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Abstract

Understanding how environmental factors shape biological communi-
ties is a fundamental problem in microbial ecology. Patterns of microbial
diversity have been characterized across a wide range of different envi-
ronmental settings, but the mechanisms generating these patterns remain
poorly understood. Here, we use mathematical modelling to investigate
fundamental connections between chemical power supply to a system and
its biological diversity and community structure. We reveal a strong mech-
anistic coupling between biological diversity and the diversity of chemical
power supply, but also find that different properties of power supply, such
as substrate fluxes and flow and Gibbs energies of reactions, affect com-
munity structure in fundamentally different ways. Moreover, we show
how simple connections between power supply and growth can give rise to
complex patterns of biodiversity across physicochemical gradients, such
as pH gradients. Our findings demonstrate the importance of taking into
account energy fluxes in order to reveal fundamental connections between
community structure and environmental variability, and to obtain a better
understanding of microbial population dynamics and diversity in natural
environments.

INTRODUCTION1

Numerous studies have characterized microbial diversity patterns across dif-2

ferent environmental settings. For example, pH has been found to be a good3

predictor of microbial diversity in soil [1, 2] and temperature is correlated with4
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marine planktonic bacterial richness on a global scale [3, 4], whereas salinity has5

been found to be correlated with microbial diversity in lake sediments [5], soil6

[2, 6] and estuaries [7, 8].7

However, a major challenge in the field of microbial ecology is that our un-8

derstanding of the underlying dynamics generating such patterns remains very9

limited [9–13]. Theoretical analyses of models representing the dynamics of10

highly idealized communities have provided useful insights into the conditions11

that favour co-existence of species, e.g. in terms of substrate uptake kinet-12

ics, [14–17], top down control by grazers [18, 19], and metabolic conversion of13

common substrates [11]. Clearly, however, the biodiversity, structure and func-14

tioning of microbial communities depend not only on species co-existence, but15

also on species abundances. Hence, the dynamics of abundance is of critical16

importance to any mechanistic account of how environmental conditions shape17

microbial communities and their activity.18

At a fundamental level, all organisms have a demand for energy, or power,19

in order to grow and multiply. In principle, the available power supply should20

therefore represent a basic environmental constraint on the abundance of species.21

If this principle holds, then we would expect a strong coupling between power22

supply and diversity in most environments, especially under energy limited con-23

ditions. Indeed, recent gene-centric analyses of oxygen minimum zones have24

found that fluxes of energy seem to be robust predictors of microbial produc-25

tivity and functional community structure [20, 21]. Moreover, in hydrothermal26

systems, the chemical energy landscapes emerging from mixing between reduced27

hydrothermal fluids and oxygenated cold seawater, seem to shape distributions28

of functional groups of bacteria and archaea [22, 23].29

Environmental factors, such as pH, salinity and temperature, affect the30

Gibbs energies of chemical reactions, and thus modulate the chemical power31
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supply utilized by microbial communities [24, 25]. Part of the variation in bio-32

diversity observed along physicochemical gradients, such as pH gradients, may33

therefore ultimately be linked to how those gradients affect energy landscapes.34

Revealing the exact connections between chemical power supply and micro-35

bial diversity through analyses of natural environments is extremely challenging36

due to the high complexity and high number of unknown processes occurring37

in biological systems. For example, fluxes of substrate are often difficult to38

quantify, and extensive co-variation of variables makes it notoriously difficult to39

pinpoint causal effects.40

An alternative to exploring natural environments is to use a theoretical mod-41

elling approach, which makes it possible to isolate the mechanistic relationship42

between power supply and diversity in highly idealized communities. We stress43

that although such models do not mimic real systems in detail, they enable us44

to represent basic principles in a reproducible way and to formulate testable45

hypotheses.46

In this work, we analyse a simple population dynamics model, where growth47

rates are determined by maintenance powers, uptake rates of substrates, and the48

Gibbs energy associated with the oxidation of these substrates. We provide a49

thorough mathematical analysis of the relationship between biological diversity50

and chemical power supply in an energy limited environment. In particular,51

we demonstrate that complex diversity patterns along various chemical gradi-52

ents can emerge from simple connections between power supply and growth.53

Our mathematical framework for relating chemical power supply and cellular54

abundances rests on fundamental thermodynamic principles.55
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MATERIALS AND METHODS56

The model57

We consider an idealized system, where species grow independently from each58

other on one limiting substrate each (Fig. 1). Hence, there is no competition59

for energy sources and no species-species interactions arising from food webs.60

We label consumers and substrates as {1, · · · , N} such that the i-th consumer61

absorbs the i-th substrate. At any given instant of time t, ci(t) will denote the62

number of consumers of type i per unit volume present at that time. We take63

ci to have units of cm−3. Similarly, si(t) will denote the amount of substrate64

of type i (measured in mol) per unit volume, so that si(t) has units of mol ·65

cm−3. Limiting substrates enter the system at fixed rates. Cellular substrate66

uptake rates depend on substrate concentrations in the system, and are modelled67

according to Michaelis-Menten kinetics as:68

ρi(si) = ri
si

k + si
, (1)

where ri (mol · s−1) denotes the maximum uptake rate and k (mol · cm−3)69

is the half-saturation concentration1, that is: ρi(k) = ri/2. Once absorbed70

by a cell, the i-th substrate (Si) undergoes a chemical reaction of the type71

niSi + a1A1 + a2A2 + ...+ anAn −→ b1B1 + b2B2 + ...bmBm, with A1, · · · , An72

denoting any other reactants than Si and B1, · · · , Bm denoting products. The73

corresponding stoichiometric numbers are denoted by ni and a1, · · · , an and74

b1, · · · , bm, respectively. The Gibbs energy of the chemical reaction for each mole75

of the substrate of type i, ∆Gir, in turn depends on the substrate concentration76

as77

1In order to reduce the multiplicity of constants, we take a common value for the half-
saturation constant.

4
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∆Gir = ∆G0
i +RT lnQ , (2)

where ∆G0
i denotes the standard free Gibbs energy for the reaction, R is the78

ideal gas constant and T is the temperature. Moreover, Q denotes the reaction79

coefficient given by80

Q =

∏
(γj [Bj ])

bj/ni

γsisi
∏

(γk[Ak])ak/ni
, (3)

where [·] denotes the concentration (and hence si = [Si]) and γ(·) is the81

activity coefficient for the reactant/product. Letting the activity coefficients82

be constant for all reactants and products, and letting the concentrations be83

constant for all products and reactants, except for si, we have that ∆Gir =84

∆G0
i − RT ln si + Ki, where Ki is the constant RT ln

(
∏
γj [Bj ])

bj/ni

γi(
∏
γk[Ak])

ak/ni
. If we85

define an effective standard Gibbs energy as ∆G0
i eff = ∆G0

i + Ki, the energy86

available from the i-th reaction, which is used as an energy source by the i-th87

consumer, is88

Ei(si) = −∆Gir = E0
i +RT ln si , (4a)

E0
i = −∆G0

i eff > 0 . (4b)

The quantity Ei(si) will be referred to as the (instantaneous) substrate-89

specific reaction energy and hence E0
i will be called the standard substrate-90

specific reaction energy. E0
i will be taken as91

E0
i = E0Ei , (5)

where E0 can be interpreted as the basic energy scale for the considered en-92
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vironment while Ei is a dimensionless factor taking into account the (possible)93

variability of E0
i across consumers. Although values of E0

i will rarely change94

with a common factor for all energy yielding reactions along a chemical gradi-95

ent, settings with high E0 can be associated with environments where negative96

values of ∆G0 are typically high. Hence, E0 levels will typically be lower in97

anaerobic environments than in aerobic environments. However, the E0 level is98

also influenced by the overall chemical composition of a system so that different99

E0 levels may also be found along chemical gradients. As an example, consider100

the oxidation of lactate with sulfate as electron acceptor (2 Lactate + SO2−
4 → 2101

Acetate + 2 HCO−3 + H2S), which has a standard Gibbs energy of -85.3 kJ/mol102

(calculated with the ‘CHNOSZ’ package in R [26]). Assuming that the activity103

coeffient of each reactant or product is one, E0 will shift from 236 kJ/mol in a104

high energy setting (acetate = 10−3 mM; HCO−3 = 0.1 mM; H2S = 0.1 mM;105

SO2−
4 = 50 mM) to 138 kJ/mol in a low energy setting (acetate = 50 mM;106

HCO−3 = 20 mM; H2S = 10 mM; SO2−
4 = 10 mM). The same chemical varia-107

tions would have similar effects on E0 values associated with other substrates108

used by sulfate reducers, such as propionate, butyrate, and ethanol.109

We assume in our model that all organisms have a maintenance power de-110

mand, Pi with units J ·s−1. As in several previous studies [27–29], maintenance111

power is defined here as the power necessary to perform all cellular processes112

except for growth. This includes power used in spilling reactions [30–32] and113

power spent on ‘useful’ functions (e.g. motility). How fast the population of114

the i-th species grows depends on the power available for new biomass produc-115

tion. This power is the difference between the substrate-consumption power116

Ei(si)ρi(si), and maintenance power Pi. The rate of change in substrate con-117

centrations in the system is defined by the flow of substrate in and out of the118

system, as well as the rate of consumption of the substrate. This leads to the119
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following set of ODEs:120

ċi = γi [Ei(si)ρi(si)− Pi] ci , (6a)

ṡi = λ(φi − si)− ρi(si)ci , (6b)

1 ≤ i ≤ N ,

where γi (J−1) is the biomass yield, i.e. the amount of biomass that can be121

built from each unit of energy. In addition, λ (s−1) is a flow rate and φi (mol ·122

cm−3) is the input concentration for the i-th substrate. In Fig. 1b we provide123

typical values for several of the model constants. Unless otherwise specified,124

these values are used in the simulations. In the Supplementary Information125

(SI) we show the main properties of the dynamics generated by the above set126

of differential equations. In particular, the stationary solutions correspond to127

γi [Ei(s
∗
i )ρi(s

∗
i )− Pi] c∗i = 0 , (7a)

λ(φi − s∗i )− ρi(s∗i )c∗i = 0 , (7b)

for all 1 ≤ i ≤ N . The non trivial stationary solution (c∗i > 0) requires128

Ei(s
∗
i )ρi(s

∗
i ) = Pi . (8)

This is a transcendental equation but one may find an explicit expression129

for its solution in terms of the Lambert W -function 2 as (see SI for details)130

2The Lambert W -function is the inverse function of f(z) = zez .
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s∗i =
kPi

riRT

W

(
kPi

riRT
e

riE
0Ei−Pi
riRT

) . (9)

The corresponding asymptotic value for the concentration of the i-th con-131

sumer is then132

c∗i = λ
φi − s∗i
ρi(s∗i )

=
λ

Pi
Eieq

[
φi − e

Ei
eq−E0Ei

RT

]
, (10)

where133

Eieq = Ei(s
∗
i ) = E0Ei +RT ln s∗i , (11)

is the asymptotic value for the reaction energy corresponding to the i-th134

substrate. It can be shown that if s∗i < φi, for every 1 ≤ i ≤ N , every solution135

to the above system with ci(0) > 0 and si(0) > 0, for all 1 ≤ i ≤ N , verifies136

that limt→∞ ci(t) = c∗i and limt→∞ si(t) = s∗i , for all 1 ≤ i ≤ N (for the formal137

proofs, see SI).138

Diversity139

Species richness is defined as the total number of species present in an ecosystem.140

Species evenness, on the other hand, refers to the shape of the distribution of141

relative abundances of the different species. The biological diversity, i.e. the142

α-diversity, depends on both. Similarly, one can extend the concepts of richness,143

evenness and α-diversity to taxonomic groups, genes and functional groups of144

organisms. Here, biological α-diversity is defined according to the Shannon145
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index:146

HB = −
N∑
i=1

bi ln bi , (12a)

bi =
c∗i∑N
j=1 c

∗
j

. (12b)

The instantaneous power supply for the i-th consumer is defined as147

P is(t) = λφi
[
E0Ei +RT ln si(t)

]
, (13)

so that148

lim
t→∞

P is(t) = λEieqφi =: P is . (14)

The power supply diversity is given by149

HP = −
N∑
i=1

pi ln pi , (15a)

pi =
P is∑N
j=1 P

j
s

. (15b)

Variability of HP and HB across a chemical gradient150

The Gibbs energy of a reaction is dependent on the activities (the product of151

activity coefficient and concentration) of reactants and products as in equation152

(2). Hence, even if the concentrations of reactants and products are kept con-153

stant, the Gibbs energy of a reaction might change due to changes in activity154

coefficients, which are dependent on environmental factors such as salinity. If155

we know how concentrations and activities vary along a physicochemical gradi-156

ent, we can use equation (2) to model Gibbs energies along that gradient. We157

9
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consider here the ideal case where the concentration of one compound, acting as158

a substrate or product in all oxidation reactions of si, is fixed at different values159

across a series of independent systems. The activity coefficient of this compound160

is kept constant so that only variability in concentration causes variability in161

activity. As an example, we take such a compound to be H+. We assume the162

fluxes of limiting substrates to be the same for all systems. Hence, we inves-163

tigate how biological diversity varies along a pH gradient. Given a substrate164

concentration si, the reaction energy is thus given by165

Êi(si) = E0Ei +RT ln si + κiniRT pH ln 10 , (16)

where ni is the proton stoichiometry coefficient for the reaction of the i-th166

substrate and κi is either +1, if H+ is a product, or −1 if it is a reactant.167

The stationary solutions now depend explicitly on the pH, which entails the168

pH-dependence of both the biological and power supply diversities (see SI)169

HB(pH) = −
∑
i

b̂i(pH) ln
(
b̂i(pH)

)
, (17a)

HP (pH) = −
∑
i

P̂ is(pH) ln
(
P̂ is(pH)

)
, (17b)

with b̂i(pH) =
c∗i (pH)∑
j c
∗
j (pH) and P̂ is(pH) =

φiÊ
i
eq(pH)∑

j φjÊ
j
eq(pH)

.170

RESULTS171

At population equilibrium, for any given species i, the power supply to the172

system (P is) is determined by the flowrate (λ), the initial substrate concentration173

(φi) and the reaction energy (Eieq) (equation (14)) whereas, in terms of the power174

supply (P is), the abundance of cells for the i-th species (c∗i ) is expressed as175
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c∗i =
P is
Pi

[
1− 1

φi
e

Ei
eq−E0Ei

RT

]
. (18)

Thus, the power supply does not determine uniquely the species abundance.176

In order to explore the relationship between the diversity of power supply and177

biological diversity, we applied equations (12a) and (15a) to several combinations178

of φi, λ, and Gieq (Fig. S2).179

Relationships between biological diversity and parameters180

determining power supply181

In this section we consider the dependence of the biological diversity on the182

number of consumers and on the energy they are able to extract. The number183

of consumers will be taken to vary on the range 10−1000. The variability in E0
i ,184

will be modelled by varying E0 on the range 103−105 J ·mol−1. In addition, we185

will simulate several biologically relevant scenarios in terms of the availability186

of substrates and the efficiency of the consumers, as explained in the following.187

Case 1: Identical power supply for all species. For reference, we first consider188

the trivial case where all consumers have identical traits (except for substrate189

specificity), and where there is no variability in input concentrations of sub-190

strates (φi) or in the molar energy available from substrate oxidation (Ei = 1191

for all i). Clearly, in this situation all equilibrium values will be identical, in192

particular given by193

11
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s∗i = s∗(E0) =
kP0

rmaxRT

W

(
kP0

rmaxRT
e

rmaxE0−P0
rmaxRT

) , (19a)

c∗i = c∗ =
λ

P0
Eeq

[
φ0 − e

Eeq−E0

RT

]
, (19b)

Eeq = E0 +RT ln s∗(E0) , (19c)

φ0 = 1.2 maxE0

{
s∗(E0)

}
, (19d)

where maxE0 {} denotes the maximum over the range of values considered for194

E0. Therefore, the biological diversity (equation(12a)) will be just HB = ln N195

(N being the number of consumers) and hence independent of E0 (Fig. S3).196

Case 2: Effect of variation in input concentration . In order to investigate197

what effect variation of input concentrations (φi) has on the biological diversity,198

we adjust the model from case 1 so that φi depends on the substrate-consumer199

pair as (Fig. S2a):200

φi =

(
103e−

(i−n/2)2

n + 1.2

)
φ0 , φ0 = maxE0

{
s∗(E0)

}
, (20)

where n denotes the number of consumers. Due to the symmetry of these201

distributions around n/2, the relative abundances of consumers satisfy the con-202

straint bi = bn−i. Since the asymptotic value for the concentration of substrates203

(s∗i ) is independent of φi, s
∗
i will in this case be the same for all i (s∗i = s∗(E0))204

while the asymptotic values of the concentrations of consumers will in general205

differ as206

12

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 6, 2020. ; https://doi.org/10.1101/2020.07.05.188532doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.05.188532


c∗i (E
0) =

λ

P0
Eeq [φi − s∗(E0)] , (21a)

Eeq = E0 +RT ln s∗(E0) . (21b)

This is reflected in the decrease of the biological diversity magnitude with207

respect to the maximum value lnN (N being the number of consumers) (Fig.208

2a). Notice that the relative abundance of each consumer is nearly independent209

of E0 (Fig. 3a). This can be understood as follows: From equations (22), the210

relative abundance for the i-th consumer is given by211

c∗i∑
j c
∗
j

=
103φ0e

− (i−n/2)2

n + 1.2φ0 − s∗(E0)

103φ0
∑n
j=1 e

− (j−n/2)2

n + n (1.2φ0 − s∗(E0))
. (22)

Therefore, for most of the values of E0 the dominant term in equation (22)212

will be 103φ0e
− (i−n/2)2

n + 1.2φ0 and hence the relative abundance will be nearly213

E0-independent. Only for low values of E0 is the term s∗(E0) relevant. From214

equation (22) it is also clear that the most abundant consumers correspond to215

those having the highest supply of substrates i.e. highest φi (Fig. 3a). The216

dependence of Eieq on E0 is shown in Fig. S4.217

Case 3: Effect of variation in the energy scale across consumers. In order to218

investigate what effect variation in the energy level of substrate oxidation across219

consumers has on the biological diversity, we adjusted the model from case 1 so220

that E0 depends on the substrate-consumer pair as (Fig. S2b)221

E0
i = E0Ei , Ei = e−

(i−n/2)2

5n + 1/6 , (23)

while222

13
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φi = φ0 = 1.2 maxE0,i

{
s∗i (E

0)
}
, (24a)

s∗i (E
0) =

kP0

rmaxRT

W

(
kP0

rmaxRT
e

rmaxE0Ei−P0
rmaxRT

) , (24b)

c∗i (E
0) =

λ

P0
Eieq

[
φ0 − e

Ei
eq−E0Ei

RT

]
, (24c)

Eieq = E0Ei +RT ln s∗i (E0) . (24d)

Where maxE0,i {} denotes the maximum value over the range of values for223

E0 and over the consumers. As expected, a gradient in the substrate reaction224

energy increases the sensitivity of the biological diversity on the energy scale E0
225

(Fig. 2b), where a clear increase of the diversity occurs for low energy scales.226

The relative abundance of consumers now depends on E0 in a non-trivial way227

(Fig. 3b). Notice that around E0 . 3×104 J ·mol−1 all consumers have almost228

the same abundance (and hence it corresponds to the maximum value of the229

biological diversity in Fig. 2b). Even though the E0-dependence of the relative230

abundance is non-trivial, it still holds, as expected, that the most abundant231

consumers correspond to those with more availability of energy (Fig. 3b). The232

dependence of Eieq on E0 is also non-trivial in this scenario (Fig. S5).233

Case 4: Effect of trade-off between energy acquisition efficiency and main-234

tenance power . A biological trade-off between energy acquisition efficiency and235

maintenance power is arguably a key fitness trade-off in numerous habitats. For236

example, being motile by means of having flagella or having many highly effi-237

cient transporters will typically increase power demands (reducing the fitness),238

but at the same time increase the cellular power supply (increasing the fitness).239

Here, we model this trade-off by adjusting the case 1 model so that the distri-240

butions for the uptake rate (ri) and the maintenance power (Pi) are given by241

14

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 6, 2020. ; https://doi.org/10.1101/2020.07.05.188532doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.05.188532


(Fig. S2c and S2d)242

ri = rmax

(
e−

(i−n/2)2

n/2 +
1

100

)
, (25a)

Pi = P0

(
e−

(i−n/2)2

n/2 +
1

20

)
, (25b)

while the remaining quantities are243

φi = φ0 = 1.2 maxE0,i

{
s∗i (E

0)
}
, (26a)

s∗i (E
0) =

kPi

riRT

W

(
kPi

riRT
e

riE
0−Pi

riRT

) , (26b)

c∗i (E
0) =

λ

Pi
Eieq

[
φ0 − e

Ei
eq−E0

RT

]
, (26c)

Eieq = E0 +RT ln s∗i (E0) . (26d)

The biological diversity seems to be rather insensitive to the efficiency-cost244

trade-off (Fig. 2c) although the relative abundance shows a weak dependence on245

E0 (Fig. 3c). It is worth noting that the most abundant consumers correspond246

to those with low values of both uptake-rate and maintenance power (Fig. 3c),247

although there is little variation between species regarding the energy available248

from each mole of substrate (Eieq) (Fig. S6).249

Case 5: Combined effect of biological trade-off, and variability in φi and E0
i .250

In order to investigate the combined affect of variations considered in cases 2-4,251

we modified the model from case 1 so that:252
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φi =

(
103e−

(i−n/2)2

n + 1.2

)
φ0 , Ei = e−

(i−n/2)2

5n + 1
6 , (27a)

ri = rmax

(
e−

(i−n/2)2

n/2 +
1

100

)
, Pi = P0

(
e−

(i−n/2)2

n/2 + 1
20

)
, (27b)

s∗i (E
0) =

kPi

riRT

W

(
kPi

riRT
e

riE
0Ei−Pi
riRT

) , φ0 = maxE0,i {s∗i } , (27c)

c∗i (E
0) =

λ

Pi
Eieq

[
φ0 − e

Ei
eq−E0Ei

RT

]
, Eieq = E0Ei +RT ln s∗i (E0) . (27d)

In this case, the biological diversity acquires a non-trivial E0-dependence253

with a clear increase towards low values of E0 (Fig. 2d). The relative abundance254

of consumers depends on E0 in a highly complex way (Fig. 3d). Remarkably,255

the particular identity of the most abundant consumer is E0-dependent (Fig.256

3d). For instance, for an energy scale of E0 ∼ 4 × 104 J · mol−1, the most257

abundant consumer is the one with the highest uptake rate (i = 25), whereas258

for lower energy scales (E0 . 2 × 104 J · mol−1) the relative abundance of259

the same consumer drops from ∼ 0.05 to ∼ 0.01, making it one of the least260

abundant consumers (Fig. 3d). The complex dependence of Eieq on E0 (Fig.261

S7) renders all values for Eieq comparatively small on the range E0 ∼ 2 − 4 ×262

104 J · mol−1, while the energy availability is more markedly different across263

consumers for E0 & 4× 104J ·mol−1, the species with the highest uptake rate264

(i = 25) being the most energetically advantaged. For E0 . 2 × 104 J ·mol−1265

however, the i = 25 consumer is one of the least energetically advantaged (Fig.266

S7). The energetic disadvantage of the i = 25 consumer for E0 . 2 × 104 J ·267

mol−1 is clearly reflected in its low relative abundance over these energy scales268

(Fig. 3d). Interestingly, for E0 & 5 × 104 J · mol−1, the i = 25 consumer269

is not the most abundant even though it is the most energetically advantaged270

(i.e it has the highest φi and Ei values). This asymmetric behavior across271
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energy scales clearly emerges from the combined effect of all the above model272

scenarios. At a high energy scale, the percentage difference between the most273

energetically advantaged consumers and those with baseline values for Eieq, is274

relatively small and of little relevance. Therefore the effect of the efficiency-cost275

trade-off becomes more significant. This explains why, for high energy scales,276

the most abundant consumers correspond to those with moderate values for277

both ri and Pi (Fig. 3d).278

Relationship between biological and power supply diversi-279

ties.280

Here we determine how the relationship between biological diversity (HB) and281

power supply diversity (HP , equations (15)) is affected by distributions of φi,282

E0
i , and a biological trade-off between energy acquisition efficiency and power283

demands. We will consider the same distributions and combinations as above284

(cases 2-5).285

Case 2: Effect of variability in φi. We find that the relation between the286

biological diversity (HB) and the power supply diversity (HP ) is nearly linear287

(because HP ' HB) across all energy scales and number of consumers consid-288

ered (Fig. 4a and Fig. S8).289

Case 3: Effect of variability in E0
i . Considering instead distributions for290

E0
i as in equation (23), we find no significant deviation from the linearity rela-291

tionship HP /HB ' 1 over all energy scales (E0) and number of consumers (N)292

considered (Fig. 4b and Fig. S9).293

Case 4: Effect of trade-off between energy acquisition efficiency and mainte-294

nance power . Adding a trade-off between the energy acquisition efficiency and295

the maintenance power increases the complexity in the relationship between HB296

and HP , especially for low values of the number of consumers (Fig. 4c). This297
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implies that the relationship between HP and HB might deviate from linearity298

(Fig. S10). The ratio HP /HB is rather insensitive to the energy scale E0.299

Case 5: Combined effect of biological trade-off, and variability in φi and E0
i .300

Similarly to the case 5 above, when all the above distributions are considered301

simultaneously, the complexity of the relation between the biological diversity302

and the power supply diversity increases significantly (Fig. 4d and Fig. S11).303

It is worth noting that each of the above considered scenarios by itself renders304

the power diversity always greater than the biological diversity (HP /HB ≥ 1).305

However, when all these scenarios are considered simultaneously, the biological306

diversity can become significantly greater than the power diversity (Fig. 4).307

308

309

Global scaling of the power supply310

Increasing the overall power supply (
∑
i λφiE

i
eq) by increasing the flow of fluids311

into the system (i.e. increasing λ), has no effect on HB . This is evident, as λ312

factors out in the calculation of the relative abundance of a species (equation313

(12b)). However, changing the concentration of all substrates in the fluids en-314

tering the system has an effect on HB , even when the diversity of power supply315

HP remains unaffected. To see this, we analysed the response of the biological316

diversity to a global scaling of the power supply, i.e. P is → ΛP is , Fig. 5. In317

particular, under a global rescaling of the initial concentration of substrate as318

φi(Λ) = Λφi (the Gibbs energy at equilibrium population is unaffected by such319

a scaling), the relative abundance of specialists (equation (12b)) is modified to320

bi(Λ) =
Ai −Bi/Λ
A−B/Λ

(28)

where Ai =
Ei

eqφi

Pi
, Bi =

Ei
eq

Pi
s∗i , A =

∑
iAi and B =

∑
iBi. Therefore,321
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for high enough values of the scaling factor it holds that HB(Λ) saturates to322

ln(A) − 1
A

∑
iAi ln(Ai) (Fig. 5). This demonstrates that changing the total323

power supply to the system, may or may not affect HB , depending on the exact324

setting of the system and whether the change in power supply is a result of325

changes in fluid flow or a scaling of the concentration of substrates entering the326

system.327

Biological diversity dependence on pH328

How the biological diversity changes with pH is, within our modelling frame-329

work, largely dependent on the exact chemical and biological setting of the330

system. For example, in a system with only two biological species where H+
331

is produced by one organism and consumed by the other, a decrease in pH332

(i.e. increase in H+) causes an increase of the power supply to the consumer333

of H+ whereas it makes the power supply to the producer decrease. This is334

easily checked using equation (16), from which we readily see that ∂Ei

∂pH < 0 for335

the consumer while ∂Ei

∂pH > 0 for the producer. Depending on the particular336

values of ∆G0 for the chemical reactions used by the two biological species,337

the available energies at population equilibrium (Eieq) may diverge from each338

other (Fig. S12a) or converge to each other and cross (Fig. 6c). This reflects339

on the corresponding stationary concentrations of both species (Fig. 6a). The340

effect on the biological diversity is either a monotonic decrease (Fig. S13b) or341

the presence of a global maximum (Fig. 6b). In a system with many biolog-342

ical species, such connections may become highly complex (Fig. 6e - 6h). In343

particular, even when the shape of the power supply diversity is essentially the344

same as that for very few species (Fig. 6h and 6d), the corresponding biological345

diversity displays a highly complex dependence on the pH (Fig. 6f). These346

analyses demonstrate how HB can vary along a pH gradient, due to a ther-347
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modynamic dependency between pH and power supply. Within our modelling348

framework, the connections between pH and diversity will be similar between349

systems hosting the same biological species, but can be very different between350

systems hosting different biological species.351

DISCUSSION352

This study provides a comprehensive theoretical analysis of the coupling between353

fluxes of chemical energy and α-diversity. We consider a population dynamic354

model where growth is energy limited, which arguably is the case for most of355

Earth’s biosphere [33]. Our model is derived from a few fundamental principles356

relating chemical power supply to a system, cellular rates of substrate uptake,357

cellular power demands, and population size. The model assumes that biolog-358

ical species grow independently of each other on one limiting substrate each,359

hence the species richness is trivially equal to the number of limiting substrates.360

However, by shaping the relative abundance of species, fluxes of energy influence361

the biodiversity in non-intuitive ways.362

The model parameters have a clear relevance to real ecosystems. For ex-363

ample, λ may describe the flow rate of substrates into and out of a fermentor364

or river discharge into and out of a lake; values of φi describe concentrations365

of substrate in the inflow; E0 levels describe typical energy availability per366

mole of substrate oxidation under given environmental conditions, and E0
i val-367

ues describe cell-specific energy availability per mole of substrate. This study368

demonstrates that even within a simple and highly idealised model framework,369

complex relationships emerge between the energetic setting of a system and its370

biodiversity where distributions of φi and E0
i , as well as E0 levels, contribute371

to shaping biodiversity in distinct ways. Adding a biological trade-off between372

energy acquisition efficiency and maintenance power increases this complexity373
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even further.374

Our numerical experiments demonstrate that a global scaling of E0 is suffi-375

cient to create changes in diversity patterns. Interestingly, E0 levels also seem376

to have a large impact on the identity of dominant species in models where both377

E0
i and φi values vary and a trade-off between Pi and ri is considered (Fig. 3d).378

Although values of E0 will rarely change with a common factor for all energy379

yielding reactions along a chemical gradient, the energy scale E0 is a potentially380

important parameter for understanding how environmental conditions shape the381

overall distribution of microbial species. Changing the power supply to a system382

by a scaling of λ has a fundamentally different effect on HB than if the same383

increase in power supply occurs due to a global scaling of φi values – i.e. within384

our modelling framework, HB remains unaffected by a scaling of λ but responds385

to a scaling of φi values, particularly for low E0 values Fig. 5. This finding has386

a clear relevance to natural systems. For example, if we want to predict the387

microbial diversity in an ecosystem, then the concentration of substrates in flu-388

ids flowing into the system may be a stronger predictor than the rate of fluid389

inflow. Note that variability in φi does not affect the chemical composition of390

the system (except for species abundance). Consequently, environments with391

identical in situ environmental conditions may still host microbial communities392

with different HB due to differences in the mode of power supply.393

Despite the emergent complexity of the connections between energy supply394

and diversity, our results suggest that the diversity of power supply (HP ) may395

be an overall good predictor for biological diversity (HB), at least across envi-396

ronments with similarly shaped distributions of φi and E0
i values (Fig. S8-S11).397

Whether or not such connections hold when more complex food webs and species398

interactions are considered, is clearly a topic for future research. We stress, how-399

ever, that a strong correlation between HP and HB does not imply that chemical400
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gradients shape biodiversity patterns in a simple way. Rather, as exemplified401

by our analysis of biodiversity along a pH gradient (Fig. 6), variations in the402

activity of a single chemical compound may have very different effects on HP403

and HB under different chemical and biological settings. Such heterogeneity404

in the relationship between pH and microbial α-diversity has been observed in405

different environments. In a study of 431 geographically widespread and envi-406

ronmentally disparate lakes, no correlation was found between α–diversity and407

pH [34]. In contrast, pH has been found to be a major driver of soil communi-408

ties and is often reported to be one of the strongest predictors of α-diversity [1,409

35]. Reported trends in the relationship between pH and microbial α-diversity410

in soil also differ. In an analysis of 300 grassland and forest soils in Germany,411

α-diversity increased with pH from pH 3 to pH 7.5, but with a plateau around412

pH 5 – 6 [1]. In analyses of numerous types of US soil samples, covering a pH413

range of 3-9, the α-diversity peaked at pH around 6-7. The diversity patterns414

observed in soils globally seem to emerge from an aggregation of multiple simpler415

relationships between pH and the relative abundance of individual taxonomic416

groups from phylum to species level [1, 36–38]. Intriguingly, this emergence of417

complexity from simple pH dependence of species abundance is what we find in418

our model (Fig. 6e,f).419

Based on our modelling results, we propose three expectations that can act420

as working hypotheses for further inquiry:421

• E0 levels and the shape of the distributions of φi and E0
i influence mi-422

crobial biodiversity in different ways. HB is more sensitive to variation in423

the E0
i distribution than to comparable variation in the distribution of φi424

values.425

• HP is a useful predictor for HB across environments with similar E0 levels426

and similarly shaped distributions of φi and E0
i .427
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• There is no general trend between a given chemical gradient and biodiver-428

sity, rather the relationship between them depends on the thermodynamic429

setting of the environment.430

These expectations can be tested directly under chemostat conditions where431

chemical fluxes and the chemical composition of the system can be controlled,432

and microbial communities can be easily monitored – e.g. through 16S rRNA433

gene sequence analyses. In order to set up an experimental system compara-434

ble to what is modelled here, the species grown in the chemostat should have435

distinct substrate spectra so that each species acquires energy by the oxidation436

of one limiting substrate each. In principle, one could analyse diversity pat-437

terns in a system with only two species, but a higher number of species may be438

desirable for a more robust analysis. Estimates of maintenance power can be439

obtained experimentally, taking into account that maintenance power depends440

on environmental conditions, such as temperature [33, 39, 40].441

In the field of microbial ecology, connections between environmental setting442

and biodiversity in natural systems have thus far mostly been explored through443

linear regression analyses or multivariate analyses involving directly measurable444

environmental parameters. Our results suggest that in order to identify driving445

mechanisms of biodiversity and community structure, a concerted effort should446

be put into assessing the role of power supply. Quantifying chemical power447

supply in natural environments can be challenging as it requires accurate infor-448

mation on chemical composition and dominant chemical fluxes in the system.449

Another complicating factor is that variations in the concentration of a chemical450

compound may have both direct and indirect effects on energy fluxes. For exam-451

ple, pH influences energy availability directly in energy yielding reactions where452

protons act as reactants or products, but also indirectly by modulating the ac-453

tivity coefficient or chemical speciation of numerous chemical compounds [24].454
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Hence, there is a need to develop improved methods for estimating energy fluxes455

and including such estimates in ecological studies to test model predictions.456

In summary, our findings highlight the importance of taking into account457

energy supply and energy utilization in microbial systems in order to advance458

our understanding of how the fundamental laws of thermodynamics shape the459

biosphere.460
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FIGURES592

Figure 1: (a) Model Schematic: Substrates flow into and out of a system with a fixed
flowrate (λ). The power supply of the i-th substrate is defined as the product substrate
specific inflow concentration (φi), the flowrate (λ) and the energy available from each mole
of substrate (Ei). Once the i-th substrate enters the system it is homogenously distributed
in the system to the concentration si. The i-th biological species consumes the i-th substrate
only, and at a rate (ρi) dependent on si, modelled according to Michaelis-Menten kinetics
in equation (1), so that the uptake of the i-th substrate by the i-th species is the product
between ρi and the total abundance of the i-th species (ci). The cell specific power supply
is the product Eiρi. Cellular growth rates depend on the power available for growth after a
fixed amount of power has been used for maintenance (equation (6a)). The maximum uptake
rate is a derived constant obtained as rmax = NTAr/NA, with NA denoting the Avogadro
number.
(b) Model parameter values: Model constant values used in this work.

30

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 6, 2020. ; https://doi.org/10.1101/2020.07.05.188532doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.05.188532


Figure 2: Biological diversity (HB) as a function of the number of consumers (N) and E0.
The graphic a shows HB corresponding to a distribution of φi given by equation (20) and
model parameters as in equations (21) ; Graphic b shows HB corresponding to a distribution
of E0

i as in equation (23) and model parameters as in equations (24) ; Graphic c shows
HB corresponding to distributions of ri and Pi as in equations (25) and model parameters
as in equations (26) ; The graphic d shows the biological diversity when all the previous
distributions are considered simultaneously (model parameters as in equations (27)).

Figure 3: Relative abundance of cells as a function of E0 for N = 50 consumers. The
graphics show the relative abundance corresponding to the model parameters used to produce
Fig. 2a, 2b, 2c and 2d, respectively. Due to symmetry, only species labeled 1-25 are shown.
The color gradient indicates species label (red - species 1; blue - species 25).
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Figure 4: Ratio between power diversity (HP ) and biological diversity (HB) as a function of
the number of consumers (N) and the energy scale (E0). The graphics show the ratio HP /HB

obtained with the model parameters used to produce Fig. 2a, 2b, 2c and 2d, respectively.

Figure 5: Biological diversity as a function of the energy scale (E0) and a global scaling
of the input substrate concentration (i.e. φi 7→ Λφi) . The number of specialists is set to

n = 500. We consider distributions for φi, ri and Pi given by φi/φ0 = 103e
− (i−n/2)2

n/2 + 1.2,

ri/rmax = e
− (i−n/2)2

n/2 +1/100 and Pi/P0 = e
− (i−n/2)2

n/2 +1/20. The stoichiometric coefficient
is set to 5 for each substrate and the temperature is set to T = 300K. The remaining
parameters are given the values in Fig. 1b.
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Figure 6: Effect of pH on biological and power supply diversities. The energy scale is set
to E0 = 106 J ·mol−1 and the temperature to T = 300K. We consider a trade-off between
uptake and power maintenance as given in equations (25) while all substrates have the same

input concentration given by φ0 = 5
kP0

rmaxRT

W

 kP0
rmaxRT

e
rmaxE0−P0

rmaxRT

 , where W (z) is the Lambert

W -function. The remaining parameters are set to the values in Fig. 1b.
The graphic a shows the abundance of cells for the case of two specialists where one of them is
an H+-producer (red line) and the other is an H+-consumer (blue line). The stoichiometric
coefficients are set as 5 for the producer and 10 for the consumer ; The graphic b shows the
corresponding biological diversity ; Graphic c shows the pH-dependence of Ei

eq corresponding

to the plot a. The red line shows Eeq for the H+-producer and the blue line corresponds to
the H+-consumer ; The plot d shows the corresponding power supply diversity (HP ) ; The
graphics e, f, g and h show the same as a, b, c and d, respectively, but for 100 specialists.
Half of them (chosen randomly) are set as H+-consumers (red lines) and the other half as
H+-producers (blue lines). The stoichiometric coefficients vary between 5 and 10 and each
specialist is randomly assigned a number within this interval.
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