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 28 

Significance statement: Insect populations are challenging to study, but computer vision and deep 29 

learning provide opportunities for continuous and non-invasive monitoring of biodiversity around 30 

the clock and over entire seasons. These tools can also facilitate the processing of samples in a 31 

laboratory setting. Automated imaging in particular can provide an effective way of identifying and 32 

counting specimens to measure abundance. We present examples of sensors and devices of 33 

relevance to entomology and show how deep learning tools can convert the big data streams into 34 

ecological information. We discuss the challenges that lie ahead and identify four focal areas to 35 

make deep learning and computer vision game changers for entomology.  36 
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ABSTRACT 37 

Most animal species on Earth are insects, and recent reports suggest that their abundance is in 38 

drastic decline. Although these reports come from a wide range of insect taxa and regions, the 39 

evidence to assess the extent of the phenomenon is still sparse. Insect populations are challenging to 40 

study and most monitoring methods are labour intensive and inefficient. Advances in computer 41 

vision and deep learning provide potential new solutions to this global challenge. Cameras and 42 

other sensors that can effectively, continuously, and non-invasively perform entomological 43 

observations throughout diurnal and seasonal cycles. The physical appearance of specimens can 44 

also be captured by automated imaging in the lab. When trained on these data, deep learning models 45 

can provide estimates of insect abundance, biomass, and diversity. Further, deep learning models 46 

can quantify variation in phenotypic traits, behaviour, and interactions. Here, we connect recent 47 

developments in deep learning and computer vision to the urgent demand for more cost-efficient 48 

monitoring of insects and other invertebrates. We present examples of sensor-based monitoring of 49 

insects. We show how deep learning tools can be applied to the big data outputs to derive ecological 50 

information and discuss the challenges that lie ahead for the implementation of such solutions in 51 

entomology. We identify four focal areas, which will facilitate this transformation: 1) Validation of 52 

image-based taxonomic identification, 2) generation of sufficient training data, 3) development of 53 

public, curated reference databases, and 4) solutions to integrate deep learning and molecular tools. 54 
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INTRODUCTION 55 

We are experiencing a mass extinction of species (1), but data on changes in species diversity and 56 

abundance have substantial taxonomic, spatial, and temporal biases and gaps (2, 3). The lack of data 57 

holds especially true for insects despite the fact that they represent the vast majority of animal 58 

species. A major reason for these shortfalls for insects and other invertebrates is that available 59 

methods to study and monitor species and their population trends are antiquated and inefficient (4). 60 

Nevertheless, some recent studies have demonstrated alarming rates of insect diversity and 61 

abundance loss (5-7). To further explore the extent and causes of these changes, we need efficient, 62 

rigorous, and reliable methods to study and monitor insects (4, 8). 63 

Data to derive insect population trends are already generated as part of ongoing 64 

biomonitoring programs. However, legislative terrestrial biomonitoring, e.g. in the context of the 65 

EU Habitat Directive, focuses on a very small subset of individual insect species such as rare 66 

butterflies and beetles because the majority of insect taxa are too difficult or too costly to monitor 67 

(9). In current legislative aquatic monitoring, benthic invertebrates are commonly used in 68 

assessments of ecological status (e.g. the US Clean Water Act, the EU Water Framework Directive, 69 

and the EU Marine Strategy Framework Directive). Still, the spatiotemporal and taxonomic extent 70 

and resolution in ongoing biomonitoring programs is coarse and does not provide information on 71 

the status of the vast majority of insect populations. 72 

Molecular techniques such as DNA barcoding and metabarcoding will likely become 73 

valuable tools for future insect monitoring based on field collected samples (10, 11), but at the 74 

moment high-throughput methods cannot provide reliable abundance estimates (12, 13) leaving a 75 

critical need for other methodological approaches. The state-of-the-art in deep learning and 76 

computer vision methods and image processing has matured to the point where it can aid or even 77 

replace manual observation in situ (14) as well as in routine laboratory sample processing tasks 78 
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(15). Image-based observational methods for monitoring of vertebrates using camera traps have 79 

undergone rapid development in the past decade (14, 16-18). Similar approaches using cameras and 80 

other sensors for investigating diversity and abundance of insects are underway (19, 20). However, 81 

despite huge attention in other domains, deep learning is only very slowly beginning to be applied 82 

in invertebrate monitoring and biodiversity research (21-25). 83 

Deep learning models learn features of a dataset by iteratively training on example 84 

data without the need for manual feature extraction (26). In this way, deep learning is qualitatively 85 

different from traditional statistical approaches to prediction (27). Deep learning models specifically 86 

designed for dealing with images, so called convolutional neural networks (CNNs) can extract the 87 

features of various aspects of a set of images or the objects within them, and learn to differentiate 88 

among them. There is great potential in automatic detection and classification of insects in video or 89 

time-lapse images with trained CNNs (20). As the methods become more refined, they will bring 90 

exciting new opportunities for understanding insect ecology and for monitoring (19, 28-31). 91 

Here, we argue that deep learning and computer vision can be used to develop novel, 92 

high throughput systems for detection, enumeration, classification, and discovery of species as well 93 

as for deriving functional traits such as biomass for biomonitoring purposes. These approaches can 94 

help solve long standing challenges in ecology and biodiversity research and the pressing issues in 95 

insect population monitoring (32, 33). This article has three goals. First, we present sensor-based 96 

solutions for observation of invertebrates in situ and for specimen-based research in the laboratory, 97 

which due to the volume of data generated, use or could benefit from deep learning models to 98 

process data. Second, we show how deep learning models can be applied to obtained data streams to 99 

derive ecologically relevant information. Last, we outline and discuss four main challenges that lie 100 

ahead in the implementation of such solutions for invertebrate monitoring, ecology, and biodiversity 101 

research. 102 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 4, 2020. ; https://doi.org/10.1101/2020.07.03.187252doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.03.187252


6 
 

 103 

SENSOR-BASED INSECT MONITORING 104 

Sensors are widely used in ecology for gathering peripheral data such as temperature, precipitation, 105 

light intensity etc., but have not yet been used much for gathering data on the insects. However, 106 

solutions for sensor-based monitoring of insects and other invertebrates in their natural environment 107 

are emerging (34). The innovation and development is primarily driven by agricultural research to 108 

predict occurrence and abundance of beneficial and pest insect species of economic importance (35-109 

37), to provide more efficient screening of natural products for invasive insect species (38), or to 110 

monitor disease vectors such as mosquitos (39, 40). The most commonly used sensors are cameras, 111 

radar, and microphones. Such sensor-based monitoring is likely to generate big data, which require 112 

efficient solutions for extracting relevant biological information. Deep learning could be a critical 113 

tool in this respect. Below, we give examples of image-based approaches to insect monitoring, 114 

which we argue has the greatest potential for integration with deep learning. We also describe 115 

approaches using other types of sensors, where the integration with deep learning is less well 116 

developed, but still could be relevant for detecting and classifying entomological information. We 117 

further describe the ongoing efforts in the digitization of natural history collections, which could 118 

generate valuable reference data for training and validating deep learning models. 119 

 120 

Image-based solutions for in situ monitoring 121 

Some case studies have already used cameras and deep learning methods for detecting single 122 

species, such as the pest of the fruits of olive trees Bactrocera oleae (41) or for more generic pest 123 

detection (42). The pest detection is based on images of insects that have been trapped with either a 124 

McPhail-type trap or a trap with pheromone lure and adhesive liner. The images are collected by a 125 

microcomputer and transmitted to a remote server where they are analysed. Other solutions have 126 
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embedded a digital camera and a microprocessor that can count trapped individuals in real-time 127 

using object-detection based on an optimized deep learning model (37). In both these cases, deep 128 

learning networks are trained to recognize and count the number of single pest species. However, 129 

there are very few examples of invertebrate biodiversity-related field studies applying deep learning 130 

models (23). Early attempts used feature vectors extracted from single perspective images and 131 

yielded modest accuracy for 35 classes of moths (43) or used mostly coarse taxonomic resolution 132 

(44). We have recently demonstrated that our custom-built time-lapse cameras can record image 133 

data from which a deep learning model could accurately estimate local spatial, diurnal, and seasonal 134 

dynamics of honey bees and other flower visiting insects (45; Figure 1). Time-lapse cameras are 135 

less likely to create observer bias than direct observation and data collection can extend across full 136 

diurnal and even seasonal time scales. Cameras can be baited just as traditional light and pheromone 137 

traps or placed over ephemeral natural resources such as flowers, fruits, dung, fungi or carrion. 138 

Bjerge, et al. (46) propose to use an automated light trap to monitor the abundance of moths and 139 

other insects attracted to light. The solution is powered by a solar panel, which allows the system to 140 

be installed in remote locations (Figure 2). Ultimately, true ‘Internet of Things’ enabled hardware 141 

will make it possible to implement classification algorithms directly on the camera units to provide 142 

fully autonomous systems in the field to monitor insects and report detection and classification data 143 

back to the user or to online portals in real time (34). 144 

 145 

Radar, acoustic, and other solutions for in situ monitoring 146 

The use of radar technology in entomology has allowed for the study of insects at scales not 147 

possible with traditional methods, specifically related to both migratory and non-migratory insects 148 

flying at high altitudes (47). Utilizing data from established weather radar networks can provide 149 

information at the level of continents (48), while specialized radar technology such as vertical-150 
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looking radars (VLRs) can provide finer grained data albeit at a local scale (49). The VLRs can give 151 

estimates of biomass and body shape of the detected object, and direction of flight, speed and body 152 

orientation can be extracted from the return radar signal (50). However, VLR data provide little 153 

information on community structure and conclusive species identification requires aerial trapping 154 

(51, 52). Harmonic scanning radars can detect insects flying at low altitudes at a range of several 155 

hundred meters, but insects need to be tagged with a radar transponder and must be within line-of-156 

sight (53, 54). Collectively, the use of radar technology in entomology can provide valuable 157 

information in insect monitoring, for example on the magnitude of biomass flux stemming from 158 

insect migrations (55), but requires validation with conventional monitoring methods (e.g. 56). 159 

Bioacoustics is a well-established scientific discipline and acoustic signals have been 160 

extensively and widely used in the field of ecology, for example for detecting presence and studying 161 

behavior of marine mammals (57) and for bird species identification (58). Jeliazkov, et al. (59) used 162 

audio recordings to study population trends of Orthoptera at large spatial and temporal scales, 163 

demonstrating that bioacoustic techniques have merit in entomological monitoring. Machine 164 

learning methods have proven a particularly valuable tool for deciphering noisy audio recordings 165 

and detecting the signals of animals. Kiskin, et al. (60) demonstrated the use of a CNN to detect the 166 

presence of mosquitoes by identifying the acoustic signal of their wingbeats. Other studies have 167 

shown that even species classification can be done using machine learning on audio data, for 168 

example for birds (58), bats (61), grasshoppers (62), and bees (63). Although, it has been argued 169 

that the use of pseudo-acoustic optical sensors rather than actual acoustic sensors is a more 170 

promising technology because of the much improved signal-to-noise ratio in these systems, which 171 

may be a particularly important point for bioacoustics in entomology (64). 172 

Other systems rely on sensor technology to automate the recording of insect activity 173 

or even body mass, but without actual consideration of the subsequent processing of the data with 174 
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deep learning methods (65, 66). In (65) they use a sensor-ring of photodiodes and infrared LEDs to 175 

detect large and small sized arthropods, including pollinators and pests and achieve a 95% detection 176 

accuracy for live microarthropods of three different species in the size range of 0.5 – 1.1 mm. The 177 

Edapholog (66) is a low-power monitoring system for real-time detection of soil microarthropods 178 

where a pitfall trap is presented. Probe and sensing is based on detection of change in infrared light 179 

intensity similar to (65) and it counts the organisms falling into the trap and estimates their body 180 

size. The probe is connected via radio signals to a logging devices that transmits the data to a 181 

central server for real-time monitoring. Similarly, others have augmented a traditional low-cost 182 

trapping methods by implementing optoelectronic sensors and wireless communication to allow for 183 

real-time monitoring and reporting (35). Since, such sensors do not produce images that are 184 

intuitive to validate, it could be challenging to generate sufficient, validated training data for 185 

implementing deep learning models, although such models could still prove useful. 186 

 187 

Digitizing specimens and natural history collections 188 

There are strong efforts to digitize natural history collections for multiple reasons including the 189 

benefits of deep learning applications (67). The need for and benefits of digitizing natural science 190 

collections have motivated the foundation of the Distributed System of Scientific Collections 191 

Research Infrastructure (DISSCo RI, www.dissco.eu). DISSCo RI strives for the digital unification 192 

of all European natural science assets under common curation and access policies and practices. 193 

Most existing databases include single view digitisations of pinned specimens (68), while datasets 194 

of insect specimens recorded using multiple sensors, 3D models, and databases on living insect 195 

specimens are only just emerging (69, 70). The latter could be particularly relevant for deep 196 

learning models. There is also a valuable archive of entomological data in herbarium specimens in 197 

the form of signs of herbivory (71). The standard digitization of herbarium collections has proven 198 
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suitable for extracting herbivory data using machine learning techniques (72). Techniques to 199 

automate digitization techniques will accelerate the development of such valuable databases and 200 

enables tools for identification of non-pinned specimens and live insects in situ (67). The 201 

BIODISCOVER machine (73) is a proposal towards the automatization of creating databases of 202 

liquid preserved specimens such as most field collected insects. The process consists of four 203 

automatized steps: 1) bin picking of individual insects directly from bulk samples, 2) recording the 204 

specimen from multiple angles using high speed imaging, 3) saving the captured data in an 205 

optimized way for deep learning algorithm training and further study, and 4) sorting specimens 206 

according to size, taxonomic identity or rarity for potential further molecular processing (Figure 3). 207 

Digitization efforts should carefully consider how image data of specimens can be leveraged in 208 

efforts to develop deep learning models for in situ monitoring.  209 

 210 

POTENTIAL DEEP LEARNING APPLICATIONS IN ENTOMOLOGY 211 

The big data collected by sensor-based insect monitoring as described above requires efficient 212 

solutions for transforming the data into biologically relevant information. Preliminary results 213 

suggest that deep learning offers a valuable tool in this respect and could further inspire the 214 

collection of new types of data (20, 45). Deep learning software, e.g. for ecological applications, is 215 

mostly constructed using open source Python libraries and frameworks such as TensorFlow, Keras, 216 

PyTorch, and Scikit-learn (24) and prototype implementations are typically publicly available e.g. 217 

on www.github.com. This, in turn, makes the latest advances in other fields related to object 218 

detection and fine-grained classification available also for entomological research. As such, the 219 

existing deep learning toolbox is already available, but will need adaptation to entomology from the 220 

domains for which the tools were developed. In the following, we provide a brief description of the 221 
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transformative potential of deep learning related to entomological data stored in images structured 222 

around four main applications.  223 

 224 

Detecting and tracking individuals in situ 225 

Image-based monitoring of insect abundance and diversity could rapidly become globally 226 

widespread as countries make efforts to better understand the severity of the global insect decline 227 

and mitigation measures. Similarly, tracking of individual insects in situ even for short periods of 228 

time holds exciting research potential. For example, by estimating movement speed of individual 229 

insects in their natural environments and relating it to observed microclimatic variation, more 230 

realistic thermal performance curves can be established and contrasted to traditional lab-derived 231 

thermal performance. However, tracking insect in their natural environment is currently a highly 232 

challenging task, due to e.g. the cluttered scenes and varying lighting conditions. In computer 233 

vision, such tasks are termed ‘detection-based online multiple object tracking’, and work under a set 234 

of assumptions (74). These assumptions include a precise initial detection (initialization) of the 235 

objects to be tracked in a scene, a good ability to visually discriminate between the multiple tracked 236 

objects, and smooth motion, velocity, and acceleration patterns of the tracked objects (75). The 237 

small visual differences among individual insects and frequent hiding behaviour violate the above 238 

assumptions. Moreover, current state-of-the-art deep learning models typically use millions of 239 

learned parameters and can only run in near real-time with low-resolution video, which constrains 240 

the visual discrimination of the targeted objects in the scene. Possible solutions to these challenges 241 

include the use of non-linear motion models (76) and the development of compact (77) or 242 

compressed (78) deep learning models. 243 

If we manage to solve the task of individual tracking of insects it could open the doors 244 

for a new individual-based ecology with profound impacts in such research fields as population, 245 
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behavioural, and thermal ecology as well as conservation biology. Moreover, considering the recent 246 

development in low-cost powerful graphical processing units and dedicated artificial intelligence 247 

processer suitable for autonomous and embedded systems (e.g. NVIDIA Jetson Nano, Google Coral 248 

Edge TPU, and the Intel AI USB stick), it may soon become feasible to detect, track, and decode 249 

behaviour of insects in real-time and report information back to the user. 250 

 251 

Detecting species interactions 252 

Species interactions are critical for the functioning of ecosystems, yet as they are ephemeral and 253 

fast, the consequences of a disruption for ecological function is hard to quantify. High temporal 254 

resolution image-based monitoring of consumers and resources can allow for a unique 255 

quantification of species interactions (79). The use of cameras allows for continuous observations of 256 

species and their interactions across entire growing seasons such as insects visiting flowers, 257 

defoliation by herbivores, and predation events. There is an urgent need to develop methods to 258 

observe and quantify species interactions efficiently and at ecologically relevant spatial and 259 

temporal scales (80, 81). To detect such interactions, image recording should be collected at the 260 

scales where individuals interact, i.e., by observing interacting individuals at intervals of seconds to 261 

minutes, yet they should ideally extend over seasonal and/or multi-annual periods, which at the 262 

moment is difficult to fulfil. Our preliminary results have demonstrated an exciting potential to 263 

record plant-insect interactions using time-lapse cameras and deep learning (28 and Figure 1).  264 

 265 

Taxonomic identification 266 

Taxonomic identification can be approached as a deep learning classification problem. Deep 267 

learning-based classification accuracies for image-based insect identification of specimens are 268 

approaching the accuracy of human experts (82-84). Applications of gradient-weighted class 269 
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activation mapping can even visualize morphologically important features for CNN classification 270 

(84). Classification accuracy is generally much lower when the insects are recorded live in their 271 

natural environments (85, 86), but when class confidence is low at the species-level, it may still be 272 

possible to confidently classify insects to a coarser taxonomic resolution (87). In recent years, 273 

impressive results have been obtained by CNNs (88). They can classify huge image datasets, such 274 

as the 1000-class ImageNet dataset at high accuracy and speed (89). With images of >10,000 275 

species of plants, classification performance of CNNs is currently much lower than for botanical 276 

experts (25), but promising results in distributed training of deep neural networks (90) and federated 277 

learning (91, 92) suggest that improvements can be expected. 278 

In most ecological communities, it is common for species to be rare. This often results 279 

in highly imbalanced datasets, and the number of specimens representing the rarest species could be 280 

insufficient for training neural networks (86, 87). As such, advancing the development of 281 

algorithms and approaches for improved identification of rare classes is a key challenge for deep 282 

learning-based taxonomic identification. Solutions to this challenge could be inspired by class 283 

resampling and cost-sensitive training (93) or by multiset feature learning (94, 95). Class 284 

resampling aims at balancing the classes by under-sampling the larger classes and/or over-sampling 285 

the smaller classes, while cost-sensitive training assigns a higher loss for errors on the smaller 286 

classes. In multiset feature learning, the larger classes are split into smaller subsets, which are 287 

combined with the smaller classes to form separate training sets. These methods are all used to learn 288 

features that can more robustly distinguish the smaller classes. Species identification performance 289 

can vary widely, ranging from species which are correctly identified in most cases to species that 290 

are generally difficult to identify (96). Typically, the amount of training data is a key element for 291 

successful identification, although recent analyses of images of the approximately 65,000 292 

specimens in the carabid beetle collection at the Natural History Museum London suggest that 293 
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imbalances in identification performance are not necessarily related to how well-represented a 294 

species is in the training data (87). Further work is needed on large datasets to fully understand 295 

these challenges. 296 

A related challenge is formed by those species that are completely absent from the 297 

reference database on which the deep learning models are trained. Detecting such species requires 298 

techniques developed for multiple-class novelty/anomaly detection or open set/world recognition 299 

(97, 98). A recent survey introduces various open set recognition methods with the two main 300 

approaches being discriminative and generative (99). Discriminative models are based on traditional 301 

machine learning techniques or deep neural networks with some additional mechanism to detect 302 

outliers, while the main idea of generative models is to generate either positive or negative samples 303 

for training. However, the current methods are typically applied on relatively small datasets and do 304 

not scale well with the number of classes (99). Insect datasets typically have a high number of 305 

classes and a very fine-grained distribution, where the phenotypic differences between species may 306 

be minute while intra-species differences may be large. Such datasets are especially challenging for 307 

open set recognition methods. While it will be extremely difficult to overcome this challenge for all 308 

species using only phenotype based identification, combining image-based deep learning and DNA 309 

barcoding techniques may help to solve the problem. 310 

 311 

Estimating biomass from bulk samples 312 

Deep learning models can potentially predict biomass of bulk insect samples in a lab setting. 313 

Legislative aquatic monitoring efforts in the United States and Europe require information about the 314 

abundance or biomass of individual taxa from bulk invertebrate samples. Using the 315 

BIODISCOVER machine, Ärje, et al. (73) were able to estimate biomass variation of individual 316 

specimens of Diptera species without destroying specimens. This was achieved from geometric 317 
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features of the specimen such as the mean area from multiple images recorded by the 318 

BIODISCOVER machine and statistically relating such values to subsequently obtained dry mass 319 

from the same specimens. To validate such approaches, it is necessary to have accurate information 320 

about the dry mass of a large selection of taxa. In the future, deep learning models may provide 321 

even more accurate estimates of biomass. Obtaining specimen-specific biomass information non-322 

destructively from bulk samples is a high priority in routine insect monitoring, since it will enable 323 

more extensive insights into insect population and community dynamics and provide better 324 

information for environmental management.  325 

 326 

FUTURE DIRECTIONS 327 

To unlock the full potential of deep learning methods for insect ecology and monitoring, four main 328 

challenges need to be addressed with highest priority. We describe each of these below. 329 

 330 

Validating image-based taxonomic identification 331 

Validation of the detection and identification of species recorded with cameras in the field pose a 332 

critical challenge for implementing deep learning tools in entomology. Often it will not be possible 333 

to conclusively identify insects from images and validation of image-based species classification 334 

should be done using alternative, complimentary techniques. We suggest four approaches to this 335 

validation: 1) Obtaining local knowledge about the identity and relative abundance of candidate 336 

species, 2) catching and manually identifying insects in the vicinity of a camera trap, 3) identifying 337 

insects by environmental DNA analysis of insect DNA traces left e.g. on flowers (100), or 4) by 338 

directly observing and catching insects visible to the camera. The first three approaches are indirect 339 

and each come with their separate problems such as the difference in trapping efficiency of a time-340 

lapse camera trap and e.g. a pitfall trap placed to capture the same insects. However, the subsequent 341 
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identification of specimens from pitfall trapping can serve as validation of image-based results and 342 

can further help in production of training data for optimizing deep learning models (e.g. by placing 343 

specimens back under the camera). DNA techniques be able to validate image-based identification 344 

since DNA can give accurate information on species identity (11, 100, 101). 345 

For specific purposes, validation of insects can be done through interfaces with online 346 

portals and by involving citizen science. With integrated deep learning algorithms, online portals 347 

provide instant candidate species when users upload pictures of observed insect species. The most 348 

prominent examples of such portals of relevance to insects are the smartphone apps connected to 349 

sites such as www.iNaturalist.org and www.observation.org. Another way of using deep learning 350 

models to generate data on insect occurrence in their natural environment is by involving the public 351 

in the annotation and quality control of images of insects uploaded to citizen science web portals 352 

such as www.zooniverse.org (102). 353 

 354 

Generating training data 355 

One of the main challenges with deep learning is the need for large amounts of training data, which 356 

is slow, difficult, and expensive to collect and label. Deep learning models typically require 357 

hundreds of training instances of a given species to learn to detect species occurrences against the 358 

background (86). In a laboratory setting, the collection of data can be eased by automated imaging 359 

devices, such BIODISCOVER described above, which allow imaging large amounts of insects 360 

under fixed settings. The imaging of species in situ should be done in a wide range of conditions 361 

(e.g., background, time of day, and season) to avoid that the model learns a false connection 362 

between the species and the background, with resulting lower ability of the model to detect the 363 

species against another background. Approaches to alleviate the challenge of moving from one 364 

environment to another include multi-task learning (103), style transfer (104), image generation 365 
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(105), or domain adaptation (106). Multi-task learning aims to concurrently learn multiple different 366 

tasks (e.g., segmentation, classification, detection) by sharing information leading to better data 367 

representations and ultimately better results. Style transfer methods try to impose properties 368 

appearing in one set of data to new data. Image generation can be used to created synthetic training 369 

images with, for example, varying backgrounds. Domain adaptation aims at tuning the parameters 370 

of a deep learning model trained on data following one distribution (source domain) to adapt so that 371 

they can provide high performance on new data following another distribution (target domain).  372 

The motion detection sensors in wildlife cameras are typically not triggered by insects 373 

and species typically only occur in a small fraction of time-lapse images. A key challenge is 374 

therefore to detect insects and filter out blank images from images with species of interest (102, 375 

107). When it is difficult to obtain sufficient samples of rare insects, Zhong, et al. (108) proposed to 376 

use deep learning only to detect all species of flying insects as a single class. Subsequently, the fine-377 

grained species classification can be based on manual feature extraction and support vector 378 

machines, which is a machine learning technique that requires less training data and solves the 379 

problem of insufficient training data.  380 

The issue of scarce training data can also be alleviated with new data synthesis. Data 381 

synthesis could be used specifically to augment the training set by creating artificial images of 382 

segmented individual insects that are placed randomly in scenes with different backgrounds (109). 383 

A promising alternative is to use deep learning models for generating artificial images belonging to 384 

the class of interest. The most widely approach to date is based on generative adversarial networks 385 

(110) and has shown astonishing performance results in computer vision problems in general, as 386 

well as in ecological problems (111). 387 

 388 
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Building reference databases 389 

Publicly available reference databases are critical for adapting deep learning tools to entomological 390 

research. Initiatives like DISSCO RI and IDigBio (https://www.idigbio.org/) are important for 391 

enabling the use of museum collections. However, to enable deep learning-based identification, 392 

individual open datasets from entomological research and monitoring are also needed (e.g. 85, 96, 393 

112). The collation of such research datasets will require dedicated projects as well as large 394 

coordinated efforts that drive the open-access and reuse of research data such as the European Open 395 

Science Cloud and the Research Data Alliance. Building a large insect reference dataset is laborious 396 

and, therefore, it is important to maximize the benefits. To do so, non-collection datasets should 397 

also use common approaches and hardware and abide to best practices in metadata and data 398 

management (113-115). Further, dataset collectors and deep learning model developers should work 399 

closely together and make data accessible. All the possible metadata, such as camera settings and 400 

hardware, sampling location, date, and time of day, should be saved for future analysis. Similarly, 401 

characteristics of the specimen, such as species identity, biomass, sex, age class, and possibly 402 

derived information like dry weight should be recorded if such information exist. In particular, 403 

correct labelling of species in images is critical. Using multiple experts and molecular information 404 

about species identity to verify the labeling or performing subsequent validity checks through DNA 405 

barcoding will improve the data quality and the performance of the deep learning models. This can 406 

be done, for instance, by manually verifying the quality and labeling of images that are repeatedly 407 

misclassified by the machine learning methods. Standardized imaging devices such as the 408 

BIODISCOVER machine could also play a key role in building reference databases from 409 

monitoring programs (73). Training classifiers with species that are currently not encountered in a 410 

certain region but can possibly spread there later will naturally help to detect such changes when 411 

they occur. Integration of such reference databases with field monitoring methods forms an 412 
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important future challenge. As a starting point, we provide a list of open access entomological 413 

image databases (SI Appendix). 414 

 415 

Integration of deep learning and DNA-based tools 416 

For processing samples in the lab, molecular methods have gained increasing attention over the past 417 

decade, but there are still critical challenges which remain unresolved: specimens are typically 418 

destroyed, abundance cannot be accurately estimated, and key specimens cannot be identified in 419 

bulk samples. Nevertheless, DNA barcoding is now an established, powerful method to reliably 420 

assess biodiversity also in entomology (11). For insects, this works by sequencing a short fragment 421 

of the mitochondrial cytochrome-c-oxidase I subunit gene (COI) and comparing the DNA sequence 422 

to an available reference database (116). Even undescribed and morphologically cryptic species can 423 

be distinguished with this approach (117), which is unlikely to be possible with deep learning. This 424 

is of great importance as morphologically similar species can have distinct ecological preferences 425 

(118) and thus distinguishing them unambiguously is important for monitoring, ecosystem 426 

assessment and conservation biology. However, mass-sequencing based molecular methods cannot 427 

provide precise abundance or biomass estimates and assign sequences to individual specimens (12). 428 

Therefore, an unparalleled strength lies in combining both image-recognition and DNA 429 

metabarcoding approaches: i) When building reference collections for training models for insect 430 

classification, species identity can be molecularly verified and potential cryptic species can be 431 

separated by the DNA barcode. ii) After image-based species identification of a whole bulk sample, 432 

all specimens can be processed via DNA metabarcoding to assess taxonomic resolution at the 433 

highest level. A further obvious advantage of linking computer vision and deep learning to DNA is 434 

the fact that even in the absence of formal species descriptions, DNA tools can generate distinctly 435 

referenced taxonomic assignments via so-called “Barcode-Index-Numbers” (BINs) (119). These 436 
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BINs provide referenced biodiversity units using the taxonomic backbone of the Barcode of Life 437 

Data Systems (https://boldsystems.org) and represent a much greater diversity of even yet 438 

undescribed species. For instance, it is typically clear that a new species belongs to the genus 439 

Astraptes in the butterfly family Hesperiidae, but also that it represents a genetically distinct, new 440 

entity (120). These units can also be directly used as part of ecosystem status assessment despite not 441 

yet having Linnean names. BINs can be used for model training. Recent studies convincingly show 442 

that with this more holistic approach, which includes cryptic and undescribed species, the 443 

predictions of environmental status as required by several legislative monitoring programs actually 444 

improve substantially (e.g. 121). For cases of cryptic species with great relevance e.g. for 445 

conservation biology it is also possible to individually process specimens of a cryptic species 446 

complex after automated image-based assignment to further validate identity and frequency of 447 

these. Combining deep learning with DNA-based approaches could deliver detailed trait 448 

information, biomass, and abundance with the best possible taxonomic resolution.  449 

 450 

CONCLUSION 451 

Deep learning is currently influencing a wide range of scientific disciplines (88), but has only just 452 

begun to benefit entomology. While there is a vast potential for deep learning to transform insect 453 

ecology and monitoring, applying deep learning to entomological research questions brings new 454 

technical challenges. The complexity of deep learning models and the challenges of entomological 455 

data require substantial investment in interdisciplinary efforts to unleash the potential of deep 456 

learning in entomology. However, these challenges also represent ample potential for cross-457 

fertilization among the biological and computer sciences. The benefit to entomology is not only 458 

more data, but also novel kinds of data. As the deep learning tools become widely available and 459 

intuitive to use, they can transform field entomology by providing information that is currently 460 
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intractable to record by human observations (18, 33, 122). Consequently, there is a bright future for 461 

entomology, with new research niches opening up and access to unforeseen scales and resolution of 462 

data, vital for biodiversity assessments. 463 

The shift towards automated methods may raise concerns about the future for 464 

taxonomists, much like the debate concerned with developments in molecular species identification 465 

(123, 124). We emphasize that the expertise of taxonomists is at the heart of and critical to these 466 

developments. Initially, automated techniques will be used in the most routine-like tasks, which in 467 

turn will allow the taxonomic experts to dedicate their focus on the specimens requiring more in 468 

depth studies as well as the plethora of new species that need to be described and studied. To enable 469 

this, we need to consider approaches that can pinpoint samples for human expert inspection in a 470 

meaningful way, e.g., based on neural network classification confidences (82) or additional rare 471 

species detectors (125). As deep learning becomes more closely integrated in entomological 472 

research, the vision of real-time detection, tracking, and decoding of behaviour of insects could be 473 

realized for a transformation of insect ecology and monitoring. In turn, efficient tracking of insect 474 

biodiversity trends will aid the design of effective measures to counteract or revert biodiversity loss. 475 

 476 
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FIGURE LEGENDS 785 

Figure 1 786 

We developed and tested a camera trap for monitoring flower visiting insects, which records images 787 

at fixed intervals (45). (A) The setup consist of two web cameras connected to a control unit 788 

containing a Raspberry Pi computer and a hard drive. In our test, ten camera traps were mounted on 789 

custom built steel rod mounts c. 30cm above a green roof mix of plants in the genus Sedum. Images 790 

were recorded every 30 sec during the entire flowering season. After training a convolutional neural 791 

network (Yolo3), we detected >100,000 instances of pollinators over the course of an entire 792 

growing season. (B) An example image from one of the cameras showing a scene consisting of 793 

different flowering species. The locations of the insect detections varied greatly among three 794 

common flower visiting species (C) the European honey bee (Apis mellifera), (D) the red-tailed 795 

bumblebee (Bombus lapidarius), and (E) the marmalade hoverfly (Episyrphus balteatus). Across 796 

the ten camera traps, the deep learning model detected detailed variation in (F) seasonal and (G) 797 

diurnal variation in the occurrence frequency among the same three species. Figure adapted with 798 

permission from (45). 799 

 800 

Figure 2 801 

(A) To automatically monitor nocturnal moth species, we designed a light trap with an on-board 802 

computer vision system (46). The light trap is equipped with three different light sources. A 803 

fluorescent tube to attract moths, a light table covered by a white sheet to provide a diffuse 804 

background illumination of the resting insects, and a light ring to illuminate the specimens. The 805 

system is able to attract moths and automatically capture images based on motion detection. The 806 

trap is designed using standard components such as a high-resolution USB web camera and a 807 

Raspberry Pi computer. (B) We have proposed a computer vision algorithm that, during offline 808 
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processing of the captured images, performs tracking and counting of individual moths. A 809 

customized convolutional neural network was trained to detect and classify eight different moth 810 

species. The algorithm can run on the on-board computer to allow the system to automatically 811 

process and submit species data via a modem to a server. The system works off grid due to a battery 812 

and solar panel. 813 

 814 

Figure 3 815 

The BIODISCOVER machine, can automate the process of invertebrate sample sorting, species 816 

identification, and biomass estimation (73). (A) The imaging system consists of an ethanol-filled 817 

spectroscopic cuvette, a powerful and adjustable light source and two cameras capable of recording 818 

images at 50 frames per second (B) The setup is mounted in a light proof aluminium box and fitted 819 

with a pump for refilling the spectroscopic cuvette. (C) Each specimen is imaged from two angles 820 

by the cameras as it is dropped into the ethanol-filled cuvette and geometric features related to size 821 

and biomass are computed automatically. (D) The system has a built in flushing mechanism for 822 

controlling which specimens should be kept together for subsequent storage or analysis. The results 823 

for an initial dataset of images of 598 specimens across 12 species of known identity was very 824 

promising with a classification accuracy of 98.0% (73). The system is generic and can easily be 825 

used for other groups of invertebrates as well. As such, the BIODISCOVER machine pave the way 826 

for cheap, fast, and accurate data on spatial and temporal variation in invertebrate abundance, 827 

diversity and biomass. Figure adapted with permission from (73).  828 
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TABLE 1 829 

Glossary 830 

• Bin picking: an industrial term for robots that pick up one of many objects randomly placed in a 831 

container. 832 

• Convolutional Neural Network (CNN): a deep learning algorithm in the family of neural 833 

networks with serval different layers commonly applied for image recognition and 834 

classification. A CNN can be trained to recognize various objects and patterns in an image. 835 

There are four main different operations in a CNN: convolution, activation functions, sub 836 

sampling, and fully connected layer. During training the learnable parameters of each 837 

convolutional and fully connected layer are adjusted so the CNN is able to recognize different 838 

patterns of the training data and used for final image classification. 839 

• Data augmentation: a technique that can be used to artificially expand the size of a training 840 

dataset by creating modified images with objects of interest for classification.  841 

• Machine learning: a subset of artificial intelligence associated with creating algorithms that can 842 

change themselves without human intervention to get the desired result – by feeding themselves 843 

through structured data. 844 

• Deep learning: a subset of machine learning where algorithms are created and function 845 

similarly to machine learning, but where there are many levels of these algorithms, each 846 

providing a different interpretation of the data it conveys. 847 

• DNA barcoding: Identification of a species using a short, standardised gene fragment. 848 

• Initialization: description of an object to be tracked. 849 

• Training data: classified images (e.g. images of known species identified by experts) that are 850 

recorded to train a deep learning model. 851 

• Precision: the number of true positives divided by the sum of true positives and false positives 852 
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• Recall: also called the true positive rate, is the number of true positives divided by the sum of 853 

true positives and false negatives. 854 

• Classification accuracy: the sum of true positives and true negatives divided by the total 855 

number of specimens. 856 

 857 
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