
	
   1	
  

TITLE: YAP/TAZ and EZH2 synergize to impair tumor suppressor 1	
  

activity of TGFBR2 in non-small cell lung cancer. 2	
  

Authors 3	
  

Federica Lo Sardo1, Claudio Pulito1, Andrea Sacconi2, Etleva Korita1, Marius Sudol3,4, 4	
  

Sabrina Strano5* and Giovanni Blandino1*. 5	
  

 6	
  

Affiliations. 7	
  

1UOSD Oncogenomic and Epigenetic Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy. 8	
  
2UOSD Clinical Trial Center, Biostatistics and Bioinformatics, 9	
  

IRCCS Regina Elena National Cancer Institute, Rome, Italy. 10	
  
3Department of Physiology, National University of Singapore, Laboratory of Cancer Signaling & 11	
  

Domainopathies, Yong Loo Li School of Medicine, Block MD9, 2 Medical Drive #04-01, Singapore 117597, 12	
  

Republic of Singapore. 13	
  
4Department of Medicine, Icahn School of Medicine at Mount Sinai, New York NY 10029, USA. 14	
  
5SAFU Laboratory, Department of Research, Advanced Diagnostic, and Technological Innovation, IRCCS 15	
  

Regina Elena National Cancer Institute, Rome, Italy. 16	
  

 17	
  

Running Title. YAP/TAZ and EZH2 co-repress oncosuppressor genes in NSCLC 18	
  

 19	
  

Additional informations. 20	
  

Corresponding authors: Sabrina Strano: e-mail address  sabrina.strano@ifo.gov.it, 21	
  

Regina Elena National Cancer Institute, Via Elio Chianesi, 53-00144, Rome-Italy. Phone 22	
  

number +390652662911, fax number +390652662880. 23	
  

Giovanni Blandino,  e-mail address giovanni.blandino@ifo.gov.it, Regina Elena National 24	
  

Cancer Institute, Via Elio Chianesi, 53-00144, Rome-Italy.  Phone 25	
  

number:+390652662911, fax number +390652662880. 26	
  

Conflict of interest: The authors declare no potential conflict of interest 27	
  

Word count: 4831. Number of figures: 6. Number of Tables: 1 28	
  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted July 11, 2020. ; https://doi.org/10.1101/2020.07.10.197392doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.10.197392


	
   2	
  

 29	
  

Abstract 30	
  

Lung cancer is the leading cause of cancer-related deaths, worldwide. Non–small cell lung 31	
  

cancer (NSCLC) is the most prevalent lung cancer subtype. YAP and TAZ have been 32	
  

implicated in lung cancer by acting as transcriptional co-activators of oncogenes or as 33	
  

transcriptional co-repressors of tumor suppressor genes. Previously we reported that YAP 34	
  

and TAZ regulate microRNAs expression in NSCLC. Among the set of regulated miRNAs, 35	
  

the oncogenic miR-25, 93, and 106b, clustering within the MCM7 gene were selected for 36	
  

further studies. We firstly identified Transforming Growth Factor-β (TGF-β) Receptor 2 37	
  

(TGFBR2), a member of the TGF-β signaling, as a target of the miRNA cluster, which 38	
  

exhibited prognostic value because of its tumor suppressor activity. We found that 39	
  

YAP/TAZ-mediated repression of TGFBR2 occurs both: post-transcriptionally through the 40	
  

miR-106b-25 cluster and transcriptionally by engaging the EZH2 epigenetic repressor that 41	
  

we reported here as a novel target gene of YAP/TAZ.  Furthermore, we document that 42	
  

YAP/TAZ and EZH2 cooperate in lung tumorigenesis by transcriptionally repressing a 43	
  

specific subset of tumor suppressor genes, including TGFBR2. Our findings point to 44	
  

YAP/TAZ and EZH2 as potential therapeutic targets for NSCLC treatment. 45	
  

Keywords. Hippo pathway, PRC2, NSCLC, tumor suppressors, tazemetostat 46	
  

 47	
  

 48	
  

1. Introduction 49	
  

Lung cancer continues to be the leading cause of cancer deaths, worldwide (1). Current 50	
  

treatments that are based on surgery, radiation, chemotherapy, laser, and photodynamic 51	
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therapy result in the modest increase of the overall survival of the patients. The Non-Small 52	
  

Cell Lung Cancer (NSCLC) still remains one of the most aggressive subtypes of lung 53	
  

cancer with the lowest survival rate (2). The development of targeted therapies and, more 54	
  

recently immunotherapy, have improved the overall outcome for lung cancer patients (3) 55	
  

(4). However, ultimately most of the patients either suffer adverse side effects of 56	
  

therapeutic interventions or develop resistance. Consequently then, these therapies are 57	
  

interrupted or terminated. Combinatorial treatments are intensely investigated now 58	
  

because they allow the use of lower doses of drugs, reducing side effects, and they could 59	
  

likely bypass the mechanisms of resistance. In the context of lung cancer, YAP and TAZ, 60	
  

the downstream effectors of the Hippo tumor suppressor pathway promote cell 61	
  

proliferation, survival, migration, invasiveness, and immune escape, which in vivo results 62	
  

in tumor development, progression and resistance to therapies (reviewed in	
   (5)). This 63	
  

makes YAP and TAZ attractive therapeutic targets in lung cancer. By deciphering 64	
  

signaling mechanisms that are orchestrated by YAP and TAZ, we should get a better 65	
  

insight into the molecular pathology of lung cancer in general. 66	
  

Previously, we found that YAP/TAZ, and its preferred TEAD1 transcription factor, regulate 67	
  

the expression of the oncogenic cluster of miR-25, 93, and 106b, which is located within 68	
  

the transcript of the Mini-Chromosome Maintenance 7 (MCM7) gene (6). The regulation of 69	
  

miRNAs and long non-coding RNAs, in addition to that of coding genes, further expands 70	
  

the plethora of oncogenic mechanisms that can be orchestrated by YAP/TAZ. Recently we 71	
  

described the post-transcriptional inhibition of the p21 tumor suppressor gene as one of 72	
  

the mechanisms that underlie NSCLC. In the present work, we focused on TGFBR2, a 73	
  

novel potential target of the miR-106b-25 cluster. The TGFBR2 gene encodes for the 74	
  

Transforming Growth Factor-β (TGF-β) receptor 2, a member of the TGF-β signaling, 75	
  

which is involved in embryonic development, tissue homeostasis, and tumorigenesis. The 76	
  

TGFBR2 signals through the regulation of cell growth, differentiation, apoptosis, invasion, 77	
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angiogenesis, and immune response (7). Upon ligand binding, the TGFBR2 forms a 78	
  

hetero-tetrameric complex with TGFBR1, which phosphorylates and activates receptor-79	
  

regulated SMADs (Small, Mothers Against Decapentaplegic), namely SMAD2 and 80	
  

SMAD3.  In turn, activated SMAD2 and SMAD3 associate with SMAD4, translocate into 81	
  

the nucleus, and engage transcription factors and co-activators to regulate gene 82	
  

expression program that is cell-context dependent (8). Generally, in cancer, the TGF-β 83	
  

pathway can be either: pro-oncogenic, inducing epithelial-mesenchymal transition (EMT), 84	
  

migration, invasion, and metastasis, or tumor-suppressive, by inducing growth arrest, 85	
  

apoptosis, and prevention of immortalization. The signaling outcome, however, is always 86	
  

tumor- and cancer stage-dependent (9). 87	
  

Here, we show that TGFBR2 acts as a bona fide tumor suppressor and therefore it could 88	
  

be of prognostic value for NSCLC, especially at the early stages of the disease. YAP/TAZ 89	
  

signal to maintain low expression levels of TGFBR2 in NSCLC through at least two 90	
  

molecular mechanisms: post-transcriptionally (mediated by miR-106b-25 cluster) and 91	
  

transcriptionally (mediated by the epigenetic repressor Enhancer of Zeste Homologue 2, 92	
  

EZH2). We also find that YAP/TAZ/EZH2 cooperate in the repression of the TGFBR2 93	
  

gene, as well as other tumor suppressor genes. Therefore, the combinatorial targeting of 94	
  

YAP/TAZ and EZH2 may represent a novel therapeutic strategy for controlling NSCLC.  95	
  

 96	
  

2. Materials and Methods 97	
  

Cell culture and transfection  98	
  

Human H1299, H1975, A459 and U293 cells were purchased from the American Type 99	
  

Culture Collection (ATCC, Manassas, VA) and routinely tested by PCR for mycoplasma 100	
  

contamination by using the following primers: Myco_fw1: 5′-101	
  

ACACCATGGGAGCTGGTAAT-3′, Myco_rev1: 5′-CTTCATCGACTTTCAG 102	
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ACCCAAGGCA-3′. A459 cells were grown in RPMI medium (Invitrogen, Carlsbad,CA) 103	
  

supplemented with 10% fetal bovine serum and Pen/Strep antibiotic at 37°C in a balanced 104	
  

air humidified incubator with 5% CO2. Lipofectamine RNAimax (Invitrogen) was used in 105	
  

accordance with the manufacturer’s instruction for transfection with siRNAs, LNA and 106	
  

miRNA mimics. siRNAs were used at the final amount of 300 pmol in 60 mm dish. List of 107	
  

siRNA used for functional in vitro experiments is given in Supplementary Materials and 108	
  

Methods. LNA inhibitors for miR-25, 93 and 106b (Exiqon, Vedbk,Denmark) were used at 109	
  

a final amount of 150 pmol in 60 mm dish. For mature miR-25, 93 and 106b 110	
  

overexpression, we used mirVana™ miRNA Mimic Negative Control #1 (Ambion) or hsa-111	
  

miR-25-3p, hsa-miR-93-5p, or hsa-miR-106b-3p   mirVana™ miRNA Mimic (Ambion) at 112	
  

final concentration of 5 nM. Plasmids were transfected with Lipofectamine 2000 113	
  

(Invitrogen) in accordance with the manufacturer’s instruction at a final concentration of 1 114	
  

µg in a 60 mm dish. Cells were collected 48-72h post transfection for subsequent 115	
  

analyses.  116	
  

 117	
  

Plasmids 118	
  

The plasmid for EZH2 overexpression was obtained by cloning the EZH2 cDNA into 119	
  

pCDNA3 backbone with a myc-tag and was a kind gift from the laboratory of Dr. Daniela 120	
  

Palacios (Santa Lucia Foundation, Rome Italy). The plasmid for TGFBR2 3’UTR luciferase 121	
  

assay (Psi-check2-TGFBR2) was a kind gift from the laboratory of Dr. Stefen Wiemann 122	
  

(German Cancer Research Center (DKFZ), Heidelberg, Germany).  123	
  

 124	
  

Stable transfection 125	
  

H1299 and H1975 cells were transfected using Lipofectamine 2000 with a pCDNA3-myc-126	
  

EZH2 plasmid. 24 h after transfection, cells were diluted at 20–30% confluency and fresh 127	
  

medium with 1ng/µg G418 was added for a selection of stably transfected cells every 3–4 128	
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days. Cells were selected for 15-20 days and then they were grown in fresh medium 129	
  

containing 1 ng/µl G418, tested for correct EZH2 overexpression and expanded. For all 130	
  

experiments, cells were maintained in fresh medium containing 0,5 µg/µl G418. 131	
  

 132	
  

Clonogenic assay 133	
  

Cells were transfected as indicated above and 48h-72h later they were detached and 134	
  

seeded at 500–1000 cells/well into 6-well or 12-well dishes. Fresh medium was added 135	
  

every 4 days. After 7–14 days, colonies were stained with crystal violet and counted. 136	
  

 137	
  

Pharmacological treatment and Chemical reagents 138	
  

Dasatinib and Tazemetostat (EPZ-6438) were obtained from Selleck Chemicals (Houston, 139	
  

TX); To determine the IC50 of these drugs, lung adenocarcinoma cells were seeded in 140	
  

triplicate at a density of 1,000 cells/well. The following day, cells were treated with the 141	
  

drugs at increasing concentrations, and ATP lite assay (Promega) was performed after 72 142	
  

hours of treatment. The dual drug studies (Dasatinib plus Tazemetostat) were performed 143	
  

in a similar manner with the doses indicated in the figures. 144	
  

For colony assay upon treatment with Dasatinib and Tazemetostat, cells were grown for 9 145	
  

days with or without Tazemetostat (added every 3-4 days) at different indicated doses, 146	
  

then they were seeded in triplicate at a density of 1,000 cells/well in a six-well multiwell. 147	
  

Every 3-4 days, fresh medium was added with or without dasatinib and Tazemetostat, 148	
  

alone or in combination, at the indicated doses. Colonies were stained with crystal violet 149	
  

and counted after 10–14 days. 150	
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FACS cell cycle analysis 151	
  

For cell cycle analysis, cells were collected 48-72h after interference, fixed in 70% ethanol 152	
  

and stored at -20°C (up to weeks). Fixed cells were treated with RNase at 1 mg/ml final 153	
  

concentration for 30 min at 37°C or overnight at 4°C before adding 5 mg/ml PI and 154	
  

analyzed with Guava Easycyte 8HT flow cytometer equipped with Guava Soft 2.1 155	
  

(Millipore). 156	
  

	
  157	
  

Protein extracts and Western blot analysis 158	
  

For the preparation of whole-cell lysates, cells were lysed in buffer with 50 mM Tris–HCl 159	
  

pH 7.6, 0.15 M NaCl, 5 mM EDTA, 1% Triton X-100 and fresh protease inhibitors. Extracts 160	
  

were sonicated for 10 + 15s at 80% amplitude and centrifuged at 12 000~ rpm for 10 min 161	
  

to remove cell debris. For preparation of nuclear and cytoplasmic extracts, cells were lysed 162	
  

in a Cytoplasmic Extract (CE) buffer (10mM Tris-Cl pH 7.5, 60mM KCl, 1mM EDTA, 163	
  

0,075% NP40, proteinase inhibitors) for 3 minutes on ice. The lysate was then centrifuged 164	
  

at 1500 rpm at 4°C for 4 minutes. The supernatant (Cytoplasmic Extract) was collected 165	
  

into a fresh tube. The pellet was washed three times in cold CE buffer without NP40 and 166	
  

lysed in Nuclear Extract (NE) buffer (20mM Tris-Cl pH 8.0, 420mM NaCl, 1,5 mM MgCl2, 167	
  

0,2 mM EDTA, proteinase inhibitors) for 10 munites and sonicated. CE and NE extracts 168	
  

were then centrifuged at max speed for 10 minutes to pellet any residual nuclei. Protein 169	
  

concentrations were determined by colorimetric assay (Bio-Rad).  Antibodies used for 170	
  

Western Blotting are listed in the Supplementary Materials and Methods. 171	
  

 172	
  

MiRNA and transcript analysis 173	
  

Total RNA was extracted using TRIzol (Ambion) according to the manufacturer’s 174	
  

recommendations. For miR analysis, 30 ng RNA was retrotranscribed using the TaqMan 175	
  

microRNA Reverse Transcription Kit (Applied Biosystem) and Real-time PCR of miR 176	
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expression was carried out in a final volume of 10 µl using TaqMan MicroRNA Assays 177	
  

(Applied Biosystems) and normalized on RNU48 and RNU49 as endogenous controls. We 178	
  

have chosen RNU48 and RNU49 because they were not modulated in our experimental 179	
  

conditions. TaqMan probes for miRNAs and RNU were purchased from Applied 180	
  

Biosystems. For gene transcript analysis, 1γ RNA was retrotranscribed using M-MLV 181	
  

reverse transcriptase (Invitrogen) following the manufacturer instructions. Real time PCR 182	
  

was performed into a final volume of 10 µl using Sybr Green PCR master mix, and 183	
  

normalized on GAPDH. All the real-time PCR assays were performed by using an Applied 184	
  

Biosystems® 7500 fast or StepOne Real-Time PCR Instruments. Each analysis was 185	
  

performed at least on three independent biological replicates. List of primers used for Real 186	
  

time PCR is given in Supplementary Materials and Methods. 187	
  

 188	
  

Chromatin Immunoprecipitation (ChIp)  189	
  

ChIP-qPCR was performed as described previously (6) and the method is given in 190	
  

Supplementary Materials and Methods.  191	
  

 192	
  

Luciferase assay 193	
  

Luciferase assay was performed as described previously (6) and the protocol is given in 194	
  

Supplementary Materials and Methods. 195	
  

 196	
  

Analysis of Differentially expressed genes 197	
  

Deregulation of genes in different set of patient samples was assessed by two tailed 198	
  

student’s t test, and a false discovery rate procedure was performed to take into account 199	
  

multiple comparisons. The significance level was set to 5%. Analyses were performed by 200	
  

Matlab (The MathWorks Inc.). Association between pairs of genes was evaluated by 201	
  

calculating Pearson's R correlation coefficient. 202	
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 203	
  

Curves of OS and DFS 204	
  

Curves of overall survival or disease-free survival in TCGA patients were evaluated by 205	
  

Kaplan–Meier method. Curves of patients with high and low signals were considered to 206	
  

establish statistical significance by using the logrank test. Analyses were performed by 207	
  

Matlab (The MathWorks Inc.). Disease-free survival includes both progression free survival 208	
  

and recurrence free survival. 209	
  

 210	
  

See Supplementary Material and Methods for the list of antibodies used for western 211	
  

blotting, sequence of siRNA used for interference experiments and sequence of primers 212	
  

used for transcript analyses and for ChIp. 213	
  

 214	
  

3. Results 215	
  

TGFBR2 acts as a tumor suppressor in lung cancer and is a direct target of miR-216	
  

106b-25 cluster    217	
  

To dissect mechanistically how MCM7 and its ‘hosted’ miR-106b-25 cluster elicit their 218	
  

oncogenic activities in lung cancer, we analyzed lung cancer genome atlas (TCGA), 219	
  

searching for transcripts that are inversely correlated to the miR cluster and therefore 220	
  

predict potential therapeutic targets for lung cancer. Indeed, we found a number of 221	
  

transcripts that code for proteins that signal in cancer pathways (6). From among them, we 222	
  

elected to focus on TGFBR2 that was inversely correlated with MCM7 in a robust way and 223	
  

hosted miRNAs with R Spearman ranging from -0,23 for miR-25 to -0,52 for MCM7 (Fig. 224	
  

1A, Supplementary Fig. S1A). In cancer, the TGF-β pathway can be either pro-oncogenic 225	
  

or tumor-suppressive, depending on both the kind of tumor and its stage (9). Using the 226	
  

‘FireBrowse Gene Expression’ computer platform (http://firebrowse.org) we analyzed 227	
  

transcript expression data of different cancer types of patient samples deposited in the 228	
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TCGA dataset.  We found that TGFBR2 expression is lower in tumor tissues when 229	
  

compared to non-tumor controls in several cancers, including Lung Adenocarcinoma 230	
  

(LUAD), Lung Squamous cell Carcinoma (LUSC), the two main types of NSCLC (Fig. 1B-231	
  

C, Supplementary Fig. S1B). Interestingly, in contrast to most of the analyzed tumor types, 232	
  

pancreatic adenocarcinomas and glioblastoma tissues exhibited higher levels of TGFBR2 233	
  

expression, compared to non-tumoral controls. This data is in line with the notion of dual 234	
  

activity of TGFBR2: being either oncogenic or tumor-suppressive, depending on the 235	
  

cancer type (Supplementary Fig. S1B).  236	
  

Based on the median level of TGFBR2 transcript (10) the stratification of lung cancer 237	
  

patients from TCGA was performed. The patients were categorized into either a high- or 238	
  

low-expressing group. The data revealed that patients with a lower expression of TGFBR2 239	
  

exhibited a shorter OS (overall survival) than those with a higher level of TGFBR2. This 240	
  

was even more evident in LUAD than in LUSC patients   (Fig. 1D-E). Stratification of 241	
  

LUAD patients based on the stage of the tumor indicated that the association of low 242	
  

TGFBR2 expression with shorter OS was stronger in early-stage (stage I) patients than in 243	
  

those in advanced stages (stages II and III)  (Fig. 1F-H, Supplementary Fig. S1C) (9). 244	
  

At the cellular level, we found that either the depletion of MCM7 transcript or the 245	
  

transfection of the locked-nucleic-acid-based-construct (LNA) that suppressed the 246	
  

endogenous miR-25/93/106b cluster led to the increase in the levels of the TGFBR2 247	
  

transcript and its protein in two representatives NSCLC cell lines: H1299 and H1975 (Fig. 248	
  

1I, Supplementary Fig. S1D). Conversely, ectopic expression of synthetic miRNA mimics 249	
  

reduced the expression of TGFBR2, when compared to control cells (Fig. 1J).  250	
  

Importantly, we demonstrated the direct binding of miR-93 and miR-106b to the TGFBR2-251	
  

3’UTR through luciferase reporter assays. H1299 and H1975 cells were co-transfected 252	
  

with miRNAs mimics and the psiCHECK2 plasmid that contained the TGFBR2-3’UTR 253	
  

downstream of the luciferase gene. The cells exhibited reduced luciferase activity when 254	
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compared to cells co-transfected with the same vector and control mimic (Fig. 1J). This 255	
  

effect was not observed in cells transfected with an empty vector or when the TGFBR2-256	
  

3’UTR was mutated in the cognate sequence recognized by miR-93 and miR-106b (Fig. 257	
  

1J, Supplementary Fig. S1E). Collectively, these findings document the tumor-suppressive 258	
  

activity of TGFBR2 and its post-transcriptional regulation by the oncogenic miR-259	
  

25/93/106b cluster in cell culture models of lung cancer. 260	
  

 261	
  

YAP and TAZ depletion affects the tumor suppressor TGF-β signaling  262	
  

We previously showed that YAP and TAZ transcriptionally regulate MCM7 and the miRs 263	
  

that are located within the MCM7 gene (6). Herein, MCM7 and its hosted miRs are shown 264	
  

as negative regulators of TGFBR2 (Fig. 1 and Supplementary Fig. S1A, D). Thus we 265	
  

sought to investigate whether the depletion of YAP/TAZ was able to affect the level of 266	
  

TGFBR2. We found that YAP/TAZ depletion led to the up-regulation of both TGFBR2 267	
  

transcript and protein as a consequence of reduced expression of MCM7 and its miR 268	
  

cluster, as well (Fig. 2A-B, Supplementary Fig. S1F-G). Reassuringly, the ectopic 269	
  

expression of miR25, 93, and 106b upon YAP/TAZ depletion partially rescued this effect 270	
  

as well as the ability of H1299 and H1975 cells to form colonies (Fig. 2C-D, 271	
  

Supplementary Fig. S1H-K). The increased expression of TGFBR2 in siYAP/TAZ cells 272	
  

correlated with an increase of total SMAD2 and SMAD3 in the cytoplasm and of pSMAD3 273	
  

in the nucleus (Fig. 2E-F, Supplementary Fig. S2A-B). TGF-β-induced tumor suppressor 274	
  

response caused a cell accumulation at the G1/S transition that paired with increased 275	
  

expression of the p21 and p15 tumor suppressors and reduced expression of the CDK 276	
  

activator cdc25A, respectively. This occurred through p53-independent mechanisms 277	
  

involving SMADs and Sp1 (11) (12) (13). In agreement with these items of evidence, a 278	
  

depletion of SMAD2/3/4 partially rescued the colony-forming potential of siYAP/TAZ cells 279	
  

(Fig. 2G, Supplementary Fig. S2C-G) with a partial rescue of p21 repression and cdc25A 280	
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expression (Fig. 2F, Supplementary Fig. S2B). These results suggest that the signaling by 281	
  

TGFBR2 tumor suppressor that is orchestrated by the YAP/TAZ/MCM7 axis does involve 282	
  

SMADs.  283	
  

 284	
  

EZH2 mediates YAP transcriptional repression of TGFBR2 285	
  

Our findings document that the increase of the TGFBR2 transcript is higher upon YAP/TAZ 286	
  

interference (Fig. 2B, Supplementary Fig. S1G) than upon miRNA depletion 287	
  

(Supplementary Fig. S1D). This suggests that YAP/TAZ may repress TGFBR2 through 288	
  

additional mechanisms. We noticed that the Enhancer of Zeste Homologue 2 (EZH2), the 289	
  

enzymatic component of the Polycomb Repressive Complex 2 (PRC2), was previously 290	
  

found as an epigenetic repressor of TGFBR2 in lung cancer (14). EZH2 is overexpressed 291	
  

in diverse cancer types, among them is lung cancer (Fig. 3a, Additional file 3: Figure S3a) 292	
  

in which EZH2 contributes to the increase in tumor growth, metastatic potential and 293	
  

therefore results in poor outcome and resistance to therapies. This occurs through the 294	
  

aberrant repression of tumor-suppressor genes, which is mediated by the enzymatic three-295	
  

methylation of Lysine 27 of histone H3 (H3K27me3) (15). Here we found that EZH2 296	
  

depletion reduced the colony-forming potential and affected the expression of cell cycle-297	
  

related genes in both H1299 and H1975 lung cancer cell lines (Fig. 3B-C. Supplementary 298	
  

Fig. S3B). An inverse correlation between EZH2 and TGFBR2 transcripts was found in the 299	
  

TCGA lung cancer dataset (Fig. 3D). Interestingly, we observed that EZH2 depletion 300	
  

released the expression of TGFBR2 transcript in NSCLC cells (Fig. 3E, Supplementary 301	
  

Fig. S3C). It has been previously reported that YAP and TAZ depletion affected 302	
  

PRC2/EZH2 signature genes in melanoma cells (16). Furthermore, YAP favored the 303	
  

recruitment of the PRC2 complex onto the promoter of the GDF15 gene in breast cancer 304	
  

cells, whose transcriptional repression promoted metastasis (17). Moreover, YAP was 305	
  

shown to regulate the E2F1 transcription factor (18,19), and to cooperate with E2F1 in the 306	
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regulation of many cell cycle-related genes (20). E2F1, in turn, was shown to regulate 307	
  

EZH2 expression through the binding onto its promoter (21). Therefore, we asked whether 308	
  

YAP and TAZ could regulate either EZH2 expression or cooperate with EZH2 in NSCLC. 309	
  

Interestingly, both EZH2 and YAP/TAZ depletion promoted the expression of two direct 310	
  

EZH2 target genes (22,23) such as PUMA and p16 in lung cancer cell lines (Fig. 3C, 311	
  

Supplementary Fig. S3D). Moreover, ectopic expression of EZH2 in lung cancer cells 312	
  

concomitantly depleted of YAP and TAZ proteins partially rescued their colony-forming 313	
  

ability and also partially reversed the expression of TGFBR2 (Fig. 3F-I). Notably, we found 314	
  

that YAP/TAZ interference in H1299 and H1975 cells reduced both EZH2 transcript and 315	
  

protein expression (Fig. 4A, Supplementary Fig. S3E, right panel). The other PRC2 316	
  

complex components, EED and SUZ12, were not affected at the transcriptional level but 317	
  

were reduced at the protein level (Supplementary Fig. S3F-G). This might be due to the 318	
  

reduced stability of the PRC2 complex upon reduced expression of EZH2. This effect was 319	
  

more evident for SUZ12 (Supplementary Fig. S3F). In line with these observations, lower 320	
  

levels of SUZ12 protein were also observed upon EZH2 interference (Supplementary Fig. 321	
  

S3H-I). In sum, these findings indicate that YAP and TAZ are regulating the abundance of 322	
  

EZH2 in lung cancer cell lines.  323	
  

 324	
  

YAP/TAZ/TEAD is recruited onto EZH2 promoter 325	
  

Using the “LASAGNA Search” software we analyzed genomic sequences for the TEAD-326	
  

binding sites in the EZH2 promoter. We found four potential binding sites in proximity of 327	
  

the transcription start site (TSS) of the EZH2 promoter  (P1 and P2, P3, P4 Fig. 4B). The 328	
  

analysis of “UCSC Genome Browser” indicated that P3 and P4 sites could be occupied by 329	
  

E2F1 and TEAD4 transcription factors (Supplementary Fig. S4A, red boxes). Chromatin 330	
  

Immunoprecipitation (CHIP) assays revealed that YAP, TAZ, and TEAD were recruited 331	
  

onto the EZH2 promoter regions in H1299 cells (Fig. 4C, Supplementary Fig. S4B). As 332	
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expected, no specific enrichment was detected upon YAP, TAZ, or TEAD depletion.  Also, 333	
  

in a control assay, we did not observe any complexes on an arbitrary intronic region that 334	
  

did not contain TEAD-binding sites (Fig. 4B-C, Supplementary Figs. S3E, S4A, green 335	
  

box). Moreover, the acetylation of histone H4, a mark of active transcription, was strongly 336	
  

reduced at the TSS upon YAP/TAZ/TEAD interference (Fig. 4D, Supplementary Fig. S3E). 337	
  

These items of evidence confirm that YAP, TAZ, and TEAD regulate EZH2 in NSCLC at 338	
  

the level of transcription. Collectively, our findings suggest that YAP/TAZ and the PRC2 339	
  

complex cooperate to inhibit the expression of TGFBR2 through transcriptional 340	
  

mechanisms (Fig. 4E).  341	
  

 342	
  

YAP/TAZ and EZH2 co-repress tumor suppressor genes in NSCLC 343	
  

We performed single and combined depletion of YAP/TAZ and EZH2 in H1299 and H1975 344	
  

lung cancer cell lines. Combined interference was more effective than single interference 345	
  

in the inhibition of cell cycle progression, as measured through the expression of the cell 346	
  

cycle regulator cdc25A (Fig. 5A, Supplementary Fig. S4C) and through cell cycle profile 347	
  

(Fig. 5B, Supplementary Fig. S4D). In addition, YAP/TAZ and EZH2 depletion 348	
  

synergistically affected colony formation of lung cancer cell lines (Fig. 5C, Supplementary 349	
  

Fig. S4E). 350	
  

To understand whether co-repression of tumor-suppressor genes as for TGFBR2 could be 351	
  

a broad oncogenic activity mediated by YAP/TAZ/TEAD/EZH2, we searched the published 352	
  

literature for other genes that could be potentially repressed by both YAP/TAZ/TEAD and 353	
  

EZH2 in NSCLC or in other cell lines or models (Table 1). All of these genes were found to 354	
  

be associated with tumor suppression or cell differentiation and their aberrant repression 355	
  

was associated with tumorigenesis or stemness (6,24-30).  356	
  

 357	
  

Using the “Firebrowse” (http://firebrowse.org) search platform, we found that genes listed 358	
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in Table 1 were down-regulated in tumors compared to non-tumoral tissues, both in lung 359	
  

adenocarcinomas and squamous cell carcinomas (Fig. 5D). Furthermore, by employing 360	
  

“Cistrome Data Browser” (http://cistrome.org), we revealed that YAP and TEAD4 factors 361	
  

as well as the H3K27me3 histone methylation signature occupied and were mapped, 362	
  

respectively, on the regulatory elements of these genes in lung cancer cell lines as well as 363	
  

in the IMR90 lung foetal cell line (Supplementary Fig. S5A-F). Interestingly, CHIP assays 364	
  

showed that the depletion of YAP/TAZ and EZH2 reduced the enrichment of H3K27me3 365	
  

on these targets (Fig. 5E). These results were robust and statistically significant upon 366	
  

EZH2 depletion, while a general trend was seen upon YAP/TAZ interference (Fig. 5E). 367	
  

Interestingly, the enrichments in the H3K27Ac histone signature showed an opposite trend 368	
  

when compared to the H3K27me3 histone signature upon either YAP/TAZ or EZH2 369	
  

depletion. These results revealed a common regulatory switch from repression 370	
  

(methylation) towards activation (acetylation) of the targeted loci (Fig. 5F). This effect was 371	
  

specific and was not observed for the U2 snRNA gene (RNU2), a constitutively transcribed 372	
  

locus that was used as a control (Fig. 5E-F). The total level of H3 was not affected in all of 373	
  

the analyzed targets (Supplementary Fig. S5G). Accordingly, the de-repression of the 374	
  

analyzed transcripts (Table1) was seen upon both YAP/TAZ and EZH2 depletion (Fig. 5G, 375	
  

Supplementary Fig. S5H).  376	
  

Collectively, these findings indicate that co-repression of tumor suppressor genes by the 377	
  

concerted action of YAP/TAZ and EZH2 might play a broad role in lung tumorigenesis. 378	
  

 379	
  

Pharmacological targeting of YAP/TAZ and EZH2 affects synergistically lung cancer 380	
  

cell survival. 381	
  

We treated both H1299 and H1975 lung cancer cell lines with Dasatinib and Tazemostat 382	
  

(EPZ-6438) to pharmacologically inhibit YAP/TAZ (34) and EZH2 (35)  respectively. 383	
  

Dasatinib treatment affected the transcriptional activity of YAP and TAZ in a dose-384	
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dependent manner. This was shown by a reduced expression of their well-known targets, 385	
  

such as CTGF and ANKRD1 (36) as well as the newly characterized target EZH2. 386	
  

However, TGFBR2 and p21 transcripts were de-repressed (Supplementary Fig. S6A, B). 387	
  

In addition, the expression of the cell cycle regulators cdc25A and c-myc was diminished, 388	
  

indicating a delayed cell cycle progression (Supplementary Fig. S6A, B). Tazemetostat 389	
  

treatment inhibited the enzymatic activity of EZH2 as shown by the reduction of 390	
  

H3K27me3 signatures globally, and it de-repressed PRC2 target genes in a dose and 391	
  

time-dependent manner (Supplementary Fig. S7A, B). This effect was more pronounced in 392	
  

H1299 than in H1975 cells (Supplementary Fig. S7A). In fact, H1975 were more resistant 393	
  

to Tazemetostat, as shown by the IC50 value measured through the “ATPlite” assay 394	
  

(Supplementary Fig. S8A, B). Some genes showed a more pronounced de-repression at 395	
  

longer time points, probably because of the slow kinetics of H3K27me3 turnover, as was 396	
  

shown previously (Supplementary Fig. S7A, B) (37). Functionally, the combination therapy 397	
  

with Dasatinib and Tazemetostat acted synergistically in affecting the colony formation and 398	
  

cell growth of H1299, H1975, as well as of A549 lung cancer cell line that was previously 399	
  

shown to be resistant to Dasatinib (38) (39) (Fig. 6A-E, Supplementary Fig. S8C-E). This 400	
  

effect was more evident in H1299, as observed at a very low dose of Tazemetostat (2µM) 401	
  

and with low doses of Dasatinib (0,025 µM) (Fig. 6A-B, Supplementary Fig. S8C). In the 402	
  

resistant A549 cells, increasing doses of Dasatinib up to 0,1µM in the absence of 403	
  

Tazemetostat did not reduce the number, but only the size of the colonies (Fig. 6E, lower 404	
  

panel, Supplementary Fig. S8E, left panel). However, the addition of Tazemetostat (2 µM) 405	
  

sensitized cells to Dasatinib and reduced both the number and size of the colonies (Fig. 406	
  

6E, Supplementary Fig. S8E). While low amounts of Dasatinib alone, or Tazemetostat 407	
  

(2µM) alone, did not cause de-repression of TGFBR2, p21 or SMAD7 transcripts, the 408	
  

combination of the two drugs de-repressed these transcripts (to different extend, though) 409	
  

in both H1299 and H1975 cell lines (Supplementary Fig. S9A, B). In summary, these 410	
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findings may provide a basis for testing the combination of Dasatinib and Tazemetostat as 411	
  

a therapeutic modality for the treatment of NSCLC patients (Fig. 6F). 412	
  

 413	
  

4. Discussion 414	
  

We report here that YAP and TAZ elicit, at least in part, their oncogenic roles in NSCLC 415	
  

through the negative regulation of the tumor-suppressor “arm” of the TGF-β signaling 416	
  

pathway. It has been previously reported that YAP and TAZ crosstalk with the TGF-β 417	
  

pathway either by cooperating with its pro-tumorigenic signaling (i.e., induction of EMT) 418	
  

(40) or antagonizing its pro-apoptotic/tumor-suppressor activity. YAP prevents TGF-β1-419	
  

mediated apoptosis without affecting EMT in normal mouse mammary epithelial cells (41). 420	
  

Similarly, YAP and TAZ promote TGF-β-induced EMT by inhibiting the TGF-β tumor 421	
  

suppression activity in breast cancer (42). Herein, we also show an antagonism between 422	
  

YAP/TAZ-oncogenic and TGF-β/SMAD-tumor-suppressive activities in NSCLC cells 423	
  

through the inhibition of TGFBR2. This inhibition is elicited through the aberrant activation 424	
  

of two oncogenic loci: EZH2 that represses TGFBR2 transcriptionally (14) and MCM7 that 425	
  

harbors the oncogenic cluster of miR106b-25. That mRNA cluster represses TGFBR2 at 426	
  

the post-transcriptional level. Clinically, lower expression of TGFBR2 in tumor tissues of 427	
  

lung cancer patients associates with poorer prognosis. This appears even more evident in 428	
  

the early stages of the disease.   429	
  

 430	
  

Interestingly, the cooperation between YAP/TAZ and EZH2 to maintain the expression of 431	
  

tumor-suppressor proteins at relatively low levels applies also to the direct targets of 432	
  

EZH2. YAP and TAZ are extensively studied for their role as transcriptional co-activators, 433	
  

while their role as transcriptional co-repressors is still emerging but has not been fully 434	
  

clarified (32,43-45). Our findings help to dissect mechanistically the YAP/TAZ-mediated 435	
  

transcriptional repression of a subset of tumor-suppressor genes through the cooperation 436	
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with EZH2. This was previously shown for the GDF15 gene in breast cancer cell lines (17), 437	
  

but we extend these findings also to other genes in NSCLC. The subset of common 438	
  

YAP/TAZ/PRC2 targets might be different with regard to cell and tissue contexts. 439	
  

Moreover, we did not find any physical interaction between YAP and EZH2 in our 440	
  

experimental model (data not shown). Future work will be aimed at looking for potential 441	
  

partners or protein complexes that may help the recruitment of YAP and EZH2 on the 442	
  

same genomic targets and mediate the formation of a repressive chromatin conformation. 443	
  

The NuRD complex due to its previously reported recruitment onto some YAP/TAZ 444	
  

repressed targets might be a strong candidate (32,44,45). The H3K27 de-acetylation 445	
  

mediated by the NuRD complex was shown in turn to recruit the PRC2 complex onto 446	
  

bivalent genes, in which both acetylation (associated with transcriptional activation) and 447	
  

methylation (associated with repression) of H3K27 are present. The balance between the 448	
  

two modifications determines the transcriptional state of the target genes (46). In 449	
  

agreement with this hypothesis, the depletion of YAP and TAZ reduces the enrichment of 450	
  

H3K27me3 and increases H3K27Ac at the YAP/TAZ/EZH2 co-repressed loci suggesting 451	
  

that YAP and TAZ may facilitate EZH2 mediated H3K27 methylation.  452	
  

We also confirmed the transcriptional and functional synergism between YAP/TAZ and 453	
  

EZH2 in NSCLC through their combined inhibition upon pharmacological treatment with 454	
  

Dasatinib and Tazemetostat (EPZ-6438). Both are FDA approved drugs targeting YAP 455	
  

and EZH2 activity, respectively (34) (35). Tazemetostat has been tested in early phase 456	
  

trials for rhabdoid tumors, B-Cell Non-Hodgkin lymphoma, and has been recently 457	
  

approved for the treatment of epithelioid sarcoma (47). These tumors are characterized by 458	
  

overexpression or hyperactivation of EZH2 (48-50). However, in other cancer types, 459	
  

Tazemetostat was not as effective as a single therapeutic agent, suggesting the need to 460	
  

test the drug in combination with other anticancer agents (49). In NSCLC, Tazemetostat is 461	
  

currently evaluated in a clinical trial that involves multiple immunotherapy-based treatment 462	
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combinations, both as the first-line and the second-line therapy of patients with confirmed 463	
  

metastases (ClinicalTrials.gov Identifier: NCT03337698). Dasatinib has failed in NSCLC 464	
  

clinical trials as single-agent due to its relatively high toxicity and it is currently used in the 465	
  

early phase trials in combination with EGFR inhibitors or immunotherapy 466	
  

(ClinicalTrials.gov Identifier: NCT02954523, NCT02750514). In our model (NSCLC cell 467	
  

lines), we observed a synergistic effect of Dasatinib and Tazemetostat treatment in the 468	
  

inhibition of cell proliferation and in the de-repression of tumor-suppression genes co-469	
  

repressed by the combinatorial activity of YAP and EZH2.  470	
  

 471	
  

Conclusions 472	
  

In sum, our findings suggest that the newly characterized YAP/TAZ/EZH2 oncogenic axis 473	
  

may represent a potential therapeutic target in lung cancer. More precisely, our results 474	
  

provide a rationale for a two-pronged strategy for inhibiting both YAP/TAZ as well as EZH2 475	
  

for an efficient therapeutic outcome, because of their functional synergy.  476	
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Fig. 1 TGFBR2 is a direct target of the oncogenic miR-106b-25 cluster and exhibits prognostic 
value in NSCLC. A, Dot plots showing the correlation between TGFBR2 transcript and MCM7 (left 
panel), TGFBR2 and the miR106b-25 cluster (mid panel), and between TGFBR2 and MCM7/miR 
cluster together (right panel) in Lung Adenocarcinoma (LUAD) patients from the TCGA. B-C, 
Boxplot showing the expression of TGFBR2 transcript in tumoral (T) compared to non-tumoral (N) 
tissues in lung adenocarcinoma (LUAD) patients (B) and lung squamous cell carcinoma (LUSC) 
(C) from the TCGA dataset. Number of LUAD samples: 510T, 58N.  Number of LUSC samples: 
501T, 51N. D-H, Kaplan-Meier (KM) survival of lung adenocarcinoma (D) and squamous cell 
carcinoma patients (E), and KM of adenocarcinoma patients stratified for tumor stage (F-H), with 
high or low expression of TGFBR2. The number of patients is indicated below the plots. I, Western 
blot analysis for TGFBR2 expression upon depletion of MCM7 (left panels), upon either 
transfection with LNA inhibitors (mid panels) or mimics (right panels) for miR-25, 93, and 106b in 
H1975 cells (upper panels) and H1299 (lower panels). β-actin expression was used for equal 
protein loading. J, Luciferase assay of the psiCHECK2-TGFBR2-3’UTR reporter wild type or 
mutated in the seed sequence recognized by miR-93 and 106b in H1299 transiently co-transfected 
either with control mimic or mimic for miR-93 and miR-106b. Data are compared to signals 
obtained from cells co-transfected with the same mimic and psiCHECK2 Empty Vector as a 
control. Firefly luciferase was used to normalize the Renilla luciferase. All the experiments have 
been performed in triplicate. Data are presented as mean ± SEM. Two-tailed t-test analysis was 
applied to calculate the P values. *p<0,05; **p<0,01;***p<0,001 
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Fig. 2 
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Fig. 2 YAP/TAZ control TGFBR2 expression acting upstream to the miR cluster. A-B, Western blot 
analysis for expression of the indicated proteins normalized to β-actin (A) and quantification by real 
time-PCR of TGFBR2 transcript normalized to GAPDH (B) in H1975 cells depleted for YAP and 
TAZ proteins compared to control cells. The experiments have been performed in triplicate. C, 
Western blot analysis of the indicated proteins, normalized to β-actin in H1975 upon the 
interference of YAP and TAZ with or without mimic miR-93 and 106b. D, Quantification of colony 
formation of H1975 cells upon YAP/TAZ interference with or without concomitant transfection with 
mimic miR-93 and 106b, compared to controls. Data are presented as mean ± SEM. Two-tailed t-
test analysis was applied to calculate the P values. *p<0,05; **p<0,01;***p<0,001. E, Western blot 
analysis of nucleo-cytoplasmic extracts from H1975 cells showing the abundance of the indicated 
proteins upon YAP/TAZ interference compared to siGFP control cells. Nucleolin and β-actin were 
used as a nuclear and cytoplasmic loading control, respectively. F, Western blot analysis of whole-
cell extracts (WCE) of the indicated proteins normalized to β-actin in H1975 cells upon the 
interference of YAP and TAZ with two different combinations of alternative siRNA. G, Quantification 
of colony formation in H1299 and H1975 cells upon depletion of YAP/TAZ with or without interfering 
with SMAD2/3/4 expression compared to control cells. 
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Fig. 3 
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Fig. 3 YAP and TAZ inhibit transcriptionally TGFBR2 expression through the oncogenic EZH2 
repressor. A, Boxplot of the abundance of EZH2 in tumoral (T) compared to non-tumoral (N) 
tissues in lung adenocarcinoma patients (LUAD, left) and lung squamous cell carcinoma (LUSC, 
right) from the TCGA. The number of LUAD samples: 510T, 58N.  The number of LUSC samples: 
501T, 51N. B, Quantification of colony formation in H1299 (left) and H1975 (right) upon EZH2 
depletion compared to control cells. C, Western blot analysis of the indicated proteins normalized 
to β-actin in H1299 (left) and H1975 cells (right) upon depletion of EZH2 protein. D, Dot plot 
showing the correlation between TGFBR2 and EZH2 transcripts in lung adenocarcinoma patients. 
E, RT-PCR quantification of TGFBR2 transcript upon depletion of EZH2 in H1299 (left) and H1975 
(right). F-G, Representative images of cell colony formation assay (left panels) and quantification of 
relative colony formation (right panels) in H1299 (F) and H1975 (G) treated with siRNA against 
YAP/TAZ with or without concomitant overexpression of EZH2 compared to cells transfected with 
siGFP and empty vector as a control. Data are presented as mean ± SEM of three technical 
replicates of one representative experiment. Two-tailed t-test analysis was applied to calculate the 
p values. The experiment has been performed in triplicate. H-I, Western blot analysis of the 
indicated proteins normalized to β-actin in H1299 (H) and H1975 (I). 
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Fig. 4 YAP/TAZ regulates EZH2 expression. 
A, RT-PCR quantification (upper panel) and western blot analysis (lower panel) of EZH2 transcript 
and protein, respectively, in H1299 (left) and H1975 cells (right) upon YAP and TAZ interference 
with two combinations of alternative siRNAs. B, Schematic representation of the EZH2 locus and 
the regions containing the putative consensus for TEAD (P1, P2, P3, P4) with their relative position 
respect to TSS, and with the region used as a negative control of YAP/TAZ/TEAD binding (NEG). 
C, Fold enrichment of YAP, TAZ, and TEAD1 proteins onto the indicated sites of EZH2 locus in 
H1299 cells depleted for YAP, TAZ, and TEAD1 compared to control cells. CTGF promoter was 
used as a positive control while an intronic region of the EZH2 locus was used as a negative 
control. Data are presented as mean ± SEM of at least three biological replicates. For each 
antibody, fold enrichment was calculated over no antibody control. D, Chromatin 
Immunoprecipitation analysis of the abundance of H4Ac onto the indicated genomic sites (TSS, 
EZH2 NEG, and CTGF) in cells simultaneously depleted for YAP/TAZ/TEAD1 compared to siGFP 
as control. Fold enrichment was calculated over no antibody control and then normalized to the 
siGFP control that was adjusted to 1. The experiments were performed in triplicate. Two-tailed t-
test analysis was applied to calculate the P values. *p<0,05; **p<0,01;***p<0,001. E, Working 
model indicating that YAP and TAZ downregulate TGFBR2 expression through miR-25,93 and 
106b (post-transcriptionally) and the transcriptional repressor EZH2 (transcriptionally) in NSCLC. 	
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Fig. 5 
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Fig. 5 YAP/TAZ and EZH2 synergistically affect the cell growth of lung cancer cell lines. A, Western 
blot analysis of the indicated proteins in H1299 cells upon depletion of YAP/TAZ and EZH2, either 
alone or in combination, compared to control cells. B-C, Cells (%) in G1, S, and G2 phases (b) and 
colony quantification (c) of H1299 cells, upon depletion of YAP/TAZ or EZH2, alone or in 
combination, respect to control cells. D, Boxplots representing the expression profile of the 
indicated transcripts in LUng Adeno Carcinoma (LUAD) and Lung Squamous cell Carcinoma 
(LUSC) from patient samples of TCGA dataset as obtained from the FireBrowse Gene Expression 
Viewer. E-F, Chromatin Immunoprecipitation fold enrichment of H3K27me/H3 (E) and H3K27Ac/H3 
(F) on the indicated loci. TGFBR2(e) indicates the enhancer region shown in figure S5a. For each 
antibody, fold enrichment was calculated over no antibody control and normalized to the siGFP 
control that was adjusted to 1. Experiments were performed in triplicate. Two-tailed t-test analysis 
was applied to calculate the P values. *p<0,05; **p<0,01;***p<0,001. (G) Real-time PCR analysis 
of the indicated transcripts in H1299 cells upon depletion of either YAP/TAZ or EZH2 proteins. 
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Fig. 6 
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Fig. 6 Low doses of Dasatinib with Tazemetostat synergistically affect cell proliferation. A-B, 
Representative images (A) and quantification (B) of colony formation upon treatment with different 
combinations of dasatinib and Tazemetostat (EPZ-6438) at the indicated doses in the H1299 cell 
line. C-D, Viability of H1299 cells (C) and H1975 cells (D) as measured with ATPlite assay after 
72h treatment with a fixed dose of dasatinib and growing doses of Tazemetostat. E, Quantification 
of colony formation upon treatment with different combinations of Dasatinib and Tazemetostat in 
H1975 (upper panel) and A549 cells (lower panel). F, Schematic model of the oncogenic role of the 
YAP/TAZ/EZH2 axis which contribute to the aberrant proliferation of lung cancer cell lines. 
Pharmacological inhibition of YAP and EZH2 impairs the repression of tumor suppressor genes 
thereby reducing cell proliferation of lung cancer cell lines.  
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Table1. Genes repressed by YAP and EZH2 IN NSCLC. 
Gene Repressed  

by EZH2 
Repressed  
by YAP 

Cell type/ 
tissue 

REF 

CDKN1A  
✔ 

✔ NSCLC 

NSCLC 
(31) 

(24) 

CDKN2B ✔  NSCLC (25) 

PTEN ✔   
✔ 

NSCLC 

MCF10A 
(26) 

(27) 
HOXA5 ✔  

✔  
NSCLC 

MCF10A 
(28) 

(32) 
SMAD7 ✔  

✔ 
Renal fibroblasts 

Dermal fibrobasts 
(29) 

(33) 
SFTPB  ✔ Lung of MST1/2-- 

mice 
(30) 

SFTPC  ✔ Lung of MST1/2-- 

mice 
(30) 

List of genes found in the published literature to be repressed by either YAP/TAZ and EZH2.  
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