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Abstract (100 words limit) 

Selective attention enhances cortical responses to attended sensory inputs while 1 

suppressing others, which can be an effective strategy for speech-in-noise (SiN) 2 

understanding. Here, we introduce a training paradigm designed to reinforce attentional 3 

modulation of auditory evoked responses. Subjects attended one of two speech 4 

streams while our EEG-based attention decoder provided online feedback. After four 5 

weeks of this neurofeedback training, subjects exhibited enhanced cortical response to 6 

target speech and improved performance during a SiN task. Such training effects were 7 

not found in the Placebo group that underwent attention training without neurofeedback. 8 

These results suggest an effective rehabilitation for SiN deficits. 9 

 10 
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Introduction 12 

Albeit it is crucial for effective communication, the ability to understand speech in 13 

noise (SiN) differs dramatically even across normal-hearing individuals (Kumar et al., 14 

2007; Moore et al., 2013). One reason for poor SiN understanding can be the 15 

deteriorated selective attention (Bressler et al., 2017), as past studies showed a 16 

correlation between selective attention and SiN performance (Strait and Kraus, 2011). 17 

Compared to poor performers, listeners with good SiN performance exhibit greater 18 

amplitude ratio of cortical responses to target speech compared to responses to noise 19 

(Kim et al., 2019), which may indicate that attentional modulation on neural encoding of 20 

acoustic inputs in the auditory cortex (AC) (Hillyard et al., 1973; Mesgarani and Chang, 21 

2012; Carcea et al., 2017) is a key neural mechanism for successful SiN understanding. 22 

Conventional hearing remediations through amplification cannot improve SiN 23 

understanding ability (Bentler et al., 2008). Instead, perceptual training is often 24 

considered as a solution for SiN difficulties (Whitton et al., 2014; Whitton et al., 2017). 25 

However, a frequently reported problem of perceptual training is that the training effect 26 

does not generalize to other auditory stimuli not used for the training (Fiorentini and 27 

Berardi, 1981; Wright et al., 1997). This generalization problem leads us to consider a 28 

training that directly improves a key strategy for the SiN understanding: a training that 29 

reinforces attentional modulation of auditory cortical responses.  30 

How, then, can we design a perceptual training paradigm that aims to reinforce 31 

attentional modulation of cortical activity? Theories of learning claim that the target of 32 

training is manipulated by rewarding; the determination of feedback (i.e., reward or 33 

punishment) must be based on the target training component (Goodman and Wood, 34 
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2004). Thus, to enhance attentional modulation of cortical responses, a training 35 

paradigm should provide feedback based on the strength of attentional modulation. 36 

Auditory selective attention can be reliably decoded from single-trial 37 

electroencephalographic (EEG) signals (Kerlin et al., 2010; Choi et al., 2013; O'Sullivan 38 

et al., 2015). Since the accuracy of attention decoding from single-trial EEG signals 39 

reflects the strength of attentional modulation on cortical auditory evoked responses 40 

(Choi et al., 2013), providing the result of EEG-based attention decoding as 41 

neurofeedback (Sherlin et al., 2011) may reinforce the users’ attentional modulation of 42 

cortical responses. The goal of the present study is to provide evidence to support the 43 

concept of auditory selective attention training through such an EEG-based 44 

neurofeedback paradigm and explore its efficacy for SiN understanding ability.  45 

Methods 46 

Participants 47 

Twenty young adult subjects with normal hearing, who were native speakers of 48 

American English, were recruited for this study (Mean age = 23.2 years; SD = 1.33 49 

years; 6 (30%) male). Upon agreeing to the study, subjects were randomly assigned to 50 

either the Experimental or the Placebo (control) group (i.e., single-blinded design). All 51 

subjects completed four consecutive weeks of one-hour-per-week training and pre- and 52 

post-training SiN tests at their first and last visits. All study procedures were reviewed 53 

and approved by the University of Iowa Institutional Review Board. 54 

Experimental design and procedures 55 

Attention training procedure: Experimental group 56 
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During each training session, three overlapping auditory streams were 57 

presented; 1) a male voice saying the word “down” repeated four times from the right 58 

(+30° azimuth) loudspeaker, 2) a female voice saying the word “up” repeated five times 59 

from the left (-30°) loudspeaker, 3) and a distractor non-speech noise that sounds like 60 

water bubble played intermittently from the loudspeaker directly in front of the subject. 61 

For each of the 120 trials in each visit, a visual cue (“Target: Up” or “Target: Down”) was 62 

given to direct participants’ attention to either “up” or “down” stream (60 trials each). 63 

After sounds, listeners’ attention was decoded from EEG. A visual feedback (“+” sign on 64 

the screen moving up or down) was given at the end of a trial to indicate the decoded 65 

direction of attention (i.e., attended “up” or “down” stream, respectively). Figure 1 66 

illustrates an example of a trial attending the “down” stream.  67 

 68 

Figure 1. Trial structure of the neurofeedback training assigned to the Experimental 69 

group. This example shows an attend-down trial. 70 

Attention training procedure: Placebo group 71 

The Placebo group listened to the similar three overlapping auditory streams 72 

(i.e., isochronous repetitions of “up” and “down” spoken by the female and male 73 
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speakers) where one of the last 3 or 2 utterances in each stream had 3-semi-tone 74 

higher pitch. As the visual cue directed their attention to either “up” or “down” stream in 75 

each trial, they picked an utterance with a higher pitch in the attended stream by 76 

pressing number key (i.e., an oddball detection task). After the button press, visual 77 

feedback (“Correct” or “Incorrect”) was given based on the accuracy of their button 78 

response. 79 

Pre- and post-training speech-in-noise tests 80 

All subjects, regardless of group designation, completed the same pre- and post-81 

training SiN test. The test used 100 monosyllabic consonant-vowel-consonant English 82 

words from a pre-recorded California Consonant Test with added multi-talker babble 83 

noise. Stimuli were presented at ±3 dB SNR (50 words each) by changing the level of 84 

the noise in random order. At each trial, a target word started 1 second after the noise 85 

onset. At the end of a trial, subjects picked a word they heard from four choices given 86 

on the screen. For further analysis, behavioral and neural data from -3 dB SNR 87 

condition showing larger individual differences and no ceiling effect were used. 88 

ERP analysis 89 

 Sixty-four channel scalp EEG data were recorded during the training and SiN 90 

tasks using the BioSemi ActiveTwo system at a 2048 Hz sampling rate with the 91 

international 10-20 configuration. In order to provide neurofeedback to the Experimental 92 

group, a template-matching method was used to decode attention from single-trial EEG 93 

signals (Choi et al., 2013). EEG recordings from front-central channels (Fz, FCz, FC1, 94 

FC2, Cz) were averaged and re-referenced to linked mastoids. EEG signals were 95 
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bandpass-filtered between 1 and 9 Hz, baseline corrected, and then compared to two 96 

pre-generated template EEG waveforms obtained from cortical evoked responses to 97 

“up” and “down” streams. The attention was decoded by finding the template that has a 98 

larger correlation coefficient with the EEG signal. For analyzing EEG data obtained 99 

during SiN tasks, after applying a bandpass filter between 1 and 30 Hz using a 2048-100 

point FIR filter, epochs were extracted and baseline-corrected. After correcting ocular 101 

artifacts using independent component analysis (Jung et al., 2000), the epochs were 102 

averaged at each electrode. Since we use non-repeating naturally spoken words as 103 

stimuli, the latency of event-related potentials (e.g., N1) varied across words. To obtain 104 

clean N1 from averaged evoked response, every epoch was rearranged according to 105 

the median N1 latency of its corresponding word obtained from the grand mean of 50 106 

normal hearing subjects who completed the same SiN task in our laboratory previously.   107 

In order to project the sensor-space data into source-space, the inverse operator 108 

was estimated using minimum norm estimation (MNE) (Hämäläinen, 1989; Gramfort et 109 

al., 2013; Gramfort et al., 2014) based on assumptions of multiple sparse priors (Friston 110 

et al., 2008) on an average template brain. To focus on non-speech-specific attention 111 

effect on AC while avoiding confounding factors related to language processing, we 112 

chose right – instead of left – Heschl’s gyrus (HG) as the region of interest. 113 

Statistical analysis 114 

Two-way mixed ANOVAs were conducted on both behavioral performance and 115 

neural data. To get clear ERPs and perform statistical analysis on neural data, we 116 

computed leave-one-out grand averages (i.e., jackknife approach). In addition, ERP 117 

envelopes were extracted by applying a 4 – 8 Hz bandpass filter and Hilbert transform 118 
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for ERP magnitude comparisons. The peak magnitudes of ERP envelopes obtained at 119 

~230 ms after the word onset from the right HG were compared between conditions. As 120 

post hoc analysis, one-tailed t-tests were conducted with Bonferroni correction as we 121 

were only interested in the improvement (i.e., one direction) in the behavioral 122 

performance (accuracy) and acoustic encoding at AC after training. Inflated F-ratios and 123 

t-values due to the jackknife approach were adjusted (Luck, 2014). 124 

Results 125 

Behavioral performance 126 

 We found that the behavioral performance (accuracy) did not improve after 127 

training [F1,18 = 3.37, p = 0.083] on average; however, accuracy did increase 128 

significantly in the Experimental group [t9 = -2.37, p = 0.042], but not in the Placebo 129 

group [t9 = -0.71, p = 0.49] (Figure 2A). We found no group effect [F1,18 = 2.49, p = 130 

0.13] on average; however, the post hoc analysis showed a significant difference in 131 

performance between two groups after training [t18 = 2.15, p = 0.045], but not before 132 

training [t18 = 0.60, p = 0.56] (Figure 2A). No interaction between training and group 133 

[F1,18 = 0.38, p = 0.55] was revealed.  134 

Attention during training 135 

During the attention training, both Experimental and Placebo groups showed a 136 

significant effect of attention on evoked responses as reflected in the single-trial 137 

attention decoding accuracy being higher than chance level (one-sample t-test, 138 

Experimental group: t9 = 8.34, p < 0.001, Placebo group: t9 = 5.12, p < 0.001). The 139 

mean accuracy of single-trial attention decoding was 59.1% and 58.1%, with a standard 140 
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deviation of 3.5% and 5.0% for the Experimental and Placebo groups, respectively. 141 

There was no significant difference in the single-trial classification accuracies between 142 

the groups (two-sample t-test, p = 0.59). The mean accuracy of the oddball detection in 143 

the Placebo group was 98.8%, with a 1.4% standard deviation. 144 

Source-space ERPs to SiN 145 

Source-space data obtained from the right hemisphere HG showed that the AC 146 

response to SiN increased significantly after training [F1,18 = 4.78, p = 0.042]; notably, 147 

the training effect only appeared in the Experimental group [t9 = -3.16, p = 0.023], but 148 

not in the Placebo group [t9 = -0.14, p = 1] (Figure 2D). The F-test results revealed no 149 

group effect [F1,18 = 1.94, p = 0.18] on average; the post hoc analysis showed no 150 

significant difference in AC response to SiN between two groups before [t18 = -0.41, p = 151 

1] and after training [t18 = 2.024, p = 0.12] (Figure 2D). There existed no significant 152 

interaction between training and group [F1,18 = 3.89, p = 0.064].  153 

 154 

Figure 2. Training effects on A. accuracy, B. sensor-space evoked responses (thick 155 

lines: envelopes) and topographies, C. source time courses (current envelopes with ±1 156 

standard error) in the right HG, and D. the peak evoked magnitude in the right HG. A 157 

significant training effect on the peak evoked magnitude is found in the Experimental 158 

group. 159 
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Discussion 160 

 This study demonstrated that the neurofeedback training of auditory selective 161 

attention is effective for improving neural encoding and accurate speech recognition in 162 

background noise. As it is evident that attentional gain control process (Hillyard et al., 163 

1998) is involved in a successful speech-in-noise perception (Mesgarani and Chang, 164 

2012; Kim et al., 2019), our training paradigm was designed to reinforce attentional 165 

modulation of auditory cortical evoked potentials by providing visual feedback 166 

determined by an EEG-based attention decoder. After four weeks of training, we found 167 

consistent improvement in listeners’ SiN performance and acoustic encoding at AC only 168 

in the Experimental group. 169 

 Better representation of target speech at AC may reflect an active sensory gain 170 

control for the Experimental group after training (Shinn-Cunningham and Best, 2008). 171 

This is consistent with the previous finding that showed attention could modulate the 172 

sound representation in AC and improve behavioral performance (Mesgarani and 173 

Chang, 2012; Carcea et al., 2017). Attention may increase the gain at the neural 174 

population level by increasing the response of neurons to the target word. Learning or 175 

training can improve selective enhancement of neural response, that may develop over 176 

time and last longer, and improve speech perception (Froemke et al., 2013). The 177 

training effect found in the present study may develop and last over weeks and result in 178 

an improvement in speech perception.  179 

 Our Experimental group training was differentiated from the Placebo training in 180 

that the feedback reward was determined by participants’ neural activity, not by 181 

behavioral performance. Similarly to the reports by Whitton et al. (2014) and Whitton et 182 
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al. (2017), the present study showed that the effect of neurofeedback training was 183 

transferred to SiN performance, while the Placebo group did not show such 184 

generalizability. The generalizability of the training effect observed in the present study 185 

may indicate that the reinforcement of attentional modulation on cortical responses may 186 

improve a key neural strategy for the SiN understanding. In contrast, our Placebo 187 

training provided a primary task of detecting pitch oddballs from the attended stream. 188 

Feedbacks provided to the Placebo group informed how their oddball detection was 189 

accurate, not how strong their attention was. Our results may indicate the “indirect” 190 

primary task that does not provide a reward shaped by the strength of attention would 191 

not exhibit generalizability of its training effect to the speech in noise task. 192 
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