
Cell Type Aware analysis of RNA-seq data

(CARseq) reveals difference and similarities of

the molecular mechanisms of Schizophrenia and

Autism

Chong Jin
Department of Biostatistics

University of North Carolina at Chapel Hill

Mengjie Chen
Genetic Medicine

University of Chicago

Danyu Lin
Department of Biostatistics

University of North Carolina at Chapel Hill

Wei Sun*
Public Health Science Division

Fred Hutchinson Cancer Research Center
wsun@fredhutch.org

July 13, 2020

Abstract

Differential expression using RNA sequencing data of bulk tissue sam-
ples (bulk RNA-seq) is a very popular and effective approach to study
many biomedical problems. However, most tissue samples are composed
of different cell types. Differential expression analysis without accounting
for cell type composition cannot separate the changes due to cell type
composition or cell type-specific expression. In addition, cell type-specific
signals may be masked or even misrepresented, especially for relatively
rare cell types. We propose a new framework to address these limitations:
Cell Type Aware analysis of RNA-seq (CARseq). After evaluating its
performance in simulations, we apply CARseq to compare gene expression
of schizophrenia/autism subjects versus controls. Our results show that
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these two neurodevelopmental disorders differ from each other in terms
of cell type composition changes and genes related with different types of
neurotransmitter receptors were differentially expressed in neuron cells.
We also discover some overlapping signals of differential expression in
microglia, supporting the two diseases’ similarity through immune regu-
lation.

Differential expression analysis using RNA-seq data is a widely used ap-
proach to identify the association between gene expression and covariates of
interest. RNA-seq data are often collected from bulk tissue samples, most of
which comprise a heterogeneous population of different cell types. Several re-
cent studies have demonstrated that studying cell type-specific gene expression
and cell type composition is crucial for many scientific and clinical questions;
for example, classifying neuron subtypes [1], identifying genes and cell types
related to Zika virus infection [2] or melanoma [3]. Most methods for differen-
tial expression studies using bulk RNA-seq data [4–6] do not consider cell type
compositions. A few exceptions include csSAM [7] and TOAST [8], which are
designed for continuous gene expression data and do not fully utilize the count
features of RNA-seq data. There are also a few methods with similar goals that
were developed for DNA methylation data [9, 10].

We develop a framework of cell type aware analysis of RNA-seq data (CARseq).
We assume cell type compositions have been estimated by an existing method
based on reference gene expression of purified cells [11, 12]. CARseq takes the
input of bulk RNA-seq data and cell type fraction estimates and performs two
tasks: comparison of cell type compositions and cell type-specific differential
expression (CT-specific-DE). For CT-specific-DE, CARseq employs a negative
binomial regression approach to fully utilize the count features of RNA-seq data
to improve statistical power. CARseq is a tribute to both the tradition that the
gene expression of a mixture is the summation of non-negative expression of
each cell type (i.e., deconvolution on a linear scale) [13], and that cell type-
independent covariates are adjusted on a log scale. Our shrunken estimates of
log fold change (LFC), currently unaddressed in other methods [7, 8], produces
a robust and interpretable quantification of CT-specific DE. We benchmark
CARseq together with other methods under various simulation setups, illus-
trating CARseq has the highest power while maintaining type I error control.

We apply CARseq to assess gene expression difference of schizophrenia (SCZ)
or autism spectrum disorder (ASD) subjects versus controls. SCZ and ASD are
two severe neuropsychiatric disorders that are likely caused by disruption of
brain development in early life (particularly in the prenatal and early postna-
tal period) due to environmental exposure combined with genetic predisposi-
tions [14]. Two diseases have shared vulnerability genes and overlapping symp-
toms [15]. For example, ASD is characterized by deficit social interaction and
repetitive behaviors, which are similar to the negative symptom of SCZ includ-
ing social withdrawal and impaired motivation. There are also many differences,
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however, between the two diseases. For example, ASD is an early childhood dis-
ease (onset at 6 months to 3 years old) and most SCZ are diagnosed at young
adulthood. Compared with ASD, SCZ has additional symptoms of delusions
and hallucinations. The underlying biological mechanisms of the two diseases
are not very well understood yet. Our results bring some new insight into
the difference and connection between the two diseases. For example, we have
observed an imbalance of excitation/inhibition neurons in SCZ but not ASD,
which may explain the hallucination symptom in SCZ but not ASD [16]. We
have also found these two diseases have overlapping signals of CT-specific DE in
microglia, supporting the connections of the two diseases through inflammation
and oxidative stress [17].

Analyzing single cell RNA-seq (scRNA-seq) data is a promising solution for
cell type-aware analysis. However, due to high cost and logistic difficulties (e.g.,
collection of fresh tissue samples, unbiased sampling of single cells), currently,
it is very challenging, if not infeasible, to collect scRNA-seq data from large
cohorts. If the massive amount of existing bulk RNA-seq data could be re-
analyzed to study CT-specific expression and cell type composition, it could
bring paradigm-shifting changes to many fields. Our work is one step towards
this goal and our results on SCZ and ASD illustrate the power of this CARseq
framework, which can be applied to other diseases or conditions.

Results

Introduction to cell type-aware analysis

To assess the associations between cell type fractions and the covariate of inter-
est, one needs to pay attention to the compositional nature of the data, e.g., we
cannot modify the proportion of one cell type without altering the proportion of
at least one other cell type [18]. Therefore, following a commonly used practice
for compositional data analysis, we transform the k cell type fractions to k − 1
log ratios: log of the fraction of each cell type (other than the reference) vs. a
reference cell type. We choose excitatory neuron as our reference cell type be-
cause it is the most abundant cell type in our studies and the results are easier
to explain (e.g., when studying excitation/inhibition imbalance).

The more challenging part is to assess CT-specific-DE, while we only observe
expression in bulk samples where the variability can come from both CT-specific
expression and cell type fractions. Our model is built around the assumption
that the expression in bulk samples is the summation of CT-specific expression
weighted by cell fractions in linear scale (Figure 1). The model also allows the
inclusion of cell type-independent covariates; see Method section for details.
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Figure 1: Each grouped bar illustrates the total expression of a gene in a bulk
sample (the volume of the grouped bar) that is the summation of gene expres-
sion from individual cell types (each bar). The depth of each grouped bar is
proportional to the covariate-adjusted read-depth. The width of each bar is pro-
portional to its cell fraction, and the height of each bar is proportional to the
CT-specific expression. The left/right three columns show three case/control
samples, respectively. Our method estimates the mean value of CT-specific ex-
pression for case and control groups separately. In this toy example, cell type 1
(pink) has twice expression in cases than controls, while cell type 2 (green) and
cell type 3 (blue) are not differentially expressed.

Benchmarking methods through simulations

We first use a simulation study to evaluate the power and type I error of CT-
specific-DE by our method and two existing methods: csSAM [7] and TOAST
[8]. csSAM assesses CT-specific-DE by a two-step approach: estimation of CT-
specific expression followed by testing by permutations. It has lower power than
TOAST [8] and it cannot account for covariates. TOAST and CARseq are more
similar since they both combine the estimation and testing in one likelihood
framework that allows adjustment for covariates. The difference is that CARseq
adopts the negative binomial model that allows modeling of gene expression
decomposition on a linear scale. In contrast, TOAST uses a linear model that
is less desirable to model count data. An alternative is to use TPM (transcripts
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per million) to replace count, which is a linear transformation of counts after
adjusting for gene length and read-depth. We evaluated the performance of
TOAST using both counts and TPM and the latter delivers better results, so
we reported the results of TOAST using TPM and left the results using counts
in Supplementary Materials (Figures S4-S7).

We simulated CT-specific expression that roughly mirrors the gene expres-
sion derived from single nucleus RNA-seq (snRNA-seq) data derived from the
middle temporal gyrus (MTG) of the human brain [19]. We simulated the cell
fractions to resemble our estimates from the Common Mind Consortium (CMC)
bulk RNA-sequencing data [20] (Figure S12). Three cell types were simulated.
Cell type 1, intended to imitate the excitatory neuron, taking the lion’s share
of around 60% of the cells in each sample. The other two cell types, with much
smaller fractions, were intended to represent inhibitory neurons and non-neuron
cells. We also simulated a covariate in the mold of RNA integrity number (RIN)
and specified the distribution of its effect size based on estimates of RIN effect
from the CMC data. More details of the simulation procedure can be found in
Section B.1 of the Supplementary Materials.

The benchmark consists of simulations in different sample sizes and different
patterns of differential expression (Figure 2). With covariates provided, both
CARseq and TOAST can control false discovery rate (FDR) very well, with
CARseq having an edge in power. When covariates are missing, the model
misspecification might result in inflated type I error under some replicates, re-
gardless of the method being used. Nevertheless, the simulation results demon-
strated that CARseq is more powerful than TOAST, which is more powerful
than csSAM, and correct specification of covariates can improve power and en-
sure the control of FDR. It worth noting the power of CT-specific-DE can be
low when the sample size is small (e.g., n = 50) for a relatively large effect size
of 2. This is due to the uncertainty to estimate CT-specific expression.

CARseq: comparing schizophrenia subjects versus controls

Schizophrenia (SCZ) is a severe neuropsychiatric disorder that affects approx-
imately 1% of word-wide population [21]. There is strong evidence from both
human and animal studies that support a neurodevelopmental model of SCZ:
perturbation of early neurodevelopment during pregnancy (e.g., by environ-
mental factors such as maternal stress or infections), combined with a genetic
predisposition (the heritability of SCZ is estimated to be roughly 80%) [21]. We
applied CARseq to study the gene expression of SCZ patients vs. controls using
the bulk RNA-seq data of prefrontal cortex samples, generated by the Common-
Mind Consortium (CMC) [20], hereafter referred to as CMC-SCZ study. After
filtering out the outlier samples reported by Fromer et al. [20], we had 250 SCZ
subjects and 277 controls.
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Figure 2: The FDR vs. sensitivity of several methods testing for CT-specific
DE, when (a) the covariate is provided to the method, and (b) when the co-
variate is not provided to the method. There are 10 simulation replicates for
each combination of sample size (columns) as the total number of case-control
samples and patterns of differential expression (rows). For each replicate, there
are 2,000 genes following the pre-specified pattern of differential expression and
8,000 genes with no differential expression in any of the three cell types. In the
notation for the pattern of differential expression, the three numbers separated
by underscores each represent the fold change in each cell type. In this simula-
tion setup, only cell type 1 is differentially expressed. The vertical line indicates
the intended FDR level of 0.1. Note that csSAM does not support the inclusion
of covariates; the scales of the x-axis in the two subfigures are different.

We estimated cell type proportions for six cell types: excitatory neurons
(Exc), inhibitory neurons (Inh), astrocyte (Astro), microglia (Micro), oligoden-
drocyte (Oligo) using CIBERSORT [22] and ICeD-T [12]. The estimates from
these two methods are highly correlated, though with some noticeable differ-
ences (Supplementary Materials Section B.2.1, Figures S12-S13). We examined
whether relative cell fractions with respect to excitatory neuron are associated
with the case-control status while accounting for a set of covariates including
log transformed read depth, age, gender, RNAseq QC metrics, batch effects,
genotype PCs, as well as two surrogate variables that were estimated condi-
tioning on cell type fractions (Figure 3(a), see Method section for details of
the covariates used in our analysis). We found that the relative cellular abun-
dance of the inhibitory neuron quantified by ICeD-T is significantly higher in
SCZ samples than control samples (p-value 1.5 × 10−5), and there is a similar
trend for cell fraction estimates by CIBERSORT, though the difference is not
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Figure 3: CARseq on gene expression data between schizophrenia (SCZ) and
controls. (a) Estimated cell fractions by ICeD-T sorted by increasing fractions
of excitatory neurons. (b) The effect size of case-control status on relative cell
fractions against excitatory neurons (log ratio of the cell type of interest vs. ex-
citatory neuron). The standard errors are denoted by bars. (c) Volcano plot of
-log10(q-value) vs. shrunken log fold change (LFC) for differentially expressed
genes (DEGs) inferred by CARseq. Only genes passing a q-value cutoff of 0.1
and an absolute value of LFC > 0.01 are shown. Top 10 CT-specific DEGs are
labeled. (d) Gene set enrichment analysis results on REACTOME pathways.
Three top pathways were shown for each cell type, ranked by -log10 q value
with the sign of normalized enrichment score (NES). Positive NES indicates
enrichment of genes with small p-values.

significant (p-value 0.12). There is also a trend of relative depletion of oligo-
dendrocyte, though it is not significant (p-values 0.32 for ICeD-T and 0.12 for
CIBERSORT).
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Since cell type fraction estimates from CIBERSORT and ICeD-T are highly
correlated, we present the CARseq results using cell type fraction estimated by
ICeD-T for simplicity. CARseq found 1 differentially expressed gene (DEG)
(q-value < 0.1) in astrocytes, 138 DEGs in microglia, and 656 DEGs in oligo-
dendrocytes by CARseq (see Figure 3(b) for a volcano plot and Figure S15 for
p-value distributions). In contrast, TOAST identified 3 DEGs in inhibitory neu-
rons, 30 DEGs in microglia, and 1 DEG in oligodendrocytes (See Figure S17 for
p-value distribution). Both methods could control type I error/FDR, indicated
by the fact that if the case-control label was permuted, the only false discovery
(q-value < 0.1) is 1 gene in microglia reported by CARseq, and the p-value
distribution is uniform (Figure S16 and S18). These results are consistent with
our simulation results that CARseq can identify differentially expressed genes
with a higher power than TOAST, while controlling FDR.

Although we did not find any DE genes in inhibitory neurons or excitatory
neurons at q-value cutoff 0.1, gene set enrichment analysis (GSEA) using the
rankings of all the genes based on CT-specific DE p-values recover some in-
teresting pathways (Figure 3(C)). For inhibitory neurons, we found that genes
involved in unblocking or negative regulation of NMDA receptors are enriched.
This is very relevant since NMDA hypofunction is a key contributor to the SCZ
disease process and they are involved in excitation/inhibition imbalance [21].
The majority of the DE genes in NMDA pathways have lower expression levels
in SCZ subjects than controls (Figure S23), consistent with the hypofunction
of NMDA. We found that the heat shock related genes are enriched in the DE
genes in excitatory neurons, and they tend to have higher expression in SCZ
subjects than controls (Figure S23). This is consistent with previous findings
that heat shock response plays a crucial role in the response of brain cells to
prenatal environmental insults [23].

Next, we shift our attention to glial cells. For microglia, we found the path-
ways of innate immune system and cell cycle are enriched in the CT-specific-DE
genes and they are over-expressed in SCZ subjects than controls (Figure 3(D),
Figure S24), supporting the observations of activation of microglia in SCZ sub-
jects [17]. It is interesting that these pathways are also enriched in oligoden-
drocyte, but they are down regulated in SCZ subjects than controls (Figure
3(D), Figure S24), suggesting inactivation of oligodendrocyte. We also found
Slit-Robo signaling pathway is down/up -regulated in microglia and oligoden-
drocyte, respectively (Figure S24). Slit-Robo signaling pathway is involved in
the neurogenesis and migration of neuronal precursors toward the lesions, and
glial cells are also involved in these processes [24]. Our findings suggest microglia
and oligodendrocyte may take different roles in this process in SCZ subjects.
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CARseq: comparing ASD subjects versus controls

Autism spectrum disorder (ASD) affect more than 1% of population, with her-
itability estimated to be 68% to 96% [25]. Individuals with ASD are often
impaired in social communication and social interaction, and limit themselves
to repetitive behaviors and interests from an early age [25]. There is abun-
dant evidence supporting the neurodevelopmental model for ASD. Large-scale
ASD genetic studies have identified hundreds of ASD risk genes that are mu-
tated more frequently in ASD subjects than controls [26]. We analyzed the
bulk RNA-seq data from ASD subjects and controls, published by a UCLA
group [27, 28], hereafter referred to as UCLA-ASD study. They reported find-
ings on 251 post-mortem samples of frontal and temporal cortex and cerebellum
for 48 ASD subjects versus 49 controls and found significantly differentially ex-
pressed genes in cortex but not in cerebellum [27]. In this study, we focus on
frontal cortex region based on positive findings of DE genes in this earlier study
and that it matches the brain region of SCZ data analyzed in this paper. After
filtering by brain regions, we ended up with 42 ASD subjects and 43 control
subjects (See Method section for details).

Comparing relative cell type fractions (with respect to excitatory neurons)
between ASD subjects and controls, we found the relative abundance of as-
trocyte is significantly higher in ASD subjects than controls (p = 0.021 and
0.024 for cell type fractions estimated by ICeD-T and CIBERSORT, respec-
tively, Figure 4(A)). Microglia also show a trend of higher relative abundance
in ASD subjects than controls. These observations support the hypothesis that
pro-inflammatory maternal cytokines in the developing brain can lead to neu-
roinflammation and proliferation of astrocyte and microglia [29].

CARseq reports 232 DEGs (q-value < 0.1) in excitatory neurons and 855
DEGs in inhibitory neurons, and no DEGs in the other four cell types (Figure
S28). TOAST recovers 2 DEGs in excitatory neurons and no DEGs in the other
five cell types (Figure S30). We also sought to evaluate the FDR control by re-
peating our analysis after permuting case/control labels (Figure S29 and S31)
and noticed inflation of type I error in some permutations. This is likely due
to the fact that the model is mis-specified after permuting case/control labels,
and small sample size and/or unaccounted covariates could further exaggerate
such effects. Thus the results of this analysis should be interpreted with cau-
tion. Nevertheless, as discussed next, we observed expected functional category
enrichment and some consistent signals between SCZ and ASD, suggesting our
analysis in this dataset with relatively small sample size still captures meaning-
ful signals.

First, we considered a list of 328 autism risk genes curated by Simons Foun-
dation Autism Research Initiative (SFARI). Most of these risk genes were iden-
tified because they harbor more disruptive mutations in the ASD cases than
the general population. We found that these ASD risk genes are significantly
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Figure 4: CARseq on the autism spectrum disorder (ASD) bulk expression
data. (a) Estimated cell fractions by ICeD-T sorted by increasing fractions of
excitatory neurons. (b) The effect size of case-control status on relative cell
fractions against excitatory neurons (log ratio of the cell type of interest vs. ex-
citatory neuron). The standard errors are denoted by bars. (c) Volcano plot of
-log10(q-value) vs. shrunken log fold change (LFC) for differentially expressed
genes (DEGs) inferred by CARseq. Only genes passing a q-value cutoff of 0.1
and an absolute value of LFC > 0.01 are shown. Top 10 CT-specific DEGs are
labeled. (d) Gene set enrichment analysis results on REACTOME pathways.
Three top pathways were shown for each cell type, ranked by -log10 q value
with the sign of normalized enrichment score (NES). Positive NES indicates
enrichment of genes with small p-values.

enriched among the DE genes in inhibitory neurons (p-value 5.8 × 10−7) and
excitatory neurons (p-value 3.3 × 10−4), and they are significantly depleted
among the DE genes in microglia (p-value 2.9× 10−7) (Table S5). Our findings
are consistent with the results reported using snRNA-seq data [30]. Enrichment
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by TOAST results is consistent with CARseq for microglia (4.1×10−4), but not
significant for inhibitory neurons (p-value 0.14) or excitatory neurons (p-value
0.89). In contrast, no enrichment is found from DE analysis on bulk tissue by
DESeq2 [6] (p-value 0.66).

The pathways enriched in DE genes of excitatory or inhibitory neurons in-
clude more generic and broad pathways such as “neuronal system” and “anti-
gen processing”, and more specific ones such as “synthesis of PIPs ” and “RAB
regulation of trafficking”. Both “synthesis of PIPs” and “RAB regulation of
trafficking” are related to one type of glutamate receptors named AMPA recep-
tor [31, 32]. The log fold changes of DE genes show that these two pathways
are up-regulated in ASD inhibitory neurons than controls, but down-regulated
in ASD excitatory neurons (Figure S36). Such up/down-regulation pattern
is much cleaner in “synthesis of PIPs” than “RAB regulation of trafficking”.
This suggests the relevance of AMPA activity in the pathophysiology of ASD.
Genes in the antigen processing pathways tend to be up-regulated in inhibitory
neurons but down-regulated in excitatory neurons (Figure S36), suggesting in-
creased/decreased interactions with the immune system in inhibitory neurons
and excitatory neurons, respectively. The enriched pathways in glial cells include
those related to translation initiation, elongation, and “Response of EIF2AK4
(GCN2) to amino acid deficiency”. It has been shown that dysregulation of
translation can cause neurodegeneration [33], which is corroborated by our find-
ings that suggest their connections with ASD.

Comparing DE testing by CARseq versus DESeq2

DESeq2 [6] is a good representative of existing methods for DE analysis of bulk
tissue samples. In both SCZ and ASD analyses, most findings from DESeq2
were not identified as CT-specific-DE genes (Figure S22 and S35). An imme-
diate question is whether those DESeq2 DE genes are differentially expressed
in one or more cell types, or they may reflect confounding effect due to cell
type compositions. In our default analysis, DESeq2 does not take any cell type
composition as covariates. After accounting for cell type compositions (by in-
cluding log ratios of cell type compositions), DEseq2 identified more DE genes
using the CMC-SCZ data (from 1,009 to 1,888, with an intersection of 810 at
q-value 0.1), suggesting that these DE genes are differentially expressed in one
or more cell types, but with a relatively small effect sizes and thus were missed
by CARseq. In contrast, for the UCLA-ASD data, DESeq2 identified much less
DE genes after accounting for cell type compositions (from 1063 to 481, with
an intersection of 185 at q-value 0.1), suggesting that many DEseq2 DE genes
in ASD are indeed confounded by cell type compositions.
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Concordant microglia-specific DE genes between SCZ and
ASD

We found an interesting pattern that genome-wide microglia-specific-DE p-
values show significant correlations between SCZ and ASD (Figure 5(A), corre-
lation 0.14 and p-value < 2× 10−16). In addition, the fold changes of microglia
DE genes in different pathways also show consistent patterns between SCZ and
ASD (comparing Figure S24(A) vs. S36(A)): up-regulation in innate immune
system and cell cycle, and down-regulation in translation, slit-robo signaling
pathway, and influenza infection. We further study the overlapping DE genes.
Using a liberal p-value cutoff of 0.05, we identified 1,674 and 355 microglia-
specific-DE genes in SCZ and ASD studies, respectively, with an overlap of 65
genes. This overlap is significantly larger than 33 overlaps expected by chance
(p-value 9.6 × 10−9 by Chi-squared test). Several REACTOME pathways are
over-represented by these 65 genes (by R package goseq, Figure 5(B), Table S6).
Note that this over-representation analysis is different from GSEA, which uses
genome-wide rankings, and here we only consider these 65 genes. In addition to
the pathways that have been identified by GSEA, we found some new ones. One
interesting finding is “Selenoamino acid metabolism”. Since selenium-dependent
enzymes prevent and reverse oxidative damage in brain, our findings support
that selenium-dependent enzymes could mediate the relation between antioxi-
dants and SCZ/ASD [34,35].
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(calculated by CARseq) between CMC-SCZ and UCLA-ASD studies. (B)
The REACTOME pathways that are over-represented by the 65 genes with
microglia-specific-DE p-values smaller than 0.05 in both CMC-SCZ and UCLA-
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Discussion

SCZ and ASD are two prevalent neuropsychiatric disorders with profound bur-
dens on the affected individuals, their families, and society. Previous stud-
ies have identified genetic and environmental factors that contribute to disease
risks. However, our understanding of the molecular mechanisms that connect
these risk factors with disease onset is still incomplete, and insight on such
molecular mechanisms is crucial for more effective treatment and prevention.
For example, several SCZ drugs work at molecular level to interact with neu-
rotransmitters. Analysis of gene expression in postmortem brain samples is
an effective approach to study such molecular mechanisms, though traditional
methods for DE analysis cannot separate the effects of cell type compositions
and cell type-specific gene expression changes. To the best of our knowledge,
we present the first cell type aware analysis of postmortem gene expression data
from SCZ and ASD.

The molecular mechanisms underlying SCZ and ASD can be divided into two
categories: alterations in neurotransmitter systems and stress-associated signal-
ing including immune/inflammatory-related processes and oxidative stress [14].
NMDA and AMPA are two types of receptors for neurotransmitter glutamate.
We found evidence for hypofunction of NMDA in SCZ (particularly in inhibitory
neurons) and dysregulation of AMPA in ASD. While excitation-inhibition (E-I)
imbalance has been suggested as a common feature of SCZ and ASD, we found
the relative fractions of inhibitory neurons versus excitatory neurons is higher
in SCZ than controls, but are similar between ASD and controls. This is con-
sistent with previous finding that the hypofunction of NMDA could cause E-I
imbalance [36] and our finding that NMDA pathway is perturbed in SCZ but
not in ASD. In addition, it has been shown that E-I imbalance is the underlying
mechanism for hallucination [16], which is a symptom of SCZ but not ASD.
Thus our finding of E-I imbalance in SCZ but not in ASD may explain part of
the symptom difference between the two diseases. A recent study also found no
E-I difference between ASD and controls [37].

Stress-associated signaling in SCZ and ASD has also been widely studied.
For example, animal studies show that prenatal stress referred as maternal im-
mune activation (regardless the cause such as infection by different pathogens or
immune stimulation) can lead to SCZ and ASD [17], implying the role of immune
system in disease pathology. Microglia is the tissue resident macrophages in
brain and plays a central role in immune response in brain. We found microglia-
specific DE genes have significant overlap between SCZ and ASD and they have
higher expression than in controls, suggesting microglia are in more active states
in SCZ/ASD than controls, and pointing to the relevance of several biological
processes including translation regulation and oxidative damage. The relative
proportion of astrocyte is significantly higher in ASD than controls, and there
is a trend of higher abundance of microglia in ASD than controls. The rela-
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tive fractions of astrocyte and microglia are similar between SCZ and controls,
though.

These analyses are enabled by our computational framework CARseq, a
framework for cell type-aware analysis of RNA-seq data from bulk tissue sam-
ples. CARseq require the estimates of cell type fractions, of which the estimation
relies on reference of cell type-specific gene expression data. Part of the reasons
that we focus on SCZ and ASD is that cell type-specific gene expression data
are available in brain tissues. We expect with the development of human cell
atlas [38], such resource in other tissues will be generated in the near future,
and thus enable CARseq analysis in broader tissues and relevant diseases.

A practical consideration of using CARseq is that it may have limited power
when the sample size is small. This is the price that we have to pay for the
uncertainly of estimating CT-specific expression from bulk RNA-seq data. As
a rule of thumb, we do not recommend using CARseq when the sample size
minus the number of covariates is smaller than 20. For large studies, e.g., with
hundreds of samples, it may worth considering a new study design to generate
scRNA-seq data in a subset of samples, and use them to generate cell type-
specific gene expression signatures and validate the results of CARseq.

Methods

Likelihood function of CARseq model

Let Tji be the RNA-seq read count (or fragment count for paired-end reads) for
gene j ∈ {1, . . . , J} and sample i ∈ {1, . . . , n}, where J is the total number of
genes and n is the number of bulk samples. We denote the cell fraction for cell
type h ∈ {1, . . . ,H} in the i-th sample by ρ̂hi. for and sample i.

We assume Tji follows a negative binomial distribution: Tji ∼ fNB(µji, φj),
with mean value µji and dispersion parameter φj . Since deconvolution on a
linear (non-log) scale yields better accuracy [13], we let:

µji =
H∑
h=1

ρhiµ̃jih,

where µ̃jih is the mean expression of the j-th gene in the h-th cell type of the
i-th sample. The above deconvolution states that the expected total read count
is the summation of expected CT-specific read count weighted by cell fractions
across all cell types h ∈ {1, . . . ,H}. In practice, cell fraction estimates ρ̂hi are
used in place of ρhi.

We model the relation between µ̃jih and M0 CT-specific covariates through
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a log link function, which is commonly used for negative binomial regression:

µ̃jih = dβd

i exp
(∑M0

m=1 γjhmxihm

)
, where di is the sequencing read depth of

sample i, γjhm and xihm are the regression coefficient observed data for the
m-th covariate. In all the analyses of this paper, we use 75 percentile of the
expression across all the genes within a sample.

The effect sizes of many covariates may not vary across cell types. For
example, since RNA integrity number (RIN) quantifies sample RNA quality,
it would associate with observed gene expression in the same way regardless
of the original cell type. By separating cell type-independent covariates from
CT-specific covariates, we can construct a model with less degrees of freedom.
Suppose M out of M0 parameters are CT-specific and the rest K = M0 −M
parameters are cell type-independent, we have:

µ̃jih = dβd

i exp

(
K∑
k=1

βjkwik

)
exp

(
M∑
m=1

γjhmxihm

)
,

where wik is the value of the k-th cell type-independent covariate in sample i.

The log-likelihood can be maximized using iteratively weighted least squares
(IWLS) with some tweaks (Supplementary Materials Section A). After that, we
can construct likelihood ratio statistics to conduct the CT-specific-DE tests.
Although the likelihood-based testing framework can be generalized to accom-
modate a variety of tasks [8], e.g., test for a continuous variable or test for
a linear combination of regression coefficients, our main focus in the article is
CT-specific-DE tests among two or more groups.

We noted that CARseq reports large LFC estimates in some cell types, which
probably reflect estimation uncertainty, particularly for the cell types with low
proportion or when the sample size is small. To mitigate this problem, we devel-
oped a shrunken LFC estimation procedure, see Section A.5 in Supplementary
Materials for details.

Comparison with other methods.

There are a few alternatives to our methods, though they were indeed developed
for different purposes and not best suited for RNA-seq data analysis. TOAST [8]
is a method for CT-specific DE or differential methylation analysis. It uses a
linear model that is more flexible than our negative binomial model to handle
different types of data, though for RNA-seq count data with a very strong
mean-variance relationship, a linear model that assumes homogeneous variance
has to choose between variance stabilization (e.g., by log-transformation of gene
expression) or deconvolution in linear scale. See more discussions of our method
and TOAST in Section A.6.1 in Supplementary Materials. All the analysis

15

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 14, 2020. ; https://doi.org/10.1101/2020.07.13.201061doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.13.201061
http://creativecommons.org/licenses/by-nc-nd/4.0/


performed in real data has been done using both CARseq and TOAST and
additional results for TOAST are available in Supplementary Figures.

Accounting for observed/unobserved confounding covariates is crucial for
DE analysis, and the unobserved covariates can be estimated by surrogate vari-
able analysis (SVA) [39]. In simulation data, we found that not accounting for
relevant covariates can lead to inflated type I error. This limits the application
of csSAM that cannot adjust for covariates in a lot of practical settings. For
this reason, we did not apply csSAM in real data analysis.

It is worth mentioning that CIBERSORTx [11] provides a high-resolution
mode that can provide CT-specific expression estimates for each sample. It is
very helpful for data exploration, but not appropriate for differential expression
testing since it relies on many assumptions that create some dependency in
the final output. The authors of CIBERSORTx did not recommend using such
high-resolution mode for differential expression analysis. However, it could be
a convenient and attractive approach for practitioners. To warn against it, we
demonstrate this approach could bring inflated type I error by simulation studies
(Figures S4-S7).

Estimation of cell type compositions

We use two reference-based methods to estimate cell type compositions of bulk
tissue samples: CIBERSORT [22] and ICeD-T [12]. CIBERSORT is a popular
method that use a support vector regression to estimate cell type proportions.
ICeD-T is a likelihood-based method that model gene expression using log-
normal distribution. It allows a subset of genes to be “aberrant” in the sense
that the CT-specific gene expression of such genes are inconsistent between bulk
tissue samples and external reference. Such aberrant genes are down-weighted
in estimating cell type proportions.

We generated CT-specific gene expression reference using snRNA-seq data
from the middle temporal gyrus (MTG) of the human brain [19]. This is not a
perfect match for the bulk RNA-seq data that are from pre-frontal cortex (PFC).
We have compared MTG with another snRNA-seq data generated from human
PFC as well as other brain regions using DroNC technique. The CT-specific
gene expression is similar between the two datasets, except for endothelial cells.
We chose to use MTG data to generate reference since it has much higher depth
and better coverage, making it more similar to bulk RNA-seq data. We exclude
endothelial in our analysis since there are only 8 endothelial cells in MTG data
and its expression has very weak similarity to the endothelial cells from DroNC
data. See Supplementary Materials Section B.2.1 for more details.

A related question is that when estimating cell type fractions, an implicit
assumption is that the signature genes’ cell type-specific expression level does
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not change in different conditions. Then it seems to be a contradiction when we
assess its DE. A more rigorous approach is to assess DE only for non-signature
genes. However, since cell fractions are estimated using hundreds of genes with
robust models, removing any one signature gene will not lead to a noticeable
change of cell type fraction estimates. Therefore, it is as if we assess DE of
a signature gene without using it as part of the signature matrix. On the
other hand, if too many genes within the signature gene set are detected to
be differentially expressed, the accuracy of the cell type fraction estimates is
questionable, and an alternative signature gene set should be selected.

CARseq analysis for SCZ

The gene expression data and sample characteristics data were downloaded from
CommonMind Consortium (CMC) Knowledge Portal (see section URLs). We
include the following covariates in our CARseq CT-specific DE analysis:

• log transformed read-depth (75 percentile of gene expression across all the
genes within a sample),

• institution (a factor of three levels for the three institutes where the sam-
ples were collected),

• age, gender, and PMI (Post-mortem interval),

• RIN (RNA integrity number) and its square transformation RIN2,

• a batch variable “Libclust”, which is clusters of library batches into 8
groups,

• two genotype PCs, and two surrogate variables.

The surrogate variables were calculated after accounting for cell type composi-
tions. Specifically, we add the log ratios of cell type compositions (with excita-
tory neuron as baseline) as the covariates and then calculate surrogate variables
using R function sva from R package sva [39].

The covariates selected in our model are mostly similar to those included in
the original analysis [20] except two differences. One is that we included two
instead of five genotype PCs in our analysis since other PCs are not associated
with gene expression data (Figures S1). Surrogate variables were computing
using the R package “sva” [39]. Two surrogate variables are included because
adding these two surrogate variables increased the variance explained (R2) in
a linear model to fit log-scale mixture expression from 0.55 to 0.68, while more
surrogate variables offered a comparably limited increase in R2. Prior to inclu-
sion in the model, all the continuous covariates were scaled to ensure numerical
stability [6].
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CARseq analysis for ASD

The gene expression data (expected read counts derived from RSEM) were
downloaded from Freeze1 of PsychENCODE Consortium (PEC) Capstone Col-
lection, and the accompanying meta data and clinical data were downloaded
from PsychENCODE Knowledge Portal, see Section URLs for the exact links.
There are 341 samples from 100 individuals. We kept the samples from Brod-
mannArea 9 (BA9), including 89 samples from 85 individuals. Four individuals
have duplicated samples and we chose the one with higher RIN. These 85 in-
dividuals include 42 ASD subjects and 43 controls, and they were from two
brain banks: 53 from Autism Tissue Program (ATP) and 32 from NICHD, see
Parikshak et al. [27] for more details of this dataset.

We examined the association between each potential covariates and genome-
wide gene expression and found PMI and Sex are not associated with gene
expression, as evidenced by a uniform distribution of p-values, therefore we
removed these two covariates and used the following covariates in our analysis.

• log transformed read-depth (75 percentile of gene expression across all the
genes within a sample),

• BrainBank (a factor of two levels),

• SequencingBatch (a factor of 3 levels),

• age, RIN (RNA integrity number),

• four sequencing surrogate variables (SeqSVs).

The SeqSVs, which are the notations used by Parikshak et al. [27] are PCs
derived from sequencing QC metrics. We used 4 principal components because
they explained 99% of the variance of the sequencing metrics. Prior to inclusion
in the model, all the continuous covariates were scaled to ensure numerical
stability [6].

Gene set enrichment analysis

The gene set enrichment was done on REACTOME pathways downloaded from
https://www.gsea-msigdb.org/gsea/msigdb/download_file.jsp?filePath=

/msigdb/release/7.1/c2.cp.reactome.v7.1.symbols.gmt. There are origi-
nally 1,532 pathways, of which 1,090 pathways have a size between 10 and 1,000
genes.

For each cell type, we used “fgseaMultilevel” function in “fgsea” R
package to simultaneously calculate p-values and normalized enrichment scores
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(NES) across the 1,090 pathways without any weights (fgseaMultilevel argument
gseaParam = 0) in a gene list ranked by potentially CT-specific p-values from
the differential expression analysis. The p-values across the 1,090 pathways were
then converted to q-values using “get qvalues one inflated” in our CARseq
package. Next, we collected in a table all the candidates of the pathway-cell type
pairs satisfying NES > 0 (genes in the pathway tend to have smaller p-values),
and sorted them by the rank of increasing q-values and decreasing NES within
each cell type. We then deduplicated the pathways by only retaining the first
appearance of each pathway in the table. The top N pathway-cell type pairs
were subsequently chosen. For illustrative purposes, N was picked to be 3 in
our paper.

In the Main Figures, the primary differential expression method was CARseq,
and the top pathways were defined by GSEA results from genes ranked by
CARseq CT-specific-DE p-values. In the Supplementary Figures, we also re-
ported heatmaps featuring top pathways defined by GSEA results based on
rankings by TOAST CT-specific-DE p-values.

FDR control procedure

We use q-value to control FDR [40]. The calculation of q-value requires an
estimate of the overall proportion of null p-values π̂0. We use the following
formula that specifically accommodates the situation where a proportion of p-
values equal to 1, implemented in function get qvalues one inflated of R
package CARseq:

π̂0 = (proportion of p value = 1) + 2× (proportion of p value > 0.5 and < 1).

URLs

snRNA-seq data for CT-specific expression reference,
file human MTG gene expression matrices 2018-06-14.zip, downloaded from
http://celltypes.brain-map.org/api/v2/well_known_file_download/694416044.

CommonMind Consortium (CMC) Knowledge Portal:
https://www.synapse.org/#!Synapse:syn2759792/wiki/69613.

CMC gene expression data:
https://www.synapse.org/#!Synapse:syn3346749

CMC gene expression meta data:
https://www.synapse.org/#!Synapse:syn18103174

CMC clinical data:
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https://www.synapse.org/#!Synapse:syn3275213.

PEC Capstone Collection:
https://www.synapse.org/#!Synapse:syn12080241

UCLA-ASD gene expression data:
https://www.synapse.org/#!Synapse:syn8365527

UCLA-ASD gene expression meta data:
https://www.synapse.org/#!Synapse:syn5602933

UCLA-ASD clinical data:
https://www.synapse.org/#!Synapse:syn5602932

SFARI ASD risk genes:
https://gene.sfari.org/database/human-gene/

Code availability

The codes for generating CT-specific gene expression reference panel are in-
cluded in GitHub repository scRNAseq pipelines (https://github.com/Sun-lab/
scRNAseq_pipelines). we have analyzed three scRNA-seq datasets: MTG,
dronc, and psychENCODE, and the codes were saved in corresponding folders.
The codes to compare different references and generate final references were
saved in folder brain cell type.

The codes for CARseq analyses (including simulation, and analyses of SCZ
and ASD datasets) were included in GitHub repository CARseq pipelines (https:
//github.com/Sun-lab/CARseq_pipelines). The file reproducible figures.html

has the code to generate most Figures in this paper. The R package CARseq
were deposited at GitHub repository CARseq (https://github.com/Sun-lab/
CARseq).
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