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SUMMARY  

SARS-CoV-2 is an RNA virus of the Coronaviridae family that is the causal pathogen of the 

ongoing Coronavirus Disease 2019 pandemic. There are currently no antiviral drugs or vaccines 

to treat COVID-19, and the failure to identify effective interventions can be blamed on our 

incomplete understanding of the nature of this virus and its host cell infection process. Here, we 

experimentally determined structural maps of the SARS-CoV-2 RNA genome in infected 

human cells and also characterized in vitro refolded RNA structures for SARS-CoV-2 and 6 

other coronaviruses. Our in vivo data confirms several structural elements predicted from 

theoretical analysis and goes much further in revealing many previously unknown structural 

features that functionally impact viral translation and discontinuous transcription in cells. 

Importantly, we harnessed our in vivo structure data alongside a deep-learning tool and 

accurately predicted several dozen functionally related host cell proteins that bind to the SARS-

CoV-2 RNA genome, none of which were known previously. Thus, our in vivo structural study 

lays a foundation for coronavirus RNA biology and indicates promising directions for the rapid 

development of therapeutics to treat COVID-19.  

 

HIGHLIGHTS 

l We mapped the in vivo structure and built secondary structural models of the SARS-CoV-
2 RNA genome 

l We discovered functionally impactful structural features in the RNA genomes of multiple 
coronaviruses 

l We predicted and validated host cell proteins that bind to the SARS-CoV-2 RNA genome 
based on our in vivo RNA structural data using a deep-learning tool 

 
 

INTRODUCTION 

Coronavirus Disease 2019 (COVID-19), caused by a coronavirus named Severe Acute 

Respiratory Syndrome coronavirus 2 (SARS-CoV-2), has spread globally and brought 

devastating to public health and economic damage, with more than 10 million people infected 

and 500 thousand deaths (Dong E et al., 2020; Wu et al., 2020). Although huge global efforts 
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have been devoted to understanding and fighting SARS-CoV-2—including extensive 

molecular virology studies examining the overall viral particle and viral protein structures (Gao 

et al., 2020; Lan et al., 2020; Walls et al., 2020; Yan et al., 2020), transcriptome architectures 

(Kim et al., 2020), and host cell-viral interactomes (Gordon et al., 2020), as well as mechanistic 

studies of the virus infection process and antiviral immune responses (Hoffmann et al., 2020; 

Ni et al., 2020; Walls et al., 2020)—there are presently no effective antiviral treatments or 

approved vaccines.  

SARS-CoV-2 is an RNA virus of the Coronaviridae family, which also includes the 

SARS-CoV virus that caused the SARS outbreak in 2003 (Peiris et al., 2003) and the Middle 

East respiratory syndrome coronavirus (MERS-CoV) that caused the MERS outbreak in 2012 

(Zaki et al., 2012). The genome of SARS-CoV-2 is an approximately 30kb, single-stranded, 

positive-sense RNA including a 5’ cap structure and a 3’ poly(A) tail. After cell entry, the viral 

genome can be translated into proteins directly, or can serve as the template for replication and 

transcription. During translation, SARS-CoV-2 produce nonstructural proteins (nsps) from two 

open reading frames (ORF1a and ORF1b), and a number of structural proteins from 

subgenomic viral RNAs. Upon production of negative-sense RNA by the nsp12 protein (an 

RNA-dependent RNA polymerase), both positive-sense genomic RNA and sub-genomic RNAs 

can be generated. The RNA comprising the SARS-CoV-2 genome is packaged by structural 

proteins encoded by sub-genomic RNAs.  

It is notable that a large majority of molecular virology studies of SARS-CoV-2 (and 

indeed studies of most other viruses) have focused on viral proteins. For example, structural 

determination of the receptor-binding domain (RBD) of the spike protein of SARS-CoV-2 

bound to the cell receptor ACE2 provided atomic details on the initial step of infection (Lan et 

al., 2020; Walls et al., 2020; Yan et al., 2020). Knowledge of SARS-CoV-2-human protein-

protein interactions revealed the basis of how SARS-CoV-2 reshapes cellular pathways and 

identified druggable host factors for FDA-approved drugs and small compounds (Gordon et al., 

2020). And tracking and analysis of changes in the key proteins of SARS-CoV-2 discovered an 

important mutation that is associated with increased transmission (Korber et al., 2020). These 

studies have been valuable for revealing mechanistic insights to deepen understanding of 

molecular virology and epidemiology and to aid development of antiviral therapeutics.  
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However, SARS-CoV-2 is an RNA virus; its RNA genome itself is a central regulatory 

hub for controlling and enabling its function. Recent advances in technologies and basic studies 

have emphasized that RNA molecules in cells fold into complex, higher-order structures that 

are integral to their cellular functions (Brion and Westhof, 1997; Piao et al., 2017). For viruses 

specifically, there are many examples of functional impacts from such RNA structural elements: 

studies of flaviviruses have confirmed that intramolecular RNA-RNA interactions between the 

5’- and the 3’-UTRs promote genome circularization and help coordinate replication (de Borba 

et al., 2015; Nicholson and White, 2014); the structure of the internal ribosome entry site in 

5’UTR is crucial for hepatitis C virus (HCV) translation (Fraser and Doudna, 2007; Kieft, 2008); 

and the multi-pseudoknot structures in the 3’ UTR of ZIKV and other flaviviruses have been 

shown to stall the RNA exonuclease Xrn1, thereby giving rise to sub-genomic flavivirus RNAs 

(sfRNAs) that help the virus evade cellular antiviral processes (Akiyama et al., 2016; Filomatori 

et al., 2017). However, despite functional characterization of several RNA structural elements 

of SARS (Robertson et al., 2005), and theoretical predictions recently available along with the 

sequences of SARS-CoV-2 (Andrews et al., 2020; Rangan et al., 2020), it is clear that a more 

comprehensive analysis of the structure of the SARS-CoV-2 RNA genome as it exists in a 

physiologically-relevant state in cells would be highly desirable. 

Previous studies in other RNA viruses have identified numerous host RNA binding 

proteins (RBPs) that function to regulate the viral infection cycle (Li and Nagy, 2011; Ooi et 

al., 2019), but we are unaware of such information for SARS-CoV-2. Our group recently 

demonstrated that RNA structural data can be assessed using cutting-edge deep learning 

techniques to construct neural network models that integrate in vivo RBP binding and RNA 

features in matched cells, yielding accurate predictions about in vivo RBP-virus genome 

binding interactions (Sun et al., 2020). Given the centrality of such interactions to 

understanding how viruses engage with their host cells, a large-scale survey and/or prediction 

to determine which host RBPs interact with SARS-CoV-2 genomic RNAs during infection 

would be an extremely rich resource for molecular insights.  

 

In the present study, we first investigated the in vivo and in vitro RNA secondary structures 

of SARS-CoV-2, as well as the structures of the untranslated regions (UTRs) structures of six 
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related coronaviruses using a high-throughput technology known as in vivo click selective 2-

hydroxyl acylation and profiling experiment (icSHAPE) (Spitale et al., 2015). We 

experimentally determined structural maps of the SARS-CoV-2 genome in infected human 

cells, and also characterized the in vitro refolded RNA structures of SARS-CoV-2 and 6 other 

coronaviruses. Based on the in vivo structural data, we then used our deep learning tool to 

accurately predict several dozen functionally related host cell proteins that bind to the SARS-

CoV-2 RNA genome (Sun et al., 2020); among these host proteins many are vulnerable drug 

target.  

 

RESULTS 

icSHAPE-based determination of the SARS-CoV-2 RNA genome structural landscape 

 

To delineate the genome-wide structure of SARS-CoV-2 in infected cells, we performed in vivo 

click selective 2-hydroxyl acylation and profiling experiments (icSHAPE) to assess structural 

information for every nucleotide of the RNA genome (Figure 1. STAR Methods). Specifically, 

after infecting Huh7 cells with SARS-CoV-2 for 30 hours, we treated cells with the icSHAPE 

reagent NAI-N3, which permeates cells, selectively reacts with single stranded nucleotides, and 

introduces a modification to the 2’-OH group of the sugar ring. We then purified the total RNA 

and performed reverse transcription, followed by cDNA sequencing library construction. Note 

that NAI-N3-modifications which tag single-stranded nucleotides functionally block reverse 

transcriptase, thus enabling detection of single-stranded nucleotides based on deep sequencing 

and bioinformatics analysis. Finally, we obtain an icSHAPE reactivity score for each nucleotide 

of the viral RNA genome (and the host cell transcriptome); scores are between 0 and 1, with 

higher scores indicating that a nucleotide is more likely single-stranded. Thus, based on 

mapping of the single-stranded nucleotides, icSHAPE analysis enables elucidation of the 

structural landscape of all RNAs in vivo.  

For the in vivo icSHAPE structural map of the SARS-CoV-2 RNA genome, we obtained 

an average of about 200 million reads for each library replicate (Supplementary Table S1). 

Underscoring the very high quality of our sequencing data, we found that the inter-replicate 
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Pearson correlation coefficient values are higher than 0.98 for comparison of RNA expression 

(RPKM) levels of the host transcriptome (Figure S2A-C); and the correlation of the RT-stop-

causing NAI-N3 modifications on the viral RNA genome exceeds 0.99 (Figure S2D). Finally, 

we obtained icSHAPE scores for more than 99.88% of the nucleotides for in vivo SARS-CoV-

2 RNA genome structure, by using icSHAPE-pipe (Li et al., 2019) (Figure 2, Supplementary 

Table S2).  

We initially assessed the accuracy of our in vivo structure based on comparisons with the 

very recently published theoretical models of the 5’UTR and 3’UTR secondary RNA structures 

built from homology based on literature-annotated structures in related betacoronaviruses 

(Rangan et al., 2020), as well as in the Rfam database based on co-variation and pairing energy 

values (Kalvari et al., 2018). We built the 5’UTR and 3’UTR structure models with RNA 

structure modeling software tools (here we used RNAstructure) (Reuter and Mathews, 2010), 

using icSHAPE scores as constraints (Figure 2E); such methods have been extensively used 

and validated by other groups and ours in RNA structural studies including viral RNA 

structures (Li et al., 2018; Pirakitikulr et al., 2016; Watts et al., 2009) (STAR Methods). 

Attesting to the quality of the map generated from our in vivo data, the single-base resolution 

SARS-CoV-2 models are in strong agreement with reported structural information from 

predictive and in vitro studies (compare Figure 2E and Figure S2A-B). That is, we can easily 

identify the anticipated Stem-loop 1 (SL1), Stem-loop 2 (SL2), Stem-loop 3 (SL3), Stem-loop 

4 (SL4), and the hyper-variable region (HVR) comprising a conserved octonucleotide sequence 

and the stem-loop II-like motif (s2m) in the 3’UTR (Figure 2E).  

Small differences exist between our model and the Das theoretical model (shown in red 

dashed-line boxes, Figure 2E and Figure S2A-B), including for example the absence of a small 

stem-loop downstream of SL4 in the 5’UTR of our model. Our structural reactivity data based 

on data from Huh7 cells suggest that this region is highly single-stranded. Another difference 

is that we detected a stem loop structure rather than a pseudoknot in the 3’UTR of the SARS-

CoV-2 genome; this alternative structural interpretation is supported by the high icSHAPE 

score constraint that would occur in a pseudoknot configuration. These findings highlight that 

in vivo structural information is critical for building of physiologically relevant structural 

models. 
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We also used icSHAPE to conduct in vitro structural analysis of the SARS-CoV-2 RNA 

genome. SARS-CoV-2 RNA was purified from infected Huh7 cells, refolded in vitro, then 

modified with NAI-N3, with the remaining steps and data analysis the same as in vivo icSHAPE 

(Figure 1B, Figure 2C). Similar to previous studies (Spitale et al., 2015; Sun et al., 2019), 

comparative analysis between in vitro and in vivo data focused on the revealed many common 

stable structural regions, but also indicated substantial differences, with a 0.58 Pearson 

correlation coefficient between the in vitro and in vivo structural profiles at the whole-genome 

level (Figure 2D, Figure S1E). Additionally, and consistent with findings from previous studies 

of viral RNA genome structure, comparisons of our models indicated that the SARS-CoV-2 

RNA genome in vivo appears to be more single-stranded than in vitro (Figure S1F). These 

detected differences between our in vitro and in vivo structural profiles strongly emphasize the 

utility of studying RNA structures in their cellular context to uncover biologically relevant 

conformations. 

 

In vivo structural model of the whole SARS-CoV-2 RNA genome 

 

We extended the validated approach of in vivo RNA structure modeling with icSHAPE scores 

as constraints to the whole SARS-CoV-2 RNA genome (STAR Methods). We tested different 

parameters for modeling of the SARS-CoV-2 5’UTR and 3’UTR structures, and then used the 

parameters which generated the most consistent structure with the Das and Rfam models to 

conduct genome-wide modeling. Given that RNA structural modeling is typically most 

successful with small RNA fragments (Li et al., 2018), we used a sliding window (window = 

5000nt, step = 1000nt) strategy to more accurately model RNA structures; note that we 

followed a common strategy of preferencing structure models with higher pairing probabilities 

when modeling RNA structures of overlapping regions.   

We assessed co-evolutionary evidence to support our final models based on the R-scape 

tool and on a previously reported pipeline to call co-variant pairs from 258 coronavirus 

genomes (Figure S2C. STAR Methods) (Li et al., 2018; Pirakitikulr et al., 2016). In total, we 

found 143 co-variant pairs, including 6 in the 5’UTR, and 12 in the 3’UTR (Figure 3, S3). The 

flanking regions of the UTR also contains many co-variant pairs (1 in 5’UTR flanking and 19 
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in 3’UTR flanking), indicating potential regulatory impacts from these detected RNA structures. 

Interestingly, we observed a strong combination of 5 co-variations within a duplex formed by 

the interaction between 3’UTR and “ORF10”, a flanking cryptic ORF. ORF10 was predicted 

computationally, but has not been supported with any protein-level evidence (Kim et al., 2020), 

and a recent study using nanopore direct RNA sequencing did not identify the predicted 

subgenomic RNA ORF10. Our structural data raised the possibility that this region may be a 

part of the 3’UTR, potentially functioning as a stable RNA structure (Figure 3).  

 Our model revealed a rich abundance of long single-stranded nucleotide regions; beyond 

their overall structural impacts, such regions are understood as attractive targets for 

interventions including siRNA and antisense oligonucleotide (ASO) therapeutics. We 

identified 469 such regions, covering 4,863 bases from all ORFs and subgenomic RNAs of 

SARS-CoV-2 (Supplementary Table S3, STAR Methods). Thus, our SARS-CoV-2 RNA 

genome model built using icSHAPE constraints provides reliable structural information and 

can be understood as a valuable resource to advance our understanding of this virus and its 

potential vulnerabilities. 

 

Structural conservation and divergence across the non-coding regions of the 

coronavirinae family 

 

In principle, conserved RNA structures across evolution suggest potential functional 

importance. To examine structural conservation of the non-coding regions in Coronavirinae, 

we performed icSHAPE-based analysis on the 5’UTR and 3’UTR (about 1000 nt in total. 

Supplementary S4) across 7 different coronavirus genera (Alphacoronavirus, Betacoronavirus) 

and lineages (lineage A, B, C D) (Figure 4A). Precisely, we examined the reference SARS-

CoV-2 strain and a mutant SARS-CoV-2-241T with a C-to-T mutation at 241nt, SARS-CoV 

(lineage B, Betacoronavirus), MERS (MERS-CoV), NL63 (HCoV-NL63, Alphacoronavirus), 

HKU1 (HCoV-HKU1, lineage A, Betacoronavirus); and two bat coronaviruses: HKU5 

(BtCoV-HKU5, lineage C, Betacoronavirus) and HKU9 (BtCoV-HKU9, lineage D, 

Betacoronavirus). Note that the 5’UTR sequences all included about 300 nt of flanking 

sequence. We synthesized the corresponding DNA sequences and used in vitro transcription to 
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obtain the RNA fragments. Following re-folding, we applied NAI-N3 and then characterized 

their RNA structures using icSHAPE. 

Of particular note, a recent study found that a SARS-CoV-2 variant with a glycine at the 

residue 614 of the Spike protein may confer a fitness advantage; this variant has become the 

dominant pandemic form of the virus (Korber et al., 2020). The study’s authors suggested that 

this mutation may facilitate cell entry or reduce immune response to increase overall 

transmission rates. Interestingly, this mutation is almost invariably accompanied by a 241 C-

to-T mutation in the SARS-CoV-2 5’UTR. We therefore included the SARS-CoV-2-241T 

mutant in our comparative structural analyses, and we did observe a modest structural change 

around this position (Figure 4B), suggesting that this non-coding mutation may also contribute 

to an increase in transmission. 

Over all the sequences we examined, icSHAPE profile data for these diverse noncoding 

genome regions revealed conserved structures characteristic of the various genera and linages, 

largely consistent with the phylogeny (Figure 4B), both in 5’UTR (Figure S4) and 3’UTR 

(Figure S5). For example, the 5’UTRs for all of the lineage B group members (SARS-CoV and 

SARS-CoV-2) each contain 7 stem-loop RNA structures, and these structures occur in the same 

order (Figure 4C, S4A). Remarkably, lineage C group (MERS-CoV and BtCoV-HKU5) also 

contain seven almost identical stem-loops, again in the same order, even though these viruses 

have a sequence similarity of only 46.5%~47.3% with lineage B (Figure S4B). The more distant 

lineage D betacoronavirus (BtCoV-HKU9) also contains seven similar stem-loops, despite 

having only 39.3~40.7% sequence similarity with lineage B and C (Figure S4B). Nevertheless, 

lineage D virus has slightly longer SL6 and SL7 than lineage B and C (Figure 4C, S4A). 

Notably, although some theoretical models based on co-variation show similar structural 

architecture (Figure S4C), others are very different and miss conserved structural elements 

(Figure S4D, MERS-CoV, BtCoV-HKU9).  

Strikingly, despite having similar levels of sequence similarity to betacoronaviruses of 

lineages B, C, and D, the lineage A betacoronavirus (HCoV-HKU1) and Alphacoronavirus 

(HCoV-NL63) (37.5%~ 46.3% in 5’UTR and 35.0%~45.2% in 3’UTR) each form very 

different structures, although all share stem-loop SL1(Figure S4B, S4E and S5B). This 

structural divergence suggests that the non-coding regions of these viruses may exert distinct 
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functions and may be subject to different forms of regulation. Our characterization of structural 

features from 7 coronavirus lineages in combination with our phylogenetic analysis revealed 

how coronavirus evolution has resulted conserved as well as divergent RNA structures.  

  

In vivo RNA structure predicts translation efficiency and species abundance of 

subgenomic RNA  

 

RNA structure affects the localization, splicing, translation efficiency (TE), and stability of 

cellular RNA on a genome-wide scale (Bevilacqua et al., 2016; Mortimer et al., 2014; Piao et 

al., 2017; Wan et al., 2011). Previous studies have reported positive correlations between 

translation efficiency and the frequency of single-stranded regions in the 5'-UTR of a given 

RNA transcript (Beaudoin et al., 2018; Mustoe et al., 2018). SARS-CoV-2 generates a number 

of subgenomic viral RNA sequences which encode important structural proteins including the 

spike protein, the envelop protein, the membrane protein, the nucleocapsid protein, and other 

accessory proteins (Figure S6A) (Kim et al., 2020). By correlating our in vivo SARS-CoV-2 

RNA structure data with translation efficiency (TE) data of subgenomic viral RNAs reported 

in a recent study (Bojkova et al., 2020), we found a high Pearson correlation coefficient between 

TE and RNA structural features (r = 0.717, p =0.029, Figure S6B). That is, for SARS-CoV-2 

RNAs in cells, the TE is generally higher for RNA molecules of more single-stranded 5'-UTR5'-

UTR. 

We also found that the abundance of a given subgenomic viral RNA is positively 

correlated with the frequency of single-stranded regions present in its structure. For context, 

subgenomic viral RNAs are generated from the minus-strand of viral RNA intermediates that 

are synthesized via a process known as “discontinuous transcription”. In this process, 

transcription begins at the 3’ end of the viral RNA genome and halts upon reaching a so-called 

TRS-B sequence—a transcription-regulatory sequence in the main body of the molecule 

positioned adjacent to the ORFs; this is followed by resumption of transcription upon switching 

the template to the 5' TRS-L (TRS in the leader) sequence. The intact minus-strand RNA 

intermediates form from the fusion of TRS-B and TRS-L (along with the sequence uptream of 

TRS-B), and then serve as the templates of positive-sense subgenomic viral RNAs generation 
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(Figure S6A).  

A recent study reported quantification of the SARS-CoV-2 subgenomic viral RNA 

population based on long-read sequencing (Kim et al., 2020). Using this abundance data 

alongside our structural data, we detected a positive correlation between the abundance of a 

particular subgenomic viral RNA and the level of single-stranded regions positioned within its 

5’ TRS-B region (Figure 5A, left, r = 0.24, p = 0.035). Pursuing this, we re-examined our 

sequencing data from the initial icSHAPE analysis to accurately calculate RNA structure scores 

for the TRS-L region of each subgenomic viral RNA, specifically by identifying and 

exclusively counting those reads that i) cross a fusion site and ii) specifically map to a 

confirmed subgenomic viral RNA (Figure S6A, left, STAR method). Again, subgenomic viral 

RNAs if more single-stranded TRS-L were much more abundant (Figure 5A, right, r = 0.43, p 

= 0.004. See an example of N and pp1ab in Figure 5B), supporting that the overall abundance 

of a particular viral RNA molecule is strongly impacted by its RNA 5’ structure, presumably 

because of differential impacts on discontinuous transcription.  

The coupling of transcription and translation of cellular RNAs is an important 

phenomenon in gene expression, fulfilled through different mechanism of regulation, including 

m6A, RNA polymerase II subunits and promoter sequences (Harel-Sharvit et al., 2010; 

Slobodin et al., 2017; Zid and O'Shea, 2014). In our previous study, we established RNA 

structure as a link in connecting transcription and translation. In our present analysis of SARS-

CoV-2 subgenomic RNAs, we also observed apparent impacts of RNA structure on the 

coordination of subgenomic viral RNA generation and translation (Figure 5C). Collectively, 

our in vivo RNA structure predicts and connects the abundance and the translation efficiency 

of SARS-CoV-2 subgenomic RNAs.  

 

PrismNet accurately predicts host proteins that bind to the SARS-CoV-2 RNA genome 

based-on in vivo RNA structure using deep learning 

 

Host cell RNA binding proteins (RBPs) play essential roles in regulating virus translation, 

replication, and degradation (Li and Nagy, 2011; Ooi et al., 2019). Thus, characterizing 

interactions between RBPs and viral RNA is a is fundamental step for understanding the 
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infection process and for identifying potential targets to enable development of innovative 

antivirus therapies. Although genome-scale viral RNA genome data is relatively scarce and 

methods to predict and detect viral RNA genome-host RBP interactions are only in their infancy, 

it is notable that previous studies have reported functional interactions between RBPs and the 

5’UTRs of coronavirus genomes (Sola et al., 2011b). Our group has recently developed a tool— 

PrismNet (Protein-RNA Interaction by Structure-informed Modeling using deep neural 

Network)—which we here employed to predict host RBPs and their putative RNA genome 

binding sites (Sun et al., 2020). Very briefly, PrismNet constructs and trains a deep neural 

network to model the interactions between an RBP and its RNA target by integrating big data 

from in vivo RBP binding assays and RNA structural analyses obtained from matched cellular 

conditions. 

We applied PrismNet to predict RBP binding on the SARS-CoV-2 RNA genome, and 

identified 40 and 43 host proteins that bind to the 5'UTR and 3'UTR, respectively (Figure 6A, 

Supplementary Table S5). Several of our predicted proteins were previously reported to directly 

or potentially binding with RNA of other coronaviruses. For example, the heterogeneous 

nuclear ribonucleoprotein hnRNPA1 was shown to bind with viral RNA and impact RNA 

synthesis for mouse hepatitis virus (MHV) (Shi et al., 2000). PTBP1 was reported to bind to 

transmissible gastroenteritis virus (TGEV) RNA and is involved in viral gene expression (Sola 

et al., 2011a). The NPM1 protein interacts with the nucleocapsid protein of SARS-CoV, which 

affects viral particle assembly (Zeng et al., 2008). Although there are no studies reporting any 

association of the autoimmune-disease-related protein TROVE2 (Reed and Gordon, 2016) with 

coronavirus infection; however, we found that TROVE2 shows high affinity (0.979) with 

SARS-CoV-2 RNA based on our prediction, identifying it as a candidate host RBP to help study 

how SARS-CoV-2 infection may deleteriously impact host immune responses. 

Inhibition of stress granules affects the replication of MERS-CoV, and our analysis 

predicted that several stress-granule-related proteins such as TIA1(Onomoto et al., 2014), 

IGF2BP1, and ELAVL1 (Markmiller et al., 2018) also showed high affinity with SARS-CoV-

2 RNA. These multiple predictions collectively indicate that SARS-CoV-2 infection may 

somehow inhibit formation of stress granules in host cells, perhaps in a manner similar to 

MERS-CoV’s hijacking of related RBPs. We therefore focused on IGF2BP1, TIA1, and PTBP1 
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as a potential host factors for SARS-CoV-2 infection to validate our prediction data. We 

synthesized 2 host sequences which include the SL2, SL3 fragment (Target 1) and the SL4 

fragment (Target 2) to use in RNA pull-down assays (Figure 6A). PrsimNet predicted IGF2BP1, 

TIA1, and PTBP1 bound to SARS-CoV-2 RNA (with binding probabilities: 0.947, 0.805 and 

0.841). Our pull-down assays showed that the detected binding strengths correlated well with 

the predicted binding scores based on the saliency map from PrismNet (Figure 6B-D, left). 

Specifically, TIA1 only bound to Target1, whereas PTBP1 also exhibited very weak affinity 

for Target2. IGF2BP1 can bind to both of the Target1 and Target2, albeit with stronger affinity 

for Target 2 (Figure 6B-D, right). Our empirical data thus support that PrimNet can accurately 

predict host proteins that bind to the SARA-CoV-2 RNA genome, opening the door for multiple 

hypothesis-driven studies to determine whether and how such binding interactions with these 

host RBPs may regulate viral infectivity. 

 

 

DISCUSSION 

In this study we experimentally determined structural maps of the SARS-CoV-2 genome in 

infected human cells, as well as the structure for in vitro refolded RNA of SARS-CoV-2 and 6 

other coronaviruses. Our host cell data confirms the presence of stable, conserved structural 

elements from theoretical analysis, while also revealing many previously unknown structural 

features that apparently affect viral translation and discontinuous transcription in cells. Based 

on our in vivo structure data, we then accurately predicted several dozen functionally related 

host cell proteins that bind to the SARS-CoV-2 RNA genome by using a deep learning neural 

network, and finally showed that some of these host proteins are vulnerable drug targets for 

reducing SARS-CoV-2 infection. 

In addition to encoding viral proteins, the SARS-CoV-2 RNA genome itself functions as 

a molecular hub to interact with many cellular factors, presenting multiple levels of complexity 

for the regulation of viral infection and disease. As discovered previously for many other 

viruses, including HIV (Watts et al., 2009), HCV (Pirakitikulr et al., 2016), dengue (Dethoff et 

al., 2018), and ZIKV (Li et al., 2018), much of the regulation and function of RNA viral 
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genomes is mediated by higher-order RNA structures. For coronaviruses, studies have also 

identified different RNA structure elements that functionally impact viral life cycles. Most 

coronavirus 5’ UTR’s harbor a number of loops, with many showing heightened sequence 

conservation across betacoronaviruses, and various stems demonstrating functional roles in 

viral replication. For example, studies suggested that the first stem-loop (SL1) the in 5’UTR is 

necessary for viral replication (Li et al., 2008). Flanking the 5’UTR of SARS-CoV-2, the third 

stem-loop contains a TRS core sequence (CS region, CUAAAC), and PrismNet predicted that 

some RBPs bind with this genome structure (Figure 6), suggesting that it is critical for 

discontinuous transcription characteristic to coronaviruses. In viral genome 3’UTRs, mutually 

exclusive RNA structures have been shown to control various stages of the RNA synthesis 

pathway. Recent virus structural modeling efforts using SARS-CoV-2 genome sequences have 

confirmed the existence of many of these stem-loops and driven predictions of yet more of 

these in SARS-CoV-2 (Andrews et al., 2020; Rangan et al., 2020).  

Our work emphasized that most stem-loops exist in both re-folded RNA molecules and in 

viruses within host cells, implying that these robustly auto-generating structures are very likely 

to exert functional impacts. Interestingly, we observed that the proposed loop region in SL3 is 

not reactive, supporting the possibility of long-range functional interactions with downstream 

TRS-B regions, which is understood as integral for successfully discontinuous transcription 

(Enjuanes et al., 2006). We also noticed that the small stem-loop downstream of SL4 proposed 

by the Das model is absent from our in vivo structural data; rather than a stem-loop, our results 

indicate this regions adopts a long, single-stranded conformation in vivo; interestingly, the 

sequence context of this region is AU-rich, suggesting it may be a hotspot for the binding of 

RBPs that prefer AU-rich single-stranded structure elements.  

Guided by recent epidemiological reports, we analyzed the C-to-T mutation at the 241 nt, 

which is positioned in the loop region of SL5. This mutation both creates a poly-U sequence 

motif and modestly increases its preference to adopt a single-stranded conformation, thereby 

potentially creating an attractive binding site for RBPs that bind to single-stranded poly-U 

sequences. Our findings thus offer structural insights to help better understand how this now-

prevalent SARS-CoV-2-241T allele is contributing to increased rates of transmission.   

Beyond confirming the presence of a long, single-stranded region between SL3 and SL4, 
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our study identified many more such regions in the SARS-CoV-2 genome. These regions 

should be understood as potentially attractive target sequences for interventions using 

technologies like siRNA, ASO, and sgRNA. Importantly, our work also revealed structural 

elements having strong co-evolution support, which usually suggests stable, functionally 

conserved RNA structures, throughout the genome (including in CDS regions). Computational 

methods like ROSETTA and FARFAR have become efficient for tertiary structure modeling 

when accurate secondary structural models are available. It is thus possible to build reliable 

tertiary structure models for some parts of the SARS-CoV-2 genome; such efforts may reveal 

druggable pockets vulnerable to small molecules. Indeed, there are previously reported 

examples for specifically targeting such functional RNA structural elements to disrupt viral 

infectivity (Ren and Patel, 2014), so the elucidation of RNA structures can facilitate target 

discovery and the development of antiviral therapeutics. 

Our in vivo RNA structure provides a groundwork to accurately predict host RBPs that 

bind to SARS-CoV-2 genome, as we have demonstrated recently in different cellular contexts. 

We used a deep learning method, PrismNet, trained on more than 1594 binding sites together 

with in vivo RNA structures obtained from matched cell lines for 99 RBPs. Our application of 

PrismNet here strongly supports the accuracy of its predicted interactions. In addition to 

recruiting the necessary translation machineries, SARS-CoV-2 potentially interacts with many 

RNA metabolism proteins including helicases based on our prediction ( such as DDX42), which 

potentially are hijacked by the virus to help evade cell innate immune response (Beachboard 

and Horner, 2016). In particular, the results also revealed a few stress granule proteins 

interacting with SARS-CoV-2 genome (Such as TIA1). Previous study has identified West Nile 

virus minus-strand 3' terminal stem loop (SL) RNA specifically interact with stress granule 

compartments TIA1 and facilitates flavivirus genome RNA synthesis, also inhibits SG 

formation(Emara and Brinton, 2007). The information of how SARS-CoV-2 RNA genome 

interact with host cellular proteins has been extremely limited by now. Our results thus provide 

a rich resource to understanding the molecular mechanism of viral infection.  

The identification of host RBPs that bind to RNA genomes can be exploited as a unique 

opportunity for the effective development of antiviral drugs. For example, drugs targeting 

DDX42 may inhibit the function of DDX42 that SARS-CoV-2 are more sensitive to innate 
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immune system. Certainly, many more studies will be required before any of the drugs 

identified by our study can be deployed as therapeutics for treating COVID-19. But overall, the 

data in our study clearly has great promise for the repurposing of existing drugs and the 

identification of new agents that target the in vivo viral RNA structure and host RBPs to fight 

against the still-ongoing pandemic and to combat viral disease more generally.  
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Figure legends 
 

Figure1. icSHAPE-based analysis of the RNA genome structure of SARS-CoV-2 and 7 
other coronaviruses.  
(A) Schematic illustrating use of icSHAPE for in vivo studies of SARS-CoV-2 RNA genome 

structure. We infected Huh7 cells with SARS-CoV-2, treated these cells with the RNA 
structure probing reagent NAI-N3, and then performed icSHAPE experiments to 
characterize the in vivo SARS-CoV-2 RNA genome structure in host cells.  

(B) Schematic for in vitro structural analysis of the SARS-CoV-2 RNA genome purified from 
infected cells. SARS-CoV-2 RNA was purified from infected Huh7 cells, followed by in 
vitro refolding, NAI-N3 modification, and icSHAPE experiments.  

(C) Schematic for the structural characterization in vitro transcribed viral RNA fragments for 
SARS-CoV-2 RNA and 6 additional coronaviruses (e.g., SARS, MERS, etc.).  

(D) Using the icSHAPE RNA structural profile data, we conducted multiple downstream 
analyses, including construction of in vivo SARS2 RNA genome structural models (based 
on the structural profiles as constraints), exploratory structural comparisons among 
coronaviruses of different subfamilies, deep-learning-based predictive analysis (using 
PrismNet) to identify candidate host cell proteins (host factors) impacting SARS-CoV-2 
infectivity, and an infection system for drug discovery and evaluation against SARS-CoV-
2. 

 
Figure 2. Structural Overview of the SARS-CoV-2 RNA genome.  
(A) Scale marker for the 30kb SARS-CoV-2 RNA genome (top) and a genic model showing 

the known organization of the genome into the 5’ UTR, the two known ORFs and nine 
major subgenomic RNAs, and the 3’ UTR (bottom). 

(B) Normalized icSHAPE reactivity scores across the whole SARS-CoV-2 genome based on 
in vivo data, shown relative to the global median value, with higher values corresponding 
to more flexible nucleotides. Blue color represents a region more likely to be in a pairing 
state, whereas red color represents a region more likely to be non-pairing. The normalized 
scores depicted here have been smoothed using a 30-nt window size.  

(C) Normalized genome-wide icSHAPE reactivity scores for the SARS-CoV-2 genome based 
on the in vitro refolding data. 

(D) icSHAPE profile of 5’UTR, ORF1ab region and 3’UTR between in vivo data and in vitro 
refolding data (in vivo – in vitro). 

(E) Selected RNA structural models from the 5'-UTR (left) and the 3'-UTR (right) (both with 
flanking regions) of SARS-CoV-2, constructed with the RNAstructure program using the 
icSHAPE reactivity scores as constraints. Nucleotides are colored by icSHAPE reactivity 
scores, with red and yellow colors indicating reactive nucleotides. Blue bars show base-
pairs with high pairing probability. Nucleotides with a color background were predicted as 
covariation base-pairs.  

 
 
Figure 3. Structural model (21000nt–29903nt) of the SARS-CoV-2 RNA genome. 
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Nucleotides are colored with icSHAPE reactivity scores; blue bars show base-pairs with 
high pairing probability. Nucleotides with a green background were predicted as 
covariation base-pairs. The boxplot insets at the bottom show the distributions of icSHAPE 
reactivity scores. Note that a full-length structural model of the SARS2 RNA genome is 
shown in the Supplementary Figure. 

 
Figure 4. Comparative analysis reveals structural characteristics and conservations 
among 5'-UTRs of 7 coronaviruses.  
(A) Phylogenetic diagram showing the evolution of the coronavirinae Alpha and Beta 

subfamilies. The 7 coronaviruses are from the Alpha coronavirus subfamily (HCoV-NL63) 
and different lineages of the Beta coronavirus subfamily, including lineage A (HCoV-
HKU1), lineage B (SARS-CoV, SARS-CoV-2), lineage C (MERS-CoV, BtCoV-HKU5), 
and lineage D (BtCoV-HKU9). Virus strains investigated with icSHAPE analysis are 
colored in red. 

(B) icSHAPE reactivity scores for the 5'-UTRs (with flanking regions) for the selected 
coronaviruses. Viruses with sequence identify higher than 70% are clustered into the same 
group. 

(C) Structural models of the 5'-UTRs of SARS-CoV, SARS-CoV-2 and BtCoV-HKU9. 
Nucleotides are colored with icSHAPE reactivity scores, blue bars show base-pairs with 
high pairing probability, and nucleotides with color backgrounds were predicted as 
covariation base-pairs. 

 
 
Figure 5. RNA structure functionally impacts both the generation and translation of 
SARS-CoV-2 subgenomic RNAs. 
(A) Scatter plots showing correlation values between the detected abundance of a given 

subgenomic RNA versus its icSHAPE reactivity score. (left) shows the correlation for the 
specific regions of the 5'-UTR of each subgenomic RNA. (right) shows the correlation for 
the common region of the 5'-UTR of all subgenomic RNAs, i.e., the TRS-L region.  
The two-tailed P value was calculated using the Python package function 
scipy.stats.pearsonr. r is the Pearson correlation efficient.  

(B) The icSHAPE profile and structural models of the TRS-L region of the subgenomic RNAs 
of nucleocapsid (N) and polypeptide 1b (pp1b), predicting the relative abundance of the 
subgenomic RNAs. RNA structural models were here predicted using the icSHAPE score 
constraint, as above (see Fig 2E).  

(C) Radar diagram showing the correlation of 5′-UTR RNA structure, translation efficiency at 
different time points post viral infection (data from Munchet et. al. 2020), and the number 
of subgenomic RNAs for the nucleocapsid protein (N), the spike protein (S), and the 
accessory 7a protein (data from Kim et. al. 2020). 

 
Figure 6. Applying deep learning to the in vivo SARS-CoV-2 RNA structure accurately 
predicts host proteins that bind to SARS-CoV-2.  
(A) Schematic for the 5′-UTR of SARS-CoV-2, including five stem-loop (SL) regions. Two 

RNA structures, including a combined stem-loop 2 (SL2) and stem-loop 3 (SL3) as well as 
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stem-loop 4 (SL4), were synthesized for validation experiments (see below).  
(B-D) Left: Saliency maps from PrsimNet showing the predicted binding site of the RNA 

binding proteins IGF2BP1 (B), TIA1 (C), and PTBP1 (D). Grey bars indicate the range of 
synthesized RNA fragments. Green color shows predicted strong binding sites, while pink 
color shows sites predicted to have relatively weaker binding, with predicted binding 
probabilities shown at the top. Right: western blotting for the RNA pull-down assay based 
on the synthesized RNA fragments (SL2-SL3, SL4).  
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Figure 2
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Figure 3
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Figure 5
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Figure 6
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