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Abstract: 

The identification of rare variants that contribute to complex diseases is challenging due to low statistical 

power. Here we propose a novel and powerful rare variants association test based on the deviation of the 

observed mutational burden in a genomic region from a baseline mutation burden predicted by weighted 

recursive truncated negative-binomial regression (RUNNER) on genomic features available from public data. 

Simulation studies show that RUNNER is substantially more powerful than state-of-the-art rare variant 

association methods (including SKAT, CMC and KBAC), while maintaining correct type 1 error rates under 

population stratification and in small samples. Applied to real data, RUNNER “rediscovered” known genes 

of Hirschsprung disease missed by current methods, and detected promising new candidate genes, including 

NXPE4 for Hirschsprung disease and CXCL16 for Alzheimer's disease. The proposed approach provides a 

powerful and robust method to identify rare risk variants for complex diseases.  
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Introduction 

Rare genetic variants, typically defined as variants with frequency under 1% in the population, are 

recognized to play an important role in the development of complex genetic diseases1-3, which may explain a 

nontrivial fraction of “missing heritability”4 from genome-wide association studies. Recent advances in high 

throughput sequencing (HTS) technologies have made feasible genome-wide rare variants association 

studies on large samples feasible. For example, the UK10K project has uncovered highly penetrant rare 

variants for cardiometabolic traits 1% 5, and the Trans-Omics for Precision Medicine (TopMed) project will 

examine contributions of rare variants to heart, lung, blood, and sleep disorders6. Rare variants in the 

TREM2 and APP genes have been associated with Alzheimer’s disease, and similar rare susceptibility 

variants have been reported for type 2 diabetes, myocardial infarction, osteoporosis, and other diseases3. 

Compared to common variants, rare variants are more likely to be recent and deleterious, and might more 

easily lead to the discovery of new biological mechanisms or drug targets, such as the lipoprotein pathway 

gene PCSK9 for low-density lipoprotein cholesterol levels7. 

 

Despite these early promising findings, studies on rare susceptibility variants generally suffer from low 

statistical power2. As testing association for single rare variants have very low power, multiple-variants 

based association methods have been proposed2, which test for association between phenotype and multiple 

rare variants within a gene or genomic region. Multi-variant association is typically evaluated by comparing 

mutation burden between patients and controls, in terms of the mean 8; 9, and/or the variance 10. Despite the 

gain in power over single-variant tests, existing multi-variant association tests still require very large 

samples11 which are difficult and costly to obtain. To increase study efficiency, researchers have proposed 

the use publicly available population genomic data to boost the number of controls 12; 13.  However, this 

may lead to the challenge of hidden population stratification resulting confounding and spurious associations, 

especially since it is more difficult to correct population stratification with rare variants than common 

variants 14. 

  

Here, we propose a novel statistical method to detect rare susceptibility variants in genes or genomic regions. 

The proposed method used novel strategy for association testing, which involves modeling the baseline 

mutation burden across genes or regions conditional on various genomic features, and considering the 

deviation of the observed mutation burden against the predicted baseline. After characterizing the method’s 

type I error rate, power, and robustness to population stratification using simulated data, the method was 

applied it to real data sets to examine its power for detecting novel associations.   
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Material and Methods 
Recursive truncated negative-binomial regression (RUNNER) 
Our proposed test is based on considering to observed rare mutation burden at a genomic region (typically a 

protein-coding gene) in cases, relative to its baseline expectation conditional on the characteristics of the 

genomic region (See workflow of the method in Figure 1d), estimated from a weighted recursive truncated 

negative-binomial regression (RUNNER). Truncated negative-binomial regression was chosen because of 

two features of the distribution of rare mutation counts in genes: inflated 0 mutation counts and over 

dispersion (Figure 1a and 1b). RUNNER was implemented in our high-throughput sequencing data analysis 

platform KGGSeq(V1.1+)15; 16 (http://grass.cgs.hku.hk/limx/kggseq/), fits a statistical model for the rare 

mutation counts of patients, and outputs standardized z-scores and p-values based on the excess of 

functionally-weighted rare mutations over their predicted baseline values.  

The truncated negative-binomial regression model 
With the assumption that a gene or region with excessive rare mutation burden in patients is more likely to 
confer disease risk, we extended the negative-binomial regression model to evaluate the burden for revealing 
potential susceptibility genes or loci of complex diseases. The burden is measured by excess of observed 
mutation counts relative to expected mutation counts. Let a gene or region i have 𝑚𝑖  rare variants 
(including single nucleotide variants and InDels with allele frequency ≤ 1%) in sequenced patients of a 
disease after removing common variants defined in reference databases and removing variants which had 
allele frequency in patients of less than d (>1) folder in controls. Let a rare variant j of gene or region i has 
ni,j mutant alleles among the patient samples (ni,j= 0,1,2, …). Assume the impact of mutant alleles can be 
further amplified by an integer weight 𝑤𝑖,𝑗, i.e., 𝑐𝑖,𝑗 = 𝑛𝑖,𝑗 ∗ 𝑤𝑖,𝑗. The integer weight is converted from a 
bioinformatics prediction score (see details in the following section), 𝑠𝑖,𝑗 ∈ [0,1]  by a ceiling 

function, 𝑤𝑖,𝑗 = [s𝑖,𝑗
𝑏

], where b is a bin length parameter. According to our previous study on cancer somatic 

mutations 17, the total number of rare mutations in gene or region i, yi, can be assumed to approximately 
follow a negative binomial (NB) distribution:  

𝑦𝑖 = ∑ 𝑐𝑖,𝑗
𝑚𝑖
𝑗=1 ~𝑁𝑁(𝜇𝑖,𝜃), 

where 𝜇𝑖 is the expected number of mutations and 𝜃 is a dispersion parameter. The probability mass 

function (PMF) of NB distribution is (𝑦𝑖|𝜇𝑖,𝜃) = Γ(𝑦𝑖+𝜃)
Γ(𝜃)∙𝑦𝑖!

∙
𝜇𝑖
𝑦𝑖𝜃𝜃

(𝜇𝑖+𝜃)𝑦𝑖+𝜃
 , where Γ( ) is the gamma function 

and 𝑦𝑖=0,1,2, …. 
  
However, in a sample of typical size, many genes may have no rare mutations. That is, there would be an 
inflation of genes or regions with zero or low number of mutations(Figure 1a), which distorts the NB 
distribution. Therefore, we propose to model the mutation counts by a truncated negative binomial 
distribution. The PMF of the distribution with a truncated point parameter t is: 

𝑔(𝑦𝑖|𝜇𝑖,𝜃, 𝑡) = 𝑝(𝑦𝑖|𝜇𝑖,𝜃)
1−∑ 𝑓(𝑗|𝜇𝑖,𝜃)𝑡

𝑗=0
= 𝑝(𝑦𝑖|𝜇𝑖,𝜃)

1−𝐹(𝑋≤𝑡|𝜇𝑖;𝜃),  𝑦𝑖 = 𝑡 + 1, 𝑡 + 2,⋯ . 

 
Meanwhile, the number of mutation counts of a gene is also affected by multiple factors. For instance, a 
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long gene (say TTN, ~305KB) tends to have more mutant alleles than a short gene (Say GJB1, ~10KB). In 
the present study, we considered six predictive factors of the rare mutation counts at coding regions of 
genes, 

𝜂 = log(𝜇𝑖) = 𝛽0 + 𝛽1 × �𝑥1,𝑖, length of coding regions� + 𝛽2 × �𝑥2,𝑖, frequency score� + 𝛽3 ×

�𝑥3,𝑖, length of coding regions ⊗  frequency score� + 𝛽4 ×

�𝑥4,𝑖, constraint score by missense mutations�+ 𝛽5 × �𝑥5,𝑖, constraint score by LOF mutations� + 𝛽6 ×

�𝑥6,𝑖, GC content �.  

 
The frequency score, x2, is obtained from a reference database (e.g., 1000 Genomes Project) by matching 
allele-frequency and ancestry of the same region. The frequency score is produced by accumulating allelic 
frequencies of the same types of rare variants (see details below). The interaction factor, x3, is motived by 
the observation that genes of different coding region length may show different correlations between the 
mutation counts and allele frequencies (Figure 1c). The fourth and fifth predictors, constraint score which 
indicates a gene’s tolerance to missense and loss-of-function (LOF, e.g., protein-truncating) variants, are 
adopted from gnomAD 18. The OE_Miss and OE_LOF in the gene constrained file 
(https://gnomad.broadinstitute.org/downloads#gene-constraint) are used in the present study. The sixth predictor is 
the GC content of exon regions where the variants are located because mutation rate tends to be higher in 
GC-rich regions 19. 
 
Optimization of parameters 
In the above model, the regression coefficients (𝛽0,⋯ ,𝛽6) and dispersion parameter (𝜃) are estimated by 
maximum likelihood approaches under the truncated negative binomial distribution. We derived the 
mathematical formulas of the first derivatives of the log-likelihood function, 
𝑙(𝑦𝑖|𝜇𝑖, 𝜃, 𝑡) = ln[𝑔(𝑦𝑖|𝜇𝑖,𝜃, 𝑡)] = 𝑙𝑖 , for the maximum likelihood estimation (See details in the 
Supplementary Methods).  
 

∂𝐿
∂𝛽

=
∂∑ 𝑙𝑖𝑖

∂𝛽
= �[y𝑖 − 𝜇𝑖

y𝑖 + 𝜃
𝜇𝑖 + 𝜃

+ ��𝑗 − 𝜇𝑖
j + 𝜃
𝜇𝑖 + 𝜃

�
p(𝑗, 𝜇𝑖,𝜃)

1 − 𝐹(𝑋 ≤ 𝑡|𝜇𝑖;𝜃)]
𝑡

𝑗=0𝑖

 

∂𝑙𝑖
∂𝜃

= 𝜓(y𝑖 + 𝜃) − 𝜓(𝜃) + ln
𝜃

𝜇𝑖 + 𝜃
+ 1 −

y𝑖 + 𝜃
𝜇𝑖 + 𝜃

+ �[𝜓(j + 𝜃) −𝜓(𝜃) + ln
𝜃

𝜇𝑖 + 𝜃
+ 1 −

j + 𝜃
𝜇𝑖 + 𝜃

]
p(𝑗, 𝜇𝑖,𝜃)

1 − 𝐹(𝑋 ≤ 𝑡|𝜇𝑖;𝜃)

𝑡

𝑗=0

 

 
When fitting the six coefficients, the bin length b and truncation point t are set as constant. Given b and t, the 
fitted coefficients are used to estimate the expected mutation counts of gene i: 

𝜇̂𝑖 = 𝑒𝛽�0+𝛽�1𝑥𝑖,1+⋯+𝛽�6∙𝑥𝑖,6. 
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In the truncated negative binomial model, the deviance residual of the model at gene or region i is: 

𝑒𝑖 = 𝑠𝑠𝑠𝑠(𝑦𝑖 − 𝜇̂𝑖) ∗ �2 ∗ |𝑙(𝑦𝑖|𝜇𝑖∗,𝜃�, 𝑡) − 𝑙(𝑦𝑖|𝜇̂𝑖,𝜃�, 𝑡)| , 

where 𝑠𝑠𝑠𝑠(𝑥) is the sign function of the raw residue, and the 𝜇𝑖∗ is the estimated mean given the 
observed count 𝑦𝑖 and estimated 𝜃� in a saturated model (See details in the Supplementary Methods). 
 
The deviance residuals are further standardized by the estimated mean 𝜇̂𝑒,𝑖 and standard deviation 𝜎�𝑒,𝑖 of 
the deviance residuals, 

𝑒́𝑖 = 𝑒𝑖−𝜇�𝑒,𝑖
𝜎�𝑒,𝑖

. 

The standard normal distribution is used to approximate the corresponding p-value of 𝑒́𝑖: 
𝑝𝑖 = 1 −Φ(𝑒́𝑖), 

where 𝛷(𝑥) is the cumulative distribution function of the standard normal distribution. Using simulated 
data, we showed that the truncation at negative binomial distribution led to approximately uniform 
distribution of the p-values (Figure S1). This is similar to the results in real data (Figure 2 and S2).  
 
We built a grid-search procedure to explore the optimal values in their reasonable ranges. The bin length b is 
assumed to range from 0.05 to 1 and the truncation point t is assumed to range from 0 to 5. The search 

intervals of b and t are 0.05 and 1 respectively. Therefore, the grid-search has 120 (=20ⅹ6) b-t 

combinations in total. We adopted the mean log fold change (MLFC) 20 of p-values to quantify the departure 
from uniform distribution. The minimal MLFC is zero. A larger MLFC indicates a higher departure. The 
120 combinations are ranked according to MLFC of potential background genes in ascending order and 
number of significant genes/regions (FDR q>0.05) in descending order respectively. The optimal b and t are 
defined as the one resulting in the minimal summation rank, which balances the uniform distribution 
departure of p-values and number of significant genes/regions.    
 
The recursive procedure 
Note that the truncated negative binomial regression is proposed to model distribution of rare mutations at 
background genes or regions, i.e., the null hypotheses. The excessive mutations in true susceptibility genes 
or regions may harm the model fitting. Therefore, we further propose a recursive procedure to approximate 
the null hypothesis of gene mutations by removing significant and suggestively significant genes or regions. 
The following are the main steps of the recursive regression procedure (Also see the entire diagram in 
Figure 1d):  
1. Perform the truncated negative binomial regression on all genes in a genome and calculate p-value of 

mutation burden for each gene by RUNNER. 
2. Exclude significant genes according to a p-value cutoff, say, FDR of 0.2. 
3. Re-perform the truncated negative binomial regression on the remaining genes. 
4. Repeat Step 2 and 3 until no genes are excluded to obtain a converged model. 
5. Calculate the deviance residues and p-values of all genes by the converged model. 
 
Preparation of functional scores at mutations 
As mutations are not equally important in terms of their impact on gene function, it is reasonable to use prior 
weights to amplify mutant alleles with higher functional impact. We adopted our previous ensemble score15; 
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16 from 19 prediction scores by a logistic regression model (See the names and descriptions of the tools in 
Table S6). The basic rationale of these predictions is that variants which are evolutionarily conserved and 
have large effects on physical-chemical properties and protein structure may have higher damaging effect on 
a protein of a gene21. A posterior probability of disease-causal potential is produced by combing 19 existing 
tools under a logistic regression framework. The posterior probability is further standardized into a range of 
(0, 1) according to their posterior probability. A variant with the largest posterior probability in the genome 
has the standardized ranking score of 1. A larger ranking score indicates a higher functional or pathogenic 
impact of the mutant allele on the gene’s function. For variants with missing scores, the average prediction 
score in the gene is used. The procedure of generating ranking scores has been implemented into KGGSeq 
for the truncated negative binomial regression.   
 
Preparation of frequency scores  
The above frequency score is created by accumulating allelic frequencies at variants after matching allele 
frequency, variant type and population ancestry. Define a gene or a region i which has k rare variants in a 
reference sample. A variant j of the gene or region i has allele frequency fi,j and the above integer functional 
weight wi,j. The frequency score is then equal to: 

x2,𝑖 = ∑ 𝑓𝑖,𝑗 ∗ 𝑤𝑖,𝑗
𝑘
𝑗=1 , (𝑓𝑖,𝑗 < 0.01). 

When there is more than one reference sample, the averaged allele frequencies of multiple samples is used 
for the frequency score. In the present paper, we adopted the allele frequencies of sequence variants from the 
1000 Genomes Project and the exomes in Genome Aggregation Database (gnomAD, V2.1) as reference 
samples. Alternatively, one can also use the frequency scores calculated in other reference samples and even 
in local control samples. For the 1000 Genomes Project, the variant sites and allelic counts (Phase3 V6) of 
five different ancestry panels (African, Mixed American, East Asian, European, and South Asian) were 
downloaded from ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/. For gnomAD, the variant 
sites and allelic frequencies of 7 ancestrally different panels (East Asian, South Asian, African/African 
American, Latino, Finnish, Non-Finnish European, and Ashkenazi Jewish) were downloaded from 
http://gnomad.broadinstitute.org/downloads. In gnomAD, we only included the variants and allelic 
frequencies from subjects labelled as controls. The variants were mapped onto genes according to physical 
positions in two gene models (RefGene and GENCODE) and annotated with gene features by KGGSeq22. 
The integer functional weight of these variants was derived from the logistic regression models 15; 16 as 
described above.   
 
Alternative gene- or region-based association tests for rare mutations 
We compared the performance of RUNNER with three widely-used association tests for rare mutations. The 
three methods used different model to evaluate the mutation burden between cases and controls.  
 Combined Multivariate and Collapsing (CMC) method 8: The CMC method is a type of direct burden 

test for case-control samples. The variants were divided into multiple groups according to the allele 
frequencies. Within a group, mutations at multiple variants were collapsed. A multivariate test 
(Hotelling’s T2 test) was then employed to test whether the collapsed mutations of all groups were 
associated with case-control status. 

 The sequence kernel association test (SKAT) 10: SKAT assumed the effects of rare variants on disease 
risk followed an arbitrary distribution with a mean of zero and an unknown variance. The variants 
without effect would have zero variance. A score-based variance-component test in a mixed model was 
then constructed to examine whether the variance was equal to zero.  

 The kernel-based adaptive clustering model 23 (KBAC): KBAC considered genotypes of all rare variants 
in a gene or region as multi-site genotype vectors. The disease risk for a multi-site genotype was 
modeled using a mixture distribution. An adaptive weighting procedure was then used to produce 
weights of each genotype for their causality or susceptibility to a disease based on a known component 
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called kernel. 
The three methods were implemented into a user-friendly tool, RVTESTS24. Our high throughput 
sequencing data analysis platform, KGGSeq (http://grass.cgs.hku.hk/limx/kggseq/), has integrated 
RVTESTS as a third-party analysis component. On KGGSeq, we inputted the called sequence variants in 
VCF format and called RVTESTS for the gene-based association tests by the three approaches with default 
parameter settings in parallel.  
 
Computer simulations investigate type I error and power 
To keep the distribution of background rare mutations, we used a semi-simulation procedure to investigate 
the statistical type I error and power of RUNNER. In a database of 493 whole genome-sequenced subjects, 
which were used as healthy controls in a genetic study of Hirschsprung's disease 25, we randomly drew m 
(=75, 100, 150 and 200) subjects to form a new sample. For the type I error, the RUNNER was used to 
calculate p-values of all genome-wide genes in the new samples. The quantile-quantile (QQ) plot of -log10 
(p-value) under uniform distribution was used to check distribution of p-values, particularly at the tail of 
small p-values. In addition, the MLFC was also adopted to quantify the deviation of p-values from uniform 
distribution in general 20. A MLFC of > 0.3 indicated serious deviation from the null distribution 20. To 
investigate the statistical power, we made an artificial patient sample by randomly inserting several causal 
mutations (simulated according to a pre-set frequency) into genomes of some subjects of a drawn sample. 
Two genes (TCF4, and TIE1) were set as the targeted susceptibility genes in the simulations. Either gene 
was assumed to have 4-5 non-synonymous susceptibility variants (See the variants in Table S1). Each 
variant had an expected frequency of 1-1.5% at risk alleles in the artificial patient sample. The patient 
sample was analyzed by RUNNER to detect the genes with the rare risk mutations. In addition, we also 
randomly draw another batch of m subjects from the remaining whole-genome sequencing subjects and 
treated them as a matched control sample. The mutation rate of the variants in the assumed susceptibility 
variants was set as 10-8 in a control sample. The case-control samples were analyzed for power comparison. 
We produced t case-control samples for the association tests. Assume a test produced genome-wide 
significant p-values in k samples at a tested gene. The power was estimated as k/t at this gene.  
 
In addition, we also used subjects from 1000 Genomes (1KG) Project to check how the methods were 
sensitive to population stratification. Two types of samples were set. The first type of sample contained 250 
subjects from the CEU panel as cases, and 125 subjects from the remaining CEU panel and 125 subjects 
from the EAS panel as controls. The second type of samples included 500 subjects from the CEU panel as 
cases and 500 subjects from the EAS panel. The samples were analyzed by RUNNER and three alternative 
methods for association at rare variants. No genes were assumed to be related to the case/control 
membership, which was a mimic of null hypothesis. A significant association was spurious association due 
to population stratification 
 
Real high-throughput sequencing datasets 
Two real high-throughput sequencing datasets were used to validate the performance of the proposed 
method. Table S2 summarizes the disease names and sample information. All the sequencing samples were 
obtained with Institutional Review Board approval in either Hong Kong or in the mainland China. The short 
reads produced by Illumina HiSeq 2000 were mapped onto the reference genome (HG19) by BWA v0.7.1726. 
The redundant reads were removed by Picard (https://broadinstitute.github.io/picard/). The sequence variants 
were called by GATK v3.8 27. A stringent quality control (QC) procedure at the variants was performed on 
KGGSeq V1.1 (http://grass.cgs.hku.hk/limx/kggseq/). The variants or genotypes failing to pass the 
following QC criteria were excluded: Hardy-Weinberg test p value ≤0.001, genotyping quality Score (Phred 
Quality Score) <20, read depth per genotype <8, having 3 or more alleles, genotyping rate <90% in a sample. 
Supplementary Table S2 also lists the initial and retained sequence variants in each dataset.  
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Detection of susceptibility genes with rare variants by the proposed methods and three alternative 
methods 
All analyses for detecting susceptibility genes with rare variants were carried out on our KGGSeq platform 
(http://grass.cgs.hku.hk/limx/kggseq/). After the QC, common variants were then filtered out according to 
their alternative allele frequency (allele frequency > 0.01) in two databases, the 1000 Genomes Project and 
gnomAD exomes from East Asian panels. The variants were mapped onto genes according to two gene 
models (RefGene and GENCODE) and annotated with gene features (missense, synonymous, splicing, etc.). 
In the uncommon scenario that a variant belongs to multiple overlapped genes, the variants were assigned to 
each of the overlapped genes. Gene-based tests were then carried out to detect potential susceptibility genes 
of the diseases with the rare non-synonymous variants and splicing variants. For the gene-based association 
test by the three alternative methods [CMC 8, KBAC 23, and SKAT 10], KGGSeq produced all input of these 
tools and automatically launched RVTESTS for the analysis in parallel. For the baseline mutation burden 
test by RUNNER, KGGSeq directly ran its own codes to perform the analysis. KGGSeq predicted functional 
or pathogenic potential at a non-synonymous variant with a score (ranging from 0 to 1) and used the score to 
weight the mutant allele counts for RUNNER.  
 
Results 
 
Type I errors of the proposed and alternative methods for genome-wide association screening 

To check whether RUNNER is valid for statistical inference, we first investigated its genome-wide statistical 

type I error for detecting susceptibility genes with rare mutations by random sampling approach. Similar to 

the simulated negative binomial data (Figure S1), the distribution of p-values produced by RUNNER for 

mutation counts in real samples was also very close to uniform distribution (in Figure 2). This is also true 

even when the sample size was as small as 75. As expected, in the special case of no weights at variants, 

RUNNER also generated approximately uniformly-distributed p-values. In contrast, the three widely-used 

gene-based association methods (CMC8, SKAT10, and KBAC23) for case-control analysis showed deflated 

p-value distribution. The time-consuming permutation (n=106) SKAT, and KBAC did not rescue the 

deflation in the small samples. This was consistent with the consensus that existing statistical association 

tests for rare variants had generally invalid statistical properties in small or even moderate samples28. 

Relatively speaking, the p-values produced by CMC deviated from uniform distribution less than that 

produced by SKAT and KBAC. The deflation of the three methods became smaller as sample sizes increased. 

The valid type I error of RUNNER guarantees valid interpretation of RUNNER’s p-values for statistical 

inference. 

  

Robustness of RUNNER to population structure 

We also found RUNNER was much less sensitive to population stratification in terms of the type 1 error 

inflation. In practice, it is very difficult to correct population structure for rare variants in association 

analysis. Fortunately, RUNNER seemed immune to population structure regardless of the degree. In the first 
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type of sample in which 50% controls were from stratified populations, RUNNER showed no trend of 

inflation for baseline mutation burden test (Figure 3(a)). The unweighted version of RUNNER also showed 

uniformly distributed p-values. In contrast, the 50% of population stratification in controls resulted in very 

severe inflation of statistical significance at the three alternative association tests. There were over 200 genes 

with p-values <2.5E-6 by CMC and SKAT. KBAC had less inflation than CMC and SKAT but the trend of 

inflation was clear as well (Figure 3(a)). In another worse scenario, when all control subjects (n=500) had 

different ancestry from the cases (EAS vs. EUR), the inflation of statistical significance became even severer 

(Figure 3(b)). Hundreds of genes had p-values <2.5E-6 by CMC and SKAT. However, RUNNER still 

showed no inflation of statistical significance, in which the p-values followed uniform distribution 

approximately (Figure 3(b)). This analysis suggested RUNNER could be recommended for samples with 

large population stratification or batch effects as well.  

 

The statistical power of the proposed and alternative methods for genome-wide association screening 

We finally compared the statistical power of RUNNER with the three widely-used rare variant tests by 

semi-simulation analysis. The diseased samples were simulated by randomly inserting susceptibility alleles 

into real genomes of healthy subjects. Multiple rare missense mutations in TCF4 and TIE1 genes (See the 

mutation list in Table S1) were assumed in the simulation. TCF4 was repeatedly validated as a susceptibility 

gene for schizophrenia29 and TIE1 was suggested to play an important role in vascular development and 

pathogenesis of vascular diseases30. The RUNNER showed the highest power among all the compared tools 

(Figure 4). When the sample size was 100 patients and 100 controls, it achieved 58% and 68% power to 

detect TIE1 and TCF4, respectively, according to an exome-wide p-value cutoff 2.5E-6. The higher power at 

TCF4 than TIE1 was because TCF4 had more assumed causal mutations (5 vs. 4), shorter coding region 

(2.83 vs. 3.64), and lower accumulated allelic frequency in reference populations. When the sample size 

increased 50% (n=150), the power of RUNNER increased to 76% and 95% at the two genes, respectively. 

When no prior weights were imposed at the variants (the unweighted version of RUNNER), the power 

decreased. But it was still much more powerful than all the three alternative association tests for detecting 

both genes. When the sample size was 200 patients and 200 controls, the unweighted RUNNER achieved 87% 

power to detect TCF4. In contrast, the two gene-based association tests (SKAT and KBAC) had almost no 

power except that the CMC had 15% power to detect TIE1 in samples comprising 200 patients and 200 

controls. This is consistent with previous studies that existing methods for rare variants had very low power 

in small or moderate samples11. Therefore, RUNNER achieved the best power to detect genes with rare 

susceptibility mutations based on its baseline mutation burden across genes.       
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Validation of RUNNER in real datasets of complex diseases 

We further validated the performance of RUNNER at two different complex diseases (Hirschsprung disease 

and schizophrenia) with high throughput sequencing data (See summary description in Table S2). Genes 

were tested for rare mutation burden in patients by RUNNER. Besides, we also compared RUNNER’s 

results to three widely-used rare mutation association tests, CMC8, KBAC23, and SKAT10. 

 

Hirschsprung disease 

Hirschsprung disease (HSCR) is a highly heritable disorder with significant phenotypic heterogeneity and 

has a highest incidence rate among Asians (2.8/10,000 live births)31. Our dataset comprised 443 Asian 

HSCR patients and 493 Asian control individuals assayed by whole genome sequencing (The detailed 

sample information can be seen in the original paper25). The p-values of RUNNER, CMC and KBAC 

approximately followed the uniform distribution while SKAT showed deflation according to the Q-Q plots 

(Figure S2). Table 1 lists the top 10 genes detected by RUNNER. The well-known HSCR susceptibility gene, 

RET 32; 33, was obtained a significant p-value (p=3.03E-9) and prioritized as the top gene by RUNNER. In 

these cases, RET had 61 rare non-synonymous mutant alleles and its weighed allelic score was 122. The 

unweighted version of RUNNER also produced a highly significant p-value (p =2.48E-8) at RET and 

prioritized it as the top 1 gene. However, none of the alternative methods prioritized RET as the top 1 gene 

with the same set of rare variants. The association p-values by CMC, SKAT, and KBAC were 1.88E-05, 

3.89E-04 and 7.0E-6 respectively, which did not survive the genome-wide significance level, 2.5E-6. The 

top 1 gene by CMC and KBAC was OGG1 (p=2.01E-6 and 1.0E-6) while SKAT ranked ZNF276 as the top 

1 gene (p=2.97E-4). We failed to find literatures to support their contribution to the development of HSCR. 

A more remarkable instance can be seen in EDNRB, which is also a well-known HSCR susceptibility gene 
33; 34. EDNRB was the 4th most significant gene by RUNNER (p=4.67E-5). Unfortunately, CMC, SKAT and 

KBAC nearly neglected this gene, with a rank of 54, 199, and 58 respectively. The unweighted version of 

RUNNER only ranked it 39th in all tested genes. This was because EDNRB only had 15 rare 

non-synonymous mutations. It was the weight that boosted its significance among all compared genes.  

 

 

Besides the two known susceptibility genes, RUNNER also detected another gene with significant rare 

mutation burden in the HSCR patients, NXPE4. The NXPE4 (p=4.49E-7), is a promising candidate gene. 

NXPE4 encodes neurexophilin and PC-esterase domain family member 4. Although it needs further 

investigation to reveal whether NXPE4’s dysfunction is related to congenital defect of the enteric nervous 
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system in HSCR patients keeps unknown 35, there have been researches showing NXPE4 linked to several 

diseases originated in colons. NXPE4 is a prognostic biomarker for colorectal cancer36, and also associated 

with ulcerative colitis37. The high expression of NXPE4 had a significantly improved prognosis of colorectal 

cancer, regarding the overall survival of patients38. In addition, it has specifically high expression in colons 

(See details in database REZ, http://grass.cgs.hku.hk/limx/rez/). 
 

In the fitted RUNNER model, all the six predictors significantly contributed to the prediction of mutation 

count at background genes. As expected, the region length and gene frequency scores were positively related 

to the rare mutation counts of genes (p<1.47E-164), which means longer coding regions and higher mutation 

frequency genes tend to have more rare non-synonymous mutations. Consistent with previous studies 19, 

genes with higher CG content also tended to have more rare non-synonymous mutations (p<1.33E-30). The 

gene’s constrained score by missense variants had much higher significance level than that by loss of 

function variants (p=1.46E-45 vs. 1.27E-06) although both predictors were also positively related to the 

counts of rare non-synonymous mutations. Interestingly, the interaction term between the coding region 

length and gene frequency score had negative effects on the mutation counts (-0.193±0.004) and had the 

most significance level according to their z-scores. The negative interaction suggested that frequency score 

has a smaller effect for large genes than for small genes. The genome may show local variation in mutation 

frequency. For a large gene, the local variation was averaged out so that the length mattered the most. For 

small genes the local information was important and this was captured by the frequency score. The varied 

tendency can be visualized among genes in three gene groups of coding region lengths (Figure 1c). 

 

Alzheimer's disease (AD) 

Alzheimer’s disease is a progressive neurodegenerative disorder characterized by memory loss and cognitive 

impairments among elderly people. Multiple factors, including amyloid beta (Aβ) plaques, 

hyperphosphorylated tau tangles in the brain, synaptic dysfunction, neuronal loss, gut microbiota and 

neuroinflammatory, were recognized to be associated with the development and progression of AD 39-41. 

This dataset contained 246 ApoE ε4-negative AD patients and 172 healthy elderly controls sequenced at 

exomes. The detailed sample information can be seen in the original paper 42. RUNNER also showed 

approximately uniformly-distributed p-values at the most majority genes for the rare variant mutation 

burden test (Figure S2). However, the three alternative tests showed deflation in the small sample (Figure 

S2). The unweighted version of RUNNER detected a significant gene, CXCL16 (p=1.85E-6), which had 17 

non-synonymous variants in the patients (See details in Table S3). It encodes a CX3C subgroup of 
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chemokines and played a role in a wide range of diseases, including neuropathies and inflammatory diseases. 

Although no studies have established its genetic association with AD, there have been some indirect 

evidences. For instance, Rosito et al suggested that CXCL16 protected neurons from excitotoxic cell death 

in the CNS 43. Castro et al showed that CXCL16 modulated neurotransmitter release in hippocampal CA1 

area44. RUNNER detected another gene as significant gene DPH1 (p=9.64E-7) (See details in Table S4). 

DPH1 encodes an enzyme involved in the biosynthesis of diphthamide. This gene had 19 non-synonymous 

or splicing variants in the patients. Most of the variants had large deleteriousness score which amplified the 

mutation counts in RUNNER. The estimated coefficients of six predictors of RUNNER in this dataset were 

similar to that in HSCR (Table S5). Except for the interaction predictor, all other predictors had positive 

coefficients. The interaction predictor also showed the highest statistical significance. 

 

In contrast, the alternative methods detected no significant genes. The smallest p-value by CMC, KBAC and 

SKAT were 5.18E-4 (TULP3), 6.0E-4 (TBC1D1), and 1.16E-3 (ZNF296). None of these genes have been 

implicated in AD by previous studies. The CXCL16 was ranked by KBAC as the 2nd gene as well. However, 

its association p-value (p= 7.0E-4) failed to survive the exome-wide threshold (2.5E-6). 

 

Discussion 

In the present study, we proposed a novel approach, RUNNER, to evaluate baseline rare mutation burden 

across genes or regions in whole-genome or –exome sequencing studies. To our knowledge, this is the first 

statistical test for genetic mapping by baseline mutation burden across genes, which is carried out by a 

truncated negative binomial regression. We showed that RUNNER was much more powerful than three 

widely-used methods (CMC, SKAT and KBAC) for genetic association test at rare variants. The latter were 

built on mutation burden between cases and controls. We also demonstrated that RUNNER was much more 

robust to population structure than the widely-used methods. The enhanced power was reaffirmed by 

detecting more known or promising candidate susceptibility genes in real data analysis of Hirschsprung 

disease and Alzheimer's disease. To facilitate application of this powerful approach, we have implemented 

RUNNER as one of analysis modules on our comprehensive software platform for high throughput 

sequencing data analysis, KGGSeq (http://grass.cgs.hku.hk/limx/kggseq/).   

 

Why is RUNNER more powerful than a typical case-control association test? An intuitive explanation as 

follows: in a typical case-control test, the null hypothesis is that cases and controls have equal rare variant 

frequencies - the rare variant frequency in the entire population - estimated by the overall rare variant 

frequency in the pooled sample of cases and controls. However, in genomic regions that contain rare 
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variants positively associated with disease, the use of a pooled estimate results in an inflation of the 

population rare variant frequency, and attenuates the apparent increase in rare variant frequencies in cases, 

leading to reduced statistical power. Instead of testing for deviations of case and control frequencies from a 

pooled frequency estimate, RUNNER tests for deviations from an estimate of population rare variant 

frequency obtained by statistical modelling of the rare variant frequency in the entire genome using 

available genomic and population data. For illustration, consider the hypothetical example of a disease with 

prevalence 0.01, and a genomic region where the frequency of rare variants is 0.001 per individual in 

controls, but 0.01 per individual in cases. The overall frequency of rare variants in the population is 

therefore 0.001*0.99+0.01*0.01= 0.00109. In a sample size 1000 cases and 1000 controls, the expected 

number of rare variants in the cases and controls would be 10 and 1, respectively. If these expected values 

were actually observed, then the pooled rare variant frequency would be 0.0055, while the Pearson 

chi-squared statistic would be approximately (10-5.5)2/5.5 + (1-5.5)2/5.5 = 7.37, producing a one-tailed 

p-value of 0.0033. However, if we were able to infer correctly, through statistical modelling, that the 

population frequency of rare variants in the genomic region is 0.00109, then the expected number of rare 

variants in 1000 cases would be 1.09, so that the probability of observing 10 or more variants assuming a 

Poisson distribution is 2.4E-7.  

 

Besides the new strategy as illustrated in the results section, the enhanced power of RUNNER is also 

attributed to multiple methodological innovations. First, its iterative regression model based on the truncated 

negative binomial distribution exploits a baseline mutation burden comparison across genes or regions to 

detect disease risk genes. This is totally different from current mainstream analysis methods which are based 

on a case-control comparison. The comparison of baseline mutation burden across genes was seldom 

adopted for germline mutations analysis although it has been used for cancer somatic mutations analysis20. 

Probably, the major obstacle is the difficulty in modeling the distribution of mutation counts of rare variants. 

The proposed RUNNER provides a proper solution to the problem, which can be indirectly indicated by the 

approximated uniform distribution of the produced p-values among background genes. The improved power 

can further be explained by its higher sensitivity to increment of mutant alleles. RUNNER directly uses the 

increased allele numbers via the deviance residues to produce a test statistic instead of allele frequencies in 

conventional case-control association tests. In addition, the model also has an advantage of integrating prior 

weights at variants to further boost the power. As shown in Figure 3, the prior weights lead to 30% or more 

extra power while keeping the correct type 1 error.  

 

The robustness of RUNNER to population stratification is also ascribed to the baseline mutation burden. The 
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spurious association by conventional case-control studies is often caused a scenario that part or all cases are 

sampled from a population ancestrally different from that of controls. So the mutation burden between cases 

and controls only showed genetic difference between different populations. While the principle component 

analysis is often adopted to adjust for population stratification at common variants, it may be not effective 

for rare variant association analysis14. In contrast, the comparison resorts mutation burden across genes 

instead of that between cases and controls to detect susceptibility genes. It is much less insensitive to the 

population mixture. In our mimic population stratification where all controls were from an ancestrally 

different population (European vs. East Asian), RUNNER still showed no inflation of type 1 errors (Figure 

3). This robustness relieves the difficulty in matching controls samples for rare variant-based association test. 

Theoretically, RUNNER also works for case-only samples as long as there are no private variants. Therefore, 

RUNNER had an advantage of tackling the long-lasting problem of population stratification issue in genetic 

association studies. 

 

We selected six predictors under RUNNER model for the background mutation count of genes in the present 

study. Although the six predictors have led to accurate prediction and approximately uniform distribution of 

p-values, it does not exclude the usage of other predictors. For example, the sequencing coverage at a gene 

or region would be also a predictor. But it may be data-dependent. When sequencing depth is high enough, 

almost all genes have enough reads to call reliable genotypes. In this scenario, its impact on the prediction 

will be small and will have little effect on statistical evaluation (See an example in Figure S4). Moreover, it 

has been noted that the mutation rate tends to be lower in genes that are highly expressed 45, due to a process 

termed transcription-coupled repair 46. The mutation rate tends to be higher in regions with late DNA 

replication timing 47, probably due to the depletion of free nucleotides 48. Studies have suggested that 

mutation rates may be also associated with epi-genomic features 49. However, these features are cell-type 

and developmental stage dependent. In practice, it is often challenging to obtain a right cell-type at a right 

time for a disease. We tried to add the gene expression of multiple-cell types from GTEx 50 as predictors. It 

turned out there are generally insignificant (unpublished data). In fact, the frequency score predictor is 

generated at the same genome regions and may already have contained part of the impact of gene expression 

and replication timing.  

 

The model of RUNNER is independent of mutation types. Due to availability of abundant data for validation, 

we focus on coding and splicing mutations in this paper. This does not preclude its potential extension to 

non-coding rare mutations. However, additional future work is needed for the extension to non-coding 

variants. As the evolution selection and genomic features of non-coding variants may be different from that 
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of coding variants 51, different predictive factors may be needed for the mutation counts in non-coding 

regions. The biological interpretation of significant results is also more difficult for long non-coding 

genomic regions. A possible way is to analyze sub-non-coding regions separately, e.g., regulatory upstream 

regions and the first intronic regions. Besides, the functional prediction at non-coding variants is generally 

less advanced than that at coding variants. How the prior weights based on less accurate prediction at 

non-coding variants influence the power will also be an interesting future work. We performed a preliminary 

extension of the proposed framework for rare variants in upstream and downstream regions. Although only 

the gene-frequency score was used, the p-values had only slightly deviation from the uniform distribution 

(Figure S3). This result suggested the framework RUNNER is extendable for non-coding regions with more 

effective predictors.  

 

Besides the systematic simulation study, the real data analysis further demonstrates effectiveness of 

RUNNER for genetic mapping of rare variants. In a proof of principle example, RUNNER successful 

“re-discovered” the known causal gene (p<2.5E-6), RET 32; 33, and prioritized another known gene EDNRB 
33; 34 of Hirschsprung disease. These genes were ignored by the three widely-used alterative tests, CMC, 

SKAT and KBAC. In the Alzheimer's disease dataset, RUNNER showed significant p-value at CXCL16. 

Although experiments are needed to validate the association, there have been multiple indirect evidences 

supporting this gene as a promising candidate gene of Alzheimer's disease, including protection of neurons 

from excitotoxic cell death in the CNS 43 and regulation of neurotransmitter release in hippocampal CA1 

area 43.  

 

Two limitations should be noted in the present paper. First, the analysis framework does not directly 

consider covariates to adjust for confounding factors of diseases. For a disease with strong confounding 

factors, one should pre-adjust the case-control status or clinical phenotypes by a regression with the 

confounding factors and re-group the patients with the adjusted disease status or phenotypes. Second, 

RUNNER will not work in candidate gene analysis as it resorts to hundreds of genes to build a baseline 

model at a time. Therefore, the substantially enhanced power of RUNNER does not mean that it will be a 

replacement of the widely-used case-control tests for genetic mapping. However, it may work as an effective 

complementary analysis approach either when well-matched control samples are unavailable or when a 

genome-wide case-control tests are underpowered.  

 

In summary, we proposed a novel and powerful statistical approach, RUNNER, to detect susceptibility 

genes with rare mutations. Its baseline mutation burden and advanced weighted truncated negative binomial 
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regression may motivate follow-up methodological studies for genetic mapping from a new angle. As we 

demonstrated in the applications, the enhanced power of RUNNER may save multiple susceptibility genes 

missed by widely-used case-control association tests. 
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Figure Titles and Legends 
Figure 1: The distribution features of genes’ mutation counts and the proposed framework  a): the histogram 
of rare mutation counts, b) the scatter plots of rare mutation counts of genes of different coding region length, c)the 
relationship between mutation counts and accumulated allele frequency in genes of short(<1.5kb), middle and 
long(>3kb) coding region length, d) The diagram of RUNNER procedure. 
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Figure 2: Quantile-quantile plot of p-values produced by different methods a) when sample size of cases is 
a)75; b) 100; c) 150; d) 200 and equal numbers of controls. RUNNER: the proposed approach; RUNNER: RUNNER0 
using original mutation counts at variants. CMC, SKAT, and KBAC are three widely-used approaches for gene-based 
association tests with rare variants in case-control samples. 
 
Figure 3: The p-value QQ plot of different tests in stratified population a) half of controls were from an 
ancestrally different population. b) all controls were from an ancestrally different population. 
 
Figure 4: Performance comparison of different methods a) power of methods for detecting gene TCF4 b) power 
of methods for detecting TIE1 gene. For each scenario, 100 datasets were simulated. The assumed rare susceptibility 
variants can be seen in Table S1. 
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Tables 
Table 1: Top 10 genes prioritized by RUNNER in Hirschsprung disease dataset 

Gene 
Symbol 

Mutant 
alleles 

Weighted 
alleles 

Region 
Length EAS OE_LOF OE_MIS ExonGC Residual0 P0 Residual P 

RET 61 119 3.477 0.039 0.896 0.0391 0.585 5.452 2.48E-08 5.815 3.03E-09 

NXPE4 21 57 1.66 0.015 1.02 1.11 0.415 3.273 5.33E-04 4.913 4.49E-07 

CDCA4 19 45 0.731 0.021 0.934 0.452 0.531 3.419 3.14E-04 4.410 5.18E-06 

EDNRB 15 36 1.797 0.011 0.806 0.329 0.410 2.680 3.68E-03 3.907 4.67E-05 

GAB4 33 50 2.105 0.015 1.15 0.815 0.578 3.645 1.34E-04 3.862 5.62E-05 

OGG1 26 48 1.732 0.018 1.1 0.885 0.576 3.342 4.16E-04 3.853 5.84E-05 
PHYKP

L 22 44 1.452 0.022 1.08 0.961 0.562 3.029 1.23E-03 3.612 1.52E-04 

PLOD2 20 41 2.484 0.022 0.921 0.439 0.366 3.096 9.82E-04 3.577 1.74E-04 

BECN1 15 29 1.408 0.009 0.666 0.151 0.481 3.041 1.18E-03 3.562 1.84E-04 

SEC24D 20 50 3.235 0.032 0.83 0.405 0.436 2.513 5.99E-03 3.513 2.21E-04 

Notes: Mutant alleles refer to rare non-synonymous mutant alleles. Region Length and ExonGC are the length and CG 
content in exon regions. Residual means deviance residue. Residual0 and P0 denote the residual and p-values of 
unweighted version of RUNNER. 
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