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Abstract 12 

Can faces be accurately recognized with zero experience on faces? The answer to this question is 13 

critical because it examines the role of experiences in the formation of domain-specific modules in 14 

the brain. However, thorough investigation with human and non-human animals on this issue cannot 15 

easily dissociate the effect of the visual experience from that of genetic inheritance, i.e., the 16 

hardwired domain-specificity. The present study addressed this problem by building a model of 17 

selective deprivation of the experience on faces with a representative deep convolutional neural 18 

network (DCNN), AlexNet. We trained a new AlexNet with the same image dataset, except that all 19 

images containing faces of human and nonhuman primates were removed. We found that the 20 

experience-deprived AlexNet (d-AlexNet) did not show significant deficits in face categorization and 21 

discrimination, and face-selective modules also automatically emerged. However, the deprivation 22 

made the d-AlexNet to process faces in a more parts-based fashion, similar to the way of processing 23 

objects. In addition, the face representation of the face-selective module in the d-AlexNet was more 24 

distributed and the empirical receptive field was larger, resulting in less degree of selectivity of the 25 

module. In sum, our study provides undisputable evidence on the role of nature versus nurture in 26 

developing the domain-specific modules that domain-specificity may evolve from non-specific 27 

stimuli and processes without genetic predisposition, which is further fine-tuned by domain-specific 28 

experience. 29 

Keywords: face perception, face domain, deep convolutional neural network, visual deprivation, 30 
experience31 
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1 Introduction 32 

A fundamental question in cognitive neuroscience is how nature and nurture form our cognitive 33 

modules. In the center of the debate is the origin of face recognition ability. Numerous studies have 34 

revealed both behavioral and neural signatures of face-specific processing, indicating a face module 35 

in the brain (for reviews, see Freiwald, Duchaine, & Yovel, 2016; Kanwisher & Yovel, 2006). 36 

Further studies from behavioral genetics revealed the contribution of genetics on the development of 37 

the face-specific recognition ability in humans (Wilmer et al., 2010; Zhu et al., 2010). Collectively, 38 

these studies suggest an innate domain-specific module for face cognition. However, it is unclear 39 

whether the visual experience is also necessary for the development of the face module.  40 

A direct approach to address this question is visual deprivation. Two studies on monkeys 41 

selectively deprived the visual experience of faces since birth, while leaving the rest of experiences 42 

untouched (Arcaro, Schade, Vincent, Ponce, & Livingstone, 2017; Sugita, 2008). They report that 43 

face-deprived monkeys are still capable of categorizing and discriminating faces (Sugita, 2008), 44 

though less prominent in selective looking preference to faces over non-face objects (Arcaro et al., 45 

2017). Further examination of the brain of the experience-deprived monkeys fails to localize typical 46 

face-selective cortical regions with the standard criterion; however, in the inferior temporal cortex 47 

where face-selective regions are normally localized, face-selective activation (i.e., neural responses to 48 

faces larger than nonface objects) is observed (Arcaro et al., 2017). Taken together, without visual 49 

experiences of faces, rudimental functions to process faces may still evolve to some extent.  50 

Two related but independent hypotheses may explain the emergence of the face module without 51 

face experiences. An intuitive answer is that the rudimental functions are hardwired in the brain by 52 

genetic predisposition (McKone, Crookes, Jeffery, & Dilks, 2012; Wilmer et al., 2010). 53 

Alternatively, we argue that the face module may emerge from experiences on nonface objects and 54 

related general-purpose processes, because representations for faces may be constructed by abundant 55 

features derived from nonface objects. Unfortunately, studies on humans and monkeys are unable to 56 

thoroughly decouple the effect of nature and nurture to test these two hypotheses.  57 

Recent advances in deep convolutional neural network (DCNN) provide an ideal test platform to 58 

examine the role of visual experiences alone on face modules without genetic predisposition. 59 

Previous studies have shown that DCNNs are similar to human visual cortex both structurally and 60 

functionally (Kriegeskorte, 2015), but free of any predisposition on functional modules. Therefore, 61 
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with DCNNs we can manipulate experiences without considering interactions from genetic 62 

predisposition. In this study, we asked whether DCNNs can achieve face-specific recognition ability 63 

when visual experiences on faces were selectively deprived. 64 

To do this, we trained a representative DCNN, AlexNet (Krizhevsky, 2014; Krizhevsky, 65 

Sutskever, & Hinton, 2012), to categorize nonface objects with face images carefully removed from 66 

the training dataset. Once this face-deprived DCNN (d-AlexNet) was trained, we compared its 67 

behavioral performance to that of a normal AlexNet of the same architecture but with faces present 68 

during training in both face categorization (i.e., differentiating faces from nonface objects) and 69 

discrimination (i.e., discriminating faces among different individuals) tasks. We predicted that the d-70 

AlexNet, though without predisposition and experiences of faces, may still develop face selectivity 71 

through its visual experiences of nonface objects.  72 

 73 

2 Materials and methods 74 

2.1 Stimuli 75 

Deprivation dataset The deprivation dataset was constructed to train the d-AlexNet. It was based on 76 

the ImageNet Large-Scale Visual Recognition Challenge (ILSVRC) 2012 dataset (Deng et al., 2009), 77 

which contains 1,281,167 images for training and 50,000 images for validation, in 1000 categories. 78 

These images were first subjected to automated screening with an in-house face-detection toolbox 79 

based on VGG-Face (Parkhi, Vedaldi, & Zisserman, 2015), and then further screened by two human 80 

raters, who separately judged whether a given image contains faces of humans or non-human 81 

primates regardless of the orientation and intactness of the face, or anthropopathic artwork, cartoons, 82 

and artifacts. We removed images judged by either rater as containing any above-mentioned contents. 83 

Finally, we removed categories whose remaining images were less than 640 images (approximately 84 

half of the original number of images in a category). The resultant dataset consists of 736 categories, 85 

with 662,619 images for training and 33,897 for testing the performance.  86 

Classification dataset To train a classifier that can classify faces, we constructed a classification 87 

dataset consisting of 204 categories of non-face objects and one face category, each of 80 exemplars. 88 

For the non-face categories, we manually screened Caltech-256 (Griffin, Holub, & Perona, 2007) to 89 

remove images containing human, primate, or cartoon faces, and then removed categories whose 90 
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remaining images were less than 80. In each of the 204 remaining non-face categories, we randomly 91 

chose 70 images for training and another 10 for calculating classification accuracy. The face category 92 

was constructed by randomly selecting 1000 faces images from Faces in the Wild (FITW) dataset 93 

(Berg, Berg, Edwards, & Forsyth, 2005). Among them, 70 were used as training data and another 10 94 

for classification accuracy. In addition, to characterize DCNN’s ability in differentiating faces from 95 

object categories, we compiled a second dataset consisting of all images in the face category except 96 

those used in training. 97 

Discrimination dataset To train a classifier that can discriminate faces at individual level, we 98 

constructed a discrimination dataset consisting of face images of 133 individuals, 300 images each, 99 

selected from the Casia-WebFace database (Yi, Lei, Liao, & Li, 2014). For each individual in the 100 

dataset, 250 were randomly chosen for training and another 50 for calculating discrimination 101 

accuracy.  102 

Representation dataset To examine representational similarity of faces and non-face images 103 

between the d-AlexNet and the normal one, we constructed a representation dataset with two 104 

categories, faces and bowling pins as an ‘unseen’ non-face object category that was not presented to 105 

the DCNNs during training. Each category consisted of 80 images. The face images were a random 106 

subset of FITW, and images of bowling pins were randomly chosen from the corresponding category 107 

in Caltech-256.  108 

Movies clips for DCNN-brain correspondence analysis We examined the correspondence between 109 

the face-selective response of the DCNNs and brain activity using a set of 18 clips of 8-min natural 110 

color videos from the Internet that are diverse yet representative of real-life visual experiences (Wen 111 

et al., 2017).  112 

2.2 The deep convolutional neural network 113 

Our model of selective deprivation, the d-AlexNet, was built with the architecture of the well-known 114 

DCNN ‘AlexNet’ (Krizhevsky et al., 2012, see Figure 1a for illustration). AlexNet is a feed-forward 115 

hierarchical convolutional neural network consisting of five convolutional layers (denoted as Conv1 116 

– Conv5, respectively) and three fully connected layers denoted as FC1 – FC3. Each convolutional 117 

layer consists of a convolutional sublayer, followed by a ReLU sublayer, and Conv1, 2, and 5 are 118 

further followed by a pooling sublayer. Each convolutional sublayer consists of a set of distinct 119 

channels. Each channel convolves the input with a distinct linear filter (kernel) which extracts filtered 120 
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outputs from all locations within the input with a particular stride size. FC1 to FC3 are fully 121 

connected layers. FC3 is followed by a sublayer using a softmax function to output a vector that 122 

represents the probability of the visual input containing the corresponding object category 123 

(Krizhevsky et al., 2012).  124 

The d-AlexNet used the architecture of AlexNet but changed the number of units in FC3 to 736, 125 

so was the following softmax function, to match the number of categories in the deprivation dataset. 126 

Same to the pre-training AlexNet in pytorch 1.2.0 (https://pytorch.org/, Paszke et al., 2017), the d-127 

AlexNet was initialized with values drawn from a uniform distribution, and was then trained on the 128 

deprivation dataset following the approach specified in Krizhevsky et al., (2014). We used the pre-129 

trained AlexNet from pytorch 1.2.0 as the normal DCNN, referred to as the AlexNet in this paper for 130 

brevity. 131 

The present study referred to channels in the convolutional sublayers by the layer they belong to 132 

and a channel index, following the convention of pytorch 1.2.0. For instance, Layer 5-Ch256 refers to 133 

the 256th convolutional channel of Layer 5. 134 

2.3 Transfer learning for classification and discrimination 135 

To examine to what extent our manipulation of the visual experience affected the categorical 136 

processing of faces, we replaced the fully-connected layers of each DCNN with a two-layer face-137 

classification classifier. The first layer was a fully connected layer with 43,264 units as inputs and 138 

4,096 units as outputs with sigmoid activation function, and the second was a fully connected layer 139 

with 4,096 units as inputs and 205 units as outputs, each of which corresponded to one category of 140 

the classification dataset. This classifier, therefore, classified each image into one category of the 141 

classification dataset. The face-classification classifier was trained for each DCNN with the training 142 

images in the classification dataset for 90 epochs.  143 

To examine to what extent our manipulation of the visual experience affected face 144 

discrimination, we similarly replaced the fully connected layers of each DCNN with a discrimination 145 

classifier. The discrimination classifier differed from the classification classifier only in its second 146 

layer, which had 133 units instead as outputs, each corresponding to one individual in the 147 

discrimination dataset. The face-discrimination classifier was trained for each DCNN with the 148 

training images in the discrimination dataset for 90 epochs.  149 
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2.4 The face selective channels in DCNNs 150 

To identify the channels selectively responsive to faces, we submitted images in the classification 151 

dataset to each DCNN, recorded the average activation in each channel of Conv5 after ReLU in 152 

response to each image, and then averaged the channel-wise activation within each category. We 153 

selected channels where the face category evoked the highest activation, and used the Mann-Whitney 154 

U test to examine the activation difference between faces and objects that had the second-highest 155 

activation in these channels (p < .05, Bonferroni corrected). The selectivity of each face channel thus 156 

identified was indexed by the selective ratio. The selective ratio was calculated by dividing the face 157 

activation by the second-highest activation. In addition, we measured the lifetime sparseness of each 158 

face-selective channel as an index for selectivity of faces among all non-face objects. We first 159 

normalized the mean activations of a face channel in Layer5 to all the categories to the range of 0-1, 160 

and then calculated lifetime sparseness with the formula: 161 

2 2
1, 1,

( / ) / ( / )i ii n i n
S r n r n

= =
= ∑ ∑                                            

 162 

where ri is the normalized activations to the ith object category. The smaller this value is, the higher 163 

the selectivity is. 164 

2.5 DCNN-Brain Correspondence 165 

We submitted the movie clips to the DCNNs. Following Wen (2017)’s approach, we extracted and 166 

log-transformed the channel-wise output (the average activation after ReLU) of each face-selective 167 

channel using DNNBrain, an in-house toolbox (Chen et al., 2020), and then convolved it with a 168 

canonical hemodynamic response function (HRF) with a positive peak at 4s. The HRF convolved 169 

channel-wise activity was then down-sampled to match the sampling rate of functional magnetic 170 

resonance imaging (fMRI) and the resultant timeseries was standardized before further analysis. 171 

Neural activation in the brain was derived from the preprocessed data in Wen (2017). The 172 

fMRI data were recorded while human participants viewed each movie clips twice. We averaged the 173 

standardized time series across repetition and across subjects for each clip. Then, for each DCNN, we 174 

conducted multiple regression for each clip, with the activation time series of each brain vertex as the 175 

dependent variable and that of face-selective channels in this network as independent variables. For 176 

the d-AlexNet, all face-selective channels were included. For the AlexNet, we included the same 177 

number of face-selective channels with the highest face selectivity to match the complexity of the 178 
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regression model. We used the R2 of each vertex as the index of the overall Goodness of fit of the 179 

regression in that vertex. The R2 values were then averaged across clips. The larger the R2 value, the 180 

higher correspondence between the DCNN and the brain in response to movie clips.  181 

To determine whether cortical regions with large R2 values were traditional face-selective 182 

regions, we delineated the bilateral fusiform face areas (FFA) and the occipital face area (OFA) with 183 

the maximum-probability atlas of face-selective regions (Zhen et al., 2015). Two hundred of vertexes 184 

of the highest probability of the left FFA and 200 of the right FFA were included in the ROI of FFA, 185 

and the ROI of OFA was delineated in the same way. The correspondence with brain activation in 186 

each ROI and the impact of the visual experience was examined by submitting the vertex-wise R2 187 

into a two-way ANOVA with visual experience (d-AlexNet vs. AlexNet) as within-subject factor and 188 

regional correspondence (OFA and FFA) as between-subject factor. 189 

2.6 Face inversion effect in DCNNs 190 

The average activation amplitude of the top 2 face-selective channels of each DCNN in response to 191 

upright and inverted version of 20 faces from the Reconstructing Faces dataset (VanRullen & Reddy, 192 

2019) was measured. The inverted faces were generated by vertically flipping the upright ones. The 193 

face inversion effect in the d-AlexNet was measured with paired sample t-tests (two-tailed) and the 194 

impact of the experience on the face inversion effect was examined by two-way ANOVAs with 195 

visual experience (d-AlexNet vs. AlexNet) and inversion (upright vs inverted) as within-subject 196 

factors. 197 

2.7 Representational similarity analysis 198 

To examine whether faces in the d-AlexNet were processed in an object-like fashion, we compared 199 

the within-category representational similarity of faces to that of bowling pins, an ‘unseen’ non-face 200 

object category never exposed to either DCNN. Specifically, for each image in the representation 201 

dataset, we arranged the average activations of each channel of Conv5 after ReLU into vectors, and 202 

then for each pair of images we calculated and then Fisher-z transformed the correlation between 203 

their vectors, which served as an index of pairwise representational similarity. Within-category 204 

similarity between pairs of face images and that between pairs of object images were calculated 205 

separately. A 2 × 2 ANOVA was conducted with visual experience (d-AlexNet vs AlexNet) and 206 

category (face vs object) as independent factors. In addition, cross-category similarity between faces 207 
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and bowling pins was also calculated for each DCNN, and a paired sample t-test (two-tailed) on two 208 

DCNNs was conducted. 209 

2.8 Sparse coding and empirical receptive field 210 

To quantify the degree of sparseness of the face-selective channels in representing faces, we 211 

submitted the same set of 20 natural images containing faces from FITW to each DCNN, and 212 

measured the number of activated units (i.e., the units showing above-zero activation) in the face-213 

selective channels. The more non-zero units of the face-selective channels, the less sparse of the 214 

representation for faces. The coding sparseness of the two DCNNs was compared with a paired-215 

sample t-test. 216 

We also calculated the size of the empirical receptive field of the face-selective channels. 217 

Specifically, we obtained activation maps of 1000 images randomly chosen from FITW. Using an in-218 

house toolbox DNNBrain (Chen et al., 2020), we up-sampled each activation maps to the same size 219 

of the input. For each image, we averaged the up-sampled activation within the theoretical receptive 220 

field of each unit (the part of the image covered by the convolution of this unit and the preceding 221 

computation, decided by the network architecture), and selected the unit with the highest average 222 

activation. We then cropped the up-sampled activation map by the theoretical receptive field of this 223 

unit, to locate the image part that activated this channel most across all the units. Then, we averaged 224 

corresponding cropped activation maps across all the face images, and the resultant map denotes the 225 

empirical receptive field of this channel, delineating the part of the theoretical receptive field that 226 

causes this channel to respond strongly in viewing its preferred stimuli.  227 

 228 

3 Results  229 

The d-AlexNet was trained with a dataset of 662,619 non-face images consisting of 736 non-face 230 

categories, generated by removing images containing faces from the ILSVRC 2012 dataset (Figure 231 

1a). The d-AlexNet was initialized and trained in the same way as the AlexNet, and the resultant top-232 

1 accuracy (57.29%) and the top-5 accuracy (80.11%) were comparable with the pre-trained 233 

AlexNet.  234 

We first examined the performance of the d-AlexNet in two representative tasks of face 235 

processing, face categorization (i.e., differentiating faces from non-face objects) and face 236 
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discrimination (i.e., identifying different individuals). The output of Conv5 after ReLU of the d-237 

AlexNet was used to classify objects in the classification dataset. The averaged categorization 238 

accuracy of the d-AlexNet (67.40%) was well above the chance level (0.49%), and comparable to 239 

that in the AlexNet (68.60%, t (204) = 1.26, p = 0.209, Cohen’s d = 0.007, Figure 1b). Critically, the 240 

d-AlexNet, although with no experience on faces, succeeded in the face categorization task, with an 241 

accuracy of 86.50% in categorizing faces from non-face objects. Note that the accuracy was 242 

numerically smaller than the AlexNet’s accuracy in categorizing faces (93.90%) though (Figure 1c).  243 

A similar pattern was observed in the face discrimination task. In this task, the output of Conv5 244 

after ReLU of each DCNN was used to identify 33,250 face images into 133 identities in the 245 

discrimination dataset. As expected, the AlexNet was capable of face discrimination (65.9%), well 246 

above the chance level (0.75%), consistent with previous studies (AbdAlmageed et al., 2016; 247 

Grundstrom, Chen, Ljungqvist, & Astrom, 2016). Critically, the d-AlexNet also showed the 248 

capability of discriminating faces, with an accuracy of 69.30% that was even significantly higher 249 

than that of the AlexNet, t (132) = 3.16, p = .002, Cohen’s d = 0.20, (Figure 1d). Taken together, 250 

visual experiences on faces seemed not necessary for developing basic functions of processing faces. 251 
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 252 

Figure 1. (a) An illustration of the screening to remove images containing faces for the d-AlexNet. 253 

The ‘faces’ shown in the figure were AI-generated for illustration purpose only, and therefore have 254 

no relation to real person. In the experiment, face images were from the ImageNet, with real persons’ 255 

faces. (b) The classification performance across categories of the two DCNNs was comparable. (c) 256 

Both DCNNs achieved high accuracy in categorizing faces from other images. (d) Both DCNNs’ 257 

performance in discriminating faces was above the chance level, and the d-AlexNet’s accuracy was 258 

significantly higher than that of the AlexNet. The error bar denotes standard error. The asterisk 259 

denotes statistical significance (α = .05). n.s. denotes no significance. 260 

 261 
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Was a face module formed in the d-AlexNet to support these functions? To answer this 262 

question, we searched all the channels in Conv5 of the d-AlexNet, where face-selective channels 263 

have been previously identified in the AlexNet (Baek, Song, Jang, Kim, & Paik, 2019). To do this, 264 

we calculated the activation of each channel in Conv5 after ReLU in response to each category of the 265 

classification dataset, and then identified channels that showed significantly higher response to faces 266 

than non-face images with Mann-Whitney U test (ps < .05, Bonferroni corrected). Two face-selective 267 

channels (Ch29 and Ch50) met this criterion in the d-AlexNet (for an example channel, see Figure 268 

2a, right), whereas four face-selective channels (Ch195, Ch125, Ch60, and Ch187) were identified in 269 

the AlexNet (for an example channel, see Figure 2a, left). The face-selective channels in two DCNNs 270 

differed in selectivity. The averaged selective ratio, the ratio of the activation magnitude to faces by 271 

that to the most activated non-face object category, was 1.29 (range: 1.22 - 1.36) in the d-AlexNet, 272 

much lower than that in the AlexNet (average ratio: 3.63, range: 1.43 - 6.66). The lifetime sparseness, 273 

which measures the breadth of tuning of a channel in response to a set of categories, also showed a 274 

similar result. The average lifetime sparseness index of the face channels in the AlexNet (mean = 275 

0.25, range: 0.11 – 0.51) was smaller than that in the d-AlexNet (mean = 0.71, range: 0.70 – 0.71), 276 

indicating higher face selectivity in the AlexNet than that in the d-AlexNet. Taken together, this 277 

finding suggested that the face-selective channels already emerged in the d-AlexNet, though the face 278 

selectivity was weaker. 279 

How did the face-selective channels correspond to face-selective cortical regions in humans, 280 

such as the FFA and OFA? To answer this question, we calculated the coefficient of determination 281 

(R2) of the multiple regression with the output of the face-selective channels as regressors and the 282 

fMRI signals from human visual cortex in response to movies on natural vision as the regressand. As 283 

shown in Figure 2b (right), the face-selective channels identified in the d-AlexNet corresponded to 284 

the bilateral FFA, OFA, and the posterior superior temporal sulcus face area (pSTS-FA). Similar 285 

correspondence was also found with the top two face-selective channels in the AlexNet (Figure 2b, 286 

left). Direct visual inspection revealed that the deprivation weakened the correspondence between the 287 

face-selective channels and face-selective regions in human brain. This observation was confirmed 288 

by the main effect of visual experiences (F (1,798) = 161.97, p < .001, partial ɳ2 = 0.17) in a two-way 289 

ANOVA of visual experiences (d-AlexNet vs. AlexNet) by regional correspondence (the OFA versus 290 

the FFA). In addition, the main effect of the regional correspondence showed that the response 291 

profile of the face-selective channels in the DCNNs fitted better with the activation of the FFA than 292 
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that of the OFA (F (1,798) = 98.69, p = .001, partial ɳ2 = 0.11), suggesting that the face-selective 293 

channels in DCNNs may in general prefer to process faces as a whole than face parts. Critically, the 294 

two-way interaction was significant (F (1,798) = 84.9, p < .001, partial ɳ2 = 0.10), indicating that the 295 

experience affected the correspondence to the FFA and OFA disproportionally. A simple effect 296 

analysis revealed that the correspondence to the FFA (MD = 0.023, p < .001) was increased by face-297 

specific experiences to a significantly larger extent than that to the OFA (MD = 0.004, p = .013, 298 

Figure 2c). Since the FFA is more involved in holistic processing of faces and the OFA is more 299 

dedicated to the part-based analysis, the disproportional decrease in correspondence between the 300 

face-selective channels in the d-AlexNet and the FFA implied that the role of the experience on faces 301 

was to facilitate the processing of faces as a whole. 302 

To test this conjecture, we examined how the d-AlexNet responded to inverted faces, a 303 

behavioral signature of face-specific processing. As expected, there was a face inversion effect in the 304 

AlexNet’s face-selective channels, with the magnitude of the activation to upright faces significantly 305 

larger than that to inverted faces (t (19) = 6.45, p < .001, Cohen’s d = 1.44) (Figure 2d). However, no 306 

inversion effect was observed in the d-AlexNet, as the magnitude of the activation to upright faces 307 

was not significantly larger than that to inverted faces (t (19) = 0.86, p = .40). The lack of the 308 

inversion effect in the d-AlexNet was further supported by a two-way interaction of visual experience 309 

by orientation of faces, F (1, 19) = 7.79, p = .012, partial ɳ2 = 0.29. That is, unlike the AlexNet, the 310 

d-AlexNet processed upright faces in the same fashion as inverted faces.  311 
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 312 

Figure 2. (a) The category-wise activation profiles of example face-selective channels of the AlexNet 313 

(left) and the d-AlexNet (right). The ‘faces’ shown here were AI-generated for illustration purpose 314 

only. (b) The R2 maps of the regression with the activation of the d-AlexNet’s (right) or the 315 

AlexNet’s face-selective channels (left) as the independent variables. The higher R2 in multiple 316 

regression, the better correspondence between the face channels in the DCNNs and the face-selective 317 

regions in the human brain. The crimson lines delineate the ROIs of the OFA and the FFA. (c) The 318 

face-channels of both DCNNs corresponded better with the FFA than the OFA, and the difference 319 

between the AlexNet and the d-AlexNet was larger in the FFA. (d) Face inversion effect. The 320 

average activation amplitude of the top two face-selective channels differed in response to upright 321 

and inverted faces in the AlexNet but not the d-AlexNet. The error bar denotes standard error. The 322 

asterisk denotes statistical significance (α = .05). n.s. denotes no significance. 323 
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 324 

Previous studies on human suggested that inverted faces are processed in an object-like fashion. 325 

That is, it relies more on the parts-based analysis than the holistic processing. Therefore, we 326 

speculated that in the d-AlexNet faces were also represented more like non-face objects. To test this 327 

speculation, we first compared the representational similarity among responses in Conv5 to faces and 328 

bowling-pins, a novel object category that was not exposed to either DCNNs. As expected, the two-329 

way interaction of experience (AlexNet versus d-AlexNet) by category (faces versus bowling-pins) 330 

was significant (F (1, 6,318) = 4,110.88, p <.001, partial ɳ2 = 0.39), and the simple effect analysis 331 

suggested that the representation for faces in the AlexNet was more similar between each other than 332 

in the d-AlexNet (MD = 0.16, p <.001), whereas the within-category representation similarity for 333 

bowling-pins showed the same but numerically smaller between-DCNN difference (MD = 0.005, p 334 

= .002) (Figure 3a).  335 

A more critical test was to examine how face-specific experiences made faces being processed 336 

differently from objects. Here we calculated between-category similarities between faces and 337 

bowling-pins. We found that the between-category similarity between faces and bowling-pins was 338 

significantly higher in the d-AlexNet than that in the AlexNet (t (3,159) = 42.42, MD = 0.07, p 339 

< .001, Cohen’s d = 0.76) (Figure 3b), suggesting that faces in the d-AlexNet were indeed 340 

represented more like objects. In short, although d-AlexNet was able to perform face tasks similar to 341 

the one with face-specific experiences, it represented faces in an object-like fashion. 342 

Finally, we asked how faceness was achieved in DCNNs with face-specific experiences. 343 

Neurophysiological studies on monkeys demonstrate experience-associated sharpening of neural 344 

response, with fewer neurons activated after learning. Here we performed a similar analysis by 345 

measuring the number of non-zero units (i.e., units with above-zero activation) of the face-selective 346 

channels activated by natural images containing faces. As shown in the activation map (Figure 3c), a 347 

smaller number of units were activated by faces in the AlexNet than that in the d-AlexNet (t (19) = 348 

3.317, MD =15.78, Cohen’s d = 0.74) (Figure 3d), suggesting that the experience on faces made the 349 

representation to faces sparser, and thus more effective. Another effect of visual experiences 350 

observed in neurophysiological studies is that experiences reduce the size of neurons’ receptive field. 351 

Here we also mapped the empirical receptive field of the face-selective channels. Similarly, we found 352 

that the empirical receptive field of the AlexNet was smaller than that of the d-AlexNet. That is, 353 
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within the theoretical receptive field, the empirical receptive field of the face-selective channels in 354 

the AlexNet was tuned to focus on a smaller region by face-specific experiences (Figure 3e). 355 

  356 

Figure 3. (a) The within-category similarity in the face category and an unseen non-face category 357 

(bowling pins) in the DCNNs. (b) The between-category similarity between faces and bowling pins. 358 

(c) The activation maps of a typical face-selective channel of each DCNN in responses to natural 359 

images containing faces. Each pixel denotes activation in one unit. The images shown here were 360 

historical portrait paintings downloaded from the Internet for illustration purpose only, and are 361 

different from the images used in this study. (d) The extent of activation of the face-selective 362 

channels of each DCNN in responses to natural images containing faces. (e) The empirical receptive 363 

fields of the face-selective channels of each DCNN. The error bar denotes standard error. The 364 

asterisk denotes statistical significance (α = .05). 365 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 16, 2020. ; https://doi.org/10.1101/2020.07.06.189407doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.06.189407


 
15 

4 Discussion 366 

This study presented a DCNN model of selective visual deprivation of faces. We found that without 367 

genetic predisposition and face-specific visual experiences, DCNNs were still capable of face 368 

perception. In addition, face-selective channels were also present in the d-AlexNet, which 369 

corresponded to human face-selective regions. That is, the visual experience of faces was not 370 

necessary for an intelligent system to develop a face-selective module. On the other hand, besides the 371 

slightly compromised selectivity of the module, the deprivation led the d-AlexNet to process faces in 372 

a more parts-based fashion, similar to the way of processing objects. Indeed, face-inversion effect 373 

was absent in the d-AlexNet, and the representation of faces was more similar to objects as compared 374 

to the AlexNet. Finally, the functionality of face-specific experiences that led the AlexNet to process 375 

faces as a whole might be achieved by fine-tuning the sparse coding and the size of the receptive 376 

field of the face-selective channels. In sum, our study addressed a long-standing debate on nature 377 

versus nurture in developing the face-specific module, and illuminated the role of visual experiences 378 

in shaping the module. 379 

The observation that without domain-specific visual experience, the face-selective processing 380 

and module still emerged in the d-AlexNet seems surprising; yet this finding is consistent with 381 

previous studies on non-human primates and new-born human infants (Bushneil, Sai, & Mullin, 382 

1989; Goren, Sarty, & Wu, 1975; Morton & Johnson, 1991; Sugita, 2008; Valenza, Simion, Cassia, 383 

& Umiltà, 1996), where the face-specific experience is found not necessary for face detection and 384 

recognition. However, the experience-independent face processing is largely attributed to either 385 

innate face-specific mechanisms (McKone et al., 2012; Morton & Johnson, 1991) or domain-general 386 

processing with predisposed biases (Cassia, Turati, & Simion, 2004; Simion & Di Giorgio, 2015; 387 

Simion, Macchi Cassia, Turati, & Valenza, 2001). Our study argued against this conjecture, because 388 

unlike any biological system, DCNNs have no predefined genetic inheritance or processing biases. 389 

Therefore, the face-specific processing observed in DCNNs had to derive from domain-specific 390 

factors.  391 

We speculated that the face module in the d-AlexNet may result from a tremendous amount of 392 

features represented in the multiple layers of the network, with which face-like features were selected 393 

to construct face-specific module. In fact, previous studies on DCNNs have shown that DCNN’s 394 

lower layers showed sensitivity to myriad visual features similar to primates’ primary visual cortex 395 

(Krizhevsky et al., 2012), while the higher layers are tuned to complex features resembling those 396 
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represented in the ventral visual pathway (Güçlü & van Gerven, 2015; Khaligh-Razavi & 397 

Kriegeskorte, 2014; Pospisil, Pasupathy, & Bair, 2018; Yamins et al., 2014). With such repertoire of 398 

rich features, a representational space for faces, or for any natural object, may be constructed by 399 

selecting face-like features and features that are potentially useful in a variety of face tasks.  400 

Supporting evidence for this conjecture came from the observation that the d-AlexNet processed 401 

faces in an object-like fashion. For example, the face inversion effect, a behavioral signature of face-402 

specific processing in human (Kanwisher, Tong, & Nakayama, 1998; Rossion & Gauthier, 2002; 403 

Yin, 1969) was absent in the d-AlexNet. That is, similar to inverted faces, upright faces may also be 404 

processed like objects in the d-AlexNet. A more direct illustration of the object-like representation of 405 

faces came from the analysis on the representational similarity between faces and objects. As 406 

compared to the AlexNet, faces in the representational space of the d-AlexNet were less congregated 407 

among each other; instead they were more intermingled with non-face object categories. The finding 408 

that face representation was no longer qualitatively different from object representation may help 409 

explaining the performance of the d-AlexNet. Because faces were less segregated from objects in the 410 

representational space, the d-AlexNet’s accuracy of face categorization was worse than that of the 411 

AlexNet. In contrast, within the face category, individual faces were less congregated in the 412 

representational space; therefore, the discrimination of individual faces became easier instead, 413 

suggested by the slightly higher face discrimination accuracy in the d-AlexNet than the AlexNet. In 414 

short, when the representational space of the d-AlexNet was formed exclusively based on features 415 

from non-face stimuli, faces were represented no longer qualitatively different from non-face objects, 416 

which inevitably led to ‘object-like’ face processing. 417 

The face-specific processing is likely achieved through prior exposure to faces. At first glance, 418 

the effect of face-specific experiences seemed quantitative, as in the AlexNet, both the selectivity to 419 

faces and the number of the face-selective channels were increased, and the correspondence between 420 

the face-selective channels and the face-selective regions in human brain was tighter. However, 421 

careful scrutiny of the difference between the two DCNNs revealed that the changes led by the 422 

experience may be qualitative. For example, the deprivation of visual experiences disproportionally 423 

weakened the DCNN-brain correspondence in the FFA as comparing to the OFA, and the FFA is 424 

engaged more in the configural processing and the OFA in parts-based analysis (Liu, Harris, & 425 

Kanwisher, 2010; Nichols, Betts, & Wilson, 2010; Zhao et al., 2014). Therefore, the ‘face-like’ face 426 

processing may come from the fact that face-specific experiences led the representation of faces more 427 
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congregated within face category and more separable from the representation of non-face objects 428 

stimuli (see also Gomez, Barnett, & Grill-Spector, 2019). In this way, a relative encapsulated 429 

representation may help developing a unique way of processing faces, qualitatively different from 430 

non-face objects.  431 

The advantage of the computational transparency of DCNNs may shed light on the 432 

development of domain specificity of the face module. First, we found that face-specific experiences 433 

increased the sparseness of face representation, as fewer units of the face channels were activated by 434 

faces in the AlexNet. The experience-dependent sparse coding has been widely discovered in the 435 

visual cortex, such as the V4, MT, and IT (for reviews, see Desimone, 1996; Grill-Spector, Henson, 436 

& Martin, 2006; Wiggs & Martin, 1998). The experience-induced increase of sparseness is thought to 437 

reflect a preference-narrowing process that tunes neurons to a smaller range of stimuli (Kohn & 438 

Movshon, 2004); therefore, with sparse coding faces are less likely to be intermingled with non-face 439 

objects, which may lead to more congregated representations in the representational space in the 440 

AlexNet, as compared to the d-AlexNet. Second, we found that the empirical receptive field of the 441 

face channel in the AlexNet was smaller than that in the d-AlexNet, suggesting that the visual 442 

experience on faces decreased the size of the receptive field of the face channels. This finding fits 443 

perfectly with neurophysiological studies that the size of receptive fields of visual neurons is reduced 444 

after eye-opening (Braastad & Heggelund, 1985; Cantrell, Cang, Troy, & Liu, 2010; Koehler, 445 

Akimov, & Renteria, 2011; Tavazoie & Reid, 2000). Importantly, along with the refined receptive 446 

fields, the selectivity of neurons increases (Spilmann, 2014), possibly because neurons can avoid 447 

distracting information by focusing on a more restricted part of stimuli, which may further allowed 448 

finer representation of the selected regions. This is especially important for processing faces because 449 

faces are highly homogeneous, and some information is identical across faces, such as parts 450 

composition (eyes, noses, and mouth) and their configural arrangements. Therefore, the reduced 451 

receptive field of the face channels may facilitate selective analyses of discriminative face features 452 

while avoiding irrelevant information. Further, the sharpening of the receptive field and the fine-453 

tuned selectivity may result in superior discrimination ability on faces, and allow faces to be 454 

processed at the sub-ordinate level (i.e., identification), whereas the rest of objects are largely 455 

processed at the basic level (i.e., categorization). 456 

It has long been assumed that domain-specific visual experiences and inheritance are the pre-457 

requisites in the development of the face module. In our study with DCNNs as a model, we 458 
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completely decoupled the genetic predisposition and face-specific visual experiences, and found that 459 

the representation for faces can be constructed with features from non-face objects to realize basic 460 

functions for face recognition. Therefore, in many situations, the difference between faces and 461 

objects is ‘quantitative’ rather than ‘qualitative’, as they are represented in a continuum of the 462 

representational space. In addition, we also found that face-specific experiences likely fine-tuned the 463 

face representation, and thus transformed the ‘object-like’ face processing into ‘face-specific’ 464 

processing. However, we shall be cautious that our finding may not be applicable for the 465 

development of face module in human, as in the biological brain experience-induced changes are 466 

partly attributed to the inhibition from lateral connections (Grill-Spector et al., 2006; Norman & 467 

O'Reilly, 2003), whereas there is no lateral or feedback connection in DCNNs. However, despite 468 

structural differences, recent studies have shown similar representation for faces between DCNNs 469 

and humans (Song, Qu, Xu, & Liu, 2020), suggesting that a common mechanism may be shared by 470 

both artificial and biological intelligent systems. Future studies are needed to examine the 471 

applicability of our finding to humans. On the other hand, our study illustrated the advantages of 472 

using DCNNs as a model to understand human mind because of its computational transparency and 473 

its dissociation of factors in nature and nurture. Thus, our study invites future studies with DCNNs to 474 

understand the development of domain specificity in particular and a broad range of cognitive 475 

modules in general.  476 
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