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Abstract  

Attempts to extract early biomarkers and expedite detection of Autism Spectrum Disorder (ASD) 

have been centered on postnatal measures of babies at familial risk. Here, we suggest that it 

might be possible to do these tasks already at birth relying on ultrasound and biological 

measurements routinely collected from pregnant mothers and fetuses during gestation and 

birth. We performed a gradient boosting decision tree classification analysis in parallel with 

statistical tests on a population of babies with typical development or later diagnosed with ASD. 

By focusing on minimization of the false positive rate, the cross-validated specificity of the 

classifier reached to 96% with a sensitivity of 41% and a positive predictive value of 77%. 

Extracted biomarkers included sex, maternal familial history of auto-immune diseases, maternal 

immunization to CMV, IgG CMV level, timing of fetal rotation on head, femoral length in the 3rd 

trimester, white cells in the 3rd trimester, fetal heart rate during labour, newborn feeding and 

newborn’s temperature difference between birth and one day after. Statistical models revealed 

that 38% of babies later diagnosed with ASD had significantly larger fetal cephalic perimeter than 

age matched neurotypical babies, suggesting an in-utero origin of the bigger brains of toddlers 

with ASD. Results pave the way to use pregnancy follow-up measurements to provide an early 

prognosis of ASD and implement pre-symptomatic behavioral interventions to attenuate 

efficiently ASD developmental sequels.  

 

Introduction 

Autism Spectrum Disorder (ASD) is characterized by persistent communication and social 

interactions deficits, and restricted, repetitive behaviors (DSM 5 -APA 2013) [1–3]. Since the first 

studies in the 1960s, its prevalence has steadily increased from 0.041% to 1.68% (CDC 2018) [4]. 

This increase is due to modifications of diagnostic criteria, wider access to diagnosis, and a 

genuine increase due to as yet undetermined factors, most likely a combination of genetic and 

environmental components [5,6]. In spite of the incidence of autism, there is yet no FDA or EMA 

approved drug agent to treat its core symptoms. 

Clinical and histological observations are compatible with the notion that ASD is generated in the 

womb. Thus, increased ASD incidence has been related to maternal viral or microbial infection, 

with activation of the immune system [7–9], maternal influenza [9,10], drugs taken during 

pregnancy notably of sodium valproate [11], or exposure to environmental hazards [12,13]. Post-
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mortem analysis of brains from children with ASD reveals an abnormal excess of neurons in the 

prefrontal cortex indicative of an in-utero origin [14]. Brain overgrowth and megalencephalic 

brains have been reported in a subpopulation of children and adolescents with ASD [15,16] but 

whether this is initiated already in utero is controversial [17–21]. ASD is linked with many 

perinatal factors including emergency C-Section delivery, obstetric complications and preterm 

delivery reflecting the continuity between an in-utero insult parturition and birth [22].  

Experimental data also suggest an in-utero pathogenesis of ASD [23–28]. Thus, maternal immune 

activation or valproate administration are associated with ASD [24,29] and early post-natal 

alterations are observed in genetic forms of autism [30]. In addition, brain overgrowth during 

parturition and birth has been observed in ASD animal models [29]. Therefore, determining the 

alterations occurring in-utero are instrumental in order to understand the pathogenesis of ASD.  

Here, we reasoned that if ASD brain changes are already present during pregnancy, it might be 

possible to extract biomarkers from biological and imaging features that are routinely collected 

from the first pregnancy trimester to 1 day after birth, and give a prognosis of ASD shortly after 

birth. To this goal, we analyzed retrospectively those features in babies who went on being 

diagnosed 4-5 years later with ASD, and in a matched population of Neurotypical (NT) babies. 

Due to large number of features and complex multivariate and poorly understood links between 

them, we used several statistical tools to reveal patterns that distinguish NT babies from those 

with ASD. 

A supervised machine learning (ML) algorithm was trained to classify babies in two groups, ASD 

and NT. A cross-validation (CV) technique was used to ensure the generalizability of the 

classifier’s results on an unseen future independent cohort. Features with highest impact on the 

classifier’s decisions were extracted and analyzed more precisely. In parallel, significant changes 

in distribution of all collected features between NT and ASD babies were identified through 

conventional statistical hypothesis tests. Finally, longitudinal developmental trajectories of 

fetuses were analyzed by statistical models to investigate the possibility that megalencephalic 

ASD brains in children and adolescents are generated in utero. 

The use of follow-up features routinely collected in maternities without expensive additional 

tests will facilitate early behavioral treatments known to be more efficient when initiated before 

the end of the developmental plasticity period [31,32]. 
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Results 

A classification algorithm with Shapley additive explanations (SHAP) framework in parallel to 

statistical hypothesis tests and statistical models were used to extract ASD biomarkers (see 

material and methods). 

Prognosis of ASD relying on the gradient boosting decision tree classifier 

To classify babies in ASD and NT groups, a gradient boosting decision tree classifier was trained 

on collected features by adopting a strategy to minimize false ASD detections in the first place 

while keeping the true ASD detection rate as high as possible. The performance of the classifier 

with two feature selection strategies (FSS) was evaluated by the estimation of classification 

scores through averaging on 100 rounds of train-test coming from 10 times repeated 10-fold CV 

process.  

In the semi-automatic FSS where a preselection of features based on domain knowledge was 

followed by Lasso regularization, the true negative rate (TNR aka specificity) i.e. the proportion of 

NT children correctly classified as NT, was of 0.96 (95% CI = [0.95, 0.97]), thus only 4% of NT 

children were wrongly classified as ASD (Table 1). The true positive rate (TPR aka sensitivity), i.e. 

the proportion of children with ASD correctly classified in the ASD group, was of 0.41 (95% CI = 

[0.37, 0.45]). However, the positive predictive value (PPV aka precision) was as high as 0.77 

(95%CI = [0.72, 0.81]), implying that 77% of babies classified as ASD were indeed diagnosed later 

as children with ASD. Therefore, NT children were almost completely correctly identified at birth 

and a prognostic of ASD could be made in a subgroup of children with a high precision. 

If we let the classifier to select features automatically without any medical presumptions, the 

classifier achieves the same performance as in the semi-automatic FSS (Table 1). It shows the 

efficiency of the classifier to cope with a large feature space at least as good as when the feature 

space was pruned by medical presumptions. 

Extraction of important features 

To extract features that play an important role in the classification process, we considered two 

approaches. 

Feature frequency in CV folds 

In the CV process, the classifier is trained from scratch in each fold and selects features that 

distinguish better NT babies from ASD ones existing in the training set. Features that have been 
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selected by the classifier in at least half of the 100 CV folds are given in Fig. 1. Fetal rotation on 

head, Femoral length percentile in the 3rd trimester (T3), Cephalic perimeter percentile in the 2nd 

trimester (T2), Breast feeding, Sex, Ratio of cephalic perimeter to femoral length in T3 and Fetal 

heart rate during labour (FIGO classification) have been selected in both FSSs. 

In the semi-automatic FSS, Familial maternal history of auto-immune diseases, Duration of the 

first part of the labour and Apgar score in 1 minute also appeared frequently. On the other hand, 

Biparietal diameter in T3, White cells in T3, Hemoglobin in T3 and Fetal weight estimation in T3 

were also selected as important features by the automatic FSS while they were considered as 

medically irrelevant. In other words, the classifier with automatic FSS could detect patterns in 

some features that are not normally considered relevant to ASD. 

Some features were selected with less frequency and many features have never been selected 

since they were considered as irrelevant by the classifier. A complete list of features that have 

been selected by the classifier at least once in the CV process is given (Supplementary Table S1). 

Feature impacts 

Our second approach to extract important features relies on SHAP framework. It computes the 

impact of each feature on the classifier’s output and also determines a range of values of the 

feature that increase the probability of babies to be classified as NT or ASD. SHAP values of 5 

features with the highest relative impact are shown in Fig. 2 for all babies and for both feature 

selection strategies. In each feature line, a point colored by the corresponding feature value 

represents one baby and the color map indicates how each feature’s impact varies according to 

its values. Feature values situated in the positive or negative SHAP side (orange or green regions) 

leads to ASD or NT classification, respectively. The relative impact of these features together with 

their range of values that increase the probability of ASD classification are given in Table 2. 

Thus, in both feature selection strategies, fetuses who rotated on head before 148 days of 

gestational age were more likely to be classified in the ASD group. In fact, statistical analysis 

shows 35.09% of ASD babies rotated earlier than 148 days, which is significantly different from 

3.72% of NT ones who rotated in that period (2(1, N=245) = 40.74, p<0.001). High values of 

femoral length percentile in T3 (higher than 72%) led to an ASD prognostic by the classifier. The 

proportion of ASD babies with femoral length percentile larger than 72% in T3 is 24.56% whereas 

7.94% of NT babies have a large femoral length in this range (2(1, N=246) = 10.10, p=0.001). 

Feeding babies with a mixture of maternal and artificial milks led to ASD classification. 17.86% of 
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ASD babies were fed in a mixed way while the proportion is 5.91% in NT group (2(1, N=242) = 

6.31, p=0.01). Boys were more likely to be classified as ASD than girls. In ASD group, 80.95% of 

babies are male whereas the proportion of males in NT group is almost balanced with 48.68% 

(2(1, N=252) = 18.76, p<0.001). 

Familial maternal history of auto-immune diseases was considered as an important feature by 

the semi-automatic FSS. The proportion of ASD babies with familial maternal history of auto-

immune diseases is about 19.05% whereas the proportion of NT babies with this feature is 6.35% 

(2(1, N=252) = 4.73, p=0.006). For the fully FSS, white cells less than 9100 in T3 led the classifier 

to ASD decision. Among ASD babies, 47.54% of them have white cells less than 9100 whereas the 

proportion of NT babies is about 27.65% (2(1, N=231) = 7.17, p=0.007). A complete list of 

features with nonzero relative impact is given in Supplementary Table S1. 

In summary, classification process helped to extract specific prognostic biomarkers among a lot 

of recorded features, and SHAP analysis revealed patterns in those biomarkers that are 

significantly different in NT and ASD groups. 

 

Statistical difference in feature distributions between ASD and NT 

Independent from the classification process, we ran statistical hypothesis tests on all recorded 

features. Results for features with significantly different distributions in NT and ASD groups are 

given in Table 3 and Fig. 3 (see also Supplementary Table S2 for all other features). In case of 

categorical features, number (n) and frequency (%) of babies in each group and the results of 

Chi-square test (2) are given. For the numerical feature, number of samples, median, mean, 

standard error of mean (SEM) and 95% confidence interval of mean of feature values in each 

group together with results of Mann-Whitney U test (MWU) are presented.  

Among NT children, 48.68% are male versus 80.95% of ASD (2(1, 252) = 18.76, p<0.001). 14% 

and 41.67% of NT and ASD newborns respectively had a temperature difference of more than 

1°C (in either direction) between birth and day 1 (2(1, 198) = 15.31, p<0.001) (see also 

Supplementary Fig. S1). With cytomegalovirus serology (CMV), 36.62% and 76.92% of NT and 

ASD mothers were immunized respectively (2(1, 97) = 10.83, p<0.001). Blood samples used for 

Guthrie’s test confirmed the lack of congenital hypothyroidy, mucovisidosis, drepanocytosis, 

phenylketonuria and congenital adrenal gland hyperplasia. They also revealed no CMV mRNA 

indicating that, with the limits of this test, the impact is not due to neonatal viral infection but to 
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maternal immunization. The median of IgG CMV is 0 IU in NT children versus 9950 IU in the ASD 

group (MWU = 382.5, p<0.001). The strong difference of the median (0) and mean (4675.00) in 

the NT group reflects a right skewness of the IgG curve with at least 50% of NT children having 0 

IgG CMV levels (Fig. 3). With the FIGO classification of fetal heart rate during labour, 61.22% and 

62.22% of NT and ASD children respectively have a normal heart rate whereas 10.20% and 

28.89% of NT and ASD children respectively have a pathological heart rate (2(2, 192) = 13.82, p = 

0.001). 

Cephalic perimeter growth differs in NT and ASD 

Regression analysis shows that during the 2nd trimester, the cephalic perimeter (CP) growth rate 

is significantly different between NT and ASD (ANCOVA, p=0.046) with slopes of regression line 

equals to 1.35 (p<0.001, R2=0.52, ρ=0.72 Pearson’s correlation coefficient) for NT and 1.73 

(p<0.001, R2=0.61, ρ=0.78) for ASD (Fig. 4a). However, the mean percentile values of CP are not 

different in this age (t-test, p=0.2) (box plot of Fig. 4a). During the 3rd trimester, the increasing 

growth slopes are similar for NT (1.11 , p<0.001, R2=0.23, ρ=0.48) and for ASD (1.01, p<0.001, 

R2=0.20, ρ=0.45) (ANCOVA,  p=0.72), although there is an increasing trend in the CP percentile 

(MWU, p=0.83). In contrast, before birth, ASD’s CP percentiles are significantly higher than NT 

(MWU, p=0.02), but the growth slopes are similar as 0.65 (p<0.001, R2=0.46, ρ=0.68) for NT and 

0.63 (p=0.01, R2=0.20, ρ=0.45) for ASD (ANCOVA, p=0.93; see also Supplementary Fig. S2). The 

quadratic mixed effect model shows a similar (p=0.30) slowdown of CP increase in the NT and 

ASD groups along the gestation (Fig. 4b). The coefficient of quadratic term is -0.006 for NT (95% 

CI: [-0.006, -0.005]; p<0.001) and -0.005 for ASD (95% CI: [-0.006, -0.004]; p<0.001). The larger CI 

of the ASD group suggests a larger heterogeneity in ASD than in NT. 

Exploration of CP percentile distributions revealed that 38% of ASD babies have CP percentile 

higher than 90% before birth (box plot of Fig. 4a and Supplementary Fig. S2). We separated 

those ASD babies into a new group called “Large CPs ASD” (Fig. 4c) to investigate whether they 

have already had larger CPs in T2 and T3.  We found that during the 2nd trimester, there is a 

significant difference in CP percentile between groups (ANOVA, p=0.02) with children in “Large 

CPs ASD” being bigger than both NT (Tukey, p=0.01) and the remaining ASD subpopulation 

(Tukey, p=0.04) (boxplot of Fig. 4c). The significant difference is also observed during the 3rd 

trimester and before birth (Kruskal-Wallis, p<0.001) where “Large CPs ASD” have larger CPs than 

both NT and remaining ASD subpopulation (Dunn, p<0.001 for both groups). 

.CC-BY-NC-ND 4.0 International licenseunder a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (whichthis version posted July 9, 2020. ; https://doi.org/10.1101/2020.07.08.192989doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.08.192989
http://creativecommons.org/licenses/by-nc-nd/4.0/


8 

 

Linear regression analysis with the ANCOVA test shows no difference in the CP growth rate 

between the 3 groups in either period (Fig. 4c). The decline in head growth rate during gestation 

was confirmed in “Large CPs ASD” like for the other groups with the quadratic mixed effect 

model (Fig. 4d) with a coefficient of quadratic terms of -0.006 in ASD (95% CI: [-0.008, -0.005] ; 

p<0.001) and -0.005 in “Large CPs ASD” (95% CI: [-0.006, -0.004]; p<0.001). 

Therefore, the children of the ASD group with large CPs before birth have already had large CPs 

in the 2nd and 3rd trimesters. Moreover, a slowdown of CP growth similar to that of NT and other 

ASD children was observed in the ASD group with large CPs. Results suggest a bigger 

heterogeneity of CP growth in ASD that however preserves the progressive CP attenuated 

growth in preparation for birth as in naïve brains. 

Discussion  

The difficulty of developing an early diagnostic of ASD stems from its prenatal and early postnatal 

generation and the heterogeneity of its symptoms with an impairment of motor skills, visual 

perception, social interactions or attention to faces, that all take time until they become 

noticeable. The inaugurating insult leading to ASD alters cell proliferation, migration, synapse 

formation, pruning and formation of functional cell assemblies. This cascade of impairments 

leads to the classical social deficits and repetitive behaviors that typically emerge around 24 

months of age, and to heightened sensitivity to stimuli from many modalities. As early behavioral 

treatment ameliorates ASD deficits and attenuates long-term outcomes [31,32], early detection 

in toddlers is essential before clinical signs are conspicuous.   

Several attempts have been made to detect ASD early relying on neuroimaging techniques, EEG 

measures or genetic variants. In these studies, the prediction is centered primarily on siblings of 

children diagnosed with ASD, that is, high-risk populations. They are therefore hampered by this 

factor, as the ratio of high-risk to low-risk is not representative of the general population. 

Neuroimaging in babies at high familial risk of autism have revealed increased brain volume that 

appears before ASD diagnosis [33–35]. The authors obtained a high sensitivity and accuracy of 

ASD prediction, but the restriction to high-risk sibling hampers and limits the generalizability of 

the conclusion to first born without siblings with ASD [36].  Similarly, EEG power spectrum 

analysis of at-risk siblings from three months onwards [37] distinguishes ASD from NT children 

with an accuracy (true negative and positive outcome) of 91.67%. The positive predictive value is, 

however, about 63.93% of those diagnosed as at risk during the first year go on to develop ASD 
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later. Interestingly, the frontal EEG at age 3-12 months most accurately discriminated the ASD 

group, pointing to early perinatal processes vs. later ones, and the presence of early subclinical 

changes that can be detected by early frontal EEG power. The lower gamma power observed is 

suggestive of an imbalance between excitation and inhibition. The widely used genocentric 

approach has not allowed establishing an early prognostic of ASD to large populations due to 

several limitations.  Hundreds of genetic mutations and variants have been identified often with 

poor penetration that produces incremental risks when cumulated [38–43]. In addition, de novo 

variations play an important role [44], complicating the prediction. Moreover, non-genetic 

factors play an important role in the pathogenesis including environmental factors during 

maternity (e.g. pollution, pesticides, prenatal vitamins – for review [13]) are instrumental in ASD 

pathogenesis as they augment the incidence of ASD. However, they cannot provide an early 

prediction of ASD.    

Our goal here was to determine whether it is possible to extract prognostic biomarkers 

associated with ASD from imaging and biological features that are routinely collected during 

pregnancy and birth, and give a prognosis of ASD shortly after birth. We reasoned that this would 

on one hand provide compelling evidence that ASD is born in the womb, and on the other hand 

offer a wide range of novel possibilities by using data normally available in maternity wards. In 

this aim, ML algorithms and conventional statistical hypothesis tests were employed to analyze 

data collected from a representative population of ASD with a global incidence (1.21%) similar to 

that reported in Europe and other countries. ML is useful in this context, as it enables to identify 

features that are poorly or not statistically significant, but converge to impact ASD identification. 

Moreover, ML approaches have shown recently their power in disease prognosis with 

applications in e.g. hepatitis prediction [45], classification of diabetic patients [46,47] and lung 

cancer screening [48]. They have also recently enabled to give brain specific interactions 

probability of each gene with all the genes of the network and their probability association with 

ASD [49] but without differentiating NT and ASD babies. 

Results suggest that a combination of collected features intuitively linked to ASD and others not 

associated with ASD impact the classification and prognosis.  Many of these have, at this stage, 

no straightforward mechanistic links with ASD, except quite indirect speculative connections. The 

femoral length percentile differences might be related to the finger and toe ratios altered in ASD 

because of hormonal influences [50,51]. Gestational hypoxia [52] like pathological heart rate 

during labor and birth has been associated with neurological sequels [53]. 95% of embryos have 
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their head down at birth [54,55], but here we show that the shift occurs earlier in ASD possibly 

suggesting an earlier preparation for birth. There are less than 1°C changes in body temperature 

in the majority of NT children between birth and 1 day later, but bigger differences (warmer or 

cooler) in ASD. This suggests a difficulty in controlling body temperature that might be related to 

inflammatory signals [56]. Several features associated with inflammatory signals are also 

significantly different in ASD and NT, including maternal immunization to CMV, the average of 

IgG CMV units, and familial maternal history of auto-immune diseases [9]. Other impacting 

parameters such as low values of White cells in T3 and mixed maternal and artificial milk do not 

have documented links with ASD.  

The developmental curve of Cephalic Perimeter (CP) in utero suggests that brain growth is 

impacted at a very early stage (also see [17]). Brain growth of NT and ASD is slowed down from 

the 2nd trimester to birth but with important differences between them. Although the mean CP 

values are not different between NT and ASD, there is a significant acceleration of growth in the 

latter versus the former in the 2nd trimester suggesting a long-lasting impact of the pathogenic 

event such that ASD group has significantly larger CP before birth. We also identified a 

subpopulation of “Large CPs ASD” with significantly larger CPs than age matched NTs during the 

2nd and 3rd trimesters and before birth. Interestingly, the CP of a subpopulation (15%) of children 

and adolescents with ASD has been reported to be bigger than NT with “megalencephalic” 

features [15,16]. Therefore, brain growth process is impacted already from the 2nd trimester with 

a CP that continues growing during the few days that precede birth. Future studies will have to 

determine if the brain continuous to grow during parturition as observed in animal models (see 

below).  

Experimental observations are in accord with this. Hippocampal and neocortical volumes are 

increased in an animal model of ASD and hippocampal neuron size grows during parturition and 

birth [25,29]. Neurons with immature features are present in the adolescent and adult human 

amygdala [57]. In patients with ASD, the process that governs postnatal cellular maturation, like 

the trajectory of neuronal development, is altered in the human amygdala with a persistence of 

neurons endowed with immature features [58,59]. This “immaturity” of impacted neurons 

stands at the core of the “neuroarchaeology“ concept positing that the inaugurating insult in 

utero deviates developmental sequences leading to misplaced or misconnected neurons that 

present signs of immaturity and generate patterns that disturb behaviorally relevant oscillations 

[60]. Neurons with immature properties have been observed in many pathological conditions in 
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experimental models of ASD. High (Cl-)i and GABA excitatory actions are observed in immature 

neurons in MIA [25], maternal Valproate and Fragile X [30,61], and Rett syndrome [62] 

suggesting common global reaction to the pathogenic insult. Restoration of GABAergic inhibition 

also attenuates in humans and rodents the severity of ASD paving the way to novel therapeutic 

strategies based on selective actions on immature neurons [63,64].  

There are many limitations to the present study. The small sample size and the small number of 

girls limit the generalizability of the results. On the other hand, according to results of statistical 

tests, some features such as child’s temperature, CMV and IgG are distinguishing but were not 

included in the classification process due to their missing values. Moreover, we deliberately 

preferred to minimize false positives, which restricted ASD detection rate and feature extraction. 

Therefore, these results are not meant to provide an early diagnosis of ASD, but a possible 

prognostic tool and a proof of concept. Future studies might help ameliorating these aspects by 

considering a larger population in order to cope with the heterogeneity of ASD features. 

To conclude, our results suggest that it might be possible to establish a prognosis at birth of a 

subpopulation of babies who will develop ASD. The trained algorithm will require larger 

replications before being considered as a clinical tool for predicting ASD in large populations, as 

false predictions might adversely affect individuals. Yet, results in keeping with large evidence 

suggests that ASD is generated by a pathogenic sequence of events in-utero, that impacts 

essential developmental processes from cell proliferation and migration to neuronal growth, 

synapse formation, and network construction [41,60]. The time and structural basis of the 

inaugurating insult most likely underlies the heterogeneity of ASD [41,60]. If confirmed, the 

identification at birth of babies at risk of ASD relying on data that are routinely available in 

maternity wards, without additional techniques, will facilitate the use of behavioral preventing 

therapeutic strategies before the end of the developmental plasticity critical period [31,32]. Our 

approach might also be completed by frontal EEG or genetic data in order to improve the 

accuracy and sensitivity of the prediction.  

Methods 

Data and experiments 

In 2012-2013, 5356 children were born in the maternity Hospital of the University of Limoges in 

France. Two to 5 years later, 65 of these children (1.21%) were diagnosed with ASD (DSM-5 

criteria American Psychiatry Association 2013) and confirmed by ADI-R and Autism Diagnostic 
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Observation Schedule (ADOS G). Two children were excluded (Trisomy 21 and extreme 

prematurity, birth at 30 weeks). ASD incidence rate in our population (1.21%) is close to the 

reported rate in the literature (CDC 2018), which justifies our sampling approach. 

The files of the 63 children (12 girls and 51 boys) were matched with 189 Neurotypical (NT) 

children based on mother's age, parity and term of childbirth. In following, for simplification, we 

shall refer to babies diagnosed years later as NT or ASD as NT or ASD babies respectively. For 

each mother and baby, 116 features were recorded during pregnancy until 1 day after birth. The 

feature space consists of 77 numerical features (e.g. mother’s BMI, ultrasound measurements), 

38 categorical (e.g. gender, familial medical history, auditory tests), and 1 ordinal (placenta 

Grannum classification in the 3rd trimester), which are commonly recorded in French maternity 

hospitals. Supplementary Table S3 provides the entire list of features used in this study. 

The goal of this study is to find patterns in recorded features that distinguish ASD babies from NT 

ones, and our approach to this goal is 2-folded. First, a supervised classification algorithm is 

trained on data and features with high impact on the classifier are extracted with two different 

methods. In the second approach, appropriate statistical hypothesis tests are performed to find 

features that have significantly different distributions in NT and ASD groups. Moreover, 

developmental trajectories of cephalic perimeter were studied by statistical models. 

Data preprocessing 

The values of each 116 recorded feature in the dataset were explored and cleaned carefully to 

reduce the noise in computations. Features with missing value rate higher than 10% were 

removed from classification process to reduce the imputation bias in results. Features that were 

included in the classification process are given in Supplementary Table S4. Consequently, the 

classification dataset consists of 67 features for which 2.58% of values are missing in total. The 

one-hot encoding technique [65] was applied to binarize categorical features. To avoid co-

linearity, one category of each feature was dropped. 

Feature selection for classification 

A common issue in technology-based biological classification studies is the low ratio of sample 

size to number of collected features [66] which increases the classification error and the risk of 

data overfitting [67–69]. To treat this issue, a good practice is reducing the dimension of feature 

space by finding and dropping irrelevant and redundant features based on some criteria or 

domain knowledge.  
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In this study, features were selected by two strategies: fully automatic strategy by the Lasso 

regularization technique [70], and semi-automatic strategy which consists of a feature 

preselection based on medical knowledge followed by the Lasso technique. The goal was to 

compare classification performance with and without human intervention in feature selection 

and also, the similarity between selected features by those strategies.  

The automatic strategy relies on a Lasso regularization technique that is applied directly in the 

training process of the classifier. It shrinks the impact of irrelevant features on classification and 

selects implicitly the most distinguishing ones. This technique is known to be very effective even 

in presence of many very irrelevant features [70] and may find some features that are not 

already known to be linked to ASD. The semi-automatic strategy investigated the effect of 

feature preselection by using domain knowledge before applying the Lasso technique. In this 

strategy, 19 features (out of 67) that might be linked to ASD were preselected and fed to training 

process (Supplementary Table S4). Among those features, the most informative ones were 

selected by the Lasso technique. 

Classification process 

To classify children as NT or ASD, we used a model based on the gradient boosting decision tree 

algorithm [71]. This is a nonparametric supervised learning method which uses a tree-like model 

to infer a decision for each baby from feature values. Instead of using only one tree model, an 

ensemble of them is considered under the gradient boosting technique to fortify the ability of 

the classifier. Starting with a simple classification tree model, the model learns by adding more 

trees in an iterative manner to minimize a learning objective. It can detect complex underlying 

patterns of features to predict the binary target variable of belonging to the ASD group. This 

algorithm gives state-of-the-art results in a wide range of classification applications, especially in 

healthcare and diagnosis of diseases [45,46,72,73]. 

To implement the gradient boosting decision tree algorithm efficiently, we relied on the eXtreme 

Gradient Boosting (XGBoost) library [74]. Tuning its hyper-parameters to control the 

implementation of the algorithm enabled to resolve many classification problems (see 

https://github.com/dmlc/xgboost/blob/master/demo/README.md). Moreover, XGBoost has a 

built-in strategy to deal with missing values by finding the best imputation [74].  

In this study, we used a nested cross-validation process to tune the number of decision trees and 

evaluate the classifier’s performance (see below). Moreover, we tuned carefully several 
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hyperparameters to control the complexity of the model and avoid overfitting. Namely, the 

depth of each tree was set to a relatively low value as 5. The model weights were shrunk after 

each learning iteration by a factor of 0.01. Features were subsampled in each tree to make the 

model robust to potential noise in data. Rate of subsampling was inversely proportional to 

number of features and was selected as 0.7 and 0.5 in semi-automatic and fully automatic 

feature selection strategies (FSS) respectively. We used Lasso and Ridge regularization 

techniques to impose a penalty on the complexity of the classifier. Lasso regularization, as 

explained above, also helped to detect and remove less relevant features automatically which, in 

turn, avoided overfitting. 

Imbalanced datasets are common in medical studies due to low prevalence of diseases. This 

causes a classifier to learn mostly patterns in the majority class, i.e. control samples. To cope 

with this issue, we imposed a higher weight on the misclassification error of ASD samples than 

that of NT ones. The classifier output for each baby is the probability of the baby to belong to the 

ASD group. We set the decision threshold to 0.5 to binarize the predicted probability.  

By choosing higher weights on ASD misclassification error or lower values of the decision 

threshold than those considered here, more ASD children could be detected, but false positive 

rate would increase as well, which is in contrast to our ethical concerns and would increase the 

risk of overfitting. The list of XGBoost hyperparameters with corresponding values used in this 

study is given in Table 4. 

Hyperparameter tuning and classifier evaluation 

To tune hyperparameters of the XGBoost classifier and to evaluate its performance, we used a 

10-times repeated nested 10-fold stratified cross-validation (CV) process. In each repetition of 

the CV process, the whole dataset was divided randomly in 10 partitions, 9 partitions for training 

the classifier and 1 held-out partition to test the trained classifier and to ensure that the 

algorithm can be generalized in future unseen samples. The train-test process of the classifier ran 

in 10 rounds. In each round, the hyperparameters of the classifier were tuned on train data 

through an internal 5-fold stratified cross-validation grid search on values given in the Table 4. 

Optimal hyperparameters were chosen to maximize F0.5 score of classification (see below for 

definition of F0.5 score). The model was trained using optimal hyperparameters on the train data 

and the trained model was used to predict the target variable of samples in the 1 held-out test 

partition. Beyond F0.5, local classification scores, including True Positive Rate (TPR aka sensitivity), 
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True Negative Rate (TNR aka specificity) and Positive Predictive Value (PPV aka precision) were 

recorded at the end of each round. This procedure was repeated 10 times with different random 

partitioning of the dataset resulting in 100 rounds of train-test process. Finally, the averages of 

the recorded classification scores were considered as the final cross-validated scores of the 

classifier. 

The 10-times repetition of the CV procedure reduces the effect of bias on classification scores 

due to a relatively small number of samples. It ensures that the classification scores and 

hyperparameter tuning are not affected by any specific train-test partitioning of the dataset and 

the classifier is generalizable to future unseen samples. 

F0.5 score 

Regarding ethical aspects of this study, we decided to minimize false positives, in the first place, 

while detecting ASD samples as much as possible. This goal could be achieved by maximization of 

PPV but it would be at a cost of decreasing TPR. To treat this issue, we chose to maximize F0.5 

score which balances the PPV and the TPR while puts higher weight on PPV i.e. it pays more 

attention on minimization of false positives: 

𝐹0.5 = (1 + 0.52) ×
PPV × TPR

(0.52 × PPV) + TPR
. 

 

Important feature extraction 

An important goal of ML analysis in this study was to extract features that separate effectively NT 

babies from ASD ones. Our approach to this goal was 2-folded: 1) finding features that appears 

more frequently in the CV process; 2) finding features with the highest impact on the classifier’s 

decisions. In the first approach, selected features by the classifier in each CV fold were recorded. 

At the end of the CV process, the frequency of each feature was computed. Those features that 

appeared more frequently in the CV process were more important for classification. 

In the second approach, the classifier was trained by all 252 samples and the classifier’s output 

was explained by the novel SHapley Additive exPlanations (SHAP) framework [75]. This method 

works in the level of each sample and feature and provides more details than the first approach. 

It provides SHAP values 𝑠𝑖𝑗  that indicates the impact of feature j on the classifier’s decision for 

child i. A positive or negative 𝑠𝑖𝑗  means that feature j pushes the classifier to classify the child i in 

the ASD or NT group, respectively. The higher the absolute value |𝑠𝑖𝑗|, the bigger impact of 
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feature j on the classifier’s decision for child i. On the other hand, 𝑠𝑖𝑗 ≈ 0 implies a very low 

impact. 

The total impact of all features for all 252 children is computed as: 

Total impact of all features = 𝑆𝑇 = ∑ ∑|𝑠𝑖𝑗|

𝑛𝑓

𝑗=1

252

𝑖=1

, 

where nf is the number of selected features by the FSS. The absolute impact of each feature is 

calculated as: 

Absolute impact of feature 𝑗 = 𝑆𝑗 = ∑|𝑠𝑖𝑗|

252

𝑖=1

,       𝑗 = 1,2, … , 𝑛𝑓. 

The relative impact of each feature in percent is given by: 

Relative impact of feature 𝑗 =
𝑆𝑗

𝑆𝑇
× 100,    𝑗 = 1,2, … , 𝑛𝑓. 

The relative impact is used to rank features and extract the most impactful ones. 

Statistical analysis 

The difference in distribution of 116 collected features between NT and ASD groups were 

investigated by using conventional statistical hypothesis tests. For categorical features, Chi-

squared test (2) was used. The two-sided Welch’s t-test was applied on numerical parameters 

when the normality assumption was plausible according to the Shapiro-Wilk normality test. 

Otherwise, the nonparametric two-sided Mann-Whitney U test (MWU) was used. Moreover, the 

Benjamini–Hochberg procedure was employed to decrease the false discovery rate which 

adjusted the significance level to α = 0.001. 

We used Analysis of covariance (ANCOVA) to model the fetal brain developmental trajectories, 

measured as cephalic perimeter (CP) from ultrasound acquisition during the 2nd and 3rd 

trimesters and before birth. It also let us to test if the growth rate (slope of regression line) 

changes between NT and ASD at each age (level of significance α = 0.05). Inspired by the 

collective CP distribution from the 2nd trimester to before birth, a quadratic mixed effect model 

was fitted to determine brain growth rate in this period. Interaction term between ultrasound 

acquisition day and ASD or NT condition was considered as fixed effects. Random intercepts and 

slopes were included to take inter-individual baseline and growth rate variabilities into account. 

Distributions of ASD CP percentile before birth revealed a negative skewness where about 38% 

of ASD children had large CP percentile (>90%). We conjectured that those fetuses have already 
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had large CP in the 2nd or 3rd trimester. To examine that, those fetuses were separated from 

other ASD samples and they formed the “Large CPs ASD” group. The difference in CP percentile 

distributions of the 3 groups i.e. NT, ASD and Large CPs ASD, was checked by ANOVA with 

Tukey’s post-hoc test (when the normality assumption was plausible) or Kruskal-Wallis test with 

Dunn’s post-hoc test in the 2nd and 3rd trimesters and before birth. Moreover, the brain growth 

of this group was compared to that of other ASD and NT babies by using ANCOVA and a 

quadratic mixed effect model as described before. 

Implementation 

All the programming and implementation of XGBoost was done on Python v.3.6 using NumPy 

v.1.18.1, Pandas v.0.24.2, scikit-learn v.0.22.1, Matplotlib v.3.0.2 and XGBoost v.0.80 libraries. 

Impact of parameters was calculated thanks to the SHAP library v.0.28.5. Moreover, we used the 

SciPy v.1.1.0 and StatsModels v.0.10.0 libraries for statistical tests, linear regression analysis and 

mixed effect analysis. 
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Tables and Figures 

Table 1. Evaluation of the classifier performance. Estimated classification scores with 95% 

confidence intervals computed through averaging on a cross-validation process based on two 

feature selection (FS) strategies. TNR true negative rate, TPR true positive rate, PPV positive 

predictive value. 

FS strategy TNR TPR PPV F0.5 

Semi-automatic 0.96±.01 0.41±.04 0.77±.05 0.62±.04 

Fully automatic 0.96±.01 0.41±.04 0.77±.05 0.63±.04 

 

 

 

 

Table 2. Features with the highest impact on classifier based on SHAP analysis. For each 

feature, the relative impact and the alarming range i.e. the range of values that push the 

classifier to ASD decision are presented. T3, third trimester. Rotation, Fetal rotation on head. FL, 

Femoral length percentile. Feeding, Breast feeding. Auto-immune, Familial maternal history of 

auto-immune diseases. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 
 

A. Semi-automatic feature selection strategy 

Feature Relative impact Alarming range 

Rotation 52% Earlier than 148 days 

FL in T3 19% Higher than 72% 

Feeding 9% Mixed of Maternal and artificial 

Sex 7% Male 

Auto-immune 4% Yes 

 
B. Fully automatic feature selection strategy 

Feature Relative impact Alarming range 

Rotation 44% Earlier than 148 days 

White cells in T3 16% Less than 9100 

FL in T3 13% Higher than 72% 

Sex 9% Male 

Feeding 5% Mixed of Maternal and artificial 
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Table 3. Results of statistical tests for features which are significantly different between NT and 

ASD groups. n, number of samples. SEM, standard error of mean. CI, confidence interval. 2, Chi 

square test. MWU, statistics of Mann-Whitney U test. 

Feature 
Statistics 

NT group ASD group Test results 

Sex 
Male % (n) 48.68 (92) 80.95 (51) 2(1, 252) = 18.76 

p<0.001 
Female % (n) 51.32 (97) 19.05 (12) 

Absolute child’s 
temperature difference 
day 1 – birth 

> 1°C % (n) 14.00 (21) 41.67 (20) 2(1, 198) = 15.31 

p<0.001 
< 1°C % (n) 86.00 (129) 58.33 (28) 

CMV 
Immunized % (n) 36.62 (26) 76.92 (20) 2(1, 97) = 10.83 

p<0.001 
Negative % (n) 63.38 (45) 23.08 (6) 

Fetal heart rate during 
labour (FIGO classification) 

Pathological % (n) 10.20 (15) 28.89 (13) 
2(2, 192) = 13.82 

p = 0.001 
Suspect % (n) 28.57 (42) 8.89 (4) 

Normal % (n) 61.22 (90) 62.22 (28) 

IgG (IU) 

n 64 22 

MWU = 382.5 

p<0.001 

Median 0 9950 

Mean 4675 10913.64 

SEM 963.19 2034 

95% CI 
[2750.23, 
6599.77] 

[6683.70, 
15143.57] 

 
 
 
 
 
Table 4. Hyperparameters of the XGBoost classifier. Feature subsampling rate is set to 0.7 and 

0.5 for semi-automatic and fully automatic feature selection strategies respectively. 

Hyperparameter Values Hyperparameter Values 

Number of trees 10, 20, 30 Feature subsampling rate 0.7 or 0.5 

Tree depth 5 ASD sample weight 2 

Learning rate 0.01 Lasso & Ridge coefficients 10 
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Figure 1. Extraction of biomarkers through feature frequency in the cross-validation process. 

Features that have been selected by the semi-automatic (left plot) and fully automatic (right 

plot) feature selection strategies in more than 50 out of 100 folds of the CV process. Features 

with higher frequencies are more important to the classifier which means they separate better 

NT babies from ASD ones.  T2, second trimester. T3, third trimester. Rotation, Fetal rotation on 

head (days). FL, Femoral length percentile. CP, cephalic perimeter percentile. Feeding, breast 

feeding. Auto-immune, familial maternal history of auto-immune diseases. CP/FL, ratio of 

cephalic perimeter to femoral length. Labour, duration of the first part of the labour. FIGO, fetal 

heart rate during labour (FIGO classification). Apgar 1, Apgar score in 1 minute. Biparietal, 

biparietal diameter percentile. Weight, fetal weight percentile estimation. 
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Figure 2.  Features with the highest impact on the classifier based on SHAP analysis. Left: 

classification with semi-automatic FSS. Right: classification with fully automatic FSS. The impact 

(SHAP values) of features on the classification as NT or ASD is shown. Features are ordered from 

top to down according to their decreasing impact. Each point at each feature line represents a 

baby colored by the corresponding feature value. In each plot, feature values that lead the 

classifier to an NT or ASD prognosis are on the green and orange regions, respectively. T3, third 

trimester. Rotation, Fetal rotation on head. Feeding, Breast feeding. FL, Femoral length 

percentile. Auto-immune, Familial maternal history of auto-immune diseases. 
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Figure 3. Normalized distribution of statistically significant features. Distributions of Sex, 

Absolute child’s temperature difference between birth and 1 day later, CMV immunoreactivity, 

Fetal heart rate during labour (FIGO classification) and IgG levels are shown in NT (green) and 

ASD (orange) groups. In the boxplot center line is median, box limits are upper and lower 

quartiles and whiskers are 1.5x interquartile range. See Table 3 for quantitative comparisons. 
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Figure 4:  Cephalic perimeter (CP) growth is slowed down during development in NT and ASD, 

but shortly before birth ASD CP is bigger than NT CP. The CP in NT (green) and ASD (orange) 

groups is depicted versus the gestational age in T2 (circle), T3 (square) and shortly before birth 

(diamond) periods. A) Linear regression analysis shows the growth of CP in T2 is significantly 

higher in ASD than NT (p<0.05). Also, ASD CPs are bigger than NT shortly before birth (p<0.05) as 

shown in the boxplot (center line, median; box limits, upper and lower quartiles; whiskers, 1.5x 

interquartile range). B) The quadratic mixed effect model shows similar progressive slowdown of 

CP of NT and ASD children towards birth. 95% confidence intervals are shown for each curve. C) 

A subpopulation of ASD group with large CPs before birth was separated from the rest of the ASD 

group (black points). Linear regression analysis shows similar CP growth rate in the 3 groups. 

However, ASD embryos with large CPs have significantly larger CPs than NTs in the 2nd and 3rd 

trimester and shortly before birth (p<0.05, p<0.001 and p< 0.001, respectively). D) The quadratic 

mixed effect model shows similar progressive slowdown of CP of NT, ASD and “Large CPs ASD” 

children towards birth. * p<0.05, ** p<0.001 
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