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Abstract

Background Biomedical ontologies contain a wealth of metadata that constitutes a fundamental
infrastructural resource for text mining. For several reasons, redundancies exist in the ontology
ecosystem, which lead to the same concepts being described by several terms in the same or similar
contexts across several ontologies. While these terms describe the same concepts, they contain
different sets of complementary metadata. Linking these definitions to make use of their combined
metadata could lead to improved performance in ontology-based information retrieval, extraction,
and analysis tasks.

Results We develop and present an algorithm that expands the set of labels associated with an
ontology class using a combination of strict lexical matching and cross-ontology reasoner-enabled
equivalency queries. Across all disease terms in the Disease Ontology, the approach found 51,362
additional labels, more than tripling the number defined by the ontology itself. Manual validation by
a clinical expert on a random sampling of expanded synonyms over the Human Phenotype Ontology
yielded a precision of 0.912. Furthermore, we found that annotating patient visits in MIMIC-III
with an extended set of Disease Ontology labels led to semantic similarity score derived from those
labels being a significantly better predictor of matching first diagnosis, with a mean average
precision of 0.88 for the unexpanded set of annotations, and 0.913 for the expanded set.

Conclusions Inter-ontology synonym expansion can lead to a vast increase in the scale of
vocabulary available for text mining applications. While the accuracy of the extended vocabulary is
not perfect, it nevertheless led to a significantly improved ontology-based characterisation of patients
from text in one setting. Furthermore, where run-on error is not acceptable, the technique can be
used to provide candidate synonyms which can be checked by a domain expert.
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Background 1

Metadata are a fundamental feature of biomedical ontologies, describing a wealth of natural 2

language information in the form of labels and descriptions [1]. OWL ontologies implement 3

metadata in the form of annotation properties, and these can be used to describe multiple natural 4

language labels for a single term. Open Biomedical Ontologies (OBO) [2] define a series of 5

conventional annotation properties that can be used for the expression of labels and synonyms. 6

These features are widely used; as of 2017 the Human Phenotype Ontology (HP) [3] contained 7

14,328 synonyms for 11,813 classes [4]. Because such labels are associated with ontology terms, 8

ontologies constitute a controlled domain vocabulary. 9

The role of a controlled domain vocabulary makes ontologies a valuable resource for text mining, 10

particularly in information retrieval and extraction tasks [5]. Furthermore, association of entities 11

described in text with ontologies enables their integration with other datasets annotated by those 12

ontologies, as well as caters the application of ontology-based analysis techniques such as semantic 13

similarity, semantic rule-mining, or relational machine learning. 14

However, due to limitations of resources for expert curation of ontologies and the sheer scale of 15

their contents, the labels obtainable from single ontologies are not exhaustive. Combined with the 16

tendency for alternative presentation of semantically equivalent concepts in biomedical text [6], 17

ontology labels are not always a good fit for text corpora that discuss the same concepts [7]. By 18

expanding the set of synonyms in an ontology, particularly with synonyms that provide a better fit 19

for text corpora, the performance of natural language processing tasks that depend on them can be 20

improved. 21

This potential is reflected by previous work in the field. One approach that used analysis of 22

existing synonyms across ontology hierarchy to determine new synonyms reported an increase in 23

performance of a task retrieving articles from a literature repository [8]. Another rule-based 24

synonym expansion approach to extending the Gene Ontology showed improved performance in 25

named entity recognition (NER) tasks [9]. A combined machine-learning and rule-based approach to 26

learning new HP synonyms from manually annotated PubMed abstracts improved performance of an 27

annotation task over a gold standard text corpus [10]. 28

Ontology-based annotation software such as OBO Annotator [11], ConceptMapper [12], and the 29

NCBO Annotator [13] contain routines to consider rule-based morphological and positional 30

transformations of terms to increase NER recall. Parameters that control the use of these features 31

have a strong influence on annotation performance [14]. Previous work has also investigated 32

synonym acquisition and derivation for the purposes of improving the performance of lexical 33

ontology matching and alignment tasks [15]. Outside of automated synonym generation, organised 34

efforts have been made to manually extend an ontology’s synonyms for a particular purpose. For 35

example, HP was expanded with layperson synonyms to enable its use in applications that interact 36

directly with patients [16]. 37

However, no work to our knowledge has considered linking different ontology terms for the 38

purposes of vocabulary expansion. Many biomedical concepts are described by the same terms in 39

equivalent or similar contexts across several ontologies. For example, terms describing hypertension 40

exist in many ontologies and medical terminologies. The hypertension (HP:0000822) term describes 41

the condition in the context of a phenotype, while hypertension (DOID:10763) from the Disease 42

Ontology (DO) [17] describes it in the context of a disease. Specific-disease or application ontologies 43

also extend upon definitions provided by general domain ontologies. For example, the Hypertension 44

Ontology (HTN) [18] extends the HP and DO hypertension classes, adding additional information 45

including labels. Furthermore, the subtle distinctions between concepts that biomedical ontologies 46

capture, including phenotype versus disease, do not necessarily influence many of the commonly 47

applied text mining tasks, because these contexts share the same labels. 48

We hypothesise that because ontologies are constructed with different loci, ontologies that define 49

terms describing the same concepts will contain different, but valid, synonyms for a particular 50

context. These loci consist in contexts, domain experts, and source material. By considering all of 51

these terms, we can construct extended vocabularies that may improve the power of ontology-based 52
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text mining tasks. In this paper, we describe and implement a synonym expansion approach that 53

combines lexical matching and semantic equivalency to obtain new synonyms for biomedical 54

concepts. We use the approach to extend several ontology vocabularies, and evaluate them both 55

manually, and in an ontology-based patient characterisation task. 56

Results 57

The synonym expansion algorithm is available as part of the Komenti text mining framework, which 58

is available under an open source licence at https://github.com/reality/komenti, while the files 59

used for validation are available at 60

https://github.com/reality/synonym_expansion_validation. 61

Algorithm 62

We developed a synonym expansion algorithm that derives additional synonyms for a class by 63

matching it with classes from other ontologies, making use of the AberOWL ontology reasoning 64

framework [19]. The algorithm performs the following process, for each class provided as input (in 65

this context, ‘every ontology’ is any of the ontologies that are included in AberOWL): 66

1. Extract the labels and synonyms of any classes in any ontology with a label or synonym that 67

exactly matches the first label of the input class. 68

2. Run an equivalency query against every ontology using the Internationalised Resource 69

Identifier (IRI) of the input class, extracting labels and synonyms for any classes returned. 70

3. Of the candidate synonyms produced by the first two steps, discard any that were: 71

• Defined in ontologies that were found to produce incorrect synonyms. 72

• Have the form of a term identifier. 73

• Contain the input class label as a substring. 74

The algorithm uses two different methods for identifying matching classes. Strict lexical 75

matching is used to identify otherwise unlinked terms that contain a label which is the same as the 76

first label of the input class. Mapping terms across ontologies via shared labels or metadata is a well 77

established technique used in ontology alignment [20]. Cross-ontology equivalency queries are used 78

to obtain additional classes in the case that ontologies describe semantically equivalent classes, but 79

do not share the same label. This can occur due to inferred semantic equivalency, ontologies 80

becoming out of sync, or omission of annotation properties in a referencing class. Only the first label 81

for the input class is used, because additional labels and synonyms were found to less uniquely 82

identify the class in question, and lead to more incorrect candidate synonyms. 83

After the main matching stage, the set of labels is pruned down to remove incorrect values. Some 84

ontologies include term identifiers as labels which cannot be exploited by text-mining applications. 85

Therefore, candidate synonyms that contained a colon or underscore were removed. The algorithm 86

also removes labels sourced from GO-PLUS [21], MONDO [22], CCONT [23], and phenX [24], 87

because we found these ontologies consistently produced incorrect synonyms. We also removed labels 88

that include the input label as a substring, as these add no value to NER systems (as the smaller 89

string would match, making the longer string redundant). 90

Ontology Expansion 91

We applied the vocabulary expansion algorithm to all 9,908 subclasses of disease (DOID:4) in the 92

Disease Ontology (DO). DO itself asserts 24,878 labels and synonyms for these classes. The 93

expanded DO vocabulary contained 76,240 labels and synonyms. We also applied the algorithm to 94
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the 14,406 non-obsolete subclasses of Phenotypic abnormality (HP:0000118) in HP. HP itself asserts 95

29,805 labels and synonyms. The number of labels and synonyms following expansion was 54,765. 96

Therefore, the algorithm found 24,960 additional synonyms across HP. 97

For the DO term hypertension (DOID:10763), 28 labels and synonyms were found. 3 of these 98

were from DO itself. The algorithm found 70 synonyms not including the word ‘hypertension’. Of 99

these, 56 were obtained via lexical matching, and 14 by equivalency query. The sources of these 100

synonyms is summarised in Table 1. After making the list unique, there were 28 labels and 101

synonyms. Therefore, the algorithm found 25 new synonyms. 102

Table 1. Source of the 70 non-unique synonyms found for the term hypertension (DOID:10763)
per-ontology. Of these synonyms, 28 were unique. Bracketed numbers, where given, are the labels
found by the equivalency method only (in these cases, lexical matches were made for multiple classes
in the ontology).

Ontology Source Number of Synonyms

GWAS EFO SKOS Lexical 16
MESH Lexical 4

HTN [18] Lexical, Equivalency 3 (2)
CRISP Lexical 1

CCTOO [25] Lexical 6
ONTONEO Lexical, Equivalency 4 (3)
NCIT [26] Lexical 6
COSTART Lexical 7

BAO Lexical, Equivalency 2
CSSO Lexical 2
ODAE Lexical, Equivalency 2

DO – 3
DTO Equivalency 2

In this example, there were no synonyms uniquely found via equivalency, however, if we use 103

bradycardia as the input class, we can identify two new synonyms from PhenomeNET [27], 104

bradyrhythmia and reduced heart rate, which were not otherwise obtained via lexical matching. This 105

is because PhenomeNET establishes a semantic equivalency between decreased heart rate 106

(MP:0005333), which does not share its first label with the HP class. 107

Manual Validation 108

To evaluate the correctness of synonyms in the expansion of HP, a clinical expert manually validated 109

the correctness of 866 synonyms found for 500 randomly selected terms. Table 2 summarises the 110

results, which show a precision of 0.912. 195 terms were marked as ambiguous, in the case that the 111

synonyms were in a foreign language or the clinician did not have enough expertise of the term to 112

determine whether the synonym was correct. 113

Table 2. Metrics for clinical expert validation of 866 generated synonyms for 500 terms. Synonyms
already included in HP were not included in the validation. Synonyms were marked ambiguous if not
English, or if the validator did not have enough expertise to confidently judge it.

Terms Total Synonyms TP FP Ambiguous Precision

500 866 613 59 195 0.912

Information Retrieval 114

To evaluate whether the extended vocabularies could lead to more to greater performance in 115

information retrieval tasks, we compared the number of MIMIC-III annotations and MEDLINE 116
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results returned for all non-obsolete subclasses of Abnormality of the cardiovascular system 117

(HP:0011025). HP asserts 2,205 labels and synonyms for these classes, while the expanded set of 118

labels numbers 5,336. The results are summarised in Table 3. 119

Table 3. Amount of labels for Abnormality of the cardiovascular system (HP:0011025) before
and after synonym expansion, and results of the two text mining tasks using them as vocabularies.
MEDLINE results are the sum of the number of results returned by each query.

Vocabulary Labels MIMIC-III Annotations MEDLINE Results

HP Labels 2,205 1,104 8,191,564
Expanded HP Labels 5,336 1,447 13,513,342

Patient Characterisation 120

To evaluate the value of the DO expansion, and to identify whether the additional annotations were 121

informative for the purposes of characterising entities described by biomedical text, we investigated 122

its application within the MIMIC-III dataset [28]. We annotated a sample of 1,000 patient visits 123

using classes from the Disease Ontology (DO) that contained cross-references to ICD-9, both before 124

and after label expansion using the presented algorithm. We then used those annotations to 125

calculate a measure of semantic similarity between the patient visits, and evaluated the rankings 126

with respect to the ICD-9 codes they were annotated with. We used the mean reciprocal rank and 127

the mean average precision to measure how well rankings predicted matching first diagnoses. The 128

results of the ranking task are shown in Table 4, with the expanded vocabulary leading to an 129

increased performance in both cases. To determine whether the result was significantly different, we 130

used the Wilcoxon rank-sum test to compare the ranks of patients with matching first diagnoses, 131

yielding a p-value of 0.0007063. 132

Table 4. Comparison of the annotations of texts for 1,000 randomly sampled MIMIC-III patient
visits before and after expansion, and their associated performance with respect to how predictive
semantic similarity scores calculated from the annotations were of shared first diagnosis.

Investigation Annotations MAP MRR

Unexpanded 1,380,216 0.88 0.947
Expanded 2,088,765 0.913 0.986

Discussion 133

The results clearly demonstrate that for two biomedical ontologies, our approach vastly increases the 134

amount of labels and synonyms available for their terms. Using hypertension as an example, we 135

demonstrated that a range of different ontologies contribute additional synonyms, leading to 25 new 136

unique labels for the term. By leveraging these we can effectively enrich vocabularies for terms. 137

While we only manually validated a small subset of terms from HP, this indicated a fairly high 138

precision for candidate terms. Through analysis of the false positives, we found that many of them 139

were caused by errors in the ontologies that the synonyms were sourced from. For example, several 140

synonyms for motor aphasia (HP:0002427) were marked as incorrect since they refer to dysphasia, 141

including “Broca Dysphasia.” Aphasia and dysphasia are different conditions. The first refers to a 142

partial loss of language, and the latter to a full loss of language. All of these incorrect synonyms 143

were sourced from Aphasia, Broca (MESH:D001039) in MESH. 144

Though this is not reflected in the results, we also found during the development of the algorithm 145

that certain ontologies produced consistently incorrect synonyms. Several of these ontologies are 146

meta-ontologies, automatically constructed from several ontologies using alignment and integration 147

methods, and it’s possible that errors in that process were the cause of the incorrect synonyms. 148
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Certain annotation properties were also incorrectly detailed by the AberOWL API as being labels, 149

such as europe pmc and kegg compound. Candidate synonyms defined by problematic ontologies or 150

matching the list of annotation properties are automatically removed. Expansion of the list of 151

ontologies discluded from the sources for labels might further improve the precision of the algorithm, 152

but may potentially come at the cost of correct synonyms. 153

Furthermore, the manual validation revealed that many of the returned synonyms were in 154

non-English languages. While OWL ontologies do allow for parameters that distinguish which 155

language the property is in, AberOWL does not index them. Therefore, it is not currently possible 156

to distinguish between English and non-English synonyms. These items were marked as ambiguous, 157

and not counted in the overall precision. This could also be controlled partially by discluding 158

additional ontologies from results. For example, WHOFRE is a non-ontology mapping of French 159

vocabulary to UMLS. 160

For any uses, where a reduced vocabulary accuracy is not acceptable, the algorithm should be 161

used as a candidate label generator, to be checked by a domain expert before further use. 162

We also demonstrated that that our expansion of the HP vocabulary increases the amount of 163

data returned by two information retrieval tasks, for a subset of cardiovascular terms. We have not, 164

however, shown in the information retrieval experiment whether the extra information returned is 165

useful or relevant. We can assume, based on our manual validation results that some of the 166

additional data returned are incorrect, though most should be correct. 167

Finally, our experimental validation showed a clear and significant increase for a patient 168

stratification task over MIMIC-III. This indicates that for certain tasks, our approach can increase 169

the quality of entity characterisations gained by information extraction, and in turn the power of 170

ontology-based analyses, even without manual validation of the produced labels. 171

Limitations and Future Work 172

The most important potential limitation of the algorithm itself is that it violates the notion that the 173

IRI of a concept uniquely identifies it, rather than its name. This is due to the fact that OWL 174

ontologies do not follow the unique name assumption. False positives, in theory, could be generated 175

by a lexical match on a homonym, which then has different synonyms itself. We believe, however, 176

that this effect should be limited in the case of a highly specific biomedical language. Furthermore, 177

any such error would be most likely be mitigated by the dataset context limitation. For example, 178

synonyms derived from different contexts, incorrectly associated with a medical concept, are unlikely 179

to be present within clinical letters. We further limit this effect by only using the first label, 180

reasoning that the most unique synonym will be included as a synonym. 181

False synonyms could also be removed on the basis of a corpus search. For example, if a 182

candidate synonym never, or, at least, rarely, appears in the same document as another label, used 183

for this term across a literature corpus, it’s possible that it refers to a different concept from a 184

disjoint context. This could also be performed by analysing the metadata of text corpora. For 185

example, if two terms are never, or, at least, rarely, associated with literature from the same 186

journals, the same field, or the same content tags, it’s possible they have different meanings. In a 187

further study, we would investigate whether synonymy can be identified using word embeddings. 188

While equivalency returns fewer synonyms, and not necessarily many that are unique from the 189

ones gained by lexical matching, they can also be treated with a higher level of confidence. For this 190

reason, using only this method could be considered as a parameter in the case that a higher accuracy 191

is required. 192

Conclusions 193

We have demonstrated that an inter-ontology approach to vocabulary expansion is a powerful 194

method for adding informative labels and synonyms to terms used in text mining. These synonyms 195

are found with a fairly high precision, and lead to a greater rate of document retrieval in clinical and 196
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literature settings. Most importantly, we have shown that the approach improves the power of an 197

ontology-based characterisation and analysis of patients via clinical text. 198

Methods 199

All files described in the validation (excluding the MIMIC-III data files), along with the commands 200

necessary to repeat the experiments are available at 201

https://github.com/reality/synonym_expansion_validation/. 202

Algorithm 203

We implemented the algorithm as a module in the Komenti semantic text mining framework using 204

the Groovy programming language [29]. It makes use of the AberOWL API [19] for label matching 205

and semantic queries, documented at http://www.aber-owl.net/docs/. 206

OWL ontologies use a number of conventional annotation properties to define labels and 207

synonyms. These span a range of confidence and degree of synonymy. In this paper, we consider 208

frequently used annotation properties, summarised in Table 5. These are the annotation properties 209

consolidated into the ‘synonym’ property by the AberOWL API. Another oboInOwl synonym, 210

hasRelatedSynonym is excluded, because the labels provided by these synonyms are too imprecise. 211

Table 5. Summary of conventionally used annotation properties considered in this experiment.
Definitions come from the description of the annotation properties in their respective top-level
ontologies.

Annotation Property Identifier Definition

label rdfs:label “a human-readable version of a resource’s
name [30].”

altLabel skos:core#altLabel “An alternative lexical label for a re-
source [31].”

has exact synonym hasExactSynonym “An alias in which the alias exhibits true
synonymy [32].”

has narrow synonym hasNarrowSynonym “An alias in which the alias is narrower
than the primary class name. Example:
pyrimidine-dimer repair by photolyase
is a narrow synonym of photoreactive
repair [32].”

has broad synonym hasBroadSynonym “An alias in which the alias is broader
than the primary class name. Exam-
ple: cell division is a broad synonym of
cytokinesis [32].”

alternative term IAO 0000118 “An alternative name for a class or prop-
erty which means the same thing as
the preferred name (semantically equiv-
alent) [33].”

Manual Validation 212

To evaluate the performance of the algorithm, we randomly selected 500 classes from the expanded 213

version of HP for manual validation. Synonyms already asserted by HP were removed from the set, 214

because they were already assumed to be correct, and would not contribute to measuring the 215

performance of the synonym expansion algorithm. A clinical expert (WB) marked each synonym as 216

correct, incorrect, or ambiguous. The expert was asked to answer correctly or incorrectly on the 217
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basis: “if a patient has synonym, would it also be true that they have original label?” Entries were 218

marked as ambiguous if the synonym was in a different language, or the validator otherwise did not 219

have enough knowledge of the phenotype to determine whether or not the synonym was correct. 220

Information Retrieval 221

We used the Komenti semantic text mining framework, which implements Stanford CoreNLP’s 222

RegexNER [34] to annotate 1,000 randomly sampled entries from the NOTEEVENTS table in 223

MIMIC-III (MIMIC) [35]. MIMIC is a freely available healthcare database, containing a variety of 224

structured and unstructured information concerning around 60,000 admissions to critical care 225

services [28]. We annotated the sample with all subclasses of Abnormality of the cardiovascular 226

system (HP:0011025), comparing the number of annotations before and after synonym expansion. 227

This investigation was performed on 17/01/2020. 228

Using the same set of subclasses of Abnormality of the cardiovascular system (HP:0011025), we 229

compared the sum of article counts returned for a disjunctive query of all labels and synonyms for 230

each term, before and after synonym expansion. MEDLINE is a searchable database of literature 231

metadata in the life sciences, containing more than 25 million article references [36]. MEDLINE was 232

queried on the 27/01/2020. 233

Patient Characterisation 234

We sampled 1,000 patient visits from the MIMIC-III (distinct from those used in the information 235

retrieval experiment). We then concatenated all text records for each patient visit from the 236

NOTEEVENTS table into one text file, and pre-processed the text to remove newlines, improve 237

sentence delineation, and lemmatise words. We also retained the primary diagnosis, which was the 238

first listed ICD-9 code in the DIAGNOSES ICD table. These codes are produced by clinical coding 239

specialists, by examining the texts associated with the visit. 240

We limited the classes considered for our annotation vocabulary to those which DO contained a 241

database cross-reference to ICD-9, of which there were 2,118. This was to reduce noise from terms 242

not represented in ICD-9. We obtained the unexpanded and expanded synonyms for these terms on 243

08/07/2020. Both sets of labels were also lemmatised (both lemmatised and unlemmatised forms 244

were used for annotation). 245

The Komenti semantic text-mining framework was used to annotate the text associated with 246

each patient visit. As before, this made use of the CoreNLP RegexNER annotator [34]. Negated 247

annotations were excluded using the komenti-negation algorithm [37]. We then used the set of terms 248

associated with it to produce a semantic similarity matrix for patient visits, using the Resnik 249

measure of pairwise similarity for each annotated term [38], normalised into a groupwise measure 250

using the best match average method [39]. Information content was calculated using the probability 251

of the term appearing as an annotation in the totality of the set of annotations [38]. The similarity 252

matrix was computed using the Semantic Measures Library [40]. 253

We evaluated the similarity matrix using mean reciprocal rank and mean average precision to 254

measure performance in predicting shared primary patient diagnosis. A true case was considered to 255

be whether a pair of patient visits had the same primary diagnosis (as per the MIMIC-III database). 256

For mean average precision, we considered only the 10 most similar patients for each patient. The 257

p-value was calculated using the built-in wilcoxon.test function of R version 3.4.4 [41]. 258
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