computer composed of an “AMD EPYC 7501” CPU with 64
threads and a clock rate of 2GHz and 128GB of RAM.

RESULTS

Benchmark of ConsHomfold and ConsAlifold with their
competitors
ConsHomfold and ConsAlifold perform the best trade-
off of the metrics PPV , SENS, and FPR (Figure 5a)
among the state-of-the-art methods that predict structures
while requiring comparable running time (Table 1). Also,
ConsAlifold demonstrates better transitions of the metrics F1
and MCC than CentroidAlifold and PETfold. (Figure 5b3–
4) However, PETfold does not drop the metrics F1 and
MCC within the range −7≤ log2γ≤−4 compared to
ConsAlifold and CentroidAlifold. (Figure 5b3–4) The above
accuracy performances on consensus structure are also
confirmed when columnwise counts were used instead of
those mapwise. (Figure 6) RNAalifold shows competitive
accuracy on all the metrics PPV , SENS, FPR, F1,
and MCC, except the metric MCC when ProbCons was
used. (Figure 5ab, Figure 6) The columnwise counts suffer
from the quality of input sequence alignments compared to
those mapwise. (Figure 5ab, Figure 6)

TurboFold displays a superior transition of the metric
F1 to the other methods that predict single structures
whereas competing with ConsHomfold on the metric
MCC. (Figure 5b1–2) As expected, ConsHomfold with the

posterior model exerts significantly less predictive power than
that with Turner’s model across all the metrics PPV , SENS,
FPR, F1, andMCC (Figure 5ab), though the former records
the faster running time than the latter (Table 1).

Comparison between conventional and proposed
posterior probabilities of example ncRNA: tRNA

The conventional probabilities ppairij (R) and accessibilities

pλ
∗∗
u (R) of a tRNA are contrasted to its proposed

probabilities ppairij (Rtar,Rsup) and accessibilities

pλ
∗
ij (R

tar,Rsup) and pλu(R
tar,Rsup) in terms of homology

consideration. (Figure 5c) Conserved and nonconserved
pairings are clarified through the gaps between the
probabilities ppairij (R) and ppairij (Rtar,Rsup) of this
RNA. (Figure 5c1)

Proposed loop accessibilities of example ncRNAs: tRNA
and microRNA
The single (cloverleaf) structure of a tRNA predicted by
ConsHomfold is decorated with the proposed accessibilities
pλ
∗
ij (R

tar,Rsup) and pλu(R
tar,Rsup). (Figure 5d1) The

reliability of each pairing and unpairing in this structure can
be assessed through the accessibilities pλ

∗
ij (R

tar,Rsup) and
pλu(R

tar,Rsup).
The single structure of pri-miR-16-2, which is one of

primary microRNAs (= pri-miRNAs), modeled to investigate
the mechanism of human Drosha and DGCR8 (58) that
cleaves metazoan pri-miRNAs in order to generate their
mature miRNAs through Dicer (59) using Cryo-EM (60) is
compared to that predicted by ConsHomfold. (Figure 5d2–
3) The outlines of these structures agree though stems
not found in the model structure were mispredicted by
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ConsHomfold. (Figure 5d2–3) The reliability of these
stems is as high as the other parts of the predicted
structure. (Figure 5d3) Accessibilities pλ

∗
ij (R

tar,Rsup) and
pλu(R

tar,Rsup) can help biologists validate model single
structures as in the presented model structure. The entire
reliability of the consensus structure of pri-miR-16-2 and its
homologs predicted by MAFFT and ConsAlifold is lower than
that of the structure predicted by ConsHomfold though the
contours of these structures coincide. (Figure 5d3–4)

DISCUSSION

Probabilistic, consistent consideration is possibly simple
answer for further improvement of prediction accuracy
Considering consistently pairwise structural alignments on
structure prediction is the prospect to improve further this
prediction, though the effectiveness of this consideration
has not been focused on. ConsHomfold and ConsAlifold
demonstrate that this consideration improves the prediction
accuracy on this prediction. This improvement is possibly
successful in resolving other prediction problems, such
as sequence alignment predictions and certainly structural
alignment predictions. It is likely that CentroidAlign (49)
and MAFFT (61), which can predict sequence alignments
considering structural alignments via their decomposition,
will become universally accepted for the adoption of
the consistent consideration, instead of this decomposed
consideration. DAFS, which can predict structural alignments
with this decomposed consideration (28), will be also
enhanced by this adoption.

Turner’s model is also effective in structural alignments
A majority of conventional methods that predict structural
alignments use the posterior model to score the single
structures in structural alignments being computed, because
aligning more than two sequences with Turner’s model
(expected to display more predictive power than the posterior
model) is computationally complicated. However, Turner’s
model can be used avoiding this complication to predict
structural alignments of the maximum expected accuracy
principle as DAFS (28) where probabilistic consistency
transformation, which decomposes (NP-complete) multiple
structural alignments to be considered into pairwise structural
alignments, is available. It is valuable that rebuilding popular
methods that predict structural alignments, such as LocARNA
and SPARSE, in this principle on Turner’s model, because
ConsHomfold proves that this model is superior to the
posterior model in terms of prediction accuracy.

Extending ConsHomfold and ConsAlifold to more
sophisticated prediction of structures
At present, ConsHomfold and ConsAlifold cannot predict
pseudoknotted structures and those enhanced by single
structure probing data. Augmenting these methods to also
predict these structures is a straightforward future task
that can be explored in the future. An algorithm that
computes posterior pairing probabilities on pseudoknotted
single structure (62, 63) cannot be simply extended
to compute those on pseudoknotted pairwise structural

alignment, because this algorithm demands the O(N5)
running time and the O(N4) memory usage (41) whereas
McCaskill’s algorithm demands the O(N3) running time and
the O(N2) memory usage (42). IPknot offers a reasonable
way to use McCaskill’s algorithm for the prediction of
pseudoknotted structures. (41) More specifically, this method
decomposes a pseudoknotted structure into its pseudoknot-
free structures and then maximize the expected accuracy of
these structures based on posterior pairing probabilities on
pseudoknot-free single structure computed by McCaskill’s
algorithm. Importing the methodology of IPknot and replacing
McCaskill’s algorithm with Algorithm 1 and the proposed
probabilistic consistency transformation in this methodology,
ConsHomfold and ConsAlifold will predict pseudoknotted
structures.

RNAfold and RNAalifold can predict structures limited by
SHAPE reactivity data. (64) TurboFold can conduct its hom-
folding utilizing this data. (65) Many methods that predict
structures incorporating the data including the above methods
add a new term called SHAPE-origin pseudo-free energy to
the free energy of a structure. (64, 65, 66, 67, 68, 69) This
pseudo-energy is obtained to convert the data into the pseudo-
free energy per unpairing position and then sum this energy
across all unpairing positions. ConsHomfold and ConsAlifold
will predict structures constrained by the data to introduce
SHAPE-origin pseudo-free energy.

Proposed loop accessibilities are worth using in field of
RNA-binding protein
CapR revealed that several RNA-binding proteins bind
their target RNAs by recognizing the loop types of the
binding regions in the RNAs (71, 72, 73) through CLIP-seq
data (74). (39) The proposed loop accessibilities in this study
can be used to analyze these proteins and the target RNAs
including their structures more precisely. RNAcontext (75)
and RCK (76) demonstrated that loop accessibilities improve
the prediction accuracy of predicting the binding of the
proteins to their candidate target RNAs compared to the
conventional methods that do not use these accessibilities,
such as MEMERIS (77) and MatrixREDUCE (78). The
proposed accessibilities have the potential to ameliorate the
prediction accuracy of RNAcontext and RCK.

CONCLUSION

In this study, the below approaches have been proposed:

• a hom-folding (ConsHomfold) and an ali-folding
(ConsAlifold) that consider sparse pairwise structural
alignments on their probability distributions

• a quadratic homolog-aware algorithm to compute
different kinds of average posterior probabilities on
sparse pairwise structural alignment, some of which are
used to conduct these foldings, and the others of which
are helpful in analyzing RNAs and their structures.

ConsHomfold and ConsAlifold have represented better
trade-off between PPV, sensitivity, and FPR on Rfam-
based benchmarks than other state-of-the-art methods that
predict structures including those that consider stochastically
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Figure 5. (a) The trade-off curves composed of (1, 3) pairs (PPV,SENS) and (2, 4) pairs (FPR,SENS) at each parameter γ=2g :g∈{−7,...,10},
respectively. These curves are unavailable for RNAfold and RNAalifold because they do not depend on the parameter γ. The methods that predict (1, 2) single
and (3, 4) consensus structures were measured using test sets “unaligned” and “aligned”, respectively. Mapwise counts were used for consensus structures.
Turner’s and the posterior models were compared on ConsHomfold. The MAFFT v7.470 (61), ProbCons, and ClustalW v2.1 (70) were used with their default
parameters to generate input sequence alignments of the ali-foldings. (b) The transitions of the metrics (1, 3) F1 and (2, 4) MCC across parameters
g=log2γ, respectively. The used test sets, the comparison between Turner’s and posterior models, counts for consensus structures, and input alignment settings
are the same as Figure 5a. For RNAfold, the metrics F1 and MCC are plotted at the parameter g=0. For RNAalifold, the metrics F1 and MCC computed
with MAFFT, ProbCons, and ClustalW are plotted at the parameters g=−3, g=−4, and g=−5, respectively. (c) The various probability distributions of
a tRNA. (1) The comparison between probabilities (left) ppairij (R) and (right) ppairij (Rtar,Rsup). Probabilities ppairij (Rtar,Rsup) are supported by other five

tRNAs. The red and blue circles display conserved and nonconserved pairings, respectively. (2) The comparison between (left) accessibilities pλ
∗∗
u (R) and (right)

accessibilities pλ
∗
ij and pλu. (d) The structures of a tRNA and pri-miR-16-2 color-coded by accessibilities pλ

∗
ij and pλu. (1) The single structure of a tRNA

supported by other five tRNAs predicted by ConsHomfold at the parameter γ=210=1024. The single structures of pri-miR-16-2 (2) modeled in the study that
determined the Cryo-EM structure of human Drosha and DGCR8 binding this RNA (60) and (3) predicted by ConsHomfold at the parameter γ=23=8 using
the ten homologs of this RNA. Each pairing and unpairing are color-coded by maximum accessibilities maxλ∗ pλ

∗
ij (Rtar,Rsup) and maxλp

λ
u(R

tar,Rsup).
The sites of this model structure bound by components of Drosha and DGCR8 retrieved from the study are also displayed. Belt, Wedge, dsRBD, RIIIDa, and
RIIIDb are components of Drosha. dsRBD1 and dsRBD2 are components of DGCR8. DGCR8-1 and DGCR8-2 are different copies of DGCR8. (4) The consensus
structure predicted by ConsAlifold at the parameter γ=23=8. This structure is of the sequence alignment among pri-miR-16-2 and the homologs of this RNA
predicted by MAFFT with its default parameters. Each column of this alignment is represented by the most frequent character including a gap in this column.

Each pairing and unpairing are color-coded by maximum accessibilities
maxλ∗

∑
Rp

λ∗
i∗j∗ (R,Rhom\R)

|Rhom∗| and
maxλ

∑
Rp

λ
u∗ (R,Rhom\R)

|Rhom∗| where u∗ is the position
on the sequence R mapped to the column u in this alignment.
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Figure 6. The trade-off curves composed of (1) pairs (PPV,SENS)
and (2) pairs (FPR,SENS) at each parameter γ=2g on columnwise
counts, respectively. (b) The transitions of the metrics (3) F1 and (4)
MCC across parameters g=log2γ on columnwise counts, respectively.
The ali-foldings were measured using test set “aligned”. The input alignment
settings are the same as Figure 5a.

pairwise structural alignments to decompose them into their
independent components. ConsAlifold has also displayed
superior transitions of the F1 score and the MCC to the
conventional methods of this method. From these results,
It has been concluded that the consistent, probabilistic
consideration of sparse pairwise structural alignments
improves the prediction accuracy of structures.

ConsHomfold and ConsAlifold demand the reasonable
running time supported by the compared time complexities
of the benchmarked methods. It has been confirmed that
Turner’s model, which is the most popular to score single
structures, adopted in this study significantly more fits to
score structural alignments than the posterior model which
is used by many conventional methods that score structural
alignments. Turner’s model possibly raises the prediction
accuracy of methods that predict structural alignments using
the posterior model.

Conventional loop accessibilities on single structure
succeeded in the analysis and prediction of RNA-binding
proteins and the in silico RNA aptamer selection on HT-
SELEX (79, 80). There is a possibility that the loop
accessibilities proposed in this study have a broader
range of impactful applications, as with the conventional
accessibilities.
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