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Abstract 24 

Functional positron emission tomography (fPET) imaging using continuous infusion of [18F]-25 

fluorodeoxyglucose (FDG) is a novel neuroimaging technique to track dynamic glucose utilization 26 

in the brain. In comparison to conventional static PET, fPET maintains a sustained supply of 27 

glucose in the blood plasma which improves sensitivity to measure dynamic glucose changes in 28 

the brain, and enables mapping of dynamic brain activity in task-based and resting-state fPET 29 

studies. However, there is a trade-off between temporal resolution and spatial noise due to the low 30 

concentration of FDG and the limited sensitivity of multi-ring PET scanners. Images from fPET 31 

studies suffer from partial volume errors and residual scatter noise that may cause the cerebral 32 

metabolic functional maps to be biased. Gaussian smoothing filters used to denoise the fPET 33 

images are suboptimal, as they introduce additional partial volume errors. In this work, a post-34 

processing framework based on a magnetic resonance (MR) Bowsher-like prior was used to 35 

improve the spatial and temporal signal to noise characteristics of the fPET images. The 36 

performance of the MR guided method was compared with conventional Gaussian filtering using 37 

both simulated and in vivo task fPET datasets. The results demonstrate that the MR guided fPET 38 

framework reduces the partial volume errors, enhances the sensitivity of identifying brain 39 

activation, and improves the anatomical accuracy for mapping changes of brain metabolism in 40 

response to a visual stimulation task. The framework extends the use of functional PET to 41 

investigate the dynamics of brain metabolic responses for faster presentation of brain activation 42 

tasks, and for applications in low dose PET imaging. 43 
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1   Introduction 44 

Brain imaging using positron emission tomography (PET) can provide unique insights into brain 45 

function in both healthy individuals and individuals with neuropathological conditions (Nasrallah 46 

& Dubroff, 2013). [18F]-fluorodeoxyglucose (FDG)-PET imaging has long been a proxy for 47 

regional and global brain metabolism, as glucose uptake is closely correlated with the underlying 48 

neuronal activity (Figley & Stroman, 2011; Phelps et al., 1979; Reivich et al., 1985). Conventional 49 

static FDG-PET based on a bolus injection of the radiotracer provides a snapshot of glucose 50 

metabolism over a long time-window (equal to the scan duration, usually 10-30 minutes). Dynamic 51 

PET imaging using a bolus administration of radiotracer provides an opportunity to model tracer 52 

kinetics in the brain. However, conventional bolus injection FDG PET scans are not sensitive to 53 

cerebral metabolic changes over an extended time duration due to lack of sustained supply of FDG 54 

to the brain (Villien et al., 2014). To circumvent this problem, Villien et al. (2014) used a 55 

continuous infusion radiotracer infusion approach, together with dynamic PET scanning, to 56 

achieve enhanced sensitivity for tracking dynamic radiotracer uptake. This constant infusion 57 

approach using FDG was labelled ‘functional’ PET (fPET), to highlight similarities to the 58 

functional magnetic resonance imaging (fMRI) technique.  Subsequent research using fPET 59 

methodology has shown promising results for isolating brain functional areas during external tasks 60 

and at rest (Hahn et al., 2016, 2018; Jamadar et al., 2019; Li et al., 2020; Rischka et al., 2018). 61 

Despite great improvement in temporal resolution in comparison to traditional approaches, the 62 

temporal resolution of fPET remains substantially lower than that of fMRI, which is in the order 63 

of seconds or even sub seconds. The current temporal resolution of fPET (around 20-60 seconds) 64 

limits the opportunity to use fPET for detailed investigations of brain metabolic responses to 65 

rapidly switching tasks and brain stimulation paradigms. 66 
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Analysis of fPET data is challenging because of the relatively poor signal to noise ratio (SNR) and 67 

partial volume errors in the reconstructed PET images (Z Chen et al., 2018). Recent work has 68 

improved the SNR in fPET by applying a combined bolus and continuous infusion of radiotracer 69 

during experiments (Jamadar et al., 2019; Rischka et al., 2018). However, the statistical power of 70 

these experimental approaches is still relatively low when compared with fMRI. To mitigate this 71 

issue, spatial smoothing of the reconstructed PET images is performed prior to functional analysis 72 

of the brain using techniques such as independent component analysis (ICA). Gaussian smoothing 73 

is widely used as a post-reconstruction spatial and temporal smoothing operation for functional 74 

neuroimaging analyses (Zikuan Chen & Calhoun, 2018; Hahn et al., 2018; Jamadar et al., 2019; 75 

Pignat et al., 2013; Villien et al., 2014). However, the Gaussian kernel acts as a low-pass filter, 76 

and therefore, further worsens the partial volume errors in fPET images; this can cause errors in 77 

the localisation and quantification of brain functional activations and at high-temporal resolution 78 

fPET imaging. MRI-based PET reconstruction methods have shown substantial improvement in 79 

PET image quality compared to conventional methods (Z Chen et al., 2018; V.P. Sudarshan, Chen, 80 

& Awate, 2018; Viswanath P. Sudarshan, Egan, Chen, & Awate, 2020). For instance, several 81 

studies  have explored post-reconstruction PET image enhancement using anatomical information 82 

from structural MRI (Bousse et al., 2012; Hutton et al., 2013; Schramm et al., 2018) to perform 83 

partial volume correction and image deblurring (Dutta, Leahy, & Li, 2013; Song et al., 2019). The 84 

Bayesian formulation of MRI assisted PET denoising can be interpreted as a guided filter to 85 

address the PET denoising and partial volume error problems, by modelling the statistical 86 

dependencies across the PET and MRI images in order to delineate tissue boundaries.  87 

Loeb et al. (2015) proposed a variant of the well-known Bowsher prior (Bowsher et al., 1996), 88 

modelled as prior information in the reconstruction process. The Bowsher prior, in principle, is a 89 
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weighted Markov random field (MRF) model which promotes delineation of PET image voxels 90 

that are dissimilar according to the intensities in the spatially co-registered MRI image. The 91 

weights are computed based on a similarity metric (e.g. absolute difference) evaluated on the 92 

structural image. Subsequently, Schramm et al. (2018) proposed an asymmetrical variant of the 93 

original Bowsher prior and demonstrated that the asymmetrical version yielded PET image 94 

reconstruction with improved bias-variance trade-off in comparison to other image gradient-based 95 

priors such as parallel level sets (Ehrhardt et al., 2015) and compared to the originally proposed 96 

Bowsher prior.  97 

In the current study, we hypothesized that accurate identification of brain metabolic activations 98 

could be obtained by filtering the fPET images using knowledge from the anatomical MRI image. 99 

The anatomical information was modelled as an MRF prior within a Bayesian framework to restore 100 

the fPET signal. The anatomical prior was expected to improve the identification of independent 101 

signal components from the fPET data by improving the spatial and temporal SNR and reducing 102 

partial volume errors. The formulation of the prior model in this paper differed from the one 103 

proposed in (Loeb, Navab, & Ziegler, 2015; Schramm et al., 2018), in that it used a location-104 

dependent smoothly-decaying function incorporating patch-level differences (as opposed to voxel-105 

level differences) to estimate the weights within the neighbourhood of a voxel. The method is 106 

henceforth referred to as MRI-MRF prior and was validated using both simulated in vivo visual 107 

task fPET datasets. The accuracy of the method was compared with conventional smoothing 108 

methods at both the subject and group level ICA, and the in vivo fPET dynamic data were 109 

downsampled to verify the robustness of the proposed method in response to reduced task 110 

stimulation durations. 111 
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2 Methods and Experiments 112 

2.1 Theory 113 

Let {𝑢𝑡}𝑡=1
𝑇  represent the dynamic sequence of  𝑇  fPET images, each containing  𝑁  voxels, 114 

reconstructed using model-based iterative methods such as maximum likelihood expectation-115 

maximization (MLEM) (Shepp and Vardi 1982). To perform spatial ICA, we construct a 116 

spatiotemporal data matrix, 𝑌, using {𝑢𝑡}𝑡=1
𝑇 , such that the dimension of 𝑌 is 𝑇 x 𝑁. ICA models 117 

𝑌 as a linear combination of the underlying independent components: 𝑌 = 𝐴𝑆, where 𝑆 contains 118 

the independent components and 𝐴 is the mixing matrix. In the context of PET imaging, the 119 

measured PET data is affected by the blurring matrix,  𝐻  (Bousse et al., 2012; Zhu, Gao, & 120 

Rahmim, 2019), and the ICA model becomes 121 

                                       𝑌0𝐻 = 𝐴𝑆0𝐻,                 (1) 122 

where 𝑌0  represents the spatiotemporal matrix constructed from the true PET signals, and 𝑆0 123 

models the true underlying independent components of 𝑌0. The matrix, 𝐻, acting on the spatial 124 

dimension, models the partial volume errors in PET measurements, and hence, the resultant 125 

independent components though the mixing operation, 𝐴.  126 

The goal of fPET data analysis is to identify 𝑆0 from Equation (1). Image denoising in the spatial 127 

domain is an important pre-processing step prior to application of the ICA algorithm. The 128 

characteristics of an ideal filter for estimation of the source components, 𝑆0, would be to recover 129 

the signal without compromising the independence of the underlying true components. Typically, 130 

a Gaussian smoothing filter with a suitable width, specified by its full width at half maximum 131 

(FWHM) is used to reduce spatial noise, for example, during fMRI data analysis. However, 132 

performing a Gaussian smoothing can introduce additional bias in fPET images and the 133 
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corresponding independent components, due to worsening of the partial volume errors (Zikuan 134 

Chen & Calhoun, 2018; Pignat et al., 2013). Hence, this work proposes an MRI guided filtering 135 

scheme that can perform (i) denoising, as well as (ii) partial volume correction, to provide an 136 

improved estimation of the underlying source components, 𝑆0.  137 

Given the sequence of fPET images, {𝑢𝑡}𝑡=1
𝑇 , and the fixed MRI image, 𝑣, of the subject, the post-138 

reconstruction restored fPET image, 𝑢𝑜
𝑡 , can be obtained by solving the following optimization 139 

problem independently for each frame: 140 

𝑢0
𝑡̂  = arg min

𝑢0
𝑡 >0

 ||𝑢𝑡 − ℎ ∗ 𝑢0
𝑡 ||2

2 + 𝛼𝑹(𝑢0
𝑡 |𝑣)    (2) 141 

Here 𝑹(∙)  represents the MRI-guided MRF (MRI-MRF) regularization function which 142 

incorporates the anatomical information from MRI image, 𝑣. The kernel function ℎ models PSF 143 

for current estimate of the image, 𝑢0
𝑡 . The parameter 𝛼 determines the strength of the regularization, 144 

𝑹(∙). The formulation in Equation (1) is generic and allows incorporation of arbitrary prior models 145 

that enforce certain type of regularity, e.g. piecewise smoothness, on the fPET images. In this work, 146 

we model 𝑹(∙) as a modified version of the asymmetrical Bowsher prior presented by Schramm 147 

et al. (2018). Specifically, 𝑹(∙) is modelled as a weighted quadratic MRF function defined as, 148 

𝑹(𝑢|𝑣) = ∑ ∑ 𝑤𝑖𝑗(𝑢𝑖 − 𝑢𝑗)2
𝑗∈𝐼𝑖∈𝐼 . Here the weights 𝑤𝑖𝑗  are computed based on the intensity 149 

values from the co-registered MRI image, 𝑣, as 150 

𝑤𝑖𝑗 =  exp (−
||𝑵𝑖(𝑣) −  𝑵𝑗(𝑣)||1

2𝜎𝑤
2

) ∑ exp (−
||𝑵𝑖(𝑣) −  𝑵𝑗(𝑣)||1

2𝜎𝑤
2

)

𝑗

⁄  151 

where the operator 𝑵𝒊(. )  extracts a vectorized isotropic 3D patch of volume 𝐿3  mm3 centred 152 

around voxel 𝑖, and the parameter 𝜎𝑤 determines the spatial pattern of weights within the patch in 153 
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the neighbourhood of voxel i. The strategy of determining the weights 𝑤𝑖𝑗  in the MRF-based 154 

regularization term by relying on patch-difference norms has been used within the literature on 155 

patch-based denoising methods, first proposed on natural images in the works of (Awate & 156 

Whitaker, 2005a; Buades, Coll, & Morel, 2005) and on MRI images in the works of (Awate & 157 

Whitaker, 2005b, 2007; Coupé, Manjón, Robles, & Collins, 2012). While a high value of 𝜎𝑤 leads 158 

to weights that are similar for all the neighbouring voxels, a low value of 𝜎𝑤 assigns higher weights 159 

to a few selected voxels in the neighbourhood. The latter scenario leads to an extension of the 160 

strategy in the asymmetric Bowsher prior (Schramm et al., 2018) that (i) enforces neighbourhood 161 

weights to be binary (1 or 0) and (ii) design weights only based on voxel-intensity differences 162 

(instead of patch differences). Our proposed strategy of using patch-based differences can provide 163 

additional robustness to noise and artefacts while leading to better structure preservation, in ways 164 

that are similar to those studied in general image denoising (Milanfar, 2012).  While iterative 165 

denoising algorithms, as in (Awate & Whitaker, 2005a, 2006), offer algorithms for data-driven 166 

tuning of the parameter 𝜎𝑤 to improve performance, in the application in this manuscript, where 167 

the weights only need to be precomputed once, we tune the parameter 𝜎𝑤 based on validation on 168 

simulated data. 169 

2.2 Data and experiments 170 

Both simulated and in vivo fPET and MRI data were used to validate the performance of the MRI-171 

MRF prior. For comparison, the MRI-MRF prior processed fPET images were compared with 172 

those obtained using Gaussian smoothing with varying kernel sizes (specified by FWHM). 173 

2.2.1 Simulated experiments and data 174 
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Continuous infusion of FDG PET activity was simulated for 60 minutes using a two-tissue 175 

compartment model involving the three kinetic parameters 𝑘1, 𝑘2 and 𝑘3 and a fitted arterial input 176 

function from intravenous blood samples collected from our previous in vivo experimental data 177 

(Jamadar et al., 2019). The simulated FDG activity was corrected by the blood partition fraction 178 

and haematocrit using the same procedure as in our previous work (Li et al., 2020).  Brain regions 179 

were segmented into grey matter, white matter and the occipital cortices using the MNI structural 180 

atlas (Mazziotta et al., 2001) using FSL (Diedrichsen, Balsters, Flavell, Cussans, & Ramnani, 181 

2009). The MRI and PET images were simulated with an isotropic spatial resolution of 2 mm in 182 

the MNI space. The regional specific metabolic kinetic parameters used for the simulated dataset 183 

were 𝑘1 = 0.101, 𝑘2 = 0.071 ,  𝑘3 = 0.042  for grey matter and 𝑘1 = 0.047, 𝑘2 = 0.070 ,  𝑘3 =184 

0.035 for white matter, respectively (Lucignani et al., 1993). A visual task stimulus was simulated 185 

between 20 to 30 minutes in the visual cortex region similar to the in vivo experimental paradigm. 186 

During the visual stimulation period, the parameter 𝑘3 in the occipital cortex was simulated to 187 

have a 20% increment. 188 

The tomographic iterative GPU-based reconstruction toolbox (TIGRE) was used for PET image 189 

reconstruction (Biguri, Dosanjh, Hancock, & Soleimani, 2016). The PET images were forward 190 

projected, and Poisson noise was applied in the measurement space, to generate a high-dose dataset. 191 

Subsequently, we simulated dynamic low-dose PET data using the Poisson thinning approach 192 

(Kim et al., 2018) such that the low-dose data had a dose reduction factor (DRF) of 100 compared 193 

to that of the high-dose data. The PET sinogram data were further smoothed in the sinogram space 194 

using a Gaussian filter with kernel size 2.35 mm to simulate the partial volume effect. Finally, the 195 

MLEM algorithm was used to reconstruct the PET images for the low and high dose datasets. 196 
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The reconstructed PET images, {𝑢𝑡}𝑡=1
𝑇 , were registered to the corresponding MRI image, 𝑣. The 197 

Bayesian optimization problem with the MRI-MRF prior in Equation (2) was solved using limited 198 

memory BFGS method (L-BFGS) (Byrd, Lu, Nocedal, & Zhu, 1995), with positivity constraints. 199 

The ICA-specific pre-processing steps including spatial normalization and dimensionality 200 

reduction were performed as described in detail by Li et al. (2020) on the post-reconstruction 201 

smoothed images. In this work, we performed both subject-level and group-level ICA on fPET 202 

data. For group analysis, the spatiotemporal matrix from each subject was concatenated along the 203 

temporal dimension before the application of ICA. The pre-processed data, which was an estimate 204 

of 𝑌0 , was then decomposed using an ICA unmixing algorithm in the FastICA toolbox (A. 205 

Hyvarinen & E. Oja, 2000; Hyvärinen & Oja, 1997).  206 

2.2.2 In vivo experiments and data 207 

A cohort of five healthy volunteers were scanned for a visual task stimulus experiment using a 3T 208 

Siemens Biograph mMR (Siemens Healthiness, Erlangen, Germany) PET-MRI scanner, approved 209 

by the institute human ethics committee. The overall stimulation protocol consisted of three visual 210 

stimulation periods consisting of alternating periods of rest and task blocks. A detailed description 211 

of the experiment is provided in our earlier work in (Jamadar et al., 2019). The subjects rested for 212 

a period of 20 minutes to allow sufficient FDG accumulation in the brain, during which structural 213 

MRI scans were acquired. Following this, the subjects viewed a circular flickering checkerboard 214 

stimulus for 10 minutes. The checkerboard was retained for a period of 120 seconds and 215 

subsequently, an intermittent 32 seconds on and 16 seconds off design was employed. Following 216 

the first task stimulation, which involved 3 blocks: rest, task, and rest, two other stimulation 217 

experiments, using the full checkerboard visual, were carried out.  We used the PET data acquired 218 

during the first full checkerboard. Hence, the PET data for each subject was of 30-minute duration, 219 
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including 10 minutes resting before the stimulation, 10 minutes of a full checkboard stimulation 220 

followed by another 10 minutes of rest (Figure 3 (a)). The average dose of FDG given to each 221 

subject was 95.9±5.9 MBq which was infused at a constant rate of 36mL/hr over the 90-minute 222 

duration. 223 

We reconstructed PET images from the list-mode data using two different values for the temporal 224 

bin-width (Tbin) of (i) 30 seconds for the low-dose PET images, and (ii) 3 minutes for high-dose 225 

PET images. The average dose for the corresponding low dose fPET images across the group of 226 

subjects was calculated to be 7.5 kBq/kg/frame. The PET data was corrected for attenuation using 227 

a pseudo-computed tomography (pCT) map (Baran et al., 2018; Burgos et al., 2013). The corrected 228 

PET data sinograms were reconstructed using ordered subsets expectation maximization (OSEM) 229 

algorithm with 3 iterations and 21 subsets along with point spread function modelling. The PET 230 

3D volumes were reconstructed with voxel sizes of 3 x 3 x 2.03 mm3. For standard analysis, all 231 

the images were registered to the MNI-152 template. The high-dose PET images from the 3-minute 232 

binned data were used to register the low-dose PET images with the T1 weighted MRI (acquired 233 

at 1 mm3 isotropic resolution) for each subject using ANTS (Avants et al., 2011).  234 

We also undertook a comparison of the performance of the MRI-MRF and Gaussian filtering 235 

schemes when the duration of the task and resting blocks was reduced. This analysis was carried 236 

out by downsampling the total number of low-dose fPET images reconstructed from the list mode 237 

data. Functional PET analyses were computed at both the subject-level and group-level for 238 

downsampling factors (DF) of 2 and 3 to simulate fPET images of duration 30 secs but acquired 239 

at 1:00 minute and 1:40 minute intervals, respectively. The downsampled PET images correspond 240 

to reduced task duration with a lower number of temporal frames. 241 

2.2.3 Optimal kernel width selection 242 
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The optimal kernel sizes for the Gaussian low pass filter and the MRI-MRF prior, for processing 243 

the in vivo data were selected and validated using simulated data. We optimized the parameters to 244 

achieve high sensitivity without substantial loss of specificity using ICA computed activation maps. 245 

For computing the sensitivity and specificity values, the region of interest (ROI), occipital cortex, 246 

was obtained using the segmentation procedure as described in Section 2.2.1. The sensitivity and 247 

specificity performance metrics defined as follows: 248 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 [%] =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒𝑑 𝑣𝑜𝑥𝑒𝑙𝑠 𝑖𝑛𝑠𝑖𝑑𝑒 𝑡ℎ𝑒 𝑅𝑂𝐼 

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑜𝑥𝑒𝑙𝑠 𝑖𝑛𝑠𝑖𝑑𝑒 𝑡ℎ𝑒 𝑅𝑂𝐼
× 100 249 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 [%] =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑜𝑛𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒𝑑 𝑣𝑜𝑥𝑒𝑙𝑠 𝑜𝑢𝑡𝑠𝑖𝑑𝑒 𝑡ℎ𝑒 𝑅𝑂𝐼

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑜𝑥𝑒𝑙𝑠 𝑜𝑢𝑡𝑠𝑖𝑑𝑒 𝑡ℎ𝑒 𝑅𝑂𝐼
× 100 250 

provide a quantitative assessment of the activation maps (z-score map) obtained from the different 251 

filtering operations. The metrics were computed by considering a voxel as activated if |𝑧| ≥ 1.6 252 

and |𝑧| ≥ 2.1  , for subject-level and group-level analysis respectively (Li et al., 2020). The 253 

parameter search-space for the MRI-MRF prior, includes varying values of the regularization 254 

parameter, patch length (𝛼, 𝐿 respectively). On the other hand, for the Gaussian kernel, we varied 255 

the FWHM parameter which in turn determines the kernel size. 256 

 257 

3 Results 258 

3.1. Results for simulated data 259 

Table 1 compares the sensitivity and specificity for both denoising schemes at different parameter 260 

configurations. For the MRI-MRF prior, the patch-length was varied from 10 mm to 18 mm which 261 

represented a varying patch size of 5 to 9 voxels in each direction, respectively. In the case of  262 
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Table 1 Comparison of sensitivity and specificity of MRI-MRF and Gaussian smoothing filters. 263 

The sensitivity and specificity values at two different z-score threshold values are provided.264 

 265 

Gaussian filtering, the kernel size was determined by the full width at half maximum of the 266 

Gaussian function. The FWHM for Gaussian varied from 11 mm to 15 mm. It is to be noted that 267 

while parameter L (for the MRI-MRF prior) represents the width of the entire kernel, FWHM (for 268 

the Gaussian filter) represents approximately half of the kernel-width. The parameter range chosen 269 

for the Gaussian smoothing is consistent with the Gaussian kernel widths used in the prior work 270 

(Li et al. 2020). The sensitivity values for the MRI-MRF processed image are dramatically higher 271 

than that of the Gaussian smoothed images, whereas the specificity values are comparable between 272 

the two methods. For the fPET data analysis, a patch-length of 14 mm was chosen for the MRI-273 

MRF prior. However, both the Gaussian kernels with FWHM 11 mm and 13 mm show similar 274 

sensitivity and specificity values. Therefore, the analysis using the Gaussian-filtered in vivo fPET 275 

data was undertaken using both the 11 mm and 13 mm FWHM filters. 276 

Figure 1 shows the visual task specific activation for the reference noiseless fPET images, and for 277 

the three denoising schemes using the optimal parameters chosen from Table 1. The ICA activation 278 

map obtained using the noiseless images serves as the reference map (Figure 1 (a)). The activation 279 

map obtained from post-reconstruction filtered fPET images using the MRI-MRF prior (Figure 1 280 

(b)) was closest to the reference activation map in the visual cortex. On the other hand, the 281 

activation maps obtained using Gaussian smoothing with both FWHMs yield suboptimal 282 

activation maps in the visual cortex with asymmetrical patterns.  283 
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 284 

Figure 1. Comparison of brain activation maps using the simulated data. Visualization of 285 

activation in the visual cortex using ICA on noiseless fPET images (a), MRI-MRF prior (b), 286 

Gaussian smoothing with FWHM 11 mm (c), and FWHM 13 mm (d). 287 

3.2. Results for in vivo data 288 

The results reported in this section are for the fPET images reconstructed using the list-mode data 289 

binned at Tbin = 30 s, and for DF = 1, 2 and 3. 290 

Figure 2 shows the post-reconstruction filtered fPET images along with the subject’s MRI image 291 

(Figure 2, left column) and the corresponding vendor provided low dose fPET image (Figure 2, 292 

second column). The denoised image using the MRI-MRF prior (Figure 2, third column) shows 293 

superior recovery of PET signals in different regions of the brain while removing substantial 294 

amount of noise. Specifically, the white and grey matter boundaries are well delineated, the shape 295 

of the ventricles has been recovered (which is not evident in the low dose PET image), and 296 

anatomical features in the gyri, sulci and details of the cortical folding (refer Figure 2m) have been 297 
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restored. On the other hand, the denoised images using both Gaussian kernels (FWHM 11 mm and 298 

13 mm) are heavily blurred and show substantial loss of anatomical details due to the partial 299 

volume errors (Figure 2, fourth and fifth columns).   300 

 301 

Figure 2. Assessment of the post-reconstruction smoothed fPET images with binning time of Tbin 302 

= 30 s. The subject's MRI image (a); the vendor reconstructed PET image (b); the filtered image 303 

using the MRI-MRF prior (L = 14 mm) (c); and using Gaussian kernels with FWHM (d) 11 mm, 304 

(e) 13 mm. 305 

 306 

  307 
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 308 

Figure 3. Subject-level (representative) estimation of brain activations using ICA for Tbin = 30 s 309 

and DF = 1 at MNI co-ordinate (14, -94, -8). The independent components estimated from the 310 

filtered fPET images using different schemes are provided. The task paradigm is shown in (a). ICA 311 

maps and timecourses: top to bottom: MRI-MRF prior with L = 14 mm (b) and (c), Gaussian 312 

smoothing with FWHM = 11 mm (d) and (e), Gaussian smoothing with FWHM  13 mm (f) and (g).  313 

 314 

Figure 3 shows the results of an individual subject-level fPET analysis obtained using different 315 

filtering techniques for a downsampling factor of one (i.e. DF=1, includes all list-mode data). The 316 

ICA activation maps corresponding to the visual task component along with the normalized 317 

timecourses (representing the z-scores) are calculated for each filtering method. The component 318 

maps for all sections of the brain are provided in the Supplementary material. The ICA timecourse 319 

for both Gaussian kernels (Figures 3d & 3f) are noisy and do not closely follow the experimental 320 

task paradigm. Moreover, the shape of the region of brain activation does not follow the known 321 

anatomical structure of the primary visual cortex but extends into adjacent neuroanatomical 322 
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structures including the white matter, likely due to large partial volume errors. Conversely, the 323 

activation map obtained using the MRI-MRF prior (Figure 3c) shows localized activity near the 324 

visual cortex with a significantly higher z-score within the visual cortex compared to both 325 

Gaussian kernels. The ICA timecourse for the MRI-MRF prior (Figure 3b) accords more closely 326 

with the experimental design with increased uptake during the visual task block. The comparison 327 

of the visual task components for the three methods for all brain sections is consistent with these 328 

observations (see Supplementary material). 329 

 330 

Figure 4. Group-level estimation of brain activations using ICA for Tbin = 30 s and DF = 1 at 331 

MNI co-ordinate (14, -94, -8). The independent components estimated from the filtered fPET 332 

images using different schemes are provided. The task paradigm followed for the group study is 333 

shown in (a). ICA maps and timecourses: top to bottom: MRI-MRF prior with L = 14 mm (b) and 334 

(c), Gaussian smoothing with FWHM = 11 mm (d) and (e), Gaussian smoothing with FWHM  13 335 

mm (f and (g)). 336 

 337 
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The results for the group-level fPET analyses for the three filtering techniques using the complete 338 

list-mode dataset (DF = 1) are shown in Figure 4. A higher z-score range was observed for the 339 

group-level analyses compared to the single subject-level analysis. However, in contrast to the 340 

subject-level analysis, the timecourses estimated from all methods (Figures 4b, 4d & 4f) at the 341 

group level recapitulated the experimental design paradigm. The activation map corresponding to 342 

the MRI-MRF prior followed the known neuroanatomical representation of the primary visual 343 

cortex and was consistent with the subject-level result. On the other hand, the activation maps 344 

using the two Gaussian kernels did not represent activation in the primary visual cortex and 345 

demonstrated diffuse cerebral metabolic activity into large adjacent anatomical regions including 346 

the white matter.  347 
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 348 

Figure 5. Subject-level (representative) estimation of brain activations using the reduced task and 349 

resting blocks with DF = 2 and 3 at MNI co-ordinate (14, -94, -8). The independent components 350 

estimated from the filtered fPET images using different schemes are provided. DF = 2: MRI-MRF 351 

prior (b) and Gaussian kernel with FWHM 13 mm (d). DF = 3: MRI-MRF prior (f), and Gaussian 352 

smoothing with FWHM = 13 mm (h). The T1 and T2 represent the onsets of the task and second 353 

resting block, respectively.  354 

 355 

Figure 5 shows the subject-level fPET analyses for downsampling factors of two and three (DF = 356 

2 & 3). Timepoints T1 and T2 represent the onset of the task and second resting block in the 357 

downsampled task paradigm. Plausible ICA activation maps were not generated using an 11mm 358 

FWHM Gaussian kernel for both DFs and therefore no results are included. The ICA timecourses 359 

during the task-block for the MRI-MRF filter demonstrated a steadier gradual increase, in 360 
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agreement with the task paradigm, in comparison to the 13mm FWHM Gaussian kernel for DFs 361 

of 2 and 3 respectively (Figures 5a & 5e compared to Figures 5c & 5g respectively). The activation 362 

map axial view for DF = 3 did not reveal activation in the left hemisphere as was expected for the 363 

visual task (Figure 5h). However, for DF = 2 there was some activation in the left hemisphere 364 

visual cortex (Figure 5d) although it was not as widespread as for the fully sampled dataset. On 365 

the other hand, the activation maps for the MRI-MRF prior (Figures 5b & 5f) showed spatial 366 

congruency across the three DFs, whilst the discrepancy between the z-scores for the MRI-MRF 367 

prior and the 13 mm FWHM Gaussian filter was largest for DF =3 compared to DF = 2 and 1.  368 

 369 

Figure 6. Group-level estimation of brain activations using the reduced task and resting blocks 370 

with DF = 2 and 3 at MNI co-ordinate (14, -94, -8). The ICA components estimated from the 371 

filtered fPET images using different schemes are provided. DF = 2: MRI-MRF prior (b) and 372 
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Gaussian kernel with FWHM 13 mm (d). DF = 3: MRI-MRF prior (f), and Gaussian smoothing 373 

with FWHM = 13 mm (h). 374 

Figure 6 shows the group-level fPET analyses at DF = 2 and DF = 3. In contrast to the group-level 375 

analysis for the fully sampled dataset where there was little difference between the activation maps 376 

estimated by the MRI-MRF method and the Gaussian kernel with FWHM 13 mm (Figure 4), the 377 

activation maps estimated for the group-level analyses for DF= 2 and DF = 3 showed marked 378 

differences. For both DF = 2 and 3, the ICA timecourses for the MRI-MRF prior (Figures 6a & 6e) 379 

showed agreement with the task experimental design with higher z-scores than for the 13mm 380 

FWHM Gaussian filter timecourses (Figures 6c & 6g). The activation maps show that while the 381 

MRI-MRF prior was able to resolve brain activation that was consistent with activation of the 382 

visual cortex (Figures 6b & 6f), at both DF = 2 and 3 the 13mm FWHM Gaussian filter was unable 383 

to resolve extended activation throughout the primary visual cortex (Figures 6d & 6h) with no 384 

activation in the left hemisphere for DF = 3 (Figure 6h). Conversely, the activation maps for the 385 

MRI-MRF prior were congruent across the subject-level and group-level analyses although greater 386 

consistency in the right hemisphere. 387 

 388 

4 Discussion 389 

We have proposed an MRI-assisted fPET processing framework for the analysis of task-related 390 

metabolic changes in the brain using high temporal resolution fPET data and for low-dose fPET 391 

brain mapping applications. We investigated the effect of using the anatomical information from 392 

a subject’s MRI to denoise the fPET dataset to reduce the partial volume error in the PET images 393 

in order to increase the sensitivity of the ICA analysis. The PET image restoration problem was 394 

posed as a solution to a Bayesian optimization problem which was solved using L-BFGS due to 395 

its greater computational efficiency compared to gradient-descent based optimization techniques. 396 
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This study compared the post-reconstruction filtered images from the MRI-MRF method and 397 

Gaussian smoothing with varying kernel sizes as well as the ICA activation maps from the fPET 398 

dataset using a visual stimulation task. Visual assessment of the post-reconstruction smoothed 399 

images showed that the MRI-MRF processed PET images recovered many features which were 400 

not readily observed in the conventional low dose PET images. The MRI-MRF filtered PET 401 

images revealed localized tracer uptake in the sub-cortical nuclei adjacent to the lateral ventricles 402 

(e.g. Figure 2c) whereas little or no uptake was apparent in the comparable low-dose and Gaussian 403 

denoised PET images. Furthermore, the level of Gaussian smoothing required to obtain plausible 404 

activations in the visual cortex rendered the fPET image hard to interpret visually as there was a 405 

substantial loss of features. The MRI-MRF method provides a balance between visual 406 

interpretability of the fPET images together with improved resolution and sensitivity for functional 407 

analysis using ICA. 408 

The task-based experimental design paradigm enabled meaningful comparison of the ICA 409 

timecourses obtained using the two filtering techniques, by inspection of the FDG uptake in the 410 

visual cortex during the visual stimulation task. The proposed methodology was able to achieve 411 

consistent activation maps at both the subject-level and group-level for DF = 1, 2 and 3. However, 412 

this was not true for the Gaussian smoothing kernels. Moreover, since the fPET data was acquired 413 

for an exogenous task-based stimulus, good correlation between the subject-level and group-level 414 

activation maps was expected. In particular, the improved results for the individual subject-level 415 

analysis demonstrates the benefit of the MRI-MRF method to enhance single subject-level analysis 416 

using low dose high temporal resolution fPET data with reduced task durations. 417 

The study involving downsampling factors that demonstrated that the proposed processing pipeline 418 

could detect dynamic brain metabolic increases for visual task stimulation for as short as 419 
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approximately three minutes. However, this interpretation does assume that the FDG dosage per 420 

frame in the fPET images is consistent for the different downsampling factors. In practice this 421 

would be achievable experimentally by altering the infusion protocol or slightly increasing the 422 

dosage of the radiotracer (Verger & Guedj, 2018). The Gaussian smoothing technique failed to 423 

identify task related ICA components for the shorter task durations (i.e. at higher DFs) due to 424 

reduced sensitivity.  425 

Unlike fMRI, fPET images suffer from very low SNR and hence the spatial denoising scheme 426 

must be carefully chosen to provide an optimal bias-variance trade-off. MRI-guided PET image 427 

denoising and deblurring has been extensively reported in the literature (Hutton et al., 2013; Song 428 

et al., 2019) with many solutions for post-reconstruction PET image enhancement. However, this 429 

paper is the first to demonstrate the effectiveness of the MRI-based spatial denoising technique for 430 

dynamic fPET imaging, such that fPET images are both visually interpretable and produce 431 

accurate functional maps with improved temporal resolution. The high specificity and sensitivity 432 

of the algorithm also enabled single subject-level analyses along with reasonable visualization of 433 

the fPET images without loss of anatomical details. Traditional methods such as Gaussian 434 

smoothing perform averaging without consideration of the anatomical boundaries and hence the 435 

quantitative accuracy of FDG signals is degraded by partial volume errors. This was reflected in 436 

the diffuse visual activation maps obtained with the Gaussian filtering. Using edge-preserving 437 

denoising techniques such as anisotropic filtering would also yield suboptimal performance 438 

because of the poor SNR of the fPET images and the difficulty to distinguish between tissue 439 

boundaries and noise.  440 

The formulation of the MRI-MRF prior in this work is generic and allows for modelling of higher-441 

level image features such as dictionary atoms. Nevertheless, the proposed filtering framework is 442 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 9, 2020. ; https://doi.org/10.1101/2020.07.08.192872doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.08.192872
http://creativecommons.org/licenses/by-nc-nd/4.0/


efficient and computationally less expensive in comparison to other patch-based techniques and 443 

hence, the framework is easier to adapt for other research and clinical applications. 444 

Although the MRI-MRF prior in this work was applied in the image domain on post-reconstructed 445 

fPET images, the same could be applied within the image reconstruction process provided the PET 446 

list-mode data was accessible. Research using image restoration techniques in a reconstruction 447 

framework generally employ a Poisson noise model for the sinogram data and a system matrix 448 

composed of several matrix operations representing the point spread function, forward projection, 449 

attenuation correction, scatter correction, and back projection. Our work solved the image 450 

restoration problem in the image domain and employed a least-squares-type data term rather than 451 

a fixed noise-model in the image space. This was because the noise characteristics of the 452 

reconstructed PET images inherently depend on the reconstruction algorithm. For example, noise 453 

characteristics during filtered back projection reconstruction depend upon the filter employed, 454 

whilst in maximum likelihood expectation maximisation reconstruction and its variants, the noise 455 

characteristics depend on the number of iterations as well as the strength of the prior function.  456 

The current work has a number of limitations. One of the limitations is the small sample size. In 457 

this work, we show proof of the principle for utilizing anatomical information for fPET data 458 

processing. Advanced statistical image restoration models such as joint patch-based techniques 459 

and neural networks may further improve the image quality for shorter image acquisition durations 460 

and potentially in future approach the temporal resolution offered by fMRI. However, the proposed 461 

framework is readily adaptable to use these techniques in the research context although modelling 462 

higher statistical dependencies would increase the number of hyperparameters that were required 463 

to be tuned. A further limitation is that the MRI-MRF modelled as a Bowsher-like prior may be 464 

perceived as a technique that relies excessively on the anatomical modality. Although this may be 465 
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relatively unimportant or in fact beneficial in the case of tracers like FDG that are widely 466 

distributed throughout the brain, this may not be the case for other heterogeneously distributed 467 

tracers such as for amyloid PET imaging. More sophisticated image restoration models which 468 

maintain a balance between the PET and MRI features for each tracer may need to be incorporated 469 

at the cost of more computational time. The use of spatial regularization could be carefully 470 

extended to include a temporal smoothing constraint governed by studies in tracer kinetics. A 471 

comprehensive study of several MRI-PET joint priors in the context of dynamic functional PET 472 

denoising and analytical techniques is an important direction for future studies. 473 

5 Conclusion 474 

We have presented a novel MRI-assisted fPET processing framework for functional analysis of 475 

fPET data at high temporal resolution and for low doses of radiotracer. Compared to traditional 476 

Gaussian smoothing, our approach yields visually interpretable PET images while increasing the 477 

sensitivity and anatomical accuracy of activation maps estimated using ICA. Through validation 478 

using simulated data, we have demonstrated that the MRI-MRF method is able to accurately 479 

estimate visual task related brain activation maps even under poor SNR conditions. The application 480 

to in vivo fPET data demonstrated that the MRI-MRF prior achieves detection of reduced task 481 

durations of approximately three minutes and provides an avenue for further increases in the 482 

temporal resolution and sensitivity of both single subject and group-level brain metabolic mapping 483 

studies.  484 

 485 
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