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Abstract 17 

Tissue-specific transcription factors are frequently inactivated in cancer. To fully dissect 18 

the heterogeneity of such tumor suppressor events requires single-cell resolution, yet 19 

this is challenging because of the high dropout rate. Here we propose a simple yet 20 

effective computational strategy called SCIRA to infer regulatory activity of 21 

tissue-specific transcription factors at single-cell resolution and use this tool to identify 22 

tumor suppressor events in single-cell RNA-Seq cancer studies. We demonstrate that 23 

tissue-specific transcription factors are preferentially inactivated in the corresponding 24 

cancer cells, suggesting that these are driver events. For many known or suspected 25 

tumor suppressors, SCIRA predicts inactivation in single cancer cells where differential 26 

expression does not, indicating that SCIRA improves the sensitivity to detect changes in 27 

regulatory activity. We identify NKX2-1 and TBX4 inactivation as early tumor 28 

suppressor events in normal non-ciliated lung epithelial cells from smokers. In summary, 29 

SCIRA can help chart the heterogeneity of tumor suppressor events at single-cell 30 

resolution. 31 

 32 

Keywords: single-cell RNA-Seq; cancer; transcription factor; tumor suppressor; regulatory 33 

activity; cell-type heterogeneity 34 

 35 

Introduction 36 

Tissue-specific transcription factors are required for the differentiated state of cells in a given 37 

tissue 1. They are often inactivated in cancer, which is associated with a lack of differentiation, 38 

a well-known cancer hallmark 2-6. Many of these tissue-specific transcription factors (TFs) 39 

encode tumor suppressors and their inactivation may constitute driver events that are thought 40 

to occur in the earliest stages of carcinogenesis 7-9. Estimating regulatory activity of such 41 

tissue-specific transcription factors (TFs) in both normal and cancer tissue is therefore a 42 

critically important task, as this can reveal which normal tissues are at risk of neoplastic 43 

transformation 10. There are two main reasons why this task should be performed at 44 

single-cell resolution 11-13. First, TFs control cell-identity 1,14, and thus, estimation of 45 

regulatory activity in bulk tissue is subject to confounding by cell-type heterogeneity. Second, 46 

to fully characterize cancer heterogeneity requires identifying putative tumor suppressor 47 

events at the most fundamental scale, i.e. the single-cell 15-18.  48 

However, estimating regulatory activity of TFs at single-cell resolution is hard, because of the 49 

typically high dropout rate and low genomic coverage of single-cell assays 19-21. In the 50 

context of single-cell RNA-Seq assays, one could in principle use TF expression as a 51 

surrogate marker of TF-activity (i.e. regulatory activity reflecting the effect of the TF on 52 

downstream expression of direct and indirect targets), and while this strategy works well on 53 
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expression data derived from bulk tissue (see e.g. 1), it is unclear how well this works for 54 

scRNA-Seq assays 22,23. Thus, it is also unclear how best to infer regulatory activity in the 55 

majority of scRNA-Seq cancer studies that are performed in solid epithelial tissues. 56 

Here we present a novel strategy called SCIRA (SCalable Inference of Regulatory Activityin 57 

single cells), which applies an existing regulatory inference method 8 to a suitably powered 58 

bulk multi-tissue RNA-Seq dataset to identify tissue-specific TFs and their regulons (i.e. their 59 

direct and indirect targets), from which regulatory activity in single cells can then be 60 

estimated. We comprehensively validate SCIRA and demonstrate through a power calculation 61 

and application to real scRNA-Seq data, that SCIRA can estimate regulatory activity even for 62 

TFs that are highly expressed only in relatively minor fractions (~5%) of cells within a bulk 63 

tissue. We subsequently apply SCIRA to several scRNA-Seq datasets containing both normal 64 

and cancer cells, where it reveals preferential inactivation of tissue-specific TFs in 65 

corresponding single cancer cells, an observation strongly consistent with analogous results 66 

obtained in bulk tissue 5, whilst also revealing novel tumor suppressor events at single-cell 67 

resolution. We further showcase an important application of SCIRA to identify tumor 68 

suppressor events in single normal cells (lung epithelial cells) exposed to a cancer risk factor 69 

(smoking). Our results underscore the critical need for a method like SCIRA, since ordinary 70 

differential expression fails to reveal the same insights, even after imputation of dropouts. 71 

 72 

Results  73 

Inferring regulatory activity with SCIRA: rationale 74 

SCIRA identifies tissue-specific TFs, builds regulons for these TFs, and uses these regulons 75 

to estimate regulatory activity of the TFs in scRNA-Seq data (Methods). SCIRA adapts the 76 

SEPIRA algorithm (previously published by us 8) to infer tissue-specific TFs and regulons 77 

from the large GTEX multi-tissue bulk RNA-Seq dataset (8555 samples, 30 tissue-types) 24 78 

(Methods, Fig.1A). We note that the tissue-specific TFs are derived by adjusting for cell-type 79 

(stromal) heterogeneity, which can otherwise strongly confound differential expression 80 

analyses (Methods) 25. To justify inferring TFs and their regulons from bulk tissue data, we 81 

performed a careful power calculation, which revealed that SCIRA has reasonable sensitivity 82 

to detect tissue-specific TFs that are highly expressed even if only in a relatively 83 

underrepresented cell-type within the tissue (Methods, Fig.1B). For instance, using 84 

reasonable values for the average fold-change (SI fig.S1), we estimated that for tissues like 85 

lung, pancreas and liver, for which there are more than 100 samples in GTEX (total number 86 

of samples is 8555), sensitivity to detect TFs expressed in only 5% of cells within the tissue 87 

(i.e. a minor cell fraction MCF=0.05) were generally still over 50% (Fig.1B, SI fig.S2). The 88 

inferred TF-regulons can subsequently be applied to suitably-matched scRNA-Seq data in a 89 

linear regression framework 26 (Methods) to estimate regulatory activity for each single cell. 90 

By using the actual regulon of the TF, this inference should be robust to dropouts, i.e. even if 91 
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the TF itself is not detected across most if not all of the cells in the study (Fig.1C). Finally, 92 

one can construct regulatory activity maps across the relevant cells within the tissue (Fig.1C), 93 

which can reveal deregulated TFs at single-cell resolution. 94 

 95 

Validation of SCIRA in normal tissue 96 

As a proof of principle we applied SCIRA to four tissue-types (lung, liver, kidney and 97 

pancreas) using the GTEX dataset to infer corresponding tissue-specific TFs and regulons. 98 

We identified on average about 30 tissue-specific TFs for each of the 4 tissue-types and on 99 

average about 40 to 50 regulon genes per TF (SI tables S1-S4, Supplementary File 1). The 100 

TF lists contained well-known tissue-specific factors: e.g. for liver, the list included the 101 

well-known hepatocyte factors HNF1A, HNF4A and FOXA1 (HNF3A); for lung, the list 102 

included well-known lung alveolar differentiation factors TBX2 and FOXA2 27-29, and FOXJ1, 103 

a factor required for ciliogenesis 30. In order to test the reliability of the TFs and regulons, we 104 

performed four separate validation analyses.  105 

First, although there is no logical requirement for regulon genes to be direct targets 31, some 106 

enrichment for direct binding targets is expected. Approximately 65% of our TF-regulons 107 

exhibited statistically significant enrichment for corresponding ChIP-Seq TF-binding targets 108 

(SI fig.S3-S4), as determined using data from the ChIP-Seq Atlas 32 (Methods). For instance, 109 

in the case of liver we could find ChIP-Seq data for 12 of the 22 liver-specific TFs, and for 110 

9/12 we observed statistically significant enrichment (SI fig.S3D-E). In many instances, 111 

proportions of regulon genes that were direct TF binding targets were considerable. For 112 

example, for the liver-specific TF HNF4G, 57% of its 37 regulon genes (i.e. 21 genes) were 113 

bound by HNF4G within +/- 5kb of the gene’s transcription start site (TSS) (SI fig.S3D). For 114 

FOXA1, 8 of its 10 regulon genes were bound by FOXA1 within +/-1kb of the TSS (SI 115 

fig.S3D). Statistical significance estimates were independent of the choice of threshold on 116 

binding intensity values (Methods), and also robust to parameter choices in SCIRA (SI 117 

fig.S5, Methods). Second, we were able to validate the tissue-specificity of the regulons and 118 

derived regulatory activity estimates in independent multi-tissue bulk RNA-Seq (ProteinAtlas 119 

33) and microarray data from Roth et al 34 (SI fig.S6-S9). Given these successful validations, 120 

we estimated on average only 10% of TF regulon-gene associations to be false positives (SI 121 

fig.S10). Third, we collated and analysed scRNA-Seq datasets representing differentiation 122 

timecourses into mature epithelial cell-types present within the given tissues, encompassing 123 

two species (human & mouse) and 3 different single-cell technologies (Fluidigm C1, 124 

DropSeq & Smart-Seq2) (SI table S5, Methods) 35-38. We reasoned that most of our 125 

tissue-specific TFs would exhibit higher regulatory activity in the corresponding mature 126 

differentiated cells compared to the immature progenitors, a hypothesis that we were able to 127 

strongly validate in each of the four tissue-types (SI fig.S11-S14). These results could not 128 

have arisen by random chance and were not seen if we used tissue-specific TFs from other 129 

unrelated (non-epithelial) tissues like skin or brain (SI fig.S15). We further observed that, 130 
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owing to the high dropout rate, SCIRA’s regulatory activity estimates were much more 131 

sensitive than expression itself (SI fig.S11-S14, Fig.2A). As a concrete example, SCIRA’s 132 

regulatory activity estimates for lung alveolar differentiation factors TBX2 and FOXA2 27-29 133 

were higher in the mature alveolar cell-types compared to the immature progenitors, as 134 

required, whilst expression levels could not detect an increase (SI fig.S11). SCIRA displayed 135 

improved sensitivity and prevision (i.e. lower false discovery rate) over differential 136 

expression (DE) even after application of imputation methods (scImpute 39, MAGIC 40 , 137 

Scrabble 41), or even when compared to other regulatory activity estimation methods like 138 

SCENIC/GENIE3 42 (Fig.2A-C, Methods). SCIRA also displayed improved sensitivity over 139 

the combined use of VIPER 43,44 and the dorothea TF-regulon database 45,46 (“VIPER-D”), as 140 

well as lower FDRs (Fig.2A-C, Methods). This is noteworthy given that the TF-regulons 141 

from dorothea are not tissue-specific. Fourth, we validated the power calculation underlying 142 

SCIRA by applying it to a differentiation timecourse scRNA-Seq dataset in liver 36, which 143 

revealed the expected bifurcation of hepatoblasts into hepatocytes and cholangiocytes, as well 144 

as identifying cholangiocyte specific factors, despite their very low frequency (5-10%) in 145 

liver tissue (SI fig.S16B-E, SI fig.S17). We note that the bifurcation and dynamic expression 146 

patterns were not revealed when analyzing TF expression levels (SI fig.S18), further 147 

supporting the view that SCIRA can improve the sensitivity to detect correct patterns of 148 

TF-activity. 149 

 150 

 151 

SCIRA predicts inactivation of tissue-specific TFs in corresponding tumor epithelial 152 

cells 153 

Next, we applied SCIRA to a recent lung cancer scRNA-Seq study (Lambrecht et al) 47 which 154 

profiled a total of 52,698 cells (10X Chromium) derived from 5 lung cancer patients (2 lung 155 

adenoma carcinomas – LUAD, 2 lung squamous cell carcinomas – LUSC and 1 non-small 156 

cell lung cancer -NSCLC). We hypothesized that many of our previously identified 157 

lung-specific TFs would be inactivated in lung epithelial tumor cells 5,8, since lack of 158 

differentiation is a well-known cancer hallmark 6. We used the same dimensional reduction 159 

and tSNE-approach as in Lambrecht et al 47, to first categorize specific clusters of cells as 160 

normal alveolar epithelial (n=1709) and tumor epithelial (n=7450) (Fig.3A). We verified that 161 

the alveolar cells expressed relatively high levels of an alveolar marker (CLDN18) (Fig.3B), 162 

whilst both alveolar and tumor epithelial cells expressed relatively high levels of EPCAM, a 163 

well-known epithelial marker (Fig.3C). As noted by Lambrecht et al, the great majority of 164 

alveolar cells were from non-malignant specimens representing normal (squamous) 165 

epithelium and clustered together irrespective of patient-ID 47, whilst cancer cells clustered 166 

according to patient (Fig.3A) 47. Next, we used SCIRA to estimate regulatory activity for all 167 

38 lung-specific TFs in each of the (1709+7450) cells, and computed t-statistics of 168 

differential activity between alveolar and tumor epithelial cells. Remarkably, 35 out of the 38 169 
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TFs exhibited a statistically significant (Bonferroni adjusted P < 0.05) reduction in regulatory 170 

activity in tumor cells (Fig.3D, Wilcox-test P<1e-8). Using 1000 Monte-Carlo 171 

randomizations of the regulons, we verified that this number of inactivated TFs could not 172 

have arisen by chance (Fig.3D, Monte Carlo P<0.001). Among the most significantly 173 

inactivated TFs, we observed FOXA2, a TF required for alveolarization and which regulates 174 

airway epithelial cell differentiation 28,29 (Fig.3E), and NKX2-1, a master TF of early lung 175 

development 48 (SI fig.S19). Other inactivated TFs included SOX13, which has been broadly 176 

implicated in lung morphogenesis 49, HIF3A, which has been shown to be highly expressed in 177 

alveolar epithelial cells and thought to be protective of hypoxia-induced damage 50, and the 178 

aryl hydrocarbon receptor (AHR), which is a regulator of mucosal barrier function and 179 

activation of which enhances CD4+ T-cell responses to viral infections 51,52 (SI fig.S19). 180 

Importantly, these findings would not have been obtained had we performed DE or VIPER-D 181 

analysis on the 38 TFs (Fig.3D & 3F). Indeed, according to a Wilcoxon rank sum test, 21 TFs 182 

were differentially expressed between alveolar and tumor epithelial cells, but with no clear 183 

trend towards underexpression in tumor cells (Fig.3D). For instance, according to single-cell 184 

DE analysis, TFs such as TBX4 and FOXJ1, both with important roles in lung tissue 185 

development, were not underexpressed in tumor cells, yet found to be inactivated according 186 

to SCIRA (Fig.3F). Given that TBX4 and FOXJ1 have been found to be 187 

inactivated/underexpressed in bulk lung cancer tissue 8, this further supports the view that 188 

SCIRA improves sensitivity over ordinary DE analysis. To explore this further we compared 189 

the differential activity and differential expression patterns between normal and cancer cells 190 

to the differential expression patterns in the two TCGA lung cancer studies 53,54. A stronger 191 

agreement with the bulk RNA-Seq data of both TCGA cohorts was observed for SCIRA’s 192 

differential activity profiles compared to differential expression or when using VIPER-D to 193 

infer differential activity (Fig.3F-G). Indeed, approximately 30 of the 38 TFs exhibited 194 

differential activity patterns at the single-cell level that were consistent with differential 195 

expression in bulk, whilst for differential expression and VIPER-D this number was only 196 

around 10 (Fig.3H).  197 

To test the generality of our observations, we next considered a scRNA-Seq study profiling 198 

normal colon epithelial cells and tumor colon epithelial cells 55. We first used SCIRA to 199 

derive a colon-specific regulatory network from GTEX, resulting in 56 colon-specific TFs 200 

and associated regulons (SI table S6, Supplementary File 1). This list included many well 201 

known intestinal factors such as the enterocyte differentiation factors CDX1/CDX2 56, the 202 

crypt epithelial factor KLF5 57 and the intestinal master regulator ATOH1 58,59. Next, we 203 

obtained TF-activity (TFA) estimates for all 56 colon-TFs across a total of 432 single cells 204 

(160 normal epithelial + 272 cancer epithelial, C1 Fluidigm) from 11 different colon-cancer 205 

patients. Hierarchical clustering over this TFA-matrix revealed clear segregation of single 206 

cells by normal/cancer status and not by patient (Fig.4A). Of the 56 TFs, 23 exhibited 207 

differential activity (Bonferroni P<0.05) with the great majority (87%, 20/23) exhibiting 208 
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inactivation, indicating a strong statistical tendency for inactivation in cancer cells (Binomial 209 

test, P-3e-5, Fig.4B). Once again, had we relied on TF-expression itself, no segregation of 210 

single-cells by normal/cancer status was evident (Fig.4A), and only 13 TFs were 211 

differentially expressed (Bonferroni P<0.05) with no obvious trend towards underexpression 212 

in cancer (Binomial test, P=0.13, Fig.4B). Of note, while CDX1 and CDX2 were found to be 213 

both inactivated and underexpressed, several TFs like KLF5 or ATOH1 with established 214 

tumor suppressor roles in colorectal cancer 60,61, were only found inactivated via SCIRA 215 

(Fig.4C). Interestingly, using VIPER-D there was only moderate correlation with SCIRA’s 216 

predictions, with VIPER-D not predicting preferential inactivation and failing to predict 217 

inactivity of established tumor suppressors like KLF5 and CDX1 (Fig.4B). Performing the 218 

analysis on a per-patient level and focusing on the 3 patients with the largest numbers of both 219 

normal and tumor epithelial cells, revealed a similar skew towards inactivation with 8, 15 and 220 

21 TFs exhibiting significantly lower activity across cancer cells (Fig.4D), and with 221 

effectively no TF exhibiting increased activity. For several TFs and for each of the 3 patients, 222 

inactivation events were seen across most if not all cancer cells (Fig.4D): for instance, this 223 

was the case for ATOH1, or the autophagy inducer TRIM31 62, thus implicating disruption of 224 

this novel and specific autophagy pathway in colon cancer 63. Using the 5 patients with both 225 

normal and cancer cells profiled, we estimated the frequency of inactivation of all 56 226 

colon-specific TFs across the 5 patients, which revealed that CDX2 and TRIM31 were 227 

inactivated in 80% of the patients, whilst ATOH1, HNF4A, CDX1 and TBX10 were 228 

inactivated in 60% (SI fig.S20).  229 

 230 

Tissue-specificity of TF inactivation in cancer 231 

The observed frequent inactivation of tissue-specific TFs in corresponding single cancer cells 232 

suggests that these could be driver events. To obtain supporting evidence for this, we 233 

reasoned that TFs specific for other unrelated tissue-types would exhibit much lower 234 

frequencies of inactivation. We thus compared the lung and colon-specific TFs to additional 235 

TFs specific to skin and brain, two non-epithelial tissue types, as well as to stomach-specific 236 

TFs which should bear more resemblance to colon-TFs. Consistent with our expectation, in 237 

the case of lung cancer cells, the TFs specific to colon, stomach, brain and skin exhibited 238 

much lower frequencies of inactivation compared to lung-TFs (SI fig.21A). In the case of 239 

colon cancer cells, colon and stomach-specific TFs exhibited the highest inactivation 240 

frequencies, and were about two-fold higher than for skin and brain-specific TFs (SI 241 

fig.S21B). 242 

 243 

Inactivation of tumor suppressors in normal cells at risk of cancer 244 

An important application of SCIRA is to normal cells at risk of cancer, which could reveal 245 

early inactivation of key tumor suppressor TFs. To demonstrate this, we applied SCIRA to a 246 

scRNA-Seq dataset (CEL-Seq) encompassing 564 lung epithelial cells, obtained from 247 
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bronchial brushings of 6 healthy individuals (6 never-smokers, 6 current smokers) 64 248 

(Methods). We inferred regulatory activity profiles for our 38 lung-specific TFs in each of 249 

the 564 lung epithelial cells, and subsequently used t-stochastic neighborhood embedding 250 

(tSNE) 65 for dimensional reduction and visualization, as well as DBSCAN 66 for clustering 251 

(Methods), which revealed two main clusters (Fig.5A). Overlaying the transcription factor 252 

activity (TFA) profiles over the cells revealed that FOXJ1 (a marker for ciliated cells) was 253 

significantly more active in the smaller cluster, suggesting that this cluster defines ciliated 254 

cells (Fig.5A). Confirming this, FOXJ1 expression was also higher in this cluster, whilst 255 

expression of basal (KRT5), club (SCGB1A1) and goblet (MUC5AC) markers were higher in 256 

the larger cluster, suggesting that this larger cluster is composed of non-ciliated lung 257 

epithelial cells (i.e. basal cells, goblets and club cells) (Fig.5B). Of note, FOXJ1 was one of 258 

the few transcription factors for which activity and expression were reasonably well 259 

correlated. For instance, TBX4 exhibited higher regulatory activity in non-ciliated cells 260 

(Fig.5A), yet it exhibited a 100% dropout rate across all lung epithelial cells (Fig.5C). Other 261 

key lung-specific TFs with very high expression in lung tissue, as assessed in our GTEX bulk 262 

RNA-Seq data, but with 100% dropout rates included GATA2 and TBX2 (Fig.5C). Thus, 263 

SCIRA is able to retrieve biologically relevant variation in regulatory activity of key TFs, 264 

when expression alone can not. 265 

Despite the tSNE diagram being derived from the regulatory activity profiles of only 38 266 

lung-specific TFs, the larger cluster of non-ciliated cells revealed clear segregation of cells 267 

according to whether they derived from current or never-smokers, suggesting that smoking 268 

exposure has a dramatic effect on the regulatory activity of lung-specific TFs (Fig.5D). We 269 

verified this by applying PCA to the activity profiles over the non-ciliated cells only (Wilcox 270 

test P=5e-32, Fig.5D). We identified a total of 6 TFs exhibiting significantly lower and 6 271 

exhibiting significantly higher regulatory activity in the cells of smokers (Fig.5E). 272 

Interestingly, among the 6 TFs exhibiting lower activation in cells from smokers, all 6 were 273 

also seen to be inactivated in single lung cancer cells, whilst 2 of the 6 exhibiting activation 274 

in exposed cells also exhibited increased activity in lung cancer (Fig.5F). Among the 6 TFs 275 

exhibiting lower activity in both lung epithelial cells of smokers and cancer patients, it is 276 

worth noting NKX2-1, a putative tumor suppressor for lung cancer as noted recently 48, and 277 

TBX4 , another putative tumor suppressor for non-small cell lung cancer 67,68. Among the TFs 278 

exhibiting increased regulatory activity in smokers we observed EHF (Figs.5E), a 279 

transcription factor which has been implicated in goblet cell hyperplasia 69. Consistent with 280 

this, goblet hyperplasia is observed in lung tissue from smokers 64, and according to SCIRA 281 

EHF regulatory activity was correlated with expression of the goblet cell marker MUC5AC 282 

(Fig.5G), whereas EHF expression itself was not, highlighting once again that SCIRA can 283 

recapitulate biological differential activity patterns not obtainable via TF-expression alone. 284 

Given that there is goblet cell expansion in smokers 64, the increased regulatory activity of 285 

EHF and other TFs like ELF3 in smokers could reflect this increase. Of note ELF3 becomes 286 
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inactivated in lung cancer cells (Fig.5F), which is consistent with its role in lung epithelial 287 

cell differentiation being impaired in cancer 70 71. 288 

 289 

SCIRA is scalable to millions of cells 290 

Finally, we note that SCIRA can estimate regulatory activity in a manner that scales linearly 291 

with the number of profiled cells, thus making it easily scalable to scRNA-Seq studies 292 

profiling 100s of thousands to a million cells. In the application to the kidney DropSeq 293 

dataset (SI table S5) which profiled 9190 cells, runtime was under 4 minutes for 4 processing 294 

cores, and under 10 minutes with the regulon-inference step in GTEX included. We 295 

performed a subsampling analysis on the kidney set, recording runtimes for manageable 296 

numbers of cells, fitted linear functions on a log-log scale, and subsequently estimated 297 

runtimes for larger scRNA-Seq studies profiling up to a million cells (Methods). In a 298 

scRNA-Seq study profiling one million cells, SCIRA would take approximately 100 minutes 299 

on 4-cores, or only 4 minutes on a 100-node HPC, whereas other methods would run for 300 

months on the same 100-node HPC (Fig.2D).  Only VIPER-D exhibited a marginally 301 

improved computational efficiency compared to SCIRA (Fig.2D), owing to the fact that the 302 

TF-regulons are derived from a database and are thus precomputed. Thus, SCIRA offers 303 

scalability where most competing methods do not. 304 

 305 

Discussion 306 

Dissecting the cellular heterogeneity of cancer, preinvasive lesions and normal tissue at 307 

cancer risk is a critically important task for personalized medicine, and it is clear that 308 

mapping such cellular heterogeneity needs to be done at single-cell resolution. In the context 309 

of cancer risk prediction, the ability to measure gene expression in single normal cells from 310 

individuals exposed to an environmental risk factor, could help identify those at most risk of 311 

cancer development. Our rationale was to focus on transcription factors that are important for 312 

the specification of a given tissue-type, since there is substantial evidence that 313 

inactivation/silencing of these transcription factors is an early event in oncogenesis, present 314 

in normal cells at risk of neoplastic transformation and thus preceding cancer development 315 

itself 2-4,7-9,72-74. It follows that identifying such early “tumor suppressor” inactivation events 316 

in normal cells at cancer risk in single-cell data could allow prospective identification of 317 

individuals at higher risk of cancer development. As demonstrated here, using scRNA-Seq 318 

profiles to identify silencing of tissue-specific TFs lacks sensitivity due to the high dropout 319 

rate. Instead, we have presented an alternative strategy called SCIRA, which we have very 320 

comprehensively validated on many scRNA-Seq datasets profiling normal cells, 321 

demonstrating that it can substantially improve the sensitivity and precision to detect correct 322 

dynamic TF-activity changes at single-cell resolution.  323 
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 324 

Application of SCIRA to two scRNA-Seq datasets profiling both normal and cancer cells 325 

revealed preferential inactivation of tissue-specific TFs in the corresponding cancer cells, an 326 

important biological and clinical insight, which we would not have obtained had we used 327 

differential expression. These results are not only in line with analogous findings obtained in 328 

bulk RNA-Seq cancer studies 5, but helps to further establish which key tissue-specific TFs 329 

are inactivated in cancer epithelial cells independently of changes in stromal composition, 330 

which could otherwise confound results. For instance, in a tissue like lung, at least 40% of 331 

cells are stromal cells 75, and so differential expression changes seen in bulk cancer tissue 332 

may not be observed or may not be due to expression changes in the epithelial compartment. 333 

On the other hand, some consistency with observations in bulk data should be expected, and 334 

in this regard we stress that, unlike SCIRA, differential expression approaches on single-cell 335 

data did not reveal any consistent patterns with those observed at the bulk level. This 336 

inconsistency between single cell and bulk differential expression in cancer is therefore 337 

another important insight which demonstrates the need and added value of SCIRA to uncover 338 

key tumor suppressor events. For instance, many of the lung-specific TFs which SCIRA 339 

predicts to be inactivated in lung tumor epithelial cells (e.g. NKX2-1, FOXA2, FOXJ1, AHR, 340 

HIF3A) 30 implicate key cancer-pathways (lung development, alveolarization, ciliogenesis, 341 

immune-response, hypoxia-response), and their inactivation likely represent key driver events. 342 

Supporting this, epigenetically induced silencing of NKX2-1 has been proposed to be a key 343 

driver event in the development of lung cancer 48,76. In the case of colon, our results in the 344 

scRNA-Seq data confirm a tumor suppressor role for TFs like CDX1/CDX2 77, but also serve 345 

to reinforce a novel putative tumor suppressor role for ATOH1 78, for the autophagy inducer 346 

TRIM31 62 and KLF5 79. Of note, these last three TFs did not exhibit clear significant 347 

differential expression changes, yet they were highly significant via analysis with SCIRA.  348 

In the application to normal lung cells from smokers and non-smokers, no preferential 349 

inactivation of lung-specific TFs in smokers was observed, consistent with observations 350 

derived from buccal (squamous epithelial) cells 8. This would suggest that in normal cells 351 

exposed to a risk factor, such inactivation events may not yet be under significant selection 352 

pressure, yet some of the inactivation events, if present, could be important indicators of 353 

future cancer risk. In line with this, out of the 6 lung-specific TFs that were observed to be 354 

inactivated in normal lung cells from smokers, all 6 were also inactivated in lung cancer cells. 355 

This list included NKX2-1 and TBX4, both of which have tumor suppressor functions 67,76. We 356 

also observed 6 lung-specific TFs exhibiting increased regulatory activity in cells from 357 

smokers, which included ELF3, XBP1 and EHF. Interestingly, EHF has been implicated as a 358 

driver of goblet hyperplasia 69, which is observed in the lung tissue of smokers 64. Our data 359 

supports the view that EHF is a marker of goblet cells and that the increased expression in 360 

smokers could be due to an increase in relative goblet cell numbers as observed by Duclos 64. 361 

Whilst ELF3 has been reported to be a tumor suppressor in many epithelial cancer types, its 362 
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function has also been observed to be highly cell-type specific with reported oncogenic roles 363 

in lung adenoma carcinoma (LUAD) 80. Here we observed ELF3 activation in the lung 364 

non-ciliated cells from smokers and overexpression in bulk lung squamous cell carcinoma 365 

(LUSC) tissue, but inactivation in single lung cancer cells (predominantly LUAD) and no 366 

expression change in bulk-tissue LUAD. Thus, in future it will be important to profile larger 367 

numbers of cells in the lung epithelial compartment of healthy smokers and non-smokers, 368 

including lung cancer patients from LUAD, LSCC, NSCLC subtypes, to determine if 369 

differential activity patterns are specific to individual lung-epithelial cell subtypes. 370 

Here, and due to obvious limitations on data availability at single-cell resolution, we could 371 

not assess the specific mechanism associated with tissue-specific TF silencing in cancer. 372 

However, in the context of bulk-tissue data from the TCGA, we have previously shown that 373 

the preferential silencing of tissue-specific TFs in cancer is predominantly associated with 374 

promoter DNA hypermethylation 5. Indeed, inactivation through somatic mutation or 375 

copy-number loss/deletion is not a frequent event when considering tissue-specific TFs 5, in 376 

contrast to other gene-families like kinases, epigenetic enzymes or membrane receptors 377 

which do exhibit more frequent genetic alterations 81,82. Thus, it is very likely that the 378 

observed inactivation of tissue-specific TFs in individual cancer cells is also associated with 379 

promoter DNA hypermethylation. 380 

 381 

In summary, we have presented and validated a computational strategy called SCIRA that can 382 

improve the sensitivity and precision to detect regulatory activity changes of key 383 

tissue-specific transcription factors in scRNA-Seq data, and that can reveal tumor suppressor 384 

events at single-cell resolution which would otherwise not be possible using differential 385 

expression. SCIRA has shown that tissue-specific TFs are preferentially inactivated in 386 

corresponding cancer cells, suggesting that these could be tumor suppressor driver events. 387 

Importantly, SCIRA also provides a scalable framework in which to infer tissue-specific 388 

regulatory activity in scRNA-Seq studies profiling even millions of cells. We envisage that 389 

SCIRA will be particularly useful for scRNA-Seq studies aiming to identify altered 390 

differentiation programs in normal tissue exposed to cancer risk factors, preinvasive lesions 391 

and cancer at single-cell resolution. This is important as this may offer clues and insight into 392 

the earliest stages of oncogenesis. 393 

 394 

 395 

 396 

Methods  397 

 398 

Single cell data and preprocessing 399 

We analyzed scRNA-Seq data from a total of 6 studies: 400 
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Lung Differentiation set: This scRNA-Seq Fluidigm C1 dataset derives from Treutlein et al 35. 401 

Normalized (FPKM) data were downloaded from GEO under accession number GSE52583 402 

(file: GSE52583.Rda). Data was further transformed using a log2 transformation adding a 403 

pseudocount of 1, so that 0 FPKM values get mapped to 0 in the transformed basis. After 404 

quality control, there are a total of 201 single cells assayed at 4 different stages in the 405 

developing mouse lung epithelium, including embryonic day E14.5 (n = 45), E16.5 (n = 27), 406 

E18.5 (n = 83) and adulthood (n = 46).  407 

Liver Differentiation set: This scRNA-Seq Fluidigm C1 dataset was derived from Yang et al 408 

36, a study of differentiation of mouse hepatoblasts into hepatocytes and cholangiocytes. 409 

Normalized (TPM) data was downloaded from GEO under accession number GSE90047 (file: 410 

GSE90047-Singlecell-RNA-seq-TPM.txt). Data was further transformed using a log2 411 

transformation adding a pseudocount of 1, so that 0 TPM values get mapped to 0 in the 412 

transformed basis. After quality control, 447 single-cells remained, with 54 single cells at 413 

embryonic day 10.5 (E10.5), 70 at E11.5, 41 at E12.5, 65 at E13.5, 70 at 14.5, 77 at 15.5 and 414 

70 at E17.5.  415 

Pancreas Differentiation set: This scRNA-Seq Smart-Seq2 data derives from Yu et al 37, 416 

profiling single cells during murine pancreas development, from embryonic stages E9.5 to 417 

E17.5. Normalized (TPM) data was downloaded from GEO (GSE115931, file: 418 

GSE115931_SmartSeq2.TPM.txt”). Data was further log2-transformed with a pseudocount of 419 

1. After quality control, 2195 cells remained: 113 (E9.5), 211 (E10.5), 263 (E11.5), 252 420 

(E12.5), 421 (E13), 338 (E14.5), 242 (E15), 185 (E16.5), 170 (E17.5). 421 

Kidney-organoid Differentiation set: This scRNA-Seq DropSeq data derives from Wu et al 38, 422 

profiling single cells in a kidney organoid differentiation experiment (Takasato protocol) 423 

starting out from iPSCs, with 218 cells profiled at day-0, 1741 at day-7, 1169 at day-12, 1097 424 

at day-19 and 4965 at day-26. Read count data for all 9190 high quality cells was 425 

downloaded from GEO (GSE118184, file: GSE118184_Takasato.iPS.timecourse.txt”). 426 

Counts were scaled for each cell by the total read count, multiplied by a common scaling 427 

factor of 104 and subsequently log2-transformed with a pseudocount of 1.  428 

Normal and cancer lung tissue dataset: This scRNA-Seq 10X Chromium dataset was derived 429 

from 47, a study profiling malignant and non-malignant lung samples from five patients. We 430 

downloaded all .Rds files available from ArrayExpress (E-MTAB-6149), which included the 431 

processed data and t-SNE coordinates, as well as cluster cell-type assignments. After quality 432 

control, a total of 52,698 single-cells remained of which 1709 were annotated as alveolar, 433 

5603 as B-cells, 1592 as endothelial cells, 1465 as fibroblasts, 9756 as myeloid cells, 24911 434 

as T-cells and 7450 as tumor epithelial cells. A small cluster of 212 cells was annotated as 435 

normal epithelial, yet they derived from a malignant sample 47, so given this inconsistency we 436 

removed these cells from any analysis, as according to us their “normal” nature is far from 437 

clear. The alveolar epithelial cell cluster derived mainly from non-malignant samples and was 438 

therefore considered most representative of the normal epithelial cells found in lung. 439 
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Normal and cancer colon dataset: This scRNA-Seq Fluidigm C1 dataset is derived from 55 , a 440 

study profiling malignant and non-malignant colon epithelial cells from 11 patients. We 441 

downloaded the normal mucosa and tumor epithelial cell FPKM files from GEO under 442 

accession number GSE81861. In total there were 160 and 272 normal and tumor epithelial 443 

cells, respectively, as determined by the original publication. 444 

Normal lung from smokers and non-smokers. This scRNA-Seq dataset is derived from 64, 445 

where FACS sorted lung epithelial cells from 6 never-smokers and 6 smokers were analysed 446 

with the CEL-Seq platform. We downloaded the raw UMI counts from GEO under accession 447 

number GSE131391. We followed a similar normalization and QC procedure as described in 448 

64, although we used a more stringent cell quality criterion, removing any cells with a total 449 

UMI count less than 2400. This threshold was chosen because the total UMI count per cell 450 

exhibit a natural bimodal distribution, with the value 2400 defining the natural decision 451 

boundary between low and high quality cells. This resulted in 564 epithelial cells. For these 452 

cells data was further normalized by scaling UMI counts to TPM, adding a pseudocount of 1 453 

and finally taking the log2 transformation. We note that results reported here were unchanged 454 

if not scaling UMI counts, i.e. if using log2(UMI+1). 455 

 456 

 457 

Bulk tissue mRNA expression datasets 458 

For applying SCIRA to data from epithelial tissues, we used the bulk RNA-Seq dataset from 459 

the GTEX resource 24 to infer regulons. Specifically, the normalized RPKM data was 460 

downloaded from the GTEX website and annotated to Entrez gene IDs. Data was then log2 461 

transformed with a pseudocount of +1. This resulted in a data matrix of 23929 genes and 462 

8555 samples, encompassing 30 tissue types (adipose=577, adrenal gland=145, bladder=11, 463 

blood=511, blood vessel=689, brain=1259, breast=214, cervix uteri=11, colon=345, 464 

esophagus=686, fallopian tube=6, heart=412, kidney=32, liver=119, lung=320, muscle=430, 465 

nerve=304, ovary=97, pancreas=171, pituitary=103, prostate=106, salivary gland=57, 466 

skin=891, small intestine=88, spleen=104, stomach=193, testis=172, thyroid=323, uterus=83, 467 

vagina=96). In addition, we also analyzed the bulk RNA-Seq dataset from the lung TCGA 468 

studies 53,54, which was normalized as described in our previous publications 5,83.  469 

 470 

The SCIRA algorithm 471 

The SCIRA algorithm has two main steps: (i) construction of a tissue-specific regulatory 472 

network and (ii) inference of regulatory activity in single cells for the transcription factors 473 

(TFs) in the network constructed in step (i). 474 

(i) Construction of tissue-specific regulatory network: For a given tissue-type, SCIRA infers a 475 

corresponding tissue-specific regulatory network using a greedy partial correlation algorithm 476 

framework called SEPIRA 8. The greedy partial correlation approach is similar in concept to 477 

the GENIE3 algorithm 84 (which was found to be one of the best performing 478 
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reverse-engineering methods in the DREAM-5 challenge 85), in the sense that it infers the 479 

candidate regulators for each gene in turn. However, we use partial correlations instead of 480 

regression trees. By computing partial correlations over the GTEX dataset, which consists of 481 

8555 samples across 30 different tissue-types, it is possible to identify direct regulatory 482 

relations that are relevant in the context of differentiation and development. Briefly, having 483 

log-transformed the GTEX RNA-Seq set, as described previously 8, we first select genes with 484 

a standard deviation larger than 0.25, so as to remove genes with no significant expression 485 

variation across the 8555 samples. A total of 19478 genes with Entrez gene annotation were 486 

left after this step. Next, we used a list of 1385 human TFs as defined by the 487 

TRANSC_FACT term of the Molecular Signatures Database 86, of which 1313 had 488 

representation in our filtered GTEX set. Genes not annotated as TFs, were considered 489 

putative targets, and we first estimated Pearson correlations between the 1313 TFs and the 490 

18165 targets. Using a conservative P-value threshold of 1e-6 to define putative interactions 491 

between TFs and targets, we next selected TFs with at least 10 putative targets. For each 492 

target-gene g and its putative TF regulators f, we then computed partial correlations between 493 

g and f, as  494 

���� � � Ω���Ω��Ω��

 

where Ω is the inverse of the expression covariance matrix, which is of dimension 495 

(1+nf)*(1+nf) with nf the number of putative TF regulators. Importantly, by estimating the 496 

partial correlations in a greedy fashion, i.e. for each target gene separately, the inverse of the 497 

covariance matrix is always well defined (no need to estimate a pseudo-inverse) since nf << 498 

8555, i.e much less than the number of samples over which the partial correlations are 499 

estimated. In other words, we estimate the partial correlations between each target gene and 500 

its candidate regulators from the marginal analysis above, and we do this for each target gene 501 

separately, which thus provides a natural regularization. Partial correlation thresholds of +/- 502 

0.2, or even +/- 0.1 are statistically significant given the large number of samples (8555) in 503 

the GTEX set (as verified by random resampling), so we use either one of these thresholds 504 

depending on the number of TFs desired, although the number of resulting TFs is similar for 505 

both choices of threshold. This then defines a global regulatory network between TFs and 506 

target genes, where indirect dependencies have been removed due to the use of partial 507 

correlations 87. 508 

The final step is the construction of a tissue-specific regulatory network as the subnetwork 509 

obtained by identification of tissue-specific TFs, i.e. TFs with significantly higher expression 510 

in the given tissue type compared to all other tissues combined. This is done using the 511 

empirical Bayes moderated t-test framework (limma) 88. Importantly, a second limma 512 

analysis is performed by comparing the tissue of interest to individual tissue types if these 513 

contain cells that are believed to significantly infiltrate and contaminate the tissue of interest. 514 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 5, 2020. ; https://doi.org/10.1101/2020.07.04.187781doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.04.187781
http://creativecommons.org/licenses/by-nd/4.0/


15 

 

Thus, in the case of liver we perform two limma analyses: comparing liver to all other 515 

tissue-types, and separately, liver to only blood and spleen combined, since blood/spleen 516 

consists of immune cells which are known to infiltrate liver tissue accounting for 517 

approximately 40% of all cells found in liver 75. We require a liver-specific TF to be one with 518 

significantly higher expression in both comparisons: when comparing to all tissues we use an 519 

adjusted P-value threshold of 0.05 and a log2(FC) threshold of log2(1.5)≈0.58, whereas when 520 

comparing to blood/spleen we only use an adjusted P-value threshold of 0.05. This ensures 521 

that the identified TFs are not driven by a higher immune cell (IC) infiltration in the tissue of 522 

interest compared to an “average” tissue where the IC infiltration may be low. As applied to 523 

liver and using a significance threshold on partial correlations of +/- 0.2, SCIRA/SEPIRA 524 

inferred a network of 22 liver-specific TFs and their regulons, with the average number of 525 

genes per regulon being 41, and with range 10 to 151. This network is available as an Rds file 526 

“netLIV.Rds” in Supplementary File 1. The same procedure was used for the other 527 

tissue-types and the corresponding networks for pancreas (netPANC.Rds), kidney 528 

(netKID.Rds) and colon (netCOL.Rds) are also available in Supplementary File 1. 529 

We note that regulon genes could be selected further based on whether they are direct binding 530 

targets of the TF, as for instance determined by a ChIP-Seq assay. However, we did not 531 

pursue this strategy here, for a number of good reasons. First, the definition of a regulon, as 532 

originally proposed by Andrea Califano’s lab 31,89, does not require a member of the regulon 533 

to be a direct target of the regulator. Indeed, it could well be that a downstream gene in the 534 

pathway is an equally good if not even better marker of upstream regulatory activity. Thus, it 535 

makes sense to keep all inferred regulon genes in the regulon, following previous studies. On 536 

the other hand, some enrichment for direct targets is to be expected, and we indeed checked 537 

enrichment for ChIP-Seq binding targets using data from the ChIP-Seq Atlas 32. A second 538 

reason is that reducing the number of regulon genes also means a loss of power, specially so 539 

if the regulon genes are bona-fide markers of upstream regulatory activity. Third, ChIP-Seq 540 

data is still very limited in the number of cell-types profiled, which may not include a 541 

representative cell-type of the tissue in question. In other words, the sensitivity of a ChIP-Seq 542 

assay is also limited and if a gene is not predicted to be a binding target in cell-type “A” it 543 

could still be a direct target in the tissue/cell-type of interest. 544 

 545 

(ii) Estimation of regulatory activity: Having inferred the tissue-specific TFs and their 546 

regulons, we next estimate regulatory activity of the TFs in each single cell of a scRNA-Seq 547 

dataset. This is done by regressing the log-normalized scRNA-Seq expression profile of the 548 

cell against the “target-profile” of the given TF, where in the target profile, any regulon 549 

member is assigned a +1 for activating interactions, a -1 for inhibitory interactions. All other 550 

genes not members of the TF’s regulon are assigned a value of 0. The TF-activity is then 551 

defined as the t-statistic of this linear regression. Before applying this procedure the 552 

normalized scRNA-Seq dataset is z-score normalized, i.e. each gene is centered and scaled to 553 
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unit standard deviation. 554 

We note that SCIRA relies on the tissue-specific regulatory network inferred in step-1. As 555 

such, SCIRA is particularly useful for scRNA-Seq studies that profile cells in the tissue of 556 

interest, either as part of a developmental or differentiation timecourse experiment, or in the 557 

context of diseases where altered differentiation is a key disease hallmark e.g. cancer and 558 

precursor cancer lesions. 559 

 560 

Pseudocode implementing SCIRA algorithm 561 

The previously described steps implementing SCIRA can be run using the functions provided 562 

as part of the SEPIRA Bioconductor package, or preferably from the SCIRA-package: 563 

https://github.com/aet21/scira  . Briefly, assuming the normalized GTEX RNA-Seq dataset 564 

matrix is stored in an R-object called “data.m”, with rows labeling genes and columns 565 

labeling samples, and assuming we choose liver as our tissue of interest, we would run the 566 

following set of commands in order to construct the liver-specific regulatory network: 567 

 568 

� net.o <- sciraInfReg(data=data.m, sdth=0.25, sigth=1e-6, pcorth=0.2, spTH=0.01, 569 

minNtgts=10, ncores=4) 570 

� livernet.o <- sciraSelReg(net.o, tissue=colnames(data.m), toi=”Liver”, cft=”Blood”, 571 

degth=c(0.05,0.05), lfcth=c(log2(1.5),0)) 572 

 573 

In the above colnames(data.m) labels the tissue-type of each sample (column) of the data 574 

matrix. Note that the parameter cft labels the confounding tissue-type, which in this case is 575 

blood, because immune-cells, the main component of blood, is a major contaminant cell-type 576 

in liver-tissue 75. One important parameter in the above function, which directly controls the 577 

number of retrieved TFs is spTH: this parameter controls the number of significant 578 

correlations in the marginal analysis to be included in the subsequent partial correlation 579 

analysis. By default this is set at 1% of all possible interactions, but increasing this threshold 580 

to 5 or 10% will increase the number of interactions and thus the number of retrieved TFs. 581 

The tissue-specific regulatory network can be found in the livernet.o$netTOI entry, which is a 582 

matrix with columns labeling the tissue-specific transcription factors and rows labeling gene 583 

targets. The entries in this matrix are either 1 for a positive interaction, 0 for no interaction, 584 

and -1 for inhibitory associations. This matrix provides the regulons to the function for 585 

estimating regulatory activity in a bulk sample or in single-cells. For instance, assuming that 586 

we have a log-normalized scRNA-Seq dataset representing liver development in humans, 587 

scRNA.m, we would obtain regulatory activity estimates for each of the transcription factors 588 

present in livernet.o$netTOI, by running: 589 

 590 

� actTF.m <- sciraEstRegAct(data=scRNA.m, regnet=livernet.o$netTOI, 591 

norm=”z”,ncores=4) 592 
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 593 

where the norm argument specifies that genes in the scRNA.m data matrix should be z-score 594 

normalized, before estimating regulatory activity. We note that the output object actTF.m 595 

would define a matrix with rows labeling the tissue-specific transcription factors and columns 596 

labeling the single-cells, and with matrix entries representing regulatory activities. We further 597 

note that the tissue-specific regulatory networks derived from GTEX, as used in this work, 598 

are provided in Supplementary File 1. Full details of how to run scira are provided in the 599 

vignette of the scira R-package. 600 

 601 

 602 

Power-calculation for SCIRA 603 

We derived a formula to estimate the sensitivity (which we shall denote by SE) of SCIRA to 604 

detect highly expressed cell-type specific TFs in a given tissue, as a function of the 605 

corresponding cell-type proportion in the tissue. The main parameters affecting the power 606 

estimate include the relative sample sizes of the two groups being compared (n1 and n2), the 607 

average expression effect size e (in effect the average expression fold-change) of the cell-type 608 

specific TFs compared to all other cell-types, which will depend on the proportion of the 609 

cell-type (w) within the tissue of interest. Indeed, it is not difficult to prove that under 610 

reasonable assumptions 90, the sensitivity (SE) is given by the formula 611 

��	
, �� , �� , 
	��, ��� � 2	1 � � ��	
�, �� , ��, 
	��, �, ����
��

�	
) 612 

where t is the statistic value (we assume a t-statistic) dictating the significance threshold, and 613 

where TA  denotes the non-central Student’s t-distribution with non-centrality parameter μ 614 

equal to  615 

� � � ������ � ��

  
	��, �, �� 

We note that the effect size e is of the form |� � � � �|/� , i.e. the ratio of the difference in 616 

average expression between the two groups divided by a common pooled standard deviation 617 

that reflects the intrinsic variance in each group. We note that we are assuming that the bulk 618 

RNA-Seq data has been log-normalized so that e is derived from the log-transformed data. 619 

For instance, if a gene (say a TF) shows the same expression distribution for all cell-types in 620 

the tissue of interest compared to all other tissues, then � � � � � � log�	%  
�/% 

�� where %  

 621 

denotes the average intensity (i.e. FPKM/TPM) value in group-i. Assuming that the given TF 622 

is only more highly expressed in a cell-type that makes up only a proportion w of the cells in 623 

the tissue of interest, then 
 � log�&�� ' � � 1 ' 	1 � ��( /� where FC is the average 624 

fold-change. To estimate the sample sizes for the power calculation, we note that the median 625 

number of samples per tissue-type in GTEX is approximately 170. We took a more 626 

conservative value of n1=150 to represent the number of samples in our tissue of interest, 627 
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with the rest of samples in GTEX, i.e. n2=8555-150=8405, defining the number of samples 628 

from other tissue-types. To estimate the average expression fold-change FC for top DEGs 629 

between single-cell types in a tissue, we analysed expression data from purified FACS sorted 630 

luminal and basal cells from the mammary epithelium 91. Because FACS sorted cell 631 

populations are still heterogeneous, we thus expect the resulting fold change estimates to be 632 

conservative. Using limma 88, we estimated FC to be 8 for the highest ranked DEGs, and 633 

approximately 6 for the top 200-300 DEGs. We note that these estimates are for a scaled basis 634 

where σ=1. Thus, we approximate the effect size 
 � log�&�� ' � � 1 ' 	1 � ��( with 635 

FC=8 or 6, so as to consider two different effect size scenarios. For the proportion w we 636 

assumed two values: w=0.05 and w=0.2 representing 5 and 20% of the cells in the tissue of 637 

interest. Note that if w=1, all cells within the issue of interest exhibit differential expression 638 

at magnitude FC and if w=0, no cell is differentially expressed. Finally, to compute the 639 

sensitivity as a function of the significance level threshold t, we used the parameters above as 640 

input to the TOC function of the OCplus R-package 90.  641 

 642 

 643 

Implementation of scImpute, MAGIC and SCRABBLE 644 

scImpute (version 0.0.9) 39 was run with default parameters (labeled =FALSE, drop_thre=0.5) 645 

in all analysis, with the exception of the Kcluster parameter, which was chosen to reflect the 646 

number of underlying cell-types in each tissue analysed: Liver=3, Lung=4, Pancreas=15, 647 

Kidney= 14, i.e this parameter was set for each tissue following the numbers of cell-types as 648 

specified in the original papers. For MAGIC (version 1.4.0) 40 in liver, lung and pancreas, we 649 

used the following parameters: k = 15, alpha= 5, t = “auto”, knn_dist.method= “euclidean”. 650 

For kidney, because of the much larger number of cells, we chose larger values for k=30 and 651 

alpha=10. The number of PCs (npca) was determined in all tissues as the number of PCs 652 

explaining 70% of variation in the data, as recommended 40. For SCRABBLE (version 0.0.1) 653 

41, the average bulk RNA-seq expression vector was computed using the corresponding 654 

tissue-type samples from the GTEX dataset. The alpha parameter in the function was chosen 655 

for each tissue-type, following the recommendations given in the paper: Liver=1, Lung=1, 656 

Pancreas=0.1, Kidney=0.1. The other parameter values were beta = 1e-5, gamma = 0.01. For 657 

all other parameters, we used the default choices: nIter = 20, error_out_threshold = 1e-04, 658 

nIter_inner = 20, error_inner_threshold = 1e-04. 659 

 660 

 661 

Implementation of GENIE3 and SCENIC 662 

SCENIC is a pipeline of 3 distinct methods (GENIE3, RcisTarget, AUCell), each with its own 663 

Bioconductor package. We used the following versions: GENIE3_1.4.0, RcisTarget_1.2.0 and 664 

AUCell_1.4.1. Because the lung, liver and pancreas scRNA-Seq sets are from mice, we used 665 

as regulators a list of 1686 mouse TF from the RIKEN lab (http://genome.gsc.riken.jp/TFdb/) 666 
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together with the homologs of the human TFs in our lung, liver and pancreas specific 667 

networks if these were not in the RIKEN lab list. GENIE3 was run with default parameter 668 

choices (treeMethod=”RF”, K=”sqrt”, nTrees=1000) but on a reduced data matrix where 669 

genes with a standard deviation less than 0.5 were removed. Regulons of TFs were obtained 670 

from GENIE3 using a threshold on the inferred weights (representing the regulatory strength 671 

and termed “importance measure” in GENIE3) of 0.01, and only positively correlated targets 672 

were selected using a Spearman correlation coefficient threshold > 0. In SCENIC, the targets 673 

are then scanned for enriched binding motifs using RcisTarget. We used the 7species.mc9nr 674 

feather files for both 500bp upstream of the TSS and also for a 20kb window centered on the 675 

TSS. Any enriched motifs in both analyses were combined to arrive at a single list of 676 

enriched motifs and associated TFs. We then found the overlap with the annotated TFs from 677 

GENIE3, and only those that overlapped were considered valid TF regulons. For these we 678 

then estimated a regulatory activity score using an approach similar to the one implemented 679 

in AUCell, but one that is threshold independent, and therefore an improvement over the 680 

method used in AUCell. Specifically, the activity score was defined as the AUC of a 681 

Wilcoxon rank sum test, whereby in each single cell, genes are first ranked in decreasing 682 

order of expression, and the AUC-statistic is then derived by comparing the ranks of the 683 

regulon (all positively correlated) genes to the ranks of all other genes. 684 

 685 

Implementation of VIPER-D 686 

In order to assess the importance of the tissue-specific regulons used in SCIRA, we compared 687 

SCIRA to a method that uses non tissue-specific TF-regulons. We note that there are tools 688 

like PAGODA 92 that can infer activity scores from gene sets, yet a regulon also entails 689 

directionality (i.e. positive or inhibitory interaction) information, which also needs to be 690 

assessed. Hence, motivated by the recent work by Holland et al 46, we decided to test SCIRA 691 

against the combined use of VIPER 43 and the dorothea TF-regulon database 45. Of note, 692 

VIPER infers regulatory activity in any given sample/cell given a TF-regulon, and that the 693 

dorothea TF-regulon database is not tissue-specific, although one of the sources in building 694 

dorothea is the same GTEX dataset used by SCIRA to build its tissue-specific regulons. We 695 

ran viper with the following argument choices: dnull = NULL, pleiotropy = FALSE, nes = 696 

TRUE, method = c("none"), bootstraps = 0, minsize = 5, adaptive.size = FALSE, eset.filter = 697 

TRUE, mvws = 1, cores = 4. Dorothea also provides likelihood information that a given 698 

regulatory interaction in the database is true, and VIPER allows such likelihood information 699 

to be used when inferring regulatory activity. We ran VIPER-D in two ways: (i) assigning the 700 

same likelihood to all listed regulatory interactions (ie equal weights), and (ii) by using the 701 

likelihood information. In Dorothea, the likelihood is encoded as an ordinal categorical 702 

variable: A, B, C, D, E, with A indicating highest confidence. In order to run this with VIPER, 703 

we transformed these categories into confidence weights using the mapping: A=1, B=0.8, 704 

C=0.6, D=0.4, E=0.2 . Results in this manuscript are reported for the case of equal weights. 705 
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We note that these likelihoods vary mostly between TFs, and not between the targets of a 706 

given TF, which is why results are largely unchanged had we used the likelihood information. 707 

 708 

 709 

Differential Expression (DE) analysis 710 

In this work we compare SCIRA to ordinary DE analysis, as implemented using a Wilcoxon 711 

rank sum test for binary phenotypes, or using non-parametric Spearman rank correlations for 712 

ordinal phenotypes (e.g. multiple timepoints or stages). The use of a non-parametric test, 713 

which is distribution assumption free, works well for scRNA-Seq with high dropout rates. 714 

When comparing statistics of differential activity from SCIRA to those from DE analysis, we 715 

transform Wilcoxon rank sum or Spearman test P-values into z-statistics using a quantile 716 

normal distribution, taking into account the magnitude of the AUC value from the Wilcoxon 717 

test (i.e. AUC values > 0.5 correspond to higher expression in one group compared to other, 718 

whereas AUC < 0.5 represents the opposite case), or the sign of the Spearman correlation 719 

coefficient in the case of ordinal phenotypes. 720 

 721 

Comparative sensitivity and precision analysis 722 

We compared SCIRA to seven other methods in their sensitivity and precision to identify 723 

gold-standard sets of tissue-specific TFs. These gold-standard sets were constructed from 724 

GTEX and validated in orthogonal bulk tissue gene expression datasets from NormalAtlas 33 725 

and Roth et al 34. The number tissue-specific TFs for liver, lung, pancreas and kidney were 22, 726 

38, 30 and 38, respectively. The seven other methods were ordinary differential DE analysis, 727 

scImpute+DE, MAGIC+DE, Scrabble+DE, GENIE3, SCENIC and VIPER-D. We note that 728 

SCENIC runs GENIE3 as a first step and then selects TF-regulons for which corresponding 729 

TF-binding motifs are enriched. So, for the method denoted “GENIE3” we drop the 730 

requirement of TF-binding motif enrichment. For SCIRA, GENIE3, SCENIC and VIPER-D 731 

we obtain TF-activity estimates, whereas the other methods rely on direct gene expression, 732 

measured or imputed. Sensitivity (SE) was estimated as the fraction of gold-standard TFs 733 

which exhibited significant increased activation/expression with differentiation timepoint, as 734 

determined using a Bonferroni adjusted P<0.05 threshold. Precision equals 1-FDR (false 735 

discovery rate), with the FDR defined by the ratio of significantly inactivated TFs to the total 736 

number of significantly differentially active TFs, since inactivation of these TFs is 737 

inconsistent with known biology and therefore represent false positives. Correspondingly, for 738 

methods relying on differential expression, the FDR is defined by the ratio of significantly 739 

downregulated TFs to the total number of significantly differentially expressed TFs. 740 

 741 

Comparative runtime and scalability analysis 742 

Objective comparison of runtimes of the different algorithms is hard because each method 743 

has different requirements for input, and because runtimes depend critically on the choice of 744 
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method-specific parameters. Nevertheless, we compared runtimes for 5 important algorithms 745 

(SCIRA, MAGIC, Scrabble, GENIE3/SCENIC and VIPER-D), both in terms of their actual 746 

implementations on the liver, lung, and pancreas and kidney sets, but also in a scaling 747 

analysis with largely default parameters, where we applied all 5 methods to varying subsets 748 

of the kidney scRNA-Seq set (total 9190 cells). Briefly, we processed the scRNA-Seq kidney 749 

DropSeq data as described earlier, and filtered genes with sufficient variance resulting in 750 

12596 genes. We then constructed subsets with variable cell numbers by randomly 751 

subsampling 200, 400, 600, 800, 1000 and 1500 cells, and ran each of these methods on each 752 

of these subsampled datasets. In the case of SCIRA, MAGIC, GENIE3/SCENIC and 753 

VIPER-D we ran the algorithms with 4 processing cores on a Dell PowerEdge server with 754 

Intel Xeon CPU E5-4660 v4 and clock speed of 2.20HHz. Unfortunately, Scrabble does not 755 

offer a parallelizable option and is excruciatingly slow for larger e.g. a 10,000 cell dataset. 756 

Thus, for each method, we obtained runtimes as a function of cell-number, and fitted a linear 757 

regression to the data on a log-log scale. On a log-log scale where both runtime and 758 

cell-number are logged, the relation is generally linear. Next, we imputed runtimes for much 759 

larger datasets up to a million cells.  760 

 761 

Data Availability: Data analyzed in this manuscript is already publicly available from the 762 

following GEO (www.ncbi.nlm.nih.gov/geo/) accession numbers: GSE52583, GSE90047, 763 
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 766 

Code Availability: The scira R-package is freely available from 767 

https://github.com/aet21/scira  768 

 769 

Additional Files: Supplementary File 1 contains R (.Rds) object files, containing the inferred 770 

regulatory networks for colon (netCOL.Rds), kidney (netKID.Rds), liver (netLIV.Rds), lung 771 

(netLUNG.Rds) and pancreas (netPANC.Rds). Supplementary Information File contains all 772 

Supplementary Figures and Supplementary Tables. 773 

 774 

Ethics: All data analyzed in this manuscript is freely available in the public domain, and so 775 

no Ethics statement is required as all primary data was already presented elsewhere. 776 

 777 

Competing Interests: The authors declare that there are no competing interests. 778 

 779 

Author Contribution: Study was conceived and designed by AET. Statistical analyses were 780 

performed by AET and replicated by NW. Software package was prepared by NW. 781 

Manuscript was written by AET. 782 

 783 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 5, 2020. ; https://doi.org/10.1101/2020.07.04.187781doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.04.187781
http://creativecommons.org/licenses/by-nd/4.0/


22 

 

Acknowledgements  784 

This work was supported by NSFC (National Science Foundation of China) grants, grant 785 

numbers 31571359 and 31771464 and by a Royal Society Newton Advanced Fellowship 786 

(NAF award number: 164914). We would also like to thank Peter Kharchenko for useful 787 

discussions. 788 

 789 

References 790 

1. Heinaniemi, M. et al. Gene-pair expression signatures reveal lineage control. Nat Methods 10, 577-83 791 

(2013). 792 

2. Ohm, J.E. et al. A stem cell-like chromatin pattern may predispose tumor suppressor genes to DNA 793 

hypermethylation and heritable silencing. Nat Genet 39, 237-42 (2007). 794 

3. Baylin, S.B. & Ohm, J.E. Epigenetic gene silencing in cancer - a mechanism for early oncogenic pathway 795 

addiction? Nat Rev Cancer 6, 107-16 (2006). 796 

4. Schlesinger, Y. et al. Polycomb-mediated methylation on Lys27 of histone H3 pre-marks genes for de 797 

novo methylation in cancer. Nat Genet 39, 232-6 (2007). 798 

5. Teschendorff, A.E. et al. The multi-omic landscape of transcription factor inactivation in cancer. 799 

Genome Med 8, 89 (2016). 800 

6. Hanahan, D. & Weinberg, R.A. Hallmarks of cancer: the next generation. Cell 144, 646-74 (2011). 801 

7. Feinberg, A.P., Ohlsson, R. & Henikoff, S. The epigenetic progenitor origin of human cancer. Nat Rev 802 

Genet 7, 21-33 (2006). 803 

8. Chen, Y., Widschwendter, M. & Teschendorff, A.E. Systems-epigenomics inference of transcription 804 

factor activity implicates aryl-hydrocarbon-receptor inactivation as a key event in lung cancer 805 

development. Genome Biol 18, 236 (2017). 806 

9. Zheng, S.C., Widschwendter, M. & Teschendorff, A.E. Epigenetic drift, epigenetic clocks and cancer risk. 807 

Epigenomics 8, 705-19 (2016). 808 

10. Spira, A. et al. Precancer Atlas to Drive Precision Prevention Trials. Cancer Res 77, 1510-1541 (2017). 809 

11. Regev, A. et al. The Human Cell Atlas. Elife 6(2017). 810 

12. Rozenblatt-Rosen, O., Stubbington, M.J.T., Regev, A. & Teichmann, S.A. The Human Cell Atlas: from 811 

vision to reality. Nature 550, 451-453 (2017). 812 

13. Stubbington, M.J.T., Rozenblatt-Rosen, O., Regev, A. & Teichmann, S.A. Single-cell transcriptomics to 813 

explore the immune system in health and disease. Science 358, 58-63 (2017). 814 

14. Moris, N., Pina, C. & Arias, A.M. Transition states and cell fate decisions in epigenetic landscapes. Nat 815 

Rev Genet 17, 693-703 (2016). 816 

15. Puram, S.V. et al. Single-Cell Transcriptomic Analysis of Primary and Metastatic Tumor Ecosystems in 817 

Head and Neck Cancer. Cell 171, 1611-1624 e24 (2017). 818 

16. Tirosh, I. et al. Single-cell RNA-seq supports a developmental hierarchy in human oligodendroglioma. 819 

Nature 539, 309-313 (2016). 820 

17. Patel, A.P. et al. Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. 821 

Science 344, 1396-401 (2014). 822 

18. Tirosh, I. et al. Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq. 823 

Science 352, 189-96 (2016). 824 

19. Todorov, H., Cannoodt, R., Saelens, W. & Saeys, Y. Network Inference from Single-Cell Transcriptomic 825 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 5, 2020. ; https://doi.org/10.1101/2020.07.04.187781doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.04.187781
http://creativecommons.org/licenses/by-nd/4.0/


23 

 

Data. Methods Mol Biol 1883, 235-249 (2019). 826 

20. Stegle, O., Teichmann, S.A. & Marioni, J.C. Computational and analytical challenges in single-cell 827 

transcriptomics. Nat Rev Genet 16, 133-45 (2015). 828 

21. Eling, N., Morgan, M.D. & Marioni, J.C. Challenges in measuring and understanding biological noise. 829 

Nat Rev Genet 20, 536-548 (2019). 830 

22. Chen, S. & Mar, J.C. Evaluating methods of inferring gene regulatory networks highlights their lack of 831 

performance for single cell gene expression data. BMC Bioinformatics 19, 232 (2018). 832 

23. Grun, D. Revealing dynamics of gene expression variability in cell state space. Nat Methods 17, 45-49 833 

(2020). 834 

24. Consortium, G.T. The Genotype-Tissue Expression (GTEx) project. Nat Genet 45, 580-5 (2013). 835 

25. Teschendorff, A.E. & Relton, C.L. Statistical and integrative system-level analysis of DNA methylation 836 

data. Nat Rev Genet 19, 129-147 (2018). 837 

26. Gao, F., Foat, B.C. & Bussemaker, H.J. Defining transcriptional networks through integrative modeling 838 

of mRNA expression and transcription factor binding data. BMC Bioinformatics 5, 31 (2004). 839 

27. Ludtke, T.H. et al. Tbx2 controls lung growth by direct repression of the cell cycle inhibitor genes 840 

Cdkn1a and Cdkn1b. PLoS Genet 9, e1003189 (2013). 841 

28. Wan, H. et al. Foxa2 is required for transition to air breathing at birth. Proc Natl Acad Sci U S A 101, 842 

14449-54 (2004). 843 

29. Wan, H. et al. Foxa2 regulates alveolarization and goblet cell hyperplasia. Development 131, 953-64 844 

(2004). 845 

30. Herriges, M. & Morrisey, E.E. Lung development: orchestrating the generation and regeneration of a 846 

complex organ. Development 141, 502-13 (2014). 847 

31. Margolin, A.A. et al. ARACNE: an algorithm for the reconstruction of gene regulatory networks in a 848 

mammalian cellular context. BMC Bioinformatics 7 Suppl 1, S7 (2006). 849 

32. Oki, S. et al. ChIP-Atlas: a data-mining suite powered by full integration of public ChIP-seq data. EMBO 850 

Rep 19(2018). 851 

33. Uhlen, M. et al. Proteomics. Tissue-based map of the human proteome. Science 347, 1260419 (2015). 852 

34. Roth, R.B. et al. Gene expression analyses reveal molecular relationships among 20 regions of the 853 

human CNS. Neurogenetics 7, 67-80 (2006). 854 

35. Treutlein, B. et al. Reconstructing lineage hierarchies of the distal lung epithelium using single-cell 855 

RNA-seq. Nature 509, 371-5 (2014). 856 

36. Yang, L. et al. A single-cell transcriptomic analysis reveals precise pathways and regulatory 857 

mechanisms underlying hepatoblast differentiation. Hepatology 66, 1387-1401 (2017). 858 

37. Yu, X.X. et al. Defining multistep cell fate decision pathways during pancreatic development at 859 

single-cell resolution. EMBO J 38(2019). 860 

38. Wu, H. et al. Comparative Analysis and Refinement of Human PSC-Derived Kidney Organoid 861 

Differentiation with Single-Cell Transcriptomics. Cell Stem Cell 23, 869-881 e8 (2018). 862 

39. Li, W.V. & Li, J.J. An accurate and robust imputation method scImpute for single-cell RNA-seq data. Nat 863 

Commun 9, 997 (2018). 864 

40. van Dijk, D. et al. Recovering Gene Interactions from Single-Cell Data Using Data Diffusion. Cell 174, 865 

716-729 e27 (2018). 866 

41. Peng, T., Zhu, Q., Yin, P. & Tan, K. SCRABBLE: single-cell RNA-seq imputation constrained by bulk 867 

RNA-seq data. Genome Biol 20, 88 (2019). 868 

42. Aibar, S. et al. SCENIC: single-cell regulatory network inference and clustering. Nat Methods 14, 869 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 5, 2020. ; https://doi.org/10.1101/2020.07.04.187781doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.04.187781
http://creativecommons.org/licenses/by-nd/4.0/


24 

 

1083-1086 (2017). 870 

43. Alvarez, M.J. et al. Functional characterization of somatic mutations in cancer using network-based 871 

inference of protein activity. Nat Genet 48, 838-47 (2016). 872 

44. Ding, H. et al. Quantitative assessment of protein activity in orphan tissues and single cells using the 873 

metaVIPER algorithm. Nat Commun 9, 1471 (2018). 874 

45. Garcia-Alonso, L., Holland, C.H., Ibrahim, M.M., Turei, D. & Saez-Rodriguez, J. Benchmark and 875 

integration of resources for the estimation of human transcription factor activities. Genome Res 29, 876 

1363-1375 (2019). 877 

46. Holland, C.H. et al. Robustness and applicability of transcription factor and pathway analysis tools on 878 

single-cell RNA-seq data. Genome Biol 21, 36 (2020). 879 

47. Lambrechts, D. et al. Phenotype molding of stromal cells in the lung tumor microenvironment. Nat 880 

Med 24, 1277-1289 (2018). 881 

48. Teixeira, V.H. et al. Deciphering the genomic, epigenomic, and transcriptomic landscapes of 882 

pre-invasive lung cancer lesions. Nat Med (2019). 883 

49. Zhu, Y., Li, Y., Jun Wei, J.W. & Liu, X. The role of Sox genes in lung morphogenesis and cancer. Int J Mol 884 

Sci 13, 15767-83 (2012). 885 

50. Li, Q.F., Wang, X.R., Yang, Y.W. & Lin, H. Hypoxia upregulates hypoxia inducible factor (HIF)-3alpha 886 

expression in lung epithelial cells: characterization and comparison with HIF-1alpha. Cell Res 16, 887 

548-58 (2006). 888 

51. Boule, L.A. et al. Activation of the aryl hydrocarbon receptor during development enhances the 889 

pulmonary CD4+ T-cell response to viral infection. Am J Physiol Lung Cell Mol Physiol 309, L305-13 890 

(2015). 891 

52. Beamer, C.A. & Shepherd, D.M. Role of the aryl hydrocarbon receptor (AhR) in lung inflammation. 892 

Semin Immunopathol 35, 693-704 (2013). 893 

53. Cancer Genome Atlas Research, N. Comprehensive genomic characterization of squamous cell lung 894 

cancers. Nature 489, 519-25 (2012). 895 

54. Cancer Genome Atlas Research, N. Comprehensive molecular profiling of lung adenocarcinoma. 896 

Nature 511, 543-50 (2014). 897 

55. Li, H. et al. Reference component analysis of single-cell transcriptomes elucidates cellular 898 

heterogeneity in human colorectal tumors. Nat Genet 49, 708-718 (2017). 899 

56. Lynch, J., Keller, M., Guo, R.J., Yang, D. & Traber, P. Cdx1 inhibits the proliferation of human colon 900 

cancer cells by reducing cyclin D1 gene expression. Oncogene 22, 6395-407 (2003). 901 

57. McConnell, B.B., Ghaleb, A.M., Nandan, M.O. & Yang, V.W. The diverse functions of Kruppel-like 902 

factors 4 and 5 in epithelial biology and pathobiology. Bioessays 29, 549-57 (2007). 903 

58. Yang, Q., Bermingham, N.A., Finegold, M.J. & Zoghbi, H.Y. Requirement of Math1 for secretory cell 904 

lineage commitment in the mouse intestine. Science 294, 2155-8 (2001). 905 

59. Ishibashi, F. et al. Contribution of ATOH1(+) Cells to the Homeostasis, Repair, and Tumorigenesis of the 906 

Colonic Epithelium. Stem Cell Reports 10, 27-42 (2018). 907 

60. Kazanjian, A. & Shroyer, N.F. NOTCH Signaling and ATOH1 in Colorectal Cancers. Curr Colorectal Cancer 908 

Rep 7, 121-127 (2011). 909 

61. Nakaya, T. et al. KLF5 regulates the integrity and oncogenicity of intestinal stem cells. Cancer Res 74, 910 

2882-91 (2014). 911 

62. Ra, E.A. et al. TRIM31 promotes Atg5/Atg7-independent autophagy in intestinal cells. Nat Commun 7, 912 

11726 (2016). 913 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 5, 2020. ; https://doi.org/10.1101/2020.07.04.187781doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.04.187781
http://creativecommons.org/licenses/by-nd/4.0/


25 

 

63. Burada, F. et al. Autophagy in colorectal cancer: An important switch from physiology to pathology. 914 

World J Gastrointest Oncol 7, 271-84 (2015). 915 

64. Duclos, G.E. et al. Characterizing smoking-induced transcriptional heterogeneity in the human 916 

bronchial epithelium at single-cell resolution. Sci Adv 5, eaaw3413 (2019). 917 

65. van der Maaten, L. Visualizing Data using t-SNE. J Mach Learn Res 9, 2579-2605 (2008). 918 

66. Ester, M., Kriegel, H.P., Sander, J. & Xu, X. A Density-Based Algorithm for Discovering Clusters in Large 919 

Spatial Databases with Noise. in 2nd International Conference on Knowledge Discovery and Data 920 

Mining (KDD-96) (Institute for Computer Science, University of Munich, 1996). 921 

67. Nehme, E. et al. Epigenetic Suppression of the T-box Subfamily 2 (TBX2) in Human Non-Small Cell Lung 922 

Cancer. Int J Mol Sci 20(2019). 923 

68. Lai, I.L. et al. Male-Specific Long Noncoding RNA TTTY15 Inhibits Non-Small Cell Lung Cancer 924 

Proliferation and Metastasis via TBX4. Int J Mol Sci 20(2019). 925 

69. Fossum, S.L. et al. Ets homologous factor (EHF) has critical roles in epithelial dysfunction in airway 926 

disease. J Biol Chem 292, 10938-10949 (2017). 927 

70. Oliver, J.R. et al. Elf3 plays a role in regulating bronchiolar epithelial repair kinetics following Clara 928 

cell-specific injury. Lab Invest 91, 1514-29 (2011). 929 

71. Luk, I.Y., Reehorst, C.M. & Mariadason, J.M. ELF3, ELF5, EHF and SPDEF Transcription Factors in Tissue 930 

Homeostasis and Cancer. Molecules 23(2018). 931 

72. Widschwendter, M. et al. Epigenetic stem cell signature in cancer. Nat Genet 39, 157-8 (2007). 932 

73. Teschendorff, A.E. et al. Age-dependent DNA methylation of genes that are suppressed in stem cells is 933 

a hallmark of cancer. Genome Res 20, 440-6 (2010). 934 

74. Teschendorff, A.E. et al. Epigenetic variability in cells of normal cytology is associated with the risk of 935 

future morphological transformation. Genome Med 4, 24 (2012). 936 

75. Zheng, S.C. et al. A novel cell-type deconvolution algorithm reveals substantial contamination by 937 

immune cells in saliva, buccal and cervix. Epigenomics 10, 925-940 (2018). 938 

76. Winslow, M.M. et al. Suppression of lung adenocarcinoma progression by Nkx2-1. Nature 473, 101-4 939 

(2011). 940 

77. Hryniuk, A., Grainger, S., Savory, J.G. & Lohnes, D. Cdx1 and Cdx2 function as tumor suppressors. J Biol 941 

Chem 289, 33343-54 (2014). 942 

78. Bossuyt, W. et al. Atonal homolog 1 is a tumor suppressor gene. PLoS Biol 7, e39 (2009). 943 

79. Diakiw, S.M., D'Andrea, R.J. & Brown, A.L. The double life of KLF5: Opposing roles in regulation of 944 

gene-expression, cellular function, and transformation. IUBMB Life 65, 999-1011 (2013). 945 

80. Enfield, K.S.S. et al. Epithelial tumor suppressor ELF3 is a lineage-specific amplified oncogene in lung 946 

adenocarcinoma. Nat Commun 10, 5438 (2019). 947 

81. Plass, C. et al. Mutations in regulators of the epigenome and their connections to global chromatin 948 

patterns in cancer. Nat Rev Genet 14, 765-80 (2013). 949 

82. Vogelstein, B. et al. Cancer genome landscapes. Science 339, 1546-58 (2013). 950 

83. Yang, Z., Jones, A., Widschwendter, M. & Teschendorff, A.E. An integrative pan-cancer-wide analysis of 951 

epigenetic enzymes reveals universal patterns of epigenomic deregulation in cancer. Genome Biol 16, 952 

140 (2015). 953 

84. Huynh-Thu, V.A., Irrthum, A., Wehenkel, L. & Geurts, P. Inferring regulatory networks from expression 954 

data using tree-based methods. PLoS One 5(2010). 955 

85. Marbach, D. et al. Wisdom of crowds for robust gene network inference. Nat Methods 9, 796-804 956 

(2012). 957 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 5, 2020. ; https://doi.org/10.1101/2020.07.04.187781doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.04.187781
http://creativecommons.org/licenses/by-nd/4.0/


26 

 

86. Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting 958 

genome-wide expression profiles. Proc Natl Acad Sci U S A 102, 15545-50 (2005). 959 

87. Opgen-Rhein, R. & Strimmer, K. From correlation to causation networks: a simple approximate 960 

learning algorithm and its application to high-dimensional plant gene expression data. BMC Syst Biol 1, 961 

37 (2007). 962 

88. Smyth, G.K. Linear models and empirical bayes methods for assessing differential expression in 963 

microarray experiments. Stat Appl Genet Mol Biol 3, Article3 (2004). 964 

89. Basso, K. et al. Reverse engineering of regulatory networks in human B cells. Nat Genet 37, 382-90 965 

(2005). 966 

90. Pawitan, Y., Michiels, S., Koscielny, S., Gusnanto, A. & Ploner, A. False discovery rate, sensitivity and 967 

sample size for microarray studies. Bioinformatics 21, 3017-24 (2005). 968 

91. Shehata, M. et al. Phenotypic and functional characterization of the luminal cell hierarchy of the 969 

mammary gland. Breast Cancer Res 14, R134 (2012). 970 

92. Fan, J. et al. Characterizing transcriptional heterogeneity through pathway and gene set 971 

overdispersion analysis. Nat Methods 13, 241-4 (2016). 972 

 973 

 974 

 975 

Figure Legends 976 

Figure-1: SCIRA rationale and workflow. A) Since bulk RNA-Seq data does not suffer 977 

from technical dropouts and is much more reliable than scRNA-Seq data, for a given choice 978 

of tissue, we use the high-powered GTEX bulk RNA-Seq expression set (>20,000 genes, 979 

8555 samples, 30 tissue-types) to derive a corresponding tissue-specific regulatory network, 980 

consisting of a gold-standard list of tissue-specific transcription factors (TFs) and their targets 981 

(regulons). The inference of the network uses a greedy partial correlation framework, whilst 982 

also adjusting for stromal (immune cell) contamination within the tissue. B) 983 

Power/Sensitivity (SE) estimates to detect tissue-specific TFs in the GTEX bulk RNA-Seq 984 

dataset as a function of the minor cell-type fraction (MCF) (left), number of samples in the 985 

tissue of interest (middle) and average fold change of differential expression between the 986 

tissue of interest and the rest of tissues in GTEX (right). In left panel, we depict SE curves for 987 

4 tissue types in GTEX (number of samples in each tissue is given) and for an average FC=8. 988 

In the middle panel we depict SE curves for two MCF values, as indicated. In the right panel, 989 

we assume a sample size of 150. A MCF value of 0.05 means we assume that the 990 

tissue-specific TFs is only highly expressed in 5% of the tissue resident cells. C) Given the 991 

high technical dropout rate and overall noisy nature of scRNA-Seq data, it may not be 992 

possible to reliably infer regulatory activity from the TF expression profile alone. However, 993 

using the TF regulons derived in A), and using the genes within the regulon that are not 994 

strongly affected by dropouts, we can estimate regulatory activity across single-cells. 995 

Depicted is an example with 3 lung-specific TFs (Sox18, Tbx4, Foxa2), as well as the 996 

expression pattern of the regulon genes for Tbx4, in the context of a lung development study 997 
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from embyronic day-10 to adult stage (Treutlein dataset). We use linear regressions between 998 

the expression values of all the genes in a given cell and the corresponding TF-regulon 999 

profile, to derive the activity of the TF as the t-statistic of the estimated regression coefficient, 1000 

resulting in a regulatory activity map over the tissue-specific TFs and single cells. The same 1001 

tissue-specific TFs and their regulons can be applied to normal-cancer scRNA-Seq datasets to 1002 

infer regulatory activity maps across normal and cancer cells. 1003 

 1004 

Figure-2: SCIRA displays improved sensitivity, precision and scalability. A) Barplots 1005 

with 95% confidence intervals included displaying the sensitivity (SE) to detect increased 1006 

activity or expression for a gold-standard set of tissue-specific TFs in a corresponding 1007 

timecourse differentiation scRNA-Seq study. Methods represented are SCIRA, ordinary 1008 

differential expression (DE), imputation with scImpute, MAGIC or Scrabble following by 1009 

DE, SCENIC, running SCENIC without the TF-binding motif enrichment step (denoted 1010 

“GENIE3”) and VIPER using the dorothea regulon database (denoted “VIPER-D”). B) 1011 

Barplots and 95% confidence intervals displaying the false discovery rate (FDR) of each 1012 

method in the same scRNA-Seq datasets. Precision is defined as 1-FDR and is the fraction of 1013 

true positives among all positives. In this case, tissue-specific TFs predicted to be 1014 

significantly downregulated/inactivated during the timecourse were identified as false 1015 

positives with FDR defined as the fraction of false positives among all significantly 1016 

differentially expressed (or activated) TFs. C) Heatmap of P-values assessing the 1017 

improvement of SCIRA over the other 7 methods, in terms of both sensitivity (left) and FDR 1018 

(right). P-values for each tissue were derived from a one-tailed Binomial test. The P-values 1019 

for the meta-analysis (“Meta”) were derived using Fisher’s method. The FDR for SCENIC in 1020 

liver could not be defined as the number of positives was zero. D) A plot of run times (y-axis, 1021 

log-scale) for 5 methods (SCIRA, MAGIC, Scrabble, GENIE3/SCENIC and VIPER-D) 1022 

against the number of single-cells profiled (x-axis, log-scale). Filled symbols represent times 1023 

estimated from actual runs, unfilled symbols are imputed estimates obtained by extrapolation 1024 

of fitted linear functions (on a log-scale). Run times were estimated using 4 processing cores 1025 

(SCIRA, MAGIC, GENIE3/SCENIC, VIPER-D) and 1 core for Scrabble (as Scrabble offers 1026 

no option for parallelization). 1027 

 1028 

Figure-3: SCIRA predicts inactivation of lung-specific TFs in lung tumor epithelial cells. 1029 

A) t-SNE scatterplot of approximately 52,000 single cells from 5 lung cancer patients, with a 1030 

common non-malignant alveolar and (tumor) epithelial clusters highlighted in blue and red, 1031 

respectively. B) Corresponding t-SNE scatterplot with cells colored-labeled by expression of 1032 

an alveolar marker CLDN18. C) As B), but with cells colored according to expression of the 1033 

epithelial marker EPCAM. Right panel depicts boxplots of the log2(counts per million + 1) of 1034 

EPCAM for cells in the non-malignant alveolar cluster, the tumor epithelial clusters and all 1035 

other cell clusters combined (T-cells, B-cells, endothelial, myeloid and fibroblast cells). In 1036 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 5, 2020. ; https://doi.org/10.1101/2020.07.04.187781doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.04.187781
http://creativecommons.org/licenses/by-nd/4.0/


28 

 

boxplot, horizontal lines describe median, interquartile range and whiskers extend to 1037 

1.5*inter-quartile range. D) Barplot displaying the number of TFs (y-axis) passing a 1038 

Bonferroni adjusted < 0.05 threshold and exhibiting decreased (DN) or increased activity (UP) 1039 

in tumor epithelial cells (SCIRA & VIPER-D) indicated in darkgreen and darkred, 1040 

respectively, and correspondingly the same numbers for differential expression (DE). 1041 

P-values are from a Binomial-test, to test if there is a skew towards 1042 

inactivation/downregulation in cancer. Right panel depicts the Monte-Carlo (n=1000 runs) 1043 

significance analysis with grey curve denoting the null distribution for the fraction of TFs 1044 

exhibiting significant inactivation in tumor epithelial cells, and darkgreen line labeling the 1045 

observed fraction (0.92=35/38). Empirical P-value derived from the 1000 Monte-Carlo runs 1046 

is given. E) Scatterplot as in A), but now with cells color-labeled according to activation of 1047 

FOXA2 as estimated using SCIRA. Beanplots of the predicted SCIRA activity level of 1048 

FOXA2 between normal alveolar, tumor epithelial and all other cells. P-value is from a t-test 1049 

between normal alveolar and tumor epithelial cell clusters. F) Pattern of differential activity 1050 

(SCIRA & VIPER-D) and differential expression for the 38 lung-specific TFs. Darkgreen 1051 

denotes significant inactivation or underexpression in tumor epithelial cells compared to 1052 

normal alveolar, brown denotes significant activation or expression. Grey=no-change (NC) 1053 

and white indicates missing regulon information (VIPER-D). G) Pattern of differential 1054 

expression for the same 38 lung-specific TFs in the bulk RNA-Seq lung cancer datasets 1055 

(LUSC=lung squamous cell carcinoma, LUAD=lung adenoma carcinoma). H) Barplot 1056 

displaying the number of lung-specific TFs displaying significant and directionally consistent 1057 

changes in both single-cell and bulk RNA-Seq datasets. In the single-cell data we use 1058 

differential activity for SCIRA and VIPER-D, whereas for DE we use differential expression. 1059 

 1060 

Figure-4: Inactivation of colon-specific TFs in colorectal cancers at single-cell resolution 1061 

A) Heatmaps of TF-activity (left panel) and TF expression (right panel), with cells ordered by 1062 

hierarchical clustering over the 56 colon-specific TFs. TFs undergoing significant 1063 

inactivation/underexpression in cancer cells are labeled in blue, whilst those undergoing 1064 

activation/overexpression are labeled in darkred. B) Heatmap of differential TF-activity 1065 

(SCIRA & VIPER-D) and TF-expression (DE) between cancer and normal cells, with colors 1066 

indicating statistical significance (Bonferroni P<0.05) and directionality of change: 1067 

blue=significant inactivation/underexpression in cancer, brown=significant 1068 

activation/overexpression in cancer, grey=no-change. Barplots compare the number of 1069 

inactivated/underexpressed (blue) TFs to the number that are activated/overexpressed 1070 

(brown). P-values derive from a one-tailed Binomial test to assess significance of skew. C) 1071 

Boxplots displaying TF-activity and TF-expression between normal epithelial and cancer 1072 

cells for two representative TFs where there is substantial discordance between differential 1073 

activity and differential expression. P-values for differential TF-activity and TF-expression 1074 

derive from a t-test and a Wilcoxon rank sum test, respectively. D) Heatmaps of TF-activity 1075 
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for the normal and cancer cells from each of 3 patients, and displaying only the subset of the 1076 

56 colon-TFs which exhibit significant inactivity in the cancer cells (Bonferroni P < 0.05).  1077 

 1078 

Figure-5: SCIRA reveals smoking-associated tumor suppressor events. A) tSNE diagrams 1079 

of normal lung epithelial cells obtained by application to the SCIRA-derived regulatory 1080 

activity estimates for the 38 lung-specific TFs. Left panel depicts the two main clusters 1081 

inferred using DBSCAN, whilst right panels depict the TF-activity levels for 4 of the 1082 

lung-specific TFs. B) As A), but now displaying the mRNA expression levels of 4 markers, 1083 

one for each of ciliated cells (FOXJ1), goblet cells (MUC5AC), club cells (SCBG1A1) and 1084 

basal cells (KRT5). C) As B), but now for 5 lung-specific TFs. D) Left panel: As A), but now 1085 

with cells color-labeled according to whether they derived from a smoker or non-smoker. 1086 

Right panel: PCA scatterplot (PC1 vs PC2) obtained from a PCA on all non-ciliated cells, 1087 

plus associated density plots along PC1 for cells stratified according to smoking status. 1088 

P-value is from a two-tailed Wilcoxon rank sum test. E) Hierarchical clustering heatmap over 1089 

12 lung-specific TFs exhibiting significant (Bonferroni adjusted P<0.05) activity changes 1090 

according to smoking-status. Color bar to the right indicates whether TF is more or less active 1091 

in cells exposed to smoking. F) Color bar indicating the pattern of differential regulatory 1092 

activity for the same 12 TFs in lung cancer cells. G) Density distribution of EHF activity (left) 1093 

and EHF expression (right) for cells expressing MUC5AC (MUC5AC+), a goblet cell marker, 1094 

and cells not expressing MUC5AC (MUC5AC-). P-values derive from a two tailed Wilcoxon 1095 

rank sum test. 1096 
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