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Abstract 

 
Perceiving the temporal regularity in a sequence of repetitive sensory events facilitates the 
preparation and execution of relevant behaviors with tight temporal constraints. How we 
estimate temporal regularity from repeating patterns of sensory stimuli is not completely 
understood. We developed a decision-making task in which participants had to decide whether 
a train of visual, auditory, or tactile pulses, had a regular or an irregular temporal pattern. We 

tested the hypothesis that subjects categorize stimuli as irregular by accumulating the time 
differences between the predicted and observed times of sensory pulses defining a temporal 
rhythm. Results show that instead of waiting for a single large temporal deviation, participants 
accumulate timing-error signals and judge a pattern as irregular when the amount of evidence 
reaches a decision threshold. Model fits of bounded integration showed that this accumulation 
occurs with negligible leak of evidence. Consistent with previous findings, we show that 
participants perform better when evaluating the regularity of auditory pulses, as compared with 
visual or tactile stimuli. Our results suggest that temporal regularity is estimated by comparing 
expected and measured pulse onset times, and that each prediction error is accumulated 
towards a threshold to generate a behavioral choice. 
 

Introduction 

 
A sequence of repeating sensory pulses is often perceived as a rhythm, allowing the observer 
to predict the onset of future stimuli and synchronize relevant motor plans accordingly 
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(Cadena-Valencia et al., 2018; Gámez et al., 2018; Itoh et al., 2020; Remington et al., 2018). 
How the brain perceives rhythm from a train of repeating sensory pulses is not completely 
understood (Finnerty et al., 2015; Ivry, 1996; Lakatos et al., 2019; Mauk & Buonomano, 2004; 
Merchant et al., 2013; Paton & Buonomano, 2018). Previous work has shown that regularly 
repeating stimuli gives rise to expectation neuronal activity that encodes the estimated time of 
future stimuli (Cadena-Valencia et al., 2018; Egger et al., 2019; Gámez et al., 2019; Leon & 
Shadlen, 2003; Patel & Iversen, 2014; Renoult et al., 2006; Rossi-Pool et al., 2019; Takeya et 
al., 2017; Toiviainen et al., 2020). The ability to predict the time of future stimuli allows the brain 
furnishing error signals that quantify the difference between predicted and actual time of 
stimulus onset (Egger et al., 2019; Ohmae & Tanaka, 2016; Rhodes & Di Luca, 2016). We 
reasoned that subjects might be able to use the difference between expected and actual onset 
times to decide whether a train of sensory pulses has a regular or an irregular temporal 
structure. Under this hypothesis, an observer perceives a stimulus as irregular when the 
difference between predicted and actual onset times consistently gives evidence in favor of 
irregular temporal intervals between sensory pulses.  
 
The bounded accumulation of evidence is a mechanism that successfully explains decision-
making under varied sensory contexts such as the perception of visual motion, and the 
discrimination of auditory and tactile stimuli (Brunton et al., 2013; Churchland et al., 2008; de 
Lafuente et al., 2015; Hernández-Pérez et al., 2020; Pinto et al., 2018; Ratcliff et al., 2016). 
However, it is not known whether a sequence of consecutive temporal errors can be 
accumulated by an observer to discriminate between regular and irregular temporal structures. 
Under the framework of timing-error accumulation there are two extreme modes of operation 
to generate a decision: (1) subjects wait for a large temporal deviation to judge a rhythm as 
irregular (Stine et al., 2020; Waskom & Kiani, 2018); or, conversely (2) they accumulate each 
temporal deviation, and make a decision when the summed evidence reaches a decision 
threshold.  

 
We aimed to test whether bounded accumulation provided an adequate description of the 
decision process about temporal regularity, and we also determined which of the two decision 
strategies participants use to generate perceptual judgements. We tested the generality of this 
decision model by making use of visual, auditory, and tactile trains of stimuli. Our results show 
that human participants are able to accumulate temporal prediction errors and judge a train of 
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sensory pulses as irregular when the accumulated deviations reach a decision bound. 
Conversely, a rhythm is judged regular by the absence of consistent timing errors, and the 
decision time is determined by an urgency signal modulating the decision speed-accuracy 
trade off.  
 

Methods 

Regularity discrimination task 

 
To characterize the ability of human subjects to distinguish regular from irregular temporal 
patterns we asked them to perform a discrimination task in which they had to perceive trains of 
brief (50 ms) sensory pulses and decide whether they appeared at irregular or irregular intervals 
(Figure 1a) (Buhusi et al., 2016; Celma-Miralles & Toro, 2020; Schulze, 1989). The variability of 
the interpulse intervals was the key experimental variable determining task difficulty. In this 
manner, intervals with zero standard deviation defined regular stimuli, and any non-zero 
variability defined irregular stimuli. Across trials, the standard deviation of interval durations 

ranged from 0% (completely regular stimuli) up to 22.9% (highly irregular stimuli) with respect 
to the mean interval (Figure 1b). We used three mean intervals in order to cover a wide 
temporal scale of the stimuli (0.35, 0.65, and 1.25 s; randomly selected). Importantly, 
participants were free to indicate their decision (regular or irregular) at any time during the 
presentation of the stimuli, thus defining a reaction-time discrimination task. Performance in the 

discrimination task was characterized by the psychometric curve (Kingdom & Prins, 2016), 
which depicts the proportion of irregular responses as a function of irregularity (standard 
deviation) expressed in time units (seconds), or expressed in percentage with respect to mean 
interval (Figure 2a,c,e). Chronometric curves were used to show decision response time as a 

function of irregularity (Figure 2b,d,e).  
 
 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 4, 2020. ; https://doi.org/10.1101/2020.07.04.187708doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.04.187708
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 
Figure 1. Regularity discrimination task and model of decision making. 

(a) Participants sensed trains of sensory pulses to decide whether they had regular or irregular interpulse intervals. A 

regular and an irregular pulse train is shown.  The sensory pulses consisted of 50-ms auditory, visual, or tactile 
stimuli. Response times were freely determined by the participants.  

(b) One of three mean interval durations was pseudo-randomly chosen on each trial (0.35, 0.65, 1.25 s). Within a 

trial, successive intervals were either constant (regular trials; 0% variability) or chosen from a distribution with 1.4, 
2.9, 5.7, 11.4, or 22.9% standard deviation of the mean (irregular trials).  

(c) Model of decision-making. Two competing decision variables represent evidence in favor of irregular (DVirr) or 

regular (DVreg) stimuli. The first decision variable to reach its threshold determines the trial’s choice and response 
time. The irregularity evidence plus a noise term move DVirr towards the upper bound (+B), favoring an irregular 

decision. An exponential decay parameter determines how fast the accumulated evidence decreases before the 

arrival of the next sensory pulse (𝜆). The competing process DVreg moves towards the lower bound (-B) at a speed 

determined by -m, broken by upward jumps from a noise term (see Equations 2 and 3).  

 
Trials initiated with a fixation point (2º) at the center of the screen, its color indicating the 
sensory modality of the upcoming sensory pulses (blue, green, or pink indicated auditory, 
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visual, or tactile pulses, respectively; Figure 1b). The train of sensory pulses started after a 
random delay (2-3 s) after the fixation point. Participants were instructed to attend to the 
temporal pattern of the pulses and decide whether they appeared at regular or irregular 
intervals. The train of sensory pulses stopped after the participants pressed one of the two 
keys to indicate their decision (F and S keys to indicate a regular or an irregular choice, 
respectively). Feedback was provided by presenting the words “correct” or “incorrect” on the 
screen. A new trial started after a random inter-trial delay (3-4 s). The mean interpulse interval 
was pseudo-randomly chosen on each trial (0.35, 0.65, or 1.25 s). The standard deviation of 
the interpulse interval, a term that we name irregularity, was pseudo-randomly chosen from the 

values 0, 1.4, 2.9, 5.7, 11.4 and 22.9% (relative to the mean interval). To obtain a balanced 
prior probability of regular and irregular decisions, half the trials had 0% irregularity, and the 
other half had one of the non-zero irregularities. The temporal pattern presented on each trial 
was thus constructed by pseudo-randomly selecting (1) the sensory modality, (2) the mean, (3) 
and the standard deviation of the interpulse intervals, with the restriction that intervals should 
not be shorter than 50 ms. Trials with a response time larger than 20 intervals, or shorter than 2 
intervals, were repeated later in the session without the subject’s knowledge.  
 
Auditory pulses were presented through headphones and consisted of a 50-ms 0.5-kHz 
sinusoidal tone. Visual pulses were defined by a circle of pixel noise (8.2o), presented for 50 ms 
behind the fixation point (3 frames of dynamic pixel noise). Tactile pulses were presented 
through a custom-made electro-magnet stimulator driven by amplifying the voltage of 
computer’s audio output. Participants placed their right index finger over the rounded 
stimulator probe (3 mm in diameter) which protruded 3 mm over the rest surface (Figure 1b). 
Participants wore headphones delivering masking white noise on every trial. Fifteen human 
subjects (age range: 22-32; 6 female) participated in the study. Each participant completed 15-

18 sessions (90 trials each, 15 to 20 min per session) over the course of 5-6 days. They were 
informed about the purpose and methods of the experiment and provided their written 
consent. The experimental protocol was approved by the Ethics in Research Committee of the 
Institute of Neurobiology of National Autonomous University of Mexico. Stimuli presentation 
and data collection were performed with a computer setup running Matlab and the 
Psychophysics Toolbox ((Brainard, 1997); monitor: Dell SE2717H, Full HD 1980x1080, 60 Hz; 
computer: Dell Precision Tower 5810, Windows 10 Pro, 64 bits, NVIDIA Quadro K420 2GB 
graphics card).  
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Decision-making model of temporal pattern discrimination 

 
To test the hypothesis that subjects integrate timing irregularities we used the accumulation-to-
bound framework of decision-making. Under this framework, an irregular decision is made 

when an irregular decision variable (DVirr) reaches the upper decision bound (Figure 1c). 
Regular decisions were modeled by a competing decision variable (DVreg) that moved towards 
the lower bound as a function of elapsed time (Figure 1c). In this two-race model the behavioral 

decision (regular or irregular) is determined by the first process to reach its decision bound 
(Figure 1c). A train of highly irregular pulses would provide evidence rapidly moving DVirr 

upwards to the irregular bound. Conversely, a train of regular pulses would fail to provide 
irregularity evidence, allowing DVreg to reach the lower decision bound.  
 
An alternative hypothesis to the accumulation model (often termed independent sampling) 
proposes that no accumulation takes place, and decisions are driven by sequentially 
comparing the most recent sensory input to the decision bound. Under this alternative and 
irregular decision would be made by a given interval deviating more than a defined threshold. 

The extent to which accumulation or independent sampling better explains the participants’ 
behavioral responses can be estimated by a decay (leak) parameter multiplying DVirr (Figure 
1c). If the decay of irregularity evidence is slow with respect to interval duration, no evidence is 
lost between pulses and irregularity evidence is accumulated perfectly. Conversely, a fast 
decay term would result in irregularity evidence being lost before the arrival of next sensory 
pulse, preventing accumulation so that only the most recent evidence would be used to make 
a decision. In our model, DVirr and DVreg are updated at each sensory pulse, starting with the 

arrival of the third pulse. This is because the third sensory pulse defines the second interval, 
which is the first interval that can be compared with the previous one. The model assumes that 
subjects calculate irregularity evidence by comparing the duration of each new interval with the 
duration of the previous one. Irregularity evidence is thus defined by the absolute difference 
between the intervals, normalized by the previous interval. It is important to note that there is 
no evidence favoring regularity, i.e., it is the absence of irregularity that allows DVreg to reach 
the lower bound to generate a regular stimulus choice. If the subscript t denotes each interval, 

irregularity evidence is defined as: 
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𝑒𝑣𝑖𝑑𝑒𝑛𝑐𝑒(") =
|	&("#$)'&(")	|

&("#$)
             (1) 

 
where	𝑖("'() − 𝑖(") is the difference between the duration of the current and previous interval. 

The evidence provided by each new interval is summed to the previous evidence (along with 
noise) to define DVirr as follows: 
 

𝐷𝑉&))(") = 𝐷𝑉&))("'() · 	𝑒'*&(") + 𝑒𝑣𝑖𝑑𝑒𝑛𝑐𝑒(") + |𝒩(0, 𝜎+)|           (2) 

  

where |𝒩(0, 𝜎+)| is positive noise parametrized by  𝜎+; 𝑖(") is the duration of the new interval, 

and 𝜆 is the decay constant of the accumulated evidence. DVreg is modeled as a downward 
slope broken by upwards jumps of positive noise as follows:  
 

𝐷𝑉),-(") = 𝐷𝑉),-("'() −𝑚 · 𝑖(") + |𝒩(0, 𝜎+)|           (3) 

 

where m is the slope parameter and 𝑖(") is the duration of the new interval (Figure 1c). Regular 

or irregular model choices were determined by the first decision variable to reach its bound 
(+B,-B, respectively) and response time was defined as the number of elapsed intervals after 
the first sensory pulse.  

 
The four model parameters defining our model (decision bound height B, evidence decay 

constant 𝜆, slope m, and noise 𝜎+) were fitted to the psychometric and chronometric curves by 
means of a grid search within parameter ranges determined by an initial exploratory search 
(Gherman & Philiastides, 2018). Each parameter combination within the grid search instantiated 
a model that was run for 500 trials for each percentage of irregularity, thus obtaining the 
model’s psychometric and chronometric curves that were compared with the subjects’ 
corresponding curves. The parameters that minimized the difference between the behavioral 
and model curves were obtained for each subject and experimental condition. It is important to 
note that psychometric and chronometric curves are fit simultaneously, i.e., a 4-tuple of 

parameters defines both curves. Given that chronometric and psychometric curves have 
different y-scales, they were standardized to values between 0 and 1 before calculating the 
fitting error. To fit the behavioral data of each participant, trials across modalities were pooled 
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to obtain the parameters for the 3 interval durations (Figure 4). Conversely, interval durations 
were pooled to obtain the parameters for the 3 sensory modalities (Figure 4). 
 

Results 

 

Discrimination accuracy and response time 

 
Subjects performed the regularity discrimination task in which they decided whether a train of 
sensory pulses had regular or irregular interpulse intervals (Figure 1a). Importantly, they freely 
communicated their choice at any time after stimulus onset. As expected, trains of stimuli with 
highly variable intervals were easily discriminated as irregular, and the decisions were made 
faster as variability increased (Figure 2a). The psychometric curves showed a sigmoidal 
increase in the proportion of irregular responses as a function of increasing irregularity. It is 

important to note that 22 ±1% (mean ±s.e.m; n=15 participants) of all regular trials (0% 
irregularity) were incorrectly classified as irregular by the participants (termed false alarms in 
the signal detection theory framework). This an expected result indicating that regular stimuli 
were often confounded with stimuli having very low temporal variability. In other words, this 
result reveals that participants were not certain that a train of pulses perceived as regular was 
in fact regular, or instead had a very small irregularity value.  
 
Choice response times are illustrated by the chronometric curves (Figure 2b). The curves show 
the decreasing response times as a function of increasing interval irregularity. The 
chronometric curves also revealed longer response times for stimuli with longer interval 
durations. This tendency illustrates the fact that evidence acquisition is slower for longer 
interval durations.  
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Figure 2. Behavioral choices and response times on the discrimination task.   

(a) Psychometric curves depict the probability of an irregular decision as a function of interval variability (standard 
deviation of interval duration, std, in ms units). Data is conditioned by mean interval (color coded). Dots and error 

bars denote mean ±s.e.m (n=15 participants). 

(b) Chronometric curves show response times as a function of interval variability (ms units).  

(c) Psychometric curves with variability expressed as percentage of interval duration (% units).  

(d) Chronometric curves in which response times are expressed as number of elapsed intervals.  

(e) Psychometric curves conditioned by sensory modality (color coded).  

(f) Chronometric curves by sensory modality. Response times expressed in seconds and variability in % units.   

 
 

Discrimination accuracy scales according to the scalar property of timing 

 
As expected from the scalar property of timing, stimuli with short interpulse intervals (0.35 s) 
required small deviations to be perceived as irregular, while trains with larger intervals (0.65 s, 
1.25 s) required larger variability to be correctly discriminated as irregular (Figure 2a). By 
expressing irregularity as a percentage with respect to mean interval we observed that the 
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psychometric curves lie close to each other, indicating that task difficulty was similar across 
interval lengths (Figure 2c). 
 
Across sensory modalities, the psychometric curves showed that subjects were significantly 
better at discriminating auditory stimuli, as compared to tactile and visual stimuli (Figure 2e). 
The overall proportion of correct responses was 74 ±2%, 66 ±2% and 63 ±2% for auditory (A), 
tactile (T), and visual (V) stimuli, respectively (auditory performance significantly higher than 
tactile and visual; paired t-tests; A-T comparison: t(449)=8.1, p=7x10-15; A-V comparison: 
t(449)=8.3, p=1x10-15). As illustrated by the sigmoidal fits to the psychometric data, the curve 

for auditory stimuli had leftward shift, and a low false alarm rate. The discrimination of tactile 
stimuli was marginally better compared to visual stimuli, as demonstrated by the lower false 
alarm rate of tactile stimuli (T-V comparison: t(449)=2.5, p=0.012). 
 

Response times do not scale across interval durations 

 
Instead of elapsed time in seconds, the chronometric curves can be expressed as the number 
of elapsed intervals, thus expressing response time in interval units (Figure 2d). We had 
expected this normalization would yield similar response times (number of intervals) across 
interval durations. However, we found large differences in the number of intervals that 
participants observed across interval durations (Figure 2d). On average, participants perceived 
11.61 ±0.14 (mean ±s.e.m.) intervals before deciding that a stimulus was regular for the 0.35 s 
interval trials, but they waited only 4.97 ±0.07 intervals for the 1.25 s intervals. This large 
difference in the number of perceived intervals was an unexpected result because in our task 
each interval provides a quantum of information, and we had expected subjects to make use of 
similar amounts of information across interval durations. As we will discuss further after the 
model fits, this faster than expected response times explain the lower performance levels that 
subjects achieved for the 1.25 s psychometric curve (Figure 1c). The faster than expected 
response times suggest that subjects were cutting short the longer decision times that would 
have arisen from longer interpulse intervals.  

 
Finally, the chronometric curves show that response times were similar across modalities for 
low irregularity levels (0, 1.4, 2.9%; one-way ANOVA F(2,942)=2.9, p=0.051) but decreased 
faster for the auditory stimuli as irregularity increased (Figure 1f). This indicates that 
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participants were faster to identify the irregularity of auditory stimuli as compared to visual and 
tactile stimuli (5.7, 11.4, 22.9%; one-way ANOVA F(2,537)=6.3, p=0.002).   
 

Participants accumulate irregularity evidence 

 
To determine whether behavioral choices and response times could be explained by a strategy 
of accumulation of timing evidence (irregularity), we fit the decision model to the mean 
psychometric and chronometric data. The fits showed that the model provided a satisfactory 
description of the behavioral data (R2

psycho=0.98; R2
chrono =0.98; Figure 3a). Importantly, the 

model fit demonstrated that the accumulation of irregularity evidence occurs without leak 
(fitted 𝜆 = 0; Equation 2). The absence of information decay is an important result ruling out the 

hypothesis that subjects detect irregularity from a single large temporal deviation. Instead of 
waiting for a large temporal deviation to generate an irregular decision, our model fit indicates 
that participants integrated all evidence available from the train of sensory stimuli.  
 
Six example trials illustrating the model’s behavior are shown in Figure 3b. The three trials that 
ended in irregular decisions (DVirr) show that the irregularity evidence provided by each sensory 

pulse is accumulated with no leak, and they also illustrate how highly variable intervals result in 
fast decisions. The three example regular decisions (DVreg) illustrate how when the intervals are 
regular the downward slope (interrupted by noise jumps) determines the response time.  
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Figure 3. Model fit to psychometric and chronometric data.   

(a) Choice and decision times were fit with the model of decision-making (Equations 1-3). Dots and error bars 

illustrate across-participant mean and s.e.m.  

(b) Examples trials illustrating the model performance for irregular (DVirr) and regular (DVreg) decisions. Note how the 

trial with high interval variability (22.9%) leads to a fast irregular decision. Low variability often results in regular 
decisions (0, 1.4, 2.9%). Accumulation of irregularity evidence (DVirr) occurs with no leak.   
 

 

Model parameters across interval duration and sensory modalities 

 
Finally, to gain insight into differences of the decision-making process observed across 
sensory modalities and interval durations, we fit the model separately to each participant under 
each experimental condition (Methods). Consistent with the fit to overall mean data, the leak 
parameter was low (Figure 4; geometric mean of 𝜆 =0.017, 0.006-0.031 95% bootstrap 

0.00

0.25

0.50

0.75

1.00

0
1.

4
2.

9
5.

7
11

.4
22

.9

p(
irr
eg
ul
ar

)
Variability (std; %)

0
1.

4
2.

9
5.

7
11

.4
22

.9

0
2
4
6
8

10
12
14

R
es

po
ns

e 
tim

e 
(in

te
rv

al
s)

Variability (std; %)

Data (n = 15 subjects)
Accumulation-to-bound

model

a

Time0

1.5

-1.5

+B

-B

DVirr:22.9%
DVirr:11.4%

DVirr:5.7%

irregular choice

regular choice

DVreg:0%

DVreg:2.9%DVreg:1.4%

b

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 4, 2020. ; https://doi.org/10.1101/2020.07.04.187708doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.04.187708
http://creativecommons.org/licenses/by-nc-nd/4.0/


confidence interval (de la Cruz & Kreft, 2019)). In other words, the lifetime of irregularity 
evidence was high across sensory modalities and interval durations (lifetime 1/	𝜆 = 58.8 
intervals; Figure 4). No significant influence of sensory modality or interval duration over the 
decay parameter was observed (Kruskal-Wallis 𝜒2(5)=11.2, p=0.048). This important result 

further demonstrates that the accumulation of timing evidence is a robust strategy that 
participants employ across sensory modalities and interval durations.  
 
The noise parameter had similar values across interval durations (𝜒2(2)=1.74, p=0.42), and this 
is consistent with the scalar property of timing stating that variability is a constant fraction 
(Weber’s fraction) of interval duration. Consistent with the behavioral results, the model fits 
show that noise in time estimation is largest in the visual domain, and lowest for auditory 
stimuli (Figure 4, 𝜒2(2)=23.7, p=7x10-6). This result supports the idea that sensory 

representations of auditory stimuli have a higher temporal accuracy as compared to the visual 
and tactile domains.  
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Figure 4. Model parameters across mean interval (0.35, 0.65, 1.25 s) and sensory modalities (auditory, tactile, 

visual). Leak parameters 𝜆 (upper panel; Equation 2), noise parameters 𝜎!(middle panel; Equations 2-3), and bound 

height parameters B (lower panel) are plotted for each experimental condition (n=15 participants). Lines connect the 
same participant across conditions. Boxplots illustrate range, interquartile range, median, and outliers (open circles).  

 
Interestingly, we found that the bound height parameter decreased for intervals of longer 
durations (Figure 4, 𝜒2(2)=17.6, p=1.5x10-4). This result is related to the observation that 

participants perceive only ~5 long intervals before committing to a decision (Figure 2d). The 
decreasing bound heights suggest that participants adjusted the bound so that progressively 
lower amount of information was used to commit to a decision for trains of longer intervals. In 
other words, participants were not willing to spend too much time gathering timing information 
in the longer interval trials. This interesting result reveals the otherwise hidden compromise 
between invested time and accuracy of sensory decisions.  
 
The comparison of bound height across sensory modalities revealed higher bounds for visual 
and tactile domains, and lower bounds for auditory stimuli (Figure 4, 𝜒2(2)=20.7, p=3.4x10-5). 

The higher bounds for the tactile and visual stimuli reveal a compensatory mechanism for the 
noisier timing accuracy of these sensory modalities. Higher bounds allow for more information 
accumulation, potentially increasing decision accuracy. However, given that response times 
were similar across sensory modalities (Figure 2f), and that accuracy was lower for the visual 
and tactile domains, we can infer that participants were not willing to invest the longer 
accumulation times required for the tactile and visual stimuli to reach an accuracy comparable 
to the auditory domain. 
 
 

Discussion 

 
Our experiments showed that decisions about the temporal regularity of a train of sensory 
pulses are sustained by the accumulation of the absolute time differences between regular and 
regular intervals. The fits of a decision-making model to behavioral data showed that the 
accumulation-to-bound process has no leak, so that the evidence of each interpulse interval 
contributes to the final decision about temporal regularity. This rules out the strategy of 
detecting irregularity by waiting for a large deviant interval. Our results are consistent with the 
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hypothesis that the brain perceives a train of sensory pulses as regular when observed onset 
times match the predicted onset times. In this manner, differences between observed and 
predicted times are interpreted as evidence favoring an irregular rhythm. In our model, 
irregularity evidence is calculated by the difference between the duration of the current and 
previous interval. However, subjects may use a non-linear function of this difference to update 
the value of the irregular decision variable, as has been demonstrated recently in an interval 
reproduction task (Egger & Jazayeri, 2018). In future research, using a non-linear function of 
errors could help improve the fits of our model to the behavioral data.  
 
Consistent with previous observations, we found that participants are better at perceiving the 
temporal structure of auditory stimuli as compared to tactile and visual stimuli (Barne et al., 
2018; Di Luca & Rhodes, 2016; Mayer et al., 2014; Merchant et al., 2015; Murai & Yotsumoto, 
2016; Rammsayer, 2014; Rammsayer et al., 2015; Westheimer, 1999). This suggests 
differences in the temporal fidelity of the sensory representations of train of pulses across 
modalities. Our model captured this difference with an increased noise parameter for visual 
stimuli as compared to tactile and auditory stimuli. We know the visual system excels at the 
spatial analysis of scenes, so a lower timing precision was expected. It is important to note, 
however, that the model fits demonstrate that accumulation of timing evidence is a decision-
making strategy shared by the auditory, tactile, and visual domains.  
 
The behavioral results showed that the response times do not scale across the three interval 
lengths (0.35, 0.65, 1.25 s) as we had expected. Given that each sensory pulse delivers a 
quantum of timing information (they define the duration of intervals) we had expected that 
response time, measured in number of elapsed intervals, would be similar across interval 
durations. Although longer intervals resulted in longer response times (Figure 2b), this did not 
translate into an equal number of perceived intervals across durations. This indicates that 
subjects were not willing to wait too long to gather the same evidence for the long intervals as 

they did for short intervals (Figure 2d). This translated into a lower level of correct responses for 
the 1.25 intervals as compared to the 0.35 and 0.65-s intervals. Quick decision times at the 
expense of choice accuracy reveals a decision-making policy in which participants tried to 
invest similar decision times across interval durations. Closely related to this, we also found 
that response times are very similar across sensory modalities (Figure 2f). Given the noisier 
time estimates of the visual domain, subjects would have needed to increase the decision time 
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(i.e. gather more evidence) to compensate. Our experiments did not aim to study the time-
accuracy tradeoff inherent to decision-making (Hanks et al., 2014; Palmer et al., 2005; Reddi & 
Carpenter, 2000), but the tendency to homogenize response time across experimental 
conditions is a decision policy that is worth of further study.  
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