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 2 

Abstract 15 

The assembly of local communities is likely to reflect the effects of local environmental 16 

factors associated with filters that act at larger spatial scales. Dissecting these multiscale 17 

effects remains a timely challenge that is particularly important for host-associated 18 

microbiomes. We investigated the relative roles of local selection (due to host species 19 

identity) and regional effects (due to water body identity) on the community structure 20 

of bacteria in the gut of tadpoles from three biogeographic areas and used graph theory 21 

and metanetwork approaches to explore and illustrate the distribution of bacteria 22 

across different ponds. The pond of origin, which represents a regional species pool of 23 

bacteria, was in general more important in shaping the gut microbiome of tadpoles than 24 

host species identity. The resulting metanetworks are modular and indicate relatively 25 

few species of bacteria occurring in more than one pond. Thus, each pond represents a 26 

relatively distinct species pool of bacteria available for community assembly of the 27 

tadpole microbiomes. Our findings indicate that microbiome community assembly in 28 

amphibian larvae, as in many other communities, is a multiscale process with important 29 

regional effects that constrain how local (i.e. host-dependent) filters act to influence 30 

microbiome community composition. 31 
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 3 

Introduction 33 

 The origin and assembly of host-associated microbial communities 34 

(microbiomes) is a complex process of fundamental importance in helping us 35 

understand the symbiotic relationship between hosts and their microbes [1, 2]. Various 36 

factors can play a role in the community assembly of microbiomes at multiple levels. 37 

Perhaps the most obvious is the effect of host diet on the gut microbiome, which has 38 

been shown in many organisms from insects to humans [3–6]. Other local factors 39 

include host sex, health state, and genetics [7–11]. These effects can be thought of as 40 

local ‘filters’ to microbial community assembly. Here we evaluate these effects as they 41 

are determined by host species identity only, recognizing that there are likely to be 42 

other more subtle effects involving inter-individual factors. However, there can also be 43 

processes that constrain which microbes are available to colonize any given host.  Here, 44 

we focus on factors that determine the microbial species pool available to colonize the 45 

host and evaluate these by the identity of the site of the host community. 46 

We view community assembly of microbiomes as being driven by 47 

metacommunity processes [12]. This recognizes that the assembly of a local community 48 

depends strongly on the species available to colonize that community, known as the 49 

regional species pool [13, 14]. From that pool, if a species is able to disperse to a given 50 

community, its persistence in that community will depend on local demographic 51 

processes and on the ability of the species to tolerate the local biotic and abiotic 52 

conditions, which is known as the local selection component of community assembly 53 
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[15]. Therefore, communities with identical environmental conditions could have a 54 

completely different species composition if colonized by different species pools [16]. 55 

While most work in metacommunity ecology has focused on macroorganisms, these 56 

ideas should apply equally well to microbes [1, 2, 12, 17, 18]. 57 

Host-associated microbial communities appear to be influenced by effects 58 

related to the individual host or individual species such as diet, physiology, and 59 

genotype [10, 19, 20], as well as regional and historical processes, as in the case of 60 

exposure to potentially different species pools of microorganisms [21–26], or vertical 61 

and horizontal transmission of the microbiome [27, 28]. Considering the importance 62 

that the microbiome can have to host health and well-being, understanding the relative 63 

importance of effects acting at different levels is fundamental, but studies explicitly 64 

tackling that question are still lacking [29]. 65 

We analyzed variation in tadpole microbiomes to evaluate the effects of local 66 

environmental filters by focusing on host species identity, and regional effects by 67 

focusing on the locality of the water body. We assume that different microbes would be 68 

differentially favored by selection associated with the physiology and diet of different 69 

tadpole species, and different microbes may be present at different sites due to either 70 

site-specific habitat variables or to isolation and other differences among water bodies.  71 

Our studies were conducted across three different geographic locations to test if they 72 

show consistent patterns. We also used graph theory and metanetwork approaches to 73 
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explore the degree to which each pond consists of a unique species pool, and how they 74 

are connected to each other in terms of shared bacterial species. 75 

The gut microbiome of tadpoles is critically important to their digestive function 76 

[30], and some evidence shows gut microbiomes from the same host species are more 77 

similar to each other than from different species [31]. Further, there are often multiple 78 

species of tadpole per water body, which represent different hosts with different 79 

characteristics that are exposed to the same pool of bacteria. Many of these tadpole 80 

species can occupy a variety of different water bodies, each with potentially distinct 81 

bacterial species pools, which makes them a suitable system to test questions regarding 82 

the effects of environment and host identity on microbiome assembly [32]. We evaluate 83 

two hypotheses: i) if the bacterial community of each pond is different across the 84 

landscape, then the pond of origin would be more important in determining the gut 85 

microbiome of tadpoles, i.e., the microbiomes of different species within each pond 86 

would be more similar to each other than the microbiomes of the same species across 87 

distinct ponds, and the metanetworks would be structured into modules according to 88 

each pond; ii) if ponds have very similar bacterial communities across the landscape, 89 

then the species of tadpole would be more important in determining their gut 90 

microbiome, i.e., tadpoles of the same species across ponds would have more similar 91 

microbiomes than tadpoles of different species from the same pond, and the 92 

metanetworks would be structured into modules according to each species. 93 

  94 
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Methods 95 

 Study area 96 

We sampled tadpoles from 22 water bodies located in three different localities: 97 

i) six water bodies in the Boracéia Biological Station, located in the Atlantic Forest east 98 

of the state of São Paulo, Brazil, hereafter BR; ii) nine water bodies in the David Crockett 99 

and Angelina National Forests, located in the pine forest ecosystem in eastern Texas, 100 

United States, hereafter ET; and iii) seven water bodies in the Edwards Plateau, a mix of 101 

grassland and juniper/oak woodlands in the central part of Texas, United States, 102 

hereafter CT. We classified water bodies as either lentic or lotic. For ET ponds, we did a 103 

more thorough environmental characterization quantifying in each pond the dissolved 104 

oxygen (mg/L), pH, conductivity (uS/cm), chlorophyll a (ug/L), and water temperature 105 

(oC) using a Eureka multiparameter sonde, and the absence or presence of piscivorous 106 

(Bass) and/or insectivorous fish (Green Sunfish). Even though three water bodies in BR 107 

were lotic, we will refer to all of them as ponds for convenience. 108 

 109 

 Tadpole and microbiome sampling 110 

 In each pond we collected tadpoles with a dipnet that was swept through the 111 

pond. We then placed the larvae in a sterile plastic bag (Whirl Pak®) filled with water 112 

from their place of origin. Environmental microorganisms from water from CT and ET 113 

were sampled by filtering approximately 50 ml of water from three different places 114 

through a sterile syringe filter with a 0.45 µm cellulose acetate membrane (VWR). From 115 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 6, 2020. ; https://doi.org/10.1101/2020.07.05.188698doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.05.188698
http://creativecommons.org/licenses/by-nc-nd/4.0/


 7 

BR, approximately 2L of water was collected in a sterile plastic bag (Whirl Pak®), mixed, 116 

and 100 mL was vacuum-filtered through a 0.45 µm cellulose acetate membrane. The 117 

sediment in all ponds was sampled in three locations in each pond by removing the first 118 

three centimeters with a sterile plastic straw of 1.3 cm of diameter and placed in a 119 

sterile tube. 120 

In the lab, tadpoles were euthanized by overdose in a solution of Milli-Q® filtered 121 

water and tricaine methanesulfonate (MS 222). After the death was confirmed, each 122 

individual was dissected using instruments that were cleaned in 100% ethanol and 123 

flame-sterilized. The entire tadpole gut was removed and placed directly in a MoBio 124 

PowerSoil® bead tube. The sediment from each pond was homogenized, centrifuged to 125 

remove the excess water, and an aliquot of approximately 0.2 g was used for DNA 126 

extraction. DNA from the water sample was extracted from the entire filter membrane. 127 

We performed DNA extraction using MoBio PowerSoil® DNA isolation kit following the 128 

manufacturer’s recommendation. The same procedures without a real sample were 129 

repeated to count as negative control samples, which did not have DNA when quantified 130 

using QubitTM dsDNA high sensitivity assay.  131 

 We amplified the V4 hypervariable region of the 16s rRNA gene (515F, 806F). CT 132 

samples were amplified using the version F: GTGYCAGCMGCCGCGGTA / R: 133 

GGACTACHVGGGTWTCTAAT and ET and BR the version F: GTGYCAGCMGCCGCGGTAA / 134 

R: GGACTACNVGGGTWTCTAAT. The library preparation and sequencing (Illumina MiSeq 135 

2x250bp) of the CT samples was realized at the Genomic Sequencing and Analysis 136 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 6, 2020. ; https://doi.org/10.1101/2020.07.05.188698doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.05.188698
http://creativecommons.org/licenses/by-nc-nd/4.0/


 8 

Facility (wikis.utexas.edu/display/GSAF) at The University of Texas at Austin following 137 

their protocols. The library preparation and sequencing (Illumina MiSeq 2x250bp) of the 138 

ET samples was realized at the Argonne National Laboratory (www.anl.gov) following 139 

their protocols. For BR samples, we prepared the libraries following the Earth 140 

Microbiome Project protocol (www.earthmicrobiome.org), with the exception of using 141 

20uL PCR reactions and dual-index barcodes instead. Samples were sequenced in an 142 

Illumina MiSeq platform (2x300 bp paired-end sequences). 143 

 The sequences were processed using the dada2 pipeline [33] in the software 144 

Microsoft R Open v 3.5.1 [34]. Sequences from each site were processed separately. 145 

Briefly, primers, adapters, and barcodes were removed and the quality profile of the 146 

reads were visually inspected using the function plotQualityProfile aggregating over all 147 

the samples from a site. BR, CT, and ET reads were truncated at 200 and 120, 200 and 148 

180, and 200 and 160 forward and reverse reads, respectively. Sequencing errors were 149 

calculated, sequences were clustered as Amplicon Sequence Variants based on the 150 

DADA2 algorithm [33] and paired ends were merged. Chimeras were removed using the 151 

consensus method in the function removeBimeraDenovo. Taxonomy was assigned 152 

based on the Silva database v128 [35]. ASV sequences were exported to Qiime2 2018.4 153 

[36], aligned using the MAFFT algorithm [37], and a phylogenetic tree was constructed 154 

using FastTree [38]. We discarded all ASVs that were classified as Archaea, chloroplast, 155 

mitochondria, or that were not at least assigned to bacteria. Hereafter, we will refer to 156 

ASVs as species of bacteria. 157 
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 158 

Data analysis 159 

Diversity 160 

 For each sample we constructed a rarefaction curve and compared richness and 161 

Faith’s phylogenetic diversity [39]. To avoid sequencing depth effects, each sample was 162 

rarefied 100 times to the number of reads of the sample with the lowest coverage using 163 

the R package BAT [40]. For comparison, we considered the median richness from all 164 

rarefactions from a sample as our richness measure. 165 

 166 

Species and pond effects 167 

We analyzed our data as compositional data (termed CODA) [41]. It requires a 168 

centered log-ratio transformation of the read counts and therefore cannot have zeros, 169 

so we added a pseudocount of one to all ASVs in all samples. We transformed the data 170 

using the codaSeq.clr function from the R package CoDaSeq [42, 43]. We also analyzed 171 

data that takes into account phylogenetic relatedness of microbes by using the PHILR 172 

transformation from the R package philr [44]. This metric takes into account the 173 

phylogenetic relationship between the ASVs, which is equivalent to the Unifrac metric 174 

[45], but it considers the compositional nature of the data [44]. We then ran a Principal 175 

Component Analysis (PCA) on the Euclidean distance matrix of the CODA- and PHILR-176 

transformed data to visualize the relationship between samples and tested if samples 177 

from tadpoles, water, and sediment are different from each other using a Permutational 178 
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Multivariate Analysis of Variance (perMANOVA). If a difference was detected we then 179 

used additional perMANOVAs for pairwise comparisons with Bonferroni correction. 180 

To first test if either the identity of the species of tadpole or the pond of origin 181 

are more related to the gut microbiome composition we used a perMANOVA to fit a 182 

model with both pond and species identity to the CODA- and PHILR-transformed data 183 

using the function adonis2 from the R package vegan [46]. The significance of the 184 

marginal effects was tested based on 999 permutations. In addition, to test for the 185 

unique effects of the species of tadpole or the pond of origin as well their shared effects 186 

on the gut microbiome we performed variance partitioning and Redundancy Analysis 187 

(RDA) [47] using the function varpart in the R package vegan [46]. The significance of 188 

each unique component in the variation partitioning was tested using the vegan 189 

function anova.cca with 1000 permutations. We repeated perMANOVA and variation 190 

partitioning analyses to the data grouping the species of bacteria at Genus and Family 191 

level. 192 

 193 

Inter-pond variation 194 

We also investigated if there was evidence for dispersal limitation in the bacteria 195 

from water and sediment using multiple regression on distance matrices using the 196 

function MRM from the R package ecodist [48]. We used the Euclidean distance matrix 197 

based on the PHILR and CODA transformations as the dependent variable and a 198 

geographical distance matrix between sites as the independent variable. In addition, to 199 
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account for environmental effects, we also include in the model a distance matrix based 200 

on the type of the pond (lentic or lotic) for BR, and a distance matrix based on the 201 

environmental variables measured for ET. The latter was a Gower distance matrix [49] 202 

created by the function dist.ktab from the R package ade4 [50]. Quantitative variables 203 

were Gower-standardized (divided by maximum minus minimum). All CT ponds were 204 

lentic and there were no other variables besides spatial distance to include in the 205 

model. For models where distance was significant in the MRMs, we applied a Partial 206 

Mantel Correlogram approach using the function mpmcorrelogram from the R package 207 

with the same name [51]. That tests, at several distance classes, in our case estimated 208 

by Sturge’s rule [52], the relationship between water and sediment microbiome with 209 

geographical distance while controlling for environmental effects. 210 

 211 

Metanetworks 212 

We further explored the structure of three different metanetworks within each 213 

locality (BR, CT, and ET) to understand the distribution of bacteria across ponds. Shared 214 

species (here bacteria) connect different ponds in a metacommunity perspective [53, 215 

54]. We built three bacteria metanetworks for each locality: (i) the tadpole microbiome 216 

metanetwork, composed by the bacteria living in the gut of all tadpoles within a pond, 217 

independently of the tadpole species, (ii) the water metanetwork, with bacteria found in 218 

the water, and (iii) the sediment metanetwork, composed by bacteria found in the 219 

sediment of each pond. Then, we built an amn adjacency matrix for each metanetwork in 220 
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 12 

which m corresponds to a single pond (i.e., considering bacteria from water, sediment 221 

or gut of tadpoles), and n to each bacterium. The mn element represents the 222 

presence/absence of species of bacteria n in a pond m, and is represented by a link in 223 

the graphical representation. Therefore, each node in our metanetwork is either a 224 

bacterium or a pond; when the same bacterium is found in more than one pond, there 225 

is a link connecting them, forming the edges of the metanetwork. 226 

To test whether ponds consist of different bacterial communities, we calculated 227 

the modularity of the metanetworks using the FastGreedy algorithm [55, 56] in the 228 

software Modular v 0.1 [57].  We tested the significance of the observed modularity 229 

against two different null models with 100 permutations each: the Erdős-Rényi [58], in 230 

which pond-bacteria interactions are connected randomly, and the ‘null model 2’ [59], 231 

in which the probability of a pond-bacteria interaction is proportional to their number of 232 

links in the observed matrix. To identify the bacteria with higher potential to connect 233 

the metanetwork through shared occurrence in a higher number of ponds, we 234 

calculated the degree (k) for each metanetwork using the software Pajek v. 4.10 [60]. 235 

Degree measures how many links each node establishes in its correspondent network. 236 

For the bacteria, it represents the number of ponds in which it occurs; for the pond, it 237 

represents the number of bacteria it has (from tadpoles, water or sediment). For each 238 

metanetwork we also calculated the proportion of bacteria found uniquely in p1, p2, …, 239 

pn, where n is the total number of ponds in one locality. 240 

  241 
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Results 242 

 Diversity 243 

We registered 19 species of tadpole in all ponds: three in CT, six in ET, and 244 

eleven in BR (Table S1). After the filtering steps, there were a total of 533 777, 1 289 245 

662, and 2 064 298 16s rRNA gene fragment reads for CT, ET, and BR, respectively. The 246 

rarefaction curve shows that all samples reached an asymptote, even the ones with the 247 

lowest number of reads (Figure S1). For richness and phylogenetic diversity measures of 248 

bacteria, CT, ET, and BR samples were rarefied to 3 950, 1 791, and 3 916 reads, 249 

respectively. There was no significant difference among CT samples in terms of richness, 250 

but there was in terms of phylogenetic diversity, with sediment samples having the 251 

highest diversity and Rana berlandieri tadpoles the lowest (Figure S2). Sediment 252 

samples had the highest richness and phylogenetic diversity in ET and Hylodes phyllodes 253 

the highest in BR (Figures S3 and S4). A great part of the tadpole microbiome was 254 

composed by Fusobacteria, Firmicutes, Proteobacteria, and Bacteroidetes, while 255 

sediment and water samples were mostly composed by Proteobacteria (Figures S5-S7). 256 

 257 

Species and pond effects 258 

The composition of the tadpole gut microbiome is different from both water and 259 

sediment samples in all localities (Figure 1, Figure S8, Table S2). Also, in most cases, 260 

tadpole gut microbiome samples cluster more with other samples from the same pond 261 

than with samples from the same species from a different pond (Figure 1, Figures S8-262 
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S10). However, within a pond, there can be separation by species and, in fact, the 263 

perMANOVA shows that both species identity of tadpole and pond of origin are 264 

significant predictors of the tadpole gut microbiome in all localities when using either 265 

PHILR- or CODA-transformed data, except for CT CODA, in which species identity was 266 

only marginally significant (Table 1). In CT and ET, pond of origin was a stronger 267 

predictor of the tadpole gut microbiome than tadpole species identity. The overall 268 

results are consistent over all the taxonomic levels considered (Tables S3-S6). 269 

For CT and ET, the pond of origin explained considerably more of the variance in 270 

tadpole gut microbiome than the species of tadpole (Figure 2). For BR, the tadpole 271 

species explained a slightly higher proportion of the variance in their gut microbiome. 272 

However, most of the variation in that environment is explained by the joint effects of 273 

tadpole species and pond of origin, i.e., the variation that could not be separated in 274 

unique components (Figure 2). Again, the overall results are comparable across all the 275 

taxonomic levels considered (Tables S7-S8). 276 

 277 

Inter-pond variation 278 

Only the bacterial communities of water from CT were significantly related to the 279 

spatial distance between ponds (Table S9). However, that was the only dataset where 280 

environmental data is not available and could not be accounted for, allowing for the 281 

possibility that such distance effects are due to spatially structured environmental 282 

factors. Partial Mantel Correlograms showed that, for both CODA- (padj = 0.044) and 283 
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PHILR-transformed data (padj = 0.022), there is a spatial signal only for the first distance 284 

range, from 174 to 6 223 m. ET water and sediment communities were significantly 285 

related to environmental variables for PHILR-transformed data and BR water 286 

communities were significantly related to both PHILR- and CODA-transformed data 287 

(Table S9). 288 

 289 

Metanetworks 290 

All metanetworks are significantly modular according to the two null models 291 

used (p < 0.001 for all null models; Figure 3, Figure S11). In most cases, each module 292 

corresponds to a single pond (Figure 3, Figure S11 and Table S10). Metanetworks of 293 

water and sediment are more modular than those of tadpoles for all localities (Figure 3, 294 

Figure S11). In all cases, the vast majority of bacteria occur in a single pond (k = 1), 295 

varying from 63.2% in East Texas to 91.3% in Brazil (Figure 4, Figures S12-S16). Only 0.1 296 

to 1.1% of bacteria were present in all ponds (Figure 4, Figure S12-S16). From those, for 297 

BR and ET they were mostly from the phyla Bacteroidetes and Proteobacteria and 298 

Orders Bacteroidales and Desulfovibrionales. CT had only three bacteria present across 299 

all ponds. From the ponds’ perspective, their degree, which corresponds to the number 300 

of unique links they have in the metanetwork, varied from 118 to 615 for water, 90 to 301 

478 for sediment, and 241 to 2 751 for bacteria from tadpoles (Figures S17-S19). 302 

  303 
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Discussion 304 

We found that microbial community assembly of tadpole microbiomes was 305 

structured by processes happening at different levels and broadly resemble findings 306 

from macroorganisms [1, 15, 61–63]. At higher levels, there are inter-pond differences 307 

in microbial communities due to site-specific variables, isolation, and/or stochasticity. It 308 

was not our goal to understand the drivers of inter-pond differences, which is ultimately 309 

responsible for the different bacterial species pool tadpoles are exposed to. However, in 310 

some cases, for the ponds where we had environmental data there is a relationship 311 

between environmental variables and the bacterial community of water and/or 312 

substrate. In these cases, each pond could act as a regional scale environmental filter for 313 

bacteria. For CT, we found some evidence for a spatial correlation in bacterial 314 

communities among nearby ponds, which could indicate dispersal limitation structuring 315 

the pond communities, but that was the only dataset for which we did not have 316 

environmental variables. Nevertheless, independently of the causes of the differences 317 

among ponds, each one of them constitutes a unique species pool of colonizers for the 318 

microbiomes of tadpoles. As tadpoles develop, the community assembly of their 319 

microbiome is restricted by that species pool of microbes. Each tadpole comprises a 320 

smaller-scale filter to a subset of the microbes within the species pool. Therefore, even 321 

if similar habitats (same species of tadpole in our case) are exposed to different species 322 

pools, they will not end up with the same microbial community. 323 
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The composition and diversity of the gut microbiome of tadpoles can be variable 324 

across species. The microbiome of tadpoles from this study is slightly different than 325 

previous studies. Proteobacteria and Firmicutes dominated in other studies [31, 64–66] 326 

but here we found that Fusobacteria were also important. Alpha and phylogenetic 327 

diversity were also mostly higher in our study than in previous ones [31, 64–66]. The 328 

knowledge about the gut microbiome of tadpoles is still limited to a few species and 329 

quantitative comparisons of diversity across studies is problematic because of 330 

differences in sampling procedures, sample processing, data cleaning, and the 331 

algorithms and databases. However, overall differences in microbiome composition 332 

could be due to the exposure of tadpoles to different pools of colonist microbes. 333 

 The pond of origin of the tadpoles was more important in determining their gut 334 

microbiome than the species of the tadpole in both of the Texas locations. We assume 335 

the same species of tadpole has similar requirements in terms of microbes and/or 336 

constitutes a similar patch for colonization by microbes. There were only a few bacteria 337 

in common across all ponds in all three localities, therefore each pond constitutes a 338 

unique bacterial species pool from which the tadpoles can be colonized. In Brazil, the 339 

pond of origin and species of tadpole showed similar relationships with the gut 340 

microbiome of tadpoles. However, most of variation in Brazil was due to variation that 341 

could not be separately attributed to either because of the uniquely distinct tadpole 342 

faunas of ponds. 343 
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 The limited and unique pool of bacteria tadpoles are exposed to and the higher 344 

similarity within a pond can be visualized on the metanetworks of bacteria from water, 345 

sediment, and tadpole gut. The metanetworks are modular and each pond constitutes a 346 

unique community of bacteria. The vast majority of bacteria occur only in a single pond, 347 

and just a few are present in all of them. In fact, for water and sediment, the maximum 348 

number of bacteria found in all ponds was only eight. That number would probably 349 

increase if more sediment or water was sampled. On the other hand, we likely sampled 350 

all species of tadpoles from each water body and the proportion of bacteria from their 351 

gut found in all water bodies is still very low (0.1-1.1%) despite similar phyla found in all 352 

of them. The major bacteria in tadpole guts belong to orders Bacteroidales and 353 

Desulfovibrionales, which do not overlap with the most widespread taxa found in water 354 

or sediment. It is common to not find much overlap between bacteria from environment 355 

and gut of aquatic organisms [67, 68]. Likewise, we show that the gut microbiome of 356 

tadpoles is distinct from both water and sediment from the ponds suggesting that the 357 

gut constitutes a strong environmental filter that favors certain taxa. Desulfovibrionales, 358 

for example, is a group of sulfur-reducing bacteria that is mostly anaerobic [69]. 359 

Therefore, at least certain parts of the digestive tract of tadpoles might be anaerobic 360 

[31, 70]. Pryor and Bjorndal [30] detected significant levels of fermentation in the 361 

hindgut of bullfrog tadpoles. It is unknown to which extent other species of tadpoles are 362 

hindgut fermenters. For those that are, even though they might not have a core 363 
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microbiome, at least not at fine-scale taxonomy levels, there may be a functional core 364 

gut microbiome. 365 

 In terrestrial and aquatic environments, the importance of the regional species 366 

pool in shaping the microbial communities can be noticed even when not tested 367 

directly. In many species, from insects to humans, individuals likely exposed to the same 368 

regional species pool, such as being from the same environment, have more similar 369 

microbiomes [21–26]. There are many difficulties in quantifying and testing how 370 

regional effects affect community assembly [29, 62], but comparing results with 371 

predictions from theory can lead to important insights. If hosts from different 372 

environments have similar microbiomes it could indicate that (i) there is not much 373 

difference in the regional species pools between environments, (ii) the hosts move 374 

between species pools, or (iii) there are other methods for microbiome acquisition such 375 

as transmission from conspecifics. For example, Kueneman et al. [71] and McKenzie et 376 

al. [32] studying the skin microbiome of tadpoles found that the identity of the species 377 

was the strongest predictor of the skin microbiome, with the water body of origin 378 

explaining additional [71] or no variance at all [32]. Vertical transmission of the 379 

microbiome is unlikely in amphibians [72], and they probably acquire their microbiome 380 

from the environment at every generation [73]. Therefore, the results from Kueneman 381 

et al. [71] and McKenzie et al. [32] indicate there is at least a partially shared species 382 

pool of microbes across their sampling sites. 383 
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The enormous intra and inter-specific variation in the microbiomes of different 384 

species of animals and plants can be at least partially explained by differences in 385 

regional species pool during the community assembly of the microbiome. The gut 386 

microbiome of animals can be stable over time [63, 74] and can also be resistant to 387 

invasions and colonization by other bacteria [75–77]. Therefore, if the community 388 

assembly of individuals of the same species occurred while they were exposed to 389 

different species pools, historical effects can cause lasting effects in the development of 390 

the microbiome [78]. Moreover, recent efforts to manipulate the microbiome of plants 391 

and animals to improve health and/or increase productivity might not be as effective if 392 

the manipulation is done only at the level of the individual host, i.e., at the local scale. 393 

As stated by Chase [16] “if local and regional processes determine the community 394 

composition, then both processes need to be restored to achieve the desired 395 

community”. Our results indicate that the same logic is valid for microbes.  396 

In summary, we showed that local assembly of host-associated bacterial 397 

communities are affected by regional scale processes, more specifically changes in the 398 

regional species pool of colonizers. The inter-pond variation in bacterial community can 399 

be due to stochastic, historical, spatial, and/or environmental processes or even the 400 

result of local evolution [79]. Nevertheless, microbiome assembly, as any other 401 

community, is a multiscale process. Microbial and microbiome ecology could be better 402 

linked to ecological theory by considering the multiscale dynamics of community 403 

assembly [12, 17, 80, 81]. Because it is much easier to quantify effects at the scale of the 404 
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individual host or host species, i.e., local effects [29, 62], the role of regional effects is 405 

probably underestimated. Regional effects, however, appear to be a fundamental piece 406 

of the community assembly puzzle that can be used to understand variation in 407 

microbiomes. 408 

  409 
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Tables 628 

Table 1. Results of a Permutational Analysis of Variance (perMANOVA) testing if the 629 
species of tadpole or the pond of origin are related to the gut microbiome composition 630 
of tadpoles using the bacteria as Amplicon Sequence Variants (ASVs). Models were 631 
fitted to CODA and PHILR transformed data. The significance of the marginal effects was 632 
tested based on 999 permutations. BR = Brazil, CT = Central Texas, ET = East Texas. 633 
 634 

  PHILR    CODA  
  R2 F p  R2 F p 

BR 
Water body(4,80) 0.08 3 0.005  0.1 2.7 0.001 
Species(9,80) 0.15 2.5 0.002  0.16 2.1 0.001 

         

CT 
Water body(5,25) 0.48 6 0.001  0.41 3.6 0.001 
Species(1,25) 0.05 2.8 0.010  0.04 1.8 0.056 

         

ET 
Water body(8,76) 0.27 4.7 0.001  0.24 3.2 0.001 
Species(5,76) 0.18 5.1 0.001  0.12 2.6 0.001 

 635 
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Figures 637 

 638 

Figure 1. Plot of the first two axes of a Principal Component Analysis on CODA 639 
transformed microbiome data (amplicon sequence variants) from tadpole samples from 640 
Brazil (BR), Central Texas (CT), and Eastern Texas (ET). Panels on the left show sediment, 641 
water, and tadpole samples. Panels on the right show samples from tadpoles only. Left 642 
and right panels are results from separate analyses. Shapes represent different species 643 
of tadpoles and colors represent water body of origin. See Table S1 for abbreviations. 644 
  645 
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 646 

 647 

Figure 2. Results of a variation partitioning analysis testing the unique effects of the 648 
species of tadpole or pond of origin as well their shared effects on the tadpole gut 649 
microbiome considering the bacteria as Amplicon Sequence Variants (ASVs) for CODA- 650 
and PHILR-transformed data. The effects of pond of origin and species of tadpole were 651 
all significant (p < 0.05) based on 1000 permutations, except for the shared component, 652 
which cannot be tested. 653 
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 655 

 656 

Figure 3. Microbiome metanetworks of the shared bacteria (amplicon sequence variant - 657 
ASV) found in the gut of tadpoles. Larger nodes represent each water body for each 658 
locality, i.e., Brazil (BR), Central Texas (CT), and East Texas (ET). Smaller nodes represent 659 
a unique bacterium that can be found in a single water body (link between smaller and 660 
larger nodes) or shared among ponds thus connecting them. Numbers on the bottom-661 
right are the modularity values for each metanetwork. Distinct colors represent 662 
different modules which, with a few exceptions, correspond to a single water body 663 
(Table S10). 664 
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 665 

Figure 4. Number of bacteria from the gut of tadpoles for each degree (k) on the left and 666 
Order of bacteria present in the highest degree on the right. Each degree represents one 667 
pond. Bacteria found in only one pond are represented in the degree category 1. 668 
Likewise, bacteria present in tadpoles across all ponds are represented in the highest 669 
category of each histogram. The Order of bacteria present in tadpoles across all ponds 670 
from each locality is shown on the barplot on the right. Same color across barplots 671 
represent the same Order. See Figures S11-S16 for water and sediment metanetworks. 672 
BR = Brazil, CT = Central Texas, ET = East Texas.  673 
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