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Abstract 

Currently, several human brain functional atlases are used to define the spatial constituents of 

the resting-state networks (RSNs). However, the only brain atlases available are derived from 

samples of young adults. As brain networks are continuously reconfigured throughout life, the 

lack of brain atlases derived from older populations may influence RSN results in late adulthood. 

To address this gap, the aim of the study was to construct a reliable brain atlas derived only 

from older participants. We leveraged resting-state functional MRI data from three cohorts of 

healthy older adults (total N=563; age=55-95years) and a younger-adult cohort (N=128; 

age=18-35 years). We identified the major RSNs and their subdivisions across all older-adult 

cohorts. We demonstrated high spatial reproducibility of these RSNs with an average spatial 

overlap of 67%. Importantly, the RSNs derived from the older-adult cohorts were spatially 

different from those derived from the younger-adult cohort (p=2.3x10-3). Lastly, we constructed a 

novel brain atlas, called Atlas55+, which includes the consensus of the major RSNs and their 

subdivisions across the older-adult cohorts. Thus, Atlas55+ provides a reliable age-appropriate 

template for RSNs in late adulthood and is publicly available. Our results confirm the need for 

age-appropriate functional atlases for studies investigating aging-related brain mechanisms. 

 

Keywords: Aging, brain functional atlas, late adulthood, resting-state networks 
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Introduction 

Resting-state functional magnetic resonance imaging (rs-fMRI) has been instrumental in 

mapping the brain functional connectome in health (Fox MD et al. 2005; Smith SM et al. 2009; 

Doucet G et al. 2011; Smith SM et al. 2015) and disease (Feltz CJ and GE Miller 1996; Buckner 

RL et al. 2009; Tracy JI and GE Doucet 2015; Doucet GE et al. 2017; Dong D et al. 2018; Sha Z 

et al. 2019). The brain functional connectome can be defined as a multi-scale partition in which 

regions may be aggregated into networks, which in turn may be combined into larger systems 

(Kiviniemi V et al. 2009; Abou Elseoud A et al. 2011; Doucet G et al. 2011). Previous work by us 

and others suggest that the intermediate partition of the brain at the level of networks may be 

optimal to explain cognitive activity and to identify reliable biomarkers of neuropsychiatric and 

neurological disorders (van den Heuvel MP and HE Hulshoff Pol 2010; Abou Elseoud A et al. 

2011; Doucet G et al. 2011; Doucet G et al. 2012; Doucet GE et al. 2017; Salman MS et al. 

2019), while limiting multiple comparisons when compared to finer brain partitions (Zalesky A et 

al. 2010). At this level of brain organization, five major resting-state networks (RSNs) and their 

subdivisions have been typically identified across rs-fMRI studies: those involved in internally 

guided, higher order mental functions as part of the intrinsic system (default-mode [DMN], 

executive control [ECN], and salience [SAL] networks) and those supporting externally driven, 

specialized sensory and motor processing as part of the extrinsic system (visual [VIS] and 

sensorimotor [SMN] networks) (De Luca M et al. 2006; Smith SM et al. 2009; Doucet G et al. 

2011; Buckner RL et al. 2013; Doucet GE et al. 2019). Each of these brain networks relies on 

established white matter pathways (Toosy AT et al. 2004; Greicius MD et al. 2009; van den 

Heuvel MP et al. 2009) that support the consistency of their spatiotemporal configuration and 

functional roles (Damoiseaux JS et al. 2006; Smith SM et al. 2009; van den Heuvel MP and HE 

Hulshoff Pol 2010; Doucet G et al. 2011; Doucet GE et al. 2019; Elliott ML et al. 2019).  
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Several brain functional atlases are currently available which support reproducibility by 

harmonizing the RSN definition across neuroimaging studies (Doucet GE et al. 2019). However, 

to date, the only brain functional atlases available are derived from samples of young healthy 

adults, typically below the age of 40 years (Doucet GE et al. 2019). Nonetheless, changes in 

brain function over the course of adulthood have been well-documented and suggest that brain 

networks are continuously reconfigured throughout adult life (Damoiseaux JS et al. 2008; 

Meunier D et al. 2009; He X et al. 2013; Betzel RF et al. 2014; Damoiseaux JS 2017; Varangis 

E, Q Razlighi, et al. 2019; Yaple ZA et al. 2019; Luo N, J Sui, A Abrol, D Lin, et al. 2020). To our 

knowledge, there is currently no reference brain functional atlas derived from rs-fMRI data from 

older adults, and this may undermine neuroimaging efforts to characterize the brain functional 

connectome and its cognitive role in late adulthood. Critically, differences in the spatial 

composition of the RSNs derived from large samples of younger versus older adults have yet to 

be systematically investigated. 

In this context, the current study focused on the spatial definition of the five major RSNs (DMN, 

ECN, SAL, VIS and SMN) and their subdivisions in healthy adults aged 55 years and older. The 

specific aims were:  (a) to test the reproducibility of RSNs in three large independent cohorts 

comprising a total of 563 older healthy adults (age range: 55-95 years); accordingly, we 

analyzed data from the Center for Ageing and Neuroscience (CamCAN) project (Shafto MA et 

al. 2014; Taylor JR et al. 2017), the Southwest University Adult Lifespan Dataset (SALD) (Wei D 

et al. 2018) and the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (Jack CR, Jr. 

et al. 2008; Petersen RC et al. 2010); (b) to identify differences in the anatomical constitution of 

RSNs defined in the above cohorts compared to those in younger adults (age range 18-35); and 

(c) generate a reliable consensual RSN atlas to enhance the reproducibility of template-defined 

RSNs in older adults. 
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Materials and Methods 

Cohorts 

Older-Adult Cohorts: We used data from the CamCAN (Shafto MA et al. 2014; Taylor JR et al. 

2017), the SALD (Wei D et al. 2018) and the ADNI datasets (Jack CR, Jr. et al. 2008; Petersen 

RC et al. 2010). In each cohort, we selected healthy individuals aged 55 years and above for 

whom both rs-fMRI and structural MRI data were available. This selection resulted in a sample 

of 250 individuals for CamCAN (referred to as “CamCAN55+”), 190 for SALD and 134 for ADNI 

(details in supplementary material). Following quality control of the imaging data (described 

below), 11 participants across cohorts were removed for excessive head motion. The total 

analysis sample for the older individuals comprised 563 individuals, described in Table 1 and 

Supplementary Figure S1.  

Younger-Adult Cohort: A subset of the CamCAN cohort, referred to as “CamCAN35-”, was used 

to test for differences between younger (18 to 35 years-old) and older (55 years and older) 

adults in RSN spatial composition. This age range was chosen to match the typical age range of 

healthy participants used in currently available functional atlases (Doucet GE et al. 2019). The 

CamCAN35- included 128 individuals. Following the same quality control process, we excluded 

two individuals from CamCan35- (Table 1). 

 

Table 1: Cohort Characteristics 

Cohort N 

Age, 
years 
(Mean 
(SD)) 

Age 
Range 
(years) 

Sex (% 
Females) 

rs-fMRI TR 
(sec) 

rs-fMRI 
Volumes 

rs-fMRI 
Instruction 

CamCAN
55+ 246 71.3 (9.3) 55-88 49% 1.97 261 

closed 
eyes 

SALD 185 63.1 (6.5) 55-80 61% 2.00 242 
closed 
eyes 

ADNI 132 78.9 (7.0) 62-95 50% 3.00 140-200* open eyes 
CamCAN
35- 128 28.4 (4.8) 18-35 58% 1.97 261 

closed 
eyes 

CamCAN: Cambridge Center for Ageing and Neuroscience, SALD: Southwest University Adult 
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Resting-state fMRI Acquisition and Preprocessing 

In the CamCAN cohort, rs-fMRI data were acquired while participants rest with their eyes closed 

on a 3T Siemens TIM Trio scanner with a 32-channel head coil with the following acquisition 

parameters: TR/TE= 1970/30 msec, 32 axial slices, flip angle =78 degrees; FOV =192 mm×192 

mm; voxel-size =3 mm×3 mm×4.44 mm, acquisition time=8min 40sec, number of volumes: 261. 

More information on the MRI sequences can be found in Taylor JR et al. (2017). 

In the SALD cohort, rs-fMRI data were acquired while participants rest with their eyes closed on 

a 3T Siemens Trio scanner, using the following acquisition parameters (Wei D et al. 2018): 

TR/TE= 2000/30 msec, 32 axial slices, flip angle=90 degrees; FOV=220 mm×220 mm; voxel-

size =3.4 mm×3.4 mm×4 mm, acquisition time=8min, number of volumes: 242. More information 

on the MRI sequences can be found in Wei D et al. (2018). 

In the ADNI cohort, rs-fMRI data were acquired while participants kept their eyes open. 

Acquisition tool place in 43 sites using 3T scanners [General Electric (GE), Philips or Siemens] 

and variable acquisition protocols (details in http://adni.loni.usc.edu/methods/documents/) that 

commonly used a TR=3000 sec, with 140 to 200 volumes. When multiple resting-state fMRI 

datasets were available for a participant, the first one was selected for analyses. 

 

Regardless of the cohort, the rs-fMRI data were preprocessed in an identical fashion, using 

SPM12 and the DPABI Toolbox (Yan CG et al. 2016). Preprocessing procedures for the rs-fMRI 

datasets included removal of the first 3 volumes, motion correction to the first volume with rigid-

body alignment; co-registration between the functional scans and the anatomical T1-weighted 

Lifespan Dataset, ADNI: Alzheimer’s Disease Neuroimaging Initiative, TR: Repetition Time, rs-fMRI: 
Resting-state functional magnetic resonance imaging sequence. 
* number of volumes vary by ADNI site, see detail in supplementary material.  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 21, 2020. ; https://doi.org/10.1101/2020.07.13.200824doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.13.200824
http://creativecommons.org/licenses/by-nc-nd/4.0/


7 

 

scan; spatial normalization of the functional images into Montreal Neurological Institute (MNI) 

stereotaxic standard space; spatial smoothing within the functional mask with a 6-mm at full-

width at half-maximum Gaussian kernel; wavelet despiking (Patel AX et al. 2014); linear 

detrending; and regression of motion parameters and their derivatives (24-parameter model) 

(Friston KJ et al. 1996), as well as white matter (WM), CSF time series. The WM and CSF 

signals were computed using a component based noise reduction method (CompCor, 5 

principal components) (Behzadi Y et al. 2007). Lastly, bandpass filtering was applied at [0.01-

0.1] Hz (Cordes D et al. 2001). 

As previously mentioned, across the three older-adult cohorts, we excluded 11 individuals who 

had excessive head movement based on maximum transient (volume-to-volume) head motion 

above 2 mm translation or 1 degree rotation. After removing these individuals, we ensured that 

head motion, based on the mean framewise displacement (Power JD et al. 2012) did not 

correlate with age (r=0.08). Following the same process, we excluded 2 individuals from the 

CamCan35- cohort. 

 

Resting-state Networks in the older-adult cohorts  

 

Resting-state networks identification in the older-adult cohorts 

We used a process validated by Naveau M et al. (2012) to identify reliable brain networks. First, 

for each individual within each cohort, single-subject independent component analyses (ICAs) 

were conducted 20 times with random initialization using the Multivariate Exploratory Linear 

Optimized Decomposition into Independent Components (MELODIC) software, version 3.15, 

included in the FMRIB Software Library (FSL) v6.0.3 (http://www.fmrib.ox.ac.uk/fsl) (Smith SM 

et al. 2004). The number of independent components (ICs) was estimated by Laplace 

approximation (Minka T 2000). A symmetric approach of the FastICA algorithm (Hyvarinen A 
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1999) was used to compute the ICAs. Second, for each repetition, we used the multi-scale 

clustering of individual component algorithm (MICCA) to classify ICs into N groups (Naveau M 

et al. 2012). The number of groups was automatically estimated by the algorithm (Naveau M et 

al. 2012). Third, the Icasso algorithm (Himberg J et al. 2004) was used to select groups of 

reproducible ICs (i.e., groups with ICs that were present in at least 50% of the 20 repetitions), 

which we identified as the “group-level components” (Salman MS et al. 2019). Fourth, for each 

group-level component, a voxel-wise t-score map of individual ICs was computed and 

thresholded using a mixture model (p>0.95, (Beckmann CF and SM Smith 2004)). Lastly, we 

discarded group-level components if their spatial map: (i) mainly covered non-gray matter (i.e., 

CSF and WM), or (ii) included regions with strong signal attenuation due to susceptibility 

artefacts (i.e., lower frontal and lower temporal regions) (Supplementary Figures S2-S4). 

 

Spatial Overlap of group-level components in older-adult cohorts 

Within each cohort, we mapped the spatial overlap across the group-level components by 

computing an index that quantified the number of group-level components overlapping at each 

voxel. This voxel-wise index ranged from 1 (no spatial overlap, the voxel is assigned to only one 

component) to n (where n is the maximum number of components overlapping at a voxel).  

As the goal of the current study was to create a reliable functional atlas of RSNs, we created 

non-overlapping group-level components, on which we based the remaining analyses. 

Accordingly, each brain voxel was assigned to the group-level components with the highest t-

score. 

 

Reliability analyses of the group-level components in older-adult cohorts 
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As the spatial configuration of a brain network is strongly related with its functional connectivity 

(Bijsterbosch JD et al. 2018), we conducted supplementary analyses to assess the functional 

reliability of each group-level component, in each cohort, following the methods described in 

Labache L et al. (2020) (Supplementary Figure S5). In each cohort, we generated a 

dendrogram based on the average connectivity matrix between the group-level components. 

The functional reliability of a group-level component depended on the number of times it 

maintained the same position in the dendrogram of each individual participant of the same 

cohort. We created a reliability index (Q) for each group-level component, where a score close 

to zero indicated perfect functional reliability and a high score indicated high functional 

unreliability (details in supplementary information and supplementary Figure S5). We conducted 

Tukey's fences tests to identify and discard these highly unreliable group-level components. 

 

Construction of the major RSNs in older-adult cohorts 

We chose to focus on the major RSNs defined as: the DMN, the ECN, the SAL, the SMN, and 

the VIS (Smith SM et al. 2009; Doucet G et al. 2011; Doucet GE et al. 2019) and their 

subdivisions and examined their spatial definition across the three cohorts.  

Following the identification of non-overlapping and functionally reliable group-level components 

in each cohort, we proceeded to assigning them to the major RSNs of interest, namely the 

DMN, ECN, SAL, VIS and SMN. As reference for each network, we used their spatial definition 

in the Consensual Atlas of REsting-state Networks (CAREN) (Doucet GE et al. 2019). This atlas 

was generated by our group and presents the spatial configuration of the major RSNs based on 

their common properties across the most widely used brain functional atlases and as such it 

represents the most reproducible spatial features of the major RSNs currently available. This 

choice was also based on the fact that, to the best of our knowledge, there are currently no 
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validated and reproducible RSNs from rs-fMRI data of a large sample of older healthy 

individuals that we could use as normative templates. 

In each cohort, we computed the Dice coefficient (Dice LR 1945) to quantify the degree of 

spatial overlap between each group-level component and each of the five aforementioned 

CAREN RSNs. Components were then assigned to the RSN with which they had the largest 

overlap (Supplementary Table S1). We applied this process to each cohort separately to create 

spatial maps of the major RSNs. We were thus able to construct a spatial map for each RSN. 

We used the Dice coefficient to test the pairwise similarity between the same-labeled RSNs 

across cohorts. Lastly, to ensure that the results did not depend on the template used (i.e., 

CAREN), we also used the atlas created by Yeo BT et al. (2011) for the RSN assignment. 

 

Spatial comparison of the major RSNs between young and older adults 

Prior to testing for differences in the spatial constitution of RSNs between older and younger 

adults we constructed the major RSNs in the CamCAN35- by applying the same procedure as 

for the older cohorts (Supplementary Figure S12).  

We then compared their respective RSNs to those derived from the other two independent 

cohorts (ADNI and SALD). For this, we used Dice’s coefficient to quantify the spatial similarity of 

the RSNs in CamCAN35-, and in CamCAN55+ respectively, to those of SALD and ADNI, and 

compared these pairwise coefficients (i.e., we compared the coefficients resulting from the RSN 

comparison CamCAN55+ vs. SALD and ADNI to those resulting from the mRSN comparison 

CamCAN35- vs. SALD and ADNI). This choice of approach was based on two major reasons: 

(1) among the three cohorts, CamCAN was the largest and also provided more reliable data 

(having the largest number of rs-fMRI volumes (Elliott ML et al. 2019), Table 1); and (2) this 
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approach enabled us to account for differences in analytic approach, site, and MRI acquisition 

parameters.  

 

Generation of Atlas55+  

The major RSNs identified in each of the three older-adult cohorts were used as input data to 

create a consensual atlas, named Atlas55+. For this, we used the function 

consensus_similarity.m from the Network Community Toolbox (http://commdetect.weebly.com), 

which constructs a representative partition. 

To test the spatial reproducibility of the major RSNs in Atlas55+, we conducted supplementary 

analyses: (1) we assigned each brain voxel to a network only if at least two of the three older-

adult cohorts assigned this voxel to the same network. We then computed a spatial correlation 

between the two versions of Atlas55+ using Pearson’s correlation analyses. (2) We created a 

voxel-wise confidence map to quantify the consistency of the network assignment between the 

RSNs of the atlas and those from each of the three older-adult cohorts. This voxel-wise index 

ranged from 0 (poor confidence, the network assignment of a voxel in Atlas55+ differed from its 

network assignment in all three cohorts) to 100% (high confidence, the network assignment of a 

voxel in Atlas55+ was identical to its network assignment in all three cohorts). Lastly, we 

compared the RSNs of the atlas to those of CamCAN35- in order to quantify the spatial 

differences between RSNs from younger adults and older adults, computing Dice coefficients. 

To identify the anatomical definition of each major RSN in the atlas, we generated subject-

specific versions using a dual regression approach in FSL (Beckmann CF et al. 2009; Nickerson 

LD et al. 2017). We then entered each network into a one-sample t test, adding age, head 

motion (mean framewise displacement), estimated total intracranial volume (TIV, measured 

using FreeSurfer v6.0 (http://surfer.nmr.mgh.harvard.edu/)), and site as covariates of no 
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interest. Significant regions were reported at a p<0.05 after applying a family wise error (FWE) 

correction at the voxel level (T>5.3, cluster size>20 voxels). 

 Subdivisions of the RSNs within Atlas55+ 

We then focused on the subdivisions of each RSN within  Atlas55+ to increase the spatial 

resolution of the atlas across the three older-adult cohorts. 

For each major RSN, we quantified the degree of spatial overlap between the group-level 

components assigned to that RSN across the three cohorts, using Dice coefficients 

(Supplementary Table S1). Based on these coefficients, we constructed a dendrogram and 

identified clusters with high spatial overlap across independent group-level components, with 

one component from each of the three cohorts (Supplementary Figure S11). Lastly, we created 

a spatial map for each of these clusters, which displays the spatial characteristics of a 

subdivision of that RSN (Supplementary Table S3). A voxel was identified as part of that RSN 

subdivision if it was found in at least two out of the three components. We chose to focus on 

clusters with contributions from independent components for all three older-adult cohorts 

because this suggests that these components were reliably found in each cohort and therefore 

were minimally influenced by acquisition parameters. 

Effects of sex and age on the major five RSNs in the Atlas55+ 

The effect of age on the spatial distribution of each major RSN in the atlas (extracted from the 

dual regression) across all individuals (total n=563) was tested by conducting an analysis of 

covariance, adding covariates of no interest: head motion, TIV, and site. Sex differences in the 

spatial distribution of the RSNs in the atlas were also assessed using age, head motion, TIV, 

and site as covariates of no interest. Significant clusters are reported at a p<0.05 with FWE 

correction at the voxel level (T>5.3, cluster size>20 voxels). 
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Results 

Identification of group-level components in the older-adult cohorts 

In the CamCAN55+, SALD and ADNI cohorts, we respectively identified a total of 27, 24 and 23 

reproducible group-level components (Supplementary Figures S2-S4 and S8). For the 

CamCAN55+ cohort, we found that 27% of the voxels were assigned to a single group-level 

component, while less than 0.5% of the voxels were assigned to a maximum of nine group-level 

components. The degree of spatial overlap between components was similar for the other two 

cohorts (Supplementary Figure S7). Regardless of cohort, the regions with the highest overlap 

were located in the medial posterior cortex, the dorso-medial prefrontal cortex and the lateral 

parietal cortex (Supplementary Figure S7). 

Regardless of cohort, the functional reliability tests showed that all group-level components had 

a similar degree of stability, with no outlier, across individuals and in each cohort 

(Supplementary Figure S6). The reliability Q scores of each component did not differ across 

cohorts (p>0.1). 

 

Construction and Reliability of the major RSNs in the older-adult cohorts 

The five RSNs constructed in each older-adult cohort (Figure 1) showed high spatial 

reproducibility across the three cohorts with an average spatial overlap of 67% (mean range: 

66-69%), with the SAL having the lowest score (46%) and the VIS having the highest score 

(83%) (Figure 2A). Supplementary Figure S9 shows the voxelwise confidence values with 

respect to the probability of a voxel being assigned to the same-labeled RSN across the three 

cohorts. The majority of voxels (83.5%) had confidence values over 66%, indicating that at least 

two out of the three cohorts had the same RSN assignment. 
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The choice of a reference atlas, CAREN or Yeo, minimally affected the spatial definition of the 

RSNs. The average spatial overlap of each RSN constructed based on CAREN versus each 

RSN constructed based on Yeo’s atlas was 86% across the three cohorts (CamCAN: 86% 

(sd=15%), SALD: 85% (19%), ADNI: 86% (9%)) (Supplementary Figure S10).  

 

Figure 1: Spatial map of the five major RSNs in each older-adult cohort. (A) CamCAN55+, 
(B) SALD, (C) ADNI. DMN: Default mode network, SAL: Salience network, ECN: Executive 
control network, VIS: Visual network, SMN: Sensorimotor network. 

 

Comparison of the major RSNs between older- and young adults 

We found that the major RSNs in the CamCAN35- (Supplementary Figure S12) were less 

similar to those identified in the SALD and ADNI than in the CamCAN55+ (t=-4.2, p=2.3x10-3; 

Figure 2B). The SMN and VIS, which cover primary cortices differed the least, while the SAL 

network showed the largest spatial difference between the younger and older cohorts. 
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Figure 2: Spatial similarity of the RSNs across the cohorts. (A) Spatial similarity of the
RSNs across the older-adult cohorts. (B) Comparison of the spatial similarity of the RSNs
identified in the CamCAN35- vs. the ADNI and SALD cohorts and in the CamCAN55+ vs. the
ADNI and SALD cohorts. DMN: Default mode network, SAL: Salience network, ECN: Executive
control network, VIS: Visual network, SMN: Sensorimotor network. 

 

Atlas55+ 

Atlas55+ is available at two resolution levels: at the lever of the five major RSNs (DMN, ECN,

SAL, SMN and VIS, Figure 3A) and at the level of their 15 subdivisions that were also reliably
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identified across the three older-adult cohorts (Figure 4). The anatomical description of each

RSN and their subdivisions is detailed in Supplementary Tables S2 and S3. The degree of

confidence in network assignment in Atlas55+ was high across the three older-adult cohorts

(Figure 3B). The SMN and VIS were the most reproducible networks with 77% and 93% of their

voxels respectively being consistently assigned across all three cohorts.  

 

 

Figure 3: Atlas55+: Consensus brain atlas composed of the five major resting-state
networks based on three cohorts of healthy individuals aged 55 years and above. (A)
Spatial map of the RSNs. (B) Voxel-wise confidence map in Atlas55+. This measure quantifies
the probability that a voxel in an Atlas55+ network is assigned to the same-label RSN in each of
the three cohorts. DMN: Default mode network, SAL: Salience network, ECN: Executive control
network, VIS: Visual network, SMN: Sensorimotor network. 
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As defined in Atlas55+, the SMN was comprised of the sensory and motor regions (precentral 

and postcentral gyrus and supplementary motor area), the primary auditory cortex (superior 

temporal cortex), and thalamus. The SMN was further partitioned into four subdivisions: the 

ventral and dorsal parts of the pre- and post-central gyri, the supplementary motor area and the 

bilateral superior temporal gyri (auditory network). The VIS network largely covered the occipital 

lobe, and was partitioned into two subdivisions: the medial and posterior parts (Figure 4). Both 

SMN and VIS networks showed the largest spatial overlap with their respective networks in 

younger adults as outlined in CamCAN35- (spatial overlap: 69% and 84% respectively) (Figure 

5). 

For the DMN, 51% of the network’s voxels showed consistency across all three older-adult 

cohorts. In Atlas55+, the DMN comprised the medial prefrontal cortex/ventral anterior cingulate 

cortex (ACC), the precuneus/posterior cingulate cortex (PCC), the inferior frontal cortex, the 

angular gyri, the middle temporal cortex, the hippocampi and amygdala, and some bilateral 

cerebellar clusters. The DMN further included four reliable subdivisions comprising the anterior 

DMN (ACC), the core DMN (precuneus/PCC, medial prefrontal cortex, bilateral angular gyri), 

and two left lateralized networks mostly covering the inferior frontal gyrus, temporal poles and 

the posterior part of the superior temporal gyrus, and dorsal medial prefrontal cortex (Figure 4). 

The whole DMN showed a 63% overlap with the DMN in younger adults as defined in 

CamCAN35- (Figure 5). The major spatial differences were localized in the posterior medial 

temporal lobe -which was part of the DMN from CamCAN35-, but not from Atlas55+ (Figure 5).  

For the ECN, 58% of the network’s voxels showed consistency across all three older-adult 

cohorts. In Atlas55+, the ECN included parts of the dorsolateral prefrontal cortex, the lateral and 

medial parietal cortex, the posterior inferior temporal cortex, the posterior parahippocampal 

gyrus and some bilateral cerebellar clusters. The ECN further included four reliable subnetworks 
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comprising the right and left lateral parietal-frontal cortex, as well as two posterior subdivisions 

mostly covering the posterior parietal lobe and the medial temporal lobe. The whole ECN  

showed a 60% overlap with the ECN in younger adults as defined in CamCAN35-. The major 

differences involved the additions of the posterior medial temporal lobe (lingual and 

parahippocampal gyri) in the ECN from Atlas55+ (Figure 5).  

The SAL network emerged as the least reproducible network: 25% of the network’s voxels were 

consistently assigned to the SAL across the three older-adult cohorts. In Atlas55+, the SAL was 

comprised of the anterior insula bilaterally, the dorsal ACC, the supramarginal gyri, subcortical 

regions including the putamen and thalamic nuclei, and bilateral cerebellar clusters. We only 

found one reliable subdivision which mostly covered the dorsal ACC and supramarginal gyri, 

bilaterally (Figure 4). The spatial overlap with the whole SAL in younger adults as defined in 

CamCAN35- was the lowest with 30% and the regional differences were widespread (Figure 5).  
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Figure 4: Reliable subdivisions of each of the five major RSNs across the three older-
adult cohorts. (A) 4 subdivisions of the DMN; (B) 4 subdivisions of the ECN; (C) 1 subdivision
of the SAL; (D) 4 subdivisions of the SMN; (E) 2 subdivisions of the VIS. Each color
corresponds to one subdivision. Each subdivision is further described in the supplementary
material (Supplementary Table S3 and Supplementary Figure S11).  
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Figure 5: Spatial comparison of the major resting state networks between adults over the 
age of 55 years, as defined in Atlas55+, and younger adults (aged 18-35 years) from the 
CamCAN35- cohort. 

 

Associations of sex and age with the spatial distribution of the major RSNs in Atlas55+ 

Sex: We did not find any significant differences between males and females on the spatial

distribution of any major RSN in the atlas.  

Age: We found a negative regional association with age for each of the major RSNs in the atlas

(Figure 6, Supplementary Table S4). In detail, increasing age was associated with lower spatial

integrity of: (i) both anterior and posterior medial regions in the DMN (Figure 6A), (ii) bilateral

fronto-parietal regions in the ECN (Figure 6B), (iii) bilateral anterior insula and dorsal anterior

cingulate cortex in the SAL (Figure 6C), (iv) bilateral superior temporal and postcentral gyri in

the SMN (Figure 6D), and to a lesser degree (v) in the calcarine and lingual gyri of the VIS

(Figure 6E). 

In contrast, increasing age was associated with higher spatial integrity of cerebellar regions in

both the DMN and the ECN (Supplementary Table S4). No other results were significant. 
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Figure 6: Clusters showing lower spatial integration with the rest of the RSN, with older 
age, across the three older-adult cohorts. Details of the clusters are in Supplementary Table 
S3. Significance set up at p<0.05 (FWE correction at the voxel level). 

 

Discussion 

This study investigated (a) the spatial definition of the major RSNs in healthy individuals in late 

adulthood using rs-fMRI data from three large independent cohorts of participants aged 55 

years and above and; (b) differences in the spatial definition of RSNs in late adulthood to those 

derived from healthy individuals in mid adulthood. We found a high reproducibility of the spatial 

definition of the RSNs across the cohorts of older adults, but also significant differences when 

compared to the RSNs of younger adults. In response to these findings, we constructed 

Atlas55+, a robust brain functional atlas derived from rs-fMRI of 563 healthy adults between the 

ages of 55 and 95 years, in order to promote RSN reproducibility in future studies focusing on 

older populations. The age cut-off of 55 years may be considered arbitrary but there is currently 

no clear consensus on a specific age that distinguishes middle to late adulthood. In response, 

we followed the same age criterion as in ADNI, which is a landmark initiative in North America to 

investigate brain organization in older populations (Jack CR, Jr. et al. 2008; Petersen RC et al. 

2010). 
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Despite different MRI scanner types, acquisition parameters, and sites, we demonstrated good 

reproducibility of the spatial definition of the RSNs across the three older-adult cohorts. 

Regardless of the cohort, the regions with the highest spatial overlap between RSNs were 

localized in the medial prefrontal cortex, the precuneus, and the lateral parietal cortex, which 

have been described as brain hubs in young adults (Tomasi & Volkow, 2011; Zuo et al. 2012). 

Participation in multiple networks is thought to reflect an inherent feature of these associative 

regions (Yeo BT et al. 2014). While studies have reported a negative effect of aging on the 

strength of these regional hubs (Damoiseaux JS 2017; Zhang H et al. 2017), the current study 

suggests that the variability in their location remains relatively unaltered within older healthy 

populations.  

Across the three older-adult cohorts, we found that the most reproducible networks were the 

SMN and VIS networks. These networks are mostly covering primary cortices, which are known 

to have high structural-functional coherence (Luo N, J Sui, A Abrol, J Chen, et al. 2020), low 

inter-individual variability in anatomical morphology (White LE et al. 1997) and in resting-state 

functional connectivity (Franco AR et al. 2013; Mueller S et al. 2013; Li R et al. 2017), and tend 

to preferentially participate in single networks in line with their circumscribed and specific 

functions (Yeo BT et al. 2014). In contrast, the SAL network showed the largest spatial 

differences across the three older-adult cohorts. This was consistent with the fact that we only 

identified one reliable subdivision of the SAL, in contrast to the other high-order RSNs (i.e., 

DMN and ECN) that showed four reliable subdivisions each. In studies of individuals below the 

age of 40 years, the spatial definition and role of the SAL network have been largely variable 

(Dosenbach NU et al. 2007; Seeley WW et al. 2007; Smith SM et al. 2009; Yeo BT et al. 2011; 

Shirer WR et al. 2012; Doucet GE et al. 2019) and this appears to be the case in older adults 

too. 
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In line with what we hypothesized, we found age-related alterations in the spatial composition of 

all five RSNs. The association of RSN spatial definition with age was examined in two different 

and complementary ways. First, by comparing RSNs between older and younger adults and 

second by examining the effect of age within the older age-group by testing its association with 

RSN constitution in the RSNs defined by Atlas55+. Comparison of younger and older adults 

showed that the SMN and VIS showed the smallest age-related differences, while the DMN, 

ECN and SAL showed the highest degree of age-related spatial reorganization. These findings 

accord with those of prior studies which have consistently reported that the functional 

connectivity within networks supporting higher-order functions is more affected by age than that 

of networks supporting lower-order functions (Mowinckel AM et al. 2012; He X et al. 2013; 

Betzel RF et al. 2014). Also, a recent study by Luo N, J Sui, A Abrol, J Chen, et al. (2020) 

showed more extensive age-related changes in the structural-functional coherence of the 

associative cortex compared with that of the unimodal cortex. The posterior medial temporal 

regions - which are typically identified as part of the DMN in younger adults (Buckner RL et al. 

2008; Doucet G et al. 2011; Buckner RL and LM DiNicola 2019) - were instead assigned to the 

ECN in the older adults. This finding is in agreement with the notion that cognitive aging 

involves reorganization rather than loss of function (Reuter-Lorenz PA and C Lustig 2005; 

Andrews-Hanna JR et al. 2007; Yaple ZA et al. 2019). This regional variability of the DMN and 

ECN is also supported by the “the default to executive coupling” (DECHA) model of cognitive 

aging proposed by Turner GR and RN Spreng (2015).This model proposes a regional shift in 

the architecture of the DMN and ECN to support crystallized cognition in later life (Spreng RN et 

al. 2018). We also found large spatial differences in the SAL between the younger and older 

adults, with the younger adults showing a network restricted to the anterior insula bilaterally and 

anterior cingulate cortex only (Seeley WW et al. 2007). As discussed above, the origin of this 

large inter-individual variability is unclear. Future investigations focusing on the SAL are needed 
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to determine whether the spatial differences may be related to analytical or true biological 

differences between samples. 

We found a significant association of age with the functional integrity of the major RSNs in older 

adults, particularly in the major regions of the DMN, ECN and SAL. This finding was expected 

as the age range across all participants was 40 years. This was consistent with prior 

neuroimaging studies that described an effect of aging on both brain structure and function in 

populations over age 50 (Betzel RF et al. 2014; Chan MY et al. 2014; Luis EO et al. 2015; 

Damoiseaux JS 2017; Varangis E, CG Habeck, et al. 2019; Dima D et al. 2020; Frangou S et al. 

2020; Luo N, J Sui, A Abrol, D Lin, et al. 2020). The overall negative impact of age on each 

network largely confirms a reduction of functional cohesiveness of the major brain networks, 

particularly those supporting higher-order cognitive functions (Damoiseaux JS et al. 2008; 

Mowinckel AM et al. 2012; He X et al. 2013; Betzel RF et al. 2014; Yaple ZA et al. 2019). It is 

interesting to note that we also found a positive association of age in cerebellar regions in both 

the DMN and ECN, suggesting higher cerebellar-cortical integration in these two networks with 

older age. Zhang H et al. (2017) reported similar findings of increased cerebellar-neocortical 

functional connectivity with age in healthy participants between the age of 12 and 79 years. This 

higher cerebellar-neocortical integration has also been associated with successful higher-order 

cognitive activity in a healthy elderly population (Luis EO et al. 2015). Collectively, the findings 

reported in the current study underscore the importance of age-adapted brain functional atlases  

Moving forward, we propose Atlas55+ that has several advantages to study brain activity in late 

adulthood. To the best of our knowledge, Atlas55+ (a) is the only atlas based on rs-fMRI 

datasets from three independent cohorts including a total of 563 healthy participants above the 

age of 55 years; (b) includes functional partitions of the brain at the level of the large RSNs and 

their subdivisions; (c) accommodates differences in neuroimaging acquisition parameters (i.e., 

different sites, MRI scanners and acquisition sequences); and (d) is independent of sample 
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composition. We identified 15 reproducible RSN subdivisions (Figure 4), which is in a typical 

range for subdivisions reported in brain functional atlases based on younger adults’ rs-fMRI data 

(Yeo BT et al. 2011; Doucet GE et al. 2019). We note that the subdivisions reported were those 

that were identified in all three older-adult cohorts, to minimize potential influences by 

differences in MRI acquisition parameters. Further studies are needed to confidently identify the 

exact causes of variation in these subdivisions between the cohorts. 

While Atlas55+ offers a realistic option for standardizing the definition of RSNs for older adults, 

we acknowledge its limitations. First, the age cut-off of 55 years follows the criterion used in 

ADNI, which can be viewed as arbitrary. Second, age-related changes in RSN configuration are 

likely to continue throughout late life and these subtle changes may not be fully captured by 

Atlas55+. The option of creating brain functional atlases in older individuals to cover specific 

and smaller time periods (i.e., for every decade past the 55th year) is challenging at present as 

high-quality rs-fMRI datasets are scarce in older participants, particularly in advanced old age. 

The Human Connectome Project-Aging dataset may help achieve this goal when it will be fully 

released (https://www.humanconnectome.org/study/hcp-lifespan-aging). Third, we constructed 

Atlas55+ using a volumetric-based (ICA) rather than a surface-based approach. We previously 

demonstrated that MICCA provided reliable networks (Naveau M et al. 2012), and the analytic 

approach does not significantly alter the reproducibility of the RSNs as long as they are derived 

from a sample of at least 100 individuals (Doucet GE et al. 2019), which is the case for each 

cohort analyzed in the current study. Therefore, it is unlikely that this choice strongly influenced 

the spatial definition of the RSNs. Fourth, we focused on the five major RSNs (DMN, ECN, SAL, 

SMN, VIS) and their subdivisions as these are the most reproducible networks in the 

neuroimaging literature (van den Heuvel MP and HE Hulshoff Pol 2010; Doucet GE et al. 2019; 

Elliott ML et al. 2019). As aging is associated with reduced brain modularity (Meunier D et al. 

2009; Damoiseaux JS 2017; Varangis E, Q Razlighi, et al. 2019), we cannot exclude the 
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possibility that the clustering approach did not influence the current findings (Abou Elseoud A et 

al. 2011). However, each of these five RSNs have been consistently identified in aging studies 

(Damoiseaux JS et al. 2008; Mowinckel AM et al. 2012; Betzel RF et al. 2014; Sala-Llonch R et 

al. 2015; Varangis E, CG Habeck, et al. 2019), suggesting that their existence in older 

individuals is indisputable. Lastly, this study specifically focused on the spatial characteristics of 

the RSNs; other characteristics such as their dynamics or the association with cognitive 

variability in late adulthood were not explored because the necessary data were not available. In 

particular, it will be important to investigate the cognitive impact on the spatial definition of the 

Atlas55+ RSNs, in cognitively impaired populations. In the current study, all individuals were 

identified as healthy and showed very low variability in their general functioning (Mini-mental 

state exam score: mean (std): 28.6 (1.5), across the CamCAN55+ and ADNI cohorts) which 

prevented further analyses to identify spatial variability in the RSNs as a function of cognitive 

ability. 

 

Conclusion 

We presented a quantitative comparison of the spatial composition of the major RSNs and their 

reliable functional subdivisions derived from healthy adults between the ages of 55 and 95 years 

old and younger adults aged 18-35 years. We also identified the spatial distribution of age-

related changes in RSN definition. Our results confirm the importance of age-appropriate brain 

functional atlases for studies investigating brain mechanisms related to aging. We propose that 

Atlas55+ can provide a reproducible template of the major RSNs for late adulthood as it is 

publicly available (Website-to-be-provided upon publication). 
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Figure Legends  

Figure 1: Spatial map of the five major RSNs. (A) CamCAN55+, (B) SALD, (C) ADNI. DMN: 
Default mode network, SAL: Salience network, ECN: Executive control network, VIS: Visual 
network, SMN: Sensorimotor network. 

Figure 2: Spatial similarity of the RSNs across the cohorts. (A) Spatial similarity of the 
RSNs across the older-adult cohorts. (B) Comparison of the spatial similarity of the RSNs 
identified in the CamCAN35- vs. the ADNI and SALD cohorts and in the CamCAN55+ vs. the 
ADNI and SALD cohorts. DMN: Default mode network, SAL: Salience network, ECN: Executive 
control network, VIS: Visual network, SMN: Sensorimotor network. 

Figure 3: Atlas55+: Consensus brain atlas composed of the five major resting-state 
networks based on three cohorts of healthy individuals aged 55 years and above. (A) 
Spatial map of the RSNs. (B) Voxel-wise confidence map in Atlas55+. This measure quantifies 
the probability that a voxel in an Atlas55+ network is assigned to the same-label RSN in each of 
the three cohorts. DMN: Default mode network, SAL: Salience network, ECN: Executive control 
network, VIS: Visual network, SMN: Sensorimotor network. 

Figure 4: Reliable subdivisions of each of the five major RSNs across the three older-
adult cohorts. (A) 4 subdivisions of the DMN; (B) 4 subdivisions of the ECN; (C) 1 subdivision 
of the SAL; (D) 4 subdivisions of the SMN; (E) 2 subdivisions of the VIS. Each color 
corresponds to one subdivision. Each subdivision is further described in the supplementary 
material (Supplementary Table S3 and Supplementary Figure S11).  

 

Figure 5: Spatial comparison of the major resting state networks between adults over the 
age of 55 years, as defined in Atlas55+, and younger adults (aged 18-35 years) from the 
CamCAN35- cohort 

Figure 6: Clusters showing lower spatial integration with the rest of the RSN, with older 
age, across the three older-adult cohorts. Details of the clusters are in Supplementary Table 
S3. Significance set up at p<0.05 (FWE correction at the voxel level). 
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