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Abstract

The intrinsic dynamics of neuronal populations are shaped by both macroscale connectome architec-
ture and microscale attributes. Neural activity arising from the interplay of these local and global
factors therefore varies from moment to moment, with rich temporal patterns. Here we comprehen-
sively characterize intrinsic dynamics throughout the human brain. Applying massive temporal feature
extraction to regional haemodynamic activity, we estimate over 6,000 statistical properties of individ-
ual brain regions’ time series across the neocortex. We identify two robust topographic gradients of
intrinsic dynamics, one spanning a ventromedial-dorsolateral axis and the other spanning a unimodal-
transmodal axis. These gradients are distinct in terms of their temporal composition and reflect spatial
patterns of microarray gene expression, intracortical myelin and cortical thickness, as well as structural
and functional network embedding. Importantly, these gradients are closely correlated with patterns
of functional activation, differentiating cognitive versus affective processing and sensory versus higher-
order cognitive processing. Altogether, these findings demonstrate a link between microscale and
macroscale architecture, intrinsic dynamics, and cognition.

INTRODUCTION

The brain is a complex network of anatomically con-
nected and perpetually interacting neuronal populations
[87]. Inter-regional connectivity promotes signaling via
electrical impulses, generating patterned electrophysio-
logical and haemodynamic activity [6, 89]. Neuronal
populations are organized into a hierarchy of increas-
ingly polyfunctional neural circuits [47, 53, 65], mani-
festing as topographic gradients of molecular and cellu-
lar properties that smoothly vary between unimodal and
transmodal cortices [50]. Recent studies have demon-
strated cortical gradients of gene transcription [12, 31],
intracortical myelin [49], cortical thickness [100] and
laminar profiles [72].

The topological and physical embedding of neural cir-
cuits in macroscale networks and microscale gradients
influence their dynamics [40, 56, 102]. For a neuronal
population, the confluence of local properties and global
connectivity shapes both the generation of local rhythms,
as well as the propensity to communicate with other pop-
ulations. Numerous studies, mainly using electrophys-
iological recordings, suggest that intrinsic timescales
systematically vary over the cortex [32, 51, 61, 71].
The primary functional consequence of this hierarchy of
timescales is thought to be a hierarchy of temporal recep-
tive windows: time windows in which a newly arriving
stimulus will modify processing of previously presented
information [7, 15, 16, 43, 48, 50]. Thus, areas at the
bottom of the hierarchy preferentially respond to imme-
diate changes in the sensory environment, while areas at
the top of the hierarchy preferentially respond to more
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long-lived or contextual information.

The relationship between structure and dynamics is
also observed at the network level [89]. Intrinsic or “rest-
ing state” networks possess unique spectral fingerprints
[54]. Signal variability, measured in terms of standard
deviations or entropy, is closely related to structural and
functional network embedding [14, 33, 69, 84]. More
generally, the autocorrelation properties of blood oxy-
genation level-dependent (BOLD) signal are correlated
with topological characteristics of structural brain net-
works, such that areas with greater connectivity generate
signals with greater autocorrelation [25, 82]. Finally, in
nonlinear dynamic models, highly interconnected hubs
exhibit slower dynamic fluctuations, while sensory ar-
eas exhibit fast fluctuating neural activity [40]. Indeed,
nonlinear dynamic models offer better fits to empirical
functional connectivity if they assume heterogeneous lo-
cal dynamics that follow a unimodal–transmodal gradi-
ent [17, 22, 101].

Altogether, multiple lines of evidence suggest that lo-
cal computations may reflect systematic variation in mi-
croscale properties and macroscale network embedding,
manifesting as diverse temporal properties of regional
activity. However, conventional computational analysis
is based on specific, manually selected temporal features
(autocorrelation, variance, spectral power) and specific
anatomical properties (gene expression, cortical thick-
ness, connectivity). Yet the time series analysis litera-
ture is vast and interdisciplinary; how do other metrics
of temporal structure vary across the brain and what
can they tell us about cortical organization? Do differ-
ent types of local computations manifest as different or-
ganizational gradients? Here we comprehensively chart
intrinsic dynamics across the cerebral cortex, mapping
temporal organization to structural organization. We ap-
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Figure 1. Temporal phenotyping of regional dynamics | The highly comparative time-series analysis toolbox, hctsa [29, 30],
was used to extract over 6,000 temporal features of the parcellated time series for each brain region and participant, including
measures of autocorrelation, variance, spectral power, entropy, etc. Regional dynamic profiles were then entered into two types of
analyses. In the first analysis, pairs of regional temporal feature vectors were correlated to generate a region × region temporal
profile similarity network. In the second analysis, principal component analysis (PCA) was performed to identify orthogonal linear
combinations of temporal features that vary maximally across the cortex.

ply massive temporal feature extraction to resting state
BOLD signals to derive an exhaustive intrinsic dynamic
profile for each brain region. We then systematically in-
vestigate the relationship between local temporal prop-
erties and gene expression, microstructure, morphology,
structural connectivity and functional connectivity. We
show that intrinsic dynamics reflect molecular and cy-
toarchitectonic gradients, as well as patterns of structural
and functional connectivity.

RESULTS

All analyses were performed on four resting state fMRI
runs from the Human Connectome Project [93]. The
data were pseudorandomly divided into two samples of
unrelated participants to form Discovery and Validation
samples with n = 201 and n = 127, respectively [21].
External replication was then performed using data from
the Midnight Scan Club [41]. Massive temporal feature
extraction was performed using highly comparative time-
series analysis, hctsa [29, 30], yielding approximately
6,000 features per regional time series, including mea-
sures of frequency composition, variance, autocorrela-
tion, fractal scaling and entropy (Fig. 1). The results are
organized as follows. We first investigate whether re-
gions that are structurally and functionally onnected dis-
play similar intrinsic dynamics. We then characterize the
topographic organization of temporal features in relation
to microstructural attributes and cognitive ontologies.

Inter-regional temporal profile similarity reflects network
geometry and topology

We first assessed the extent to which intrinsic dynam-
ics depend on inter-regional physical distance, anatom-
ical connectivity and functional connectivity. We es-
timated similarity between inter-regional dynamics by
computing Pearson correlation coefficients between re-
gional temporal feature vectors (Fig. 1). Two regional
time series are judged to be similar if they have similar
temporal profiles, estimated across a comprehensive and
diverse set of temporal properties (e.g. similar similar
entropy, stationarity, linear correlation properties) [27].
This measure of similarity identifies pairs of regions that
have similar dynamical features, but not necessarily co-
herent or synchronous dynamics (Fig. 2a). We refer to
correlations between regional temporal feature profiles
as “temporal profile similarity”.

Fig. 2b shows a negative exponential relationship be-
tween spatial proximity and temporal profile similarity,
meaning that regions that are spatially close exhibit sim-
ilar intrinsic dynamics. Interestingly, regions that share
an anatomical projection have greater temporal profile
similarity than those that do not (Fig. 2c; two-tailed t-
test; P ≈ 0). To test whether this anatomically-mediated
similarity of dynamical features is not due to spatial
proximity, we performed two additional comparisons.
First, we regressed out the exponential trend identified
above, and repeated the analysis on the residuals, yield-
ing a significant difference in temporal profile similar-
ity between connected and non-connected regions (two-
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Figure 2. Inter-regional temporal profile similarity reflects network geometry and topology | (a) Temporal profile similarity
networks are constructed by correlating pairs of regional temporal feature vectors. Brain regions are ordered based on their intrinsic
functional network assignments [106]. (b) Temporal profile similarity between regions significantly decreases as a function of
Euclidean distance between them. The black line represents an exponential fit as y = 0.37e−0.03x + 0.01, where y is temporal
profile similarity and x is Euclidean distance. (c, d) Regional temporal features are compared between pairs of cortical areas using
their structural and functional connectivity profiles. Pairwise temporal profile similarity is significantly higher among structurally-
connected areas (c), and among regions that belong to the same intrinsic functional networks (d). Statistical significance of the
observations is indicated using an asterisk (two-tailed t-test; P ≈ 0). (e) Temporal profile similarity is positively correlated with
functional connectivity. This relationship remains after partialling out Euclidean distance between regions from both measures
using exponential trends. rs demonstrates Spearman rank correlation coefficient. Linear regression lines are added to the scatter
plots for visualization purposes only. Connections are colour-coded based on the Yeo intrinsic networks [106]. VIS = visual, SM =
somatomotor, DA = dorsal attention, VA = ventral attention, LIM = limbic, FP = fronto-parietal, DMN = default mode.

tailed t-test; P ≈ 0). Second, we generated an ensem-
ble of 10 000 degree- and edge length-preserving surro-
gate networks [9], and compared the difference of the
means between connected and non-connected pairs in
the empirical and surrogate networks. Again, we observe
a significant difference in temporal profile similarity be-
tween connected and non-connected regions (two-tailed;
P = 0.0001).

Likewise, regions belonging to the same intrinsic func-
tional network have greater temporal profile similarity
compared to regions in different networks (Fig. 2d; two-
tailed t-test; P ≈ 0). We confirmed this finding is not
driven by spatial proximity, we repeated the analysis with
distance-residualized values, finding a significant differ-
ence (two-tailed t-test; P ≈ 0). We also repeated the
analysis using a nonparametric label-permutation null
model with preserved spatial autocorrelation [2], again
finding significantly greater with- compared to between-

network temporal profile similarity (two-tailed; Pspin =
0.006). More generally, we find a weak positive correla-
tion between temporal profile similarity and functional
connectivity (original: Spearman rank rs = 0.23, P ≈ 0;
distance-corrected: rs = 0.18, P ≈ 0; Fig. 2e), sug-
gesting that areas with similar temporal features exhibit
coherent spontaneous fluctuations, but that the two are
only weakly correlated. Fig. 2e shows the correlation be-
tween the two; points represent pairwise relationships
and are coloured by their membership in intrinsic net-
works [106]. In other words, two regions could display
similar time series features, suggesting common func-
tion, but they do not necessarily fluctuate coherently.
Thus, representing time series using sets of features pro-
vides a fundamentally different perspective compared to
representing them as the raw set of ordered BOLD mea-
surements. Altogether, we find that the organization
of intrinsic dynamics is closely related to both the ge-
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ometric and topological embedding of brain regions in
macroscale networks.

Intrinsic dynamics reflect microscale and macroscale
hierarchies

We next investigate the topographic organization of
temporal features. Applying principal component anal-
ysis (PCA) to the region × feature matrix yielded mutu-
ally orthogonal patterns of intrinsic dynamics (Fig. 1),
with the top two components collectively accounting
for more than 70% of the variance in temporal fea-
tures (Fig. 3a). Fig. 3a shows the spatial distribution
of the top two components. The first component (PC1)
mainly captures differential intrinsic dynamics along a
ventromedial-dorsolateral gradient, separating occipital-
parietal cortex and anterior temporal cortex. The sec-
ond component (PC2) captures a unimodal-transmodal
gradient, reminiscent of recently reported miscrostruc-
tural and functional gradients [50]. Both components
show considerable hemispheric symmetry. In the follow-
ing sections, we focus on these two components because
of their (a) effect size (percent variance accounted for),
(b) close resemblance to previously reported topographic
gradients, and (c) reproducibility (only the first two com-
ponents were reproducible in both the HCP and MSC
datasets; see Sensitivity and replication analyses below).
Note that neither spatial maps were significantly corre-
lated with temporal signal-to-noise ratio map, computed
as the ratio of the time series mean to standard deviation
(tSNR; PC1: rs = 0.28, Pspin = 0.19; PC2: rs = 0.21,
Pspin = 0.16).

Which temporal properties contribute most to these to-
pographic gradients of intrinsic dynamics? To address
this question, we systematically assess the feature com-
position of PC1 and PC2. We compute univariate corre-
lations (i.e. loadings) between individual temporal fea-
ture vectors and PC scores (Fig. 3b). Each loading is as-
sessed against 10,000 spin tests and the results are cor-
rected for multiple comparisons by controlling the false
discovery rate (FDR; α = 0.001; [8]). The top 5% pos-
itively and negatively correlated features are shown in
word clouds. The complete list of features ranked by
loading, their definitions, loadings and P -values for both
components is presented in machine-readable format in
Supporting Tables S2,3. For PC1, consistent with previ-
ous reports, we observe strong contributions from mul-
tiple measures of autocorrelation (e.g., AC_1, first-order
linear autocorrelation; AC_nl, nonlinear autocorrelation;
IN_AutoMutualInfoStats, automutual information). For
PC2, we observe strong contributions from measures of
distribution shape, often captured by measures of distri-
butional entropy (e.g., EN_DistributionEntropy_ks, en-
tropy of kernel-smoothed distribution; DN_Moments_4,
kurtosis; DN_pleft_05, how the distribution is balanced
about the mean). In other words, PC2 appears to index
dynamic range, or how much of the probability density is
away from the mean. Interestingly, none of the odd mo-

ments (distribution asymmetry) are high in the PC2 load-
ing list, just even moments, suggesting that PC2 captures
the shape of the deviations of time-series data points in
both directions from the mean.

To illustrate the topographic organization of these at-
tributes, Fig. 3c shows the spatial distributions of two
high-loading representative time-series features for each
component. Ventromedial areas (lower in the PC1 gra-
dient) have lower linear and nonlinear autocorrelation,
while doroslateral areas (higher in the PC1 gradient)
have greater autocorrelation. Sensory areas (lower in the
PC2 gradient) have greater distributional entropy and
kurtosis, while transmodal areas (higher in the PC2 gra-
dient) have lower distributional entropy and kurtosis.

To assess whether the dominant variation in tempo-
ral properties of BOLD dynamics varies spatially with
structural and functional gradients, we next quantify the
concordance between PC1/PC2 and other microstruc-
tural and functional attributes (Fig. 4). We use Spear-
man rank correlations throughout, as they do not assume
a linear relationship among variables. Given the spa-
tially autocorrelated nature of both hctsa features and
other imaging features, we assess statistical significance
with respect to nonparametric spatial autocorrelation-
preserving null models [2]. PC1 topography is corre-
lated with the first principal component of microarray
gene expression computed from the Allen Institute Hu-
man Brain Atlas [12, 45] (rs = 0.57, Pspin = 0.03), but
no other attributes. PC2 topography is significantly cor-
related with the first principal component of microarray
gene expression (rs = −0.45, Pspin = 0.0008), with the
principal gradient of functional connectivity estimated
using diffusion map embedding [18, 57, 63] (https://
github.com/satra/mapalign) (rs = 0.77, Pspin = 0.0001),
with intracortical myelin as measured by T1w/T2w ra-
tio (rs = −0.57, Pspin = 0.0001) [49], and with corti-
cal thickness (rs = 0.43, Pspin = 0.008) [100]. Alto-
gether, the two topographic gradients of intrinsic dynam-
ics closely mirror molecular and microstructural gradi-
ents, suggesting a link between regional structural prop-
erties and regional dynamical properties. Fig. S1 further
confirms this intuition, showing the mean score of each
component for three well-known cortical partitions, in-
cluding intrinsic functional networks [106], cytoarchi-
tectonic classes [96–98] and laminar differentiation lev-
els [66].

Spatial gradients of intrinsic dynamics support distinct
functional activations

Given that topographic patterns of intrinsic dynam-
ics run parallel to distinct microstructural and functional
gradients, and marked by distinct temporal properties,
we next asked whether these topographic patterns of in-
trinsic dynamics are related to patterns of functional acti-
vation and psychological processes. To address this ques-
tion, we used Neurosynth to derive probability maps for
multiple psychological terms [105]. The term set was
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Figure 3. Topographic gradients of intrinsic dynamics | (a) PCA analysis identified linear combinations of hctsa temporal
features with maximum variance across the human cortex. Collectively, the first two components (PC1 and PC2) account for
75% of the total variance in time-series features of BOLD dynamics across brain regions. To estimate the extent to which cortical
regions display the patterns of intrinsic dynamics captured by each component, hctsa matrices were projected back onto the PC
weights (eigenvectors), yielding spatial maps of brain scores for each component. Spatial maps are depicted based on the standard
deviation σ of their respective brain score distributions. (b) To understand the feature composition of the intrinsic dynamic patterns
captured by PC1 and PC2, feature loadings were computed by correlating individual hctsa feature vectors with the PC score maps.
PC loadings thus estimate the shared spatial variance between an individual temporal feature and the composite intrinsic dynamic
map captured by a PC. Temporal features are ordered by their individual loadings. Grey indicates non-significance based on
10,000 spatial permutation tests (FDR correction, α = 0.001). Features corresponding to the top and bottom 5% of PC1 and PC2
are visualized using word clouds. The complete list of features ranked by loading, their definitions, correlations and P -values for
both components is presented in machine-readable format in Supporting Tables S2,3. Feature nomenclature in hctsa is organized
such that the term prefix indicates the broad class of measures (e.g. AC = autocorrelation, DN = distribution) and the term suffix
indicates the specific measure (for a complete list, see https://hctsa-users.gitbook.io/hctsa-manual/list-of-included-code-files). (c)
The spatial distributions of two high-loading representative time-series features for each component, including AC_1 (first-order
linear autocorrelation), AC_nl (nonlinear autocorrelation), DN_Moments_4 (fourth moment or kurtosis of the time-series points
distribution), EN_DistributionEntropy (entropy of the time-series points distribution).
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Figure 4. Hierarchical organization of intrinsic dynamics | PC1 and PC2 brain score patterns are compared with four molecular,
microstructural and functional maps. These maps include the first principal component of microarray gene expression data from the
Allen Human Brain Atlas [12, 45], the first (principal) gradient of functional connectivity estimated using diffusion map embedding
[18, 57, 63], group-average intracortical myelin estimated by T1w/T2w ratio, and group-average cortical thickness. The three latter
indices were computed from the HCP dataset [93]. Statistical significance of the reported Spearman rank correlation rs is assessed
using 10,000 spatial permutations tests, preserving the spatial autocorrelation in the data (“spin tests”; [2]). Linear regression
lines are added to the scatter plots for visualization purposes only.

restricted to those in the intersection of terms reported
in Neurosynth and in the Cognitive Atlas [74], yielding
a total of 123 terms (Table S1). Each term map was
correlated with the PC1 and PC2 score maps to iden-
tify topographic distributions of psychological terms that
most closely correspond to patterns of intrinsic dynam-
ics (Bonferroni corrected, α = 0.05; Fig. 5). Consistent
with the intuition developed from comparisons with in-
trinsic networks, PC1 intrinsic dynamics mainly defined
a cognitive-affective axis (e.g. “attention”, “anticipa-
tion” versus “stress”, “fear”, “loss”, “emotion”; Fig. 5a),
while PC2 dynamics defined a sensory-cognitive axis
(e.g. “perception”, “multisensory”, “facial expression”

versus “cognitive control”, “memory retrieval”, “reason-
ing”; Fig. 5b).

Sensitivity and replication analyses

As a final step, we sought to assess the extent to
which the present findings are replicable under alter-
native processing choices and in other samples (Fig.6).
For all comparisons, we correlated PC1 and PC2 scores
and weights obtained in the original analysis and in each
new analysis. Significance was assessed using spatial au-
tocorrelation preserving nulls as before. We first repli-
cated the results in individual subjects in the Discov-
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Figure 5. Spatial gradients of intrinsic dynamics support distinct functional activations | We used Neurosynth to derive
probability maps for multiple psychological terms [105]. The term set was restricted to those in the intersection of terms reported
in Neurosynth and in the Cognitive Atlas [74], yielding a total of 123 terms (Table S1). Each term map was correlated with the PC1
(a) and PC2 (b) score maps to identify topographic distributions of psychological terms that most closely correspond to patterns of
intrinsic dynamics. Grey indicates non-significance based on 10,000 spatial permutation tests (Bonferroni correction, α = 0.05).
Statistically significant terms are shown on the right.

ery sample by applying PCA to individual region × fea-
ture matrices and aligning PCA results through an iter-
ative process using Procrustes rotations (https://github.
com/satra/mapalign [57]). The mean individual-level
PC scores and weights were then compared to the orig-
inal findings (Fig. 6a). We next replicated the results
by repeating the analysis after grey-matter signal regres-
sion (similar to global signal regression as the global
signal is shown to be a grey-matter specific signal fol-
lowing sICA+FIX) [36, 37], with near identical results
(Fig. 6b). To assess the extent to which results are influ-
enced by choice of parcellation, we repeated the analy-
sis using the 68-region Desikan-Killiany anatomical atlas

[23], which were then further divided into 200 approxi-
mately equally-sized cortical areas. Again, we find near-
identical results (Fig. 6c).

In the last two analyses we focused on out-of-sample
validation. We first repeated the analysis on the held-
out Validation sample of n = 127 unrelated HCP sub-
jects, with similar results (Fig. 6d). Finally, we repeated
the analysis using data from the independently collected
Midnight Scan Club (MSC) dataset, again finding highly
consistent results (Fig. 6e).
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Figure 6. Sensitivity and replication analyses | For all comparisons, we correlated PC1 and PC2 scores and weights obtained in
the original analysis and in each new analysis. Significance was assessed using spatial autocorrelation preserving nulls. Specific
analyses include: (a) comparing group-level and individual subject-level results, (b) comparing data with and without grey-
matter signal regression, (c) comparing functional (Schaefer) and anatomical parcellations (Desikan-Killiany), (d) comparing HCP
Discovery and Validation datasets, (e) comparing HCP Discovery and Midnight Scan Club datasets.
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DISCUSSION

In the present report we comprehensively characterize
intrinsic dynamics across the cortex, identifying two ro-
bust spatio-temporal patterns. The patterns are distinct
in terms of their temporal composition and follow mi-
croscale gradients and macroscale network architecture.
Importantly, the two patterns underlie distinct psycho-
logical axes, demonstrating a link between brain archi-
tecture, intrinsic dynamics, and cognition.

Our results demonstrate that regional haemodynamic
activity, often overlooked in favour of electrophysiologi-
cal measurements with greater temporal resolution, pos-
sesses a rich dynamic signature [35, 58, 60, 75, 92].
While multiple reports have suggested the existence
of a timescale or temporal receptive window hierarchy
[39, 43, 48, 51, 56, 71, 103? ], these investigations typ-
ically involved (a) incomplete spatial coverage, making
it difficult to quantitatively assess correspondence with
other microscale and macroscale maps, and (b) a priori
measures of interest, such as spectral power or temporal
autocorrelation, potentially obscuring other important
dynamical features. Although temporal autocorrelation
clearly has an important role in the present results, as it
does in electrophysiological and electromagnetic record-
ings, we identify a much broader spectrum of temporal
features that relate to microstructure, connectivity and
behaviour.

Applying an unbiased, data-driven feature extraction
method to high-resolution BOLD fMRI, we decompose
intrinsic dynamics into two modes, with distinct topo-
graphic organization and temporal properties. One pat-
tern, characterized by variation in signal autocorrela-
tion, follows a ventromedial-dorsolateral gradient, sepa-
rating the limbic and paralimibic systems from posterior
parietal cortex. Another pattern, characterized by dy-
namic range, follows a unimodal-transmodal gradient,
separating primary sensory-motor cortices from associ-
ation cortex. Importantly, the two patterns are related
to gradients of functional activation. The ventromedial-
dorsolateral pattern differentiates affective versus cog-
nitive activation, whereas the unimodal-transmodal pat-
tern differentiates primary sensory versus higher-order
cognitive processing. Collectively, these results provide
evidence that local computations reflect systematic varia-
tion in multiple anatomical circuit properties, ultimately
manifesting as unique temporal signatures in regional ac-
tivity and patterns of functional specialization.

An emerging literature emphasizes the hierarchical or-
ganization of neural systems, whereby systematic vari-
ations in laminar architecture across the cortical sheet
are mirrored by multiple cytological properties, includ-
ing neuron density, spine count, branching and neuro-
transmitter receptor profiles [47, 63, 65]. These varia-
tions ultimately manifest as spatially ordered gradients
of structural and functional attributes [50], including
gene expression [12, 31], cortical thickness [100], intra-
cortical myelin [49], laminar differentiation [72, 99] and

excitability [22, 64, 88, 102]. Indeed, we find that the
two patterns of intrinsic dynamics are closely related to
gene expression, intracortical myelin and cortical thick-
ness. Our results build on this literature, demonstrating
that microscale and connectional hierarchies leave an in-
delible mark on intrinsic dynamics [59], perhaps through
variation in local excitability [102]. How these patterns
are related to underlying cell types and subcortical affer-
ent input – in particular, thalamocortical feedback – is an
important ongoing question [1, 34, 70, 73, 85, 101].

More generally, the present findings are part of a larger
trend in the field to understand structure-function rela-
tionships by considering molecular [4, 28, 77, 107], cel-
lular [3, 70, 81, 83] and physiological [25, 82] attributes
of network nodes, thereby conceptually linking local and
global brain organization [55, 89]. In such “annotated
networks”, macroscale network architecture is thought
to reflect similarity in local properties, and vice versa,
such that areas with similar properties are more likely
to be anatomically connected and to functionally inter-
act with one another [11, 42, 46, 104]. Indeed, we find
that two regions are more likely to display similar in-
trinsic dynamics if they are anatomically connected and
if they are part of the same functional community, sug-
gesting that network organization and local intrinsic dy-
namics are intertwined. A significant corollary of the
present work is that functional connectivity – presently
conceptualized as coherent fluctuations in neural activ-
ity and operationalized as correlated BOLD values over
time – misses out on an important set of inter-regional
relationships. Namely, two regions may display identical
dynamic profiles, suggesting common function, but un-
less they also display time-locked activity, current meth-
ods would miss out on this potentially biologically mean-
ingful inter-regional relationship.

The present results are consistent with contemporary
theories linking brain structure and function, but they
must be interpreted with respect to several methodologi-
cal caveats. First, all present analyses were performed on
BOLD time series with lower sampling rate compared to
electromagnetic recordings, potentially obscuring more
subtle dynamics occurring on faster timescales. To mit-
igate this concern, all analyses were performed in high-
resolution multiband HCP data with multiple runs, and
replicated in MSC data, but in principle, the present
analyses could be repeated and validated in magnetoen-
cephalographic recordings. Second, all analyses were
performed on haemodynamic time courses that may not
completely reflect the underlying neuronal population
dynamics. Despite this caveat, we observe a close cor-
respondence between the isolated patterns of intrinsic
dynamics and molecular, structural, functional, and psy-
chological gradients. Third, the pattern of temporal
signal-to-noise ratio in the BOLD is known to be non-
uniform, but it is not correlated with the intrinsic dy-
namics patterns observed in the present report.

Altogether, the present results point towards highly
patterned intrinsic dynamics across the neocortex. These
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patterns reflect prominent molecular and microstructural
gradients, as well as macroscale structural and functional
organization. Importantly, patterns of intrinsic dynam-
ics drive spatial variation in functional activation. These
findings demonstrate that structural organization of the
brain shapes patterns of intrinsic dynamics, ultimately
manifesting as distinct axes of psychological processes.

METHODS

Dataset: Human Connectome Project (HCP)

Following the procedure described in [21], we ob-
tained structural and functional magnetic resonance
imaging (MRI) data of two sets of healthy young adults
(age range 22-35 years) with no familial relationships
(neither within nor between sets) as Discovery (n = 201)
and Validation (n = 127) sets from Human Connectome
Project (HCP; S900 release [93]). All four resting state
fMRI scans (2 scans (R/L and L/R phase encoding di-
rections) on day one and 2 scans (R/L and L/R phase
encoding directions) on day two, each about 15 minutes
long; TR = 720 ms), as well as structural MRI and diffu-
sion weighted imaging (DWI) data were available for all
participants.

HCP Data Processing

All the structural and functional MRI data were pre-
processed using HCP minimal pre-processing pipelines
[38, 93]. We provide a brief description of data pre-
processing below, while detailed information regarding
data acquisition and pre-processing is available else-
where [38, 93]. The procedure was separately repeated
for Discovery and Validation sets.

Structural MRI

T1- and T2- weighted MR images were corrected for
gradient nonlinearity, and when available, the images
were co-registered and averaged across repeated scans
for each individual. The corrected T1w and T2w images
were co-registered and cortical surfaces were extracted
using FreeSurfer 5.3.0-HCP [20, 21, 26]. For each indi-
vidual, cortical thickness was estimated as the difference
between pial and white matter surfaces and intracortical
myelin content was estimated as T1w/T2w ratio. The
pre-processed data were parcellated into 400 cortical ar-
eas using Schaefer parcellation [80].

Resting state functional MRI

All 3T functional MRI time series were corrected for
gradient nonlinearity, head motion using a rigid body
transformation, and geometric distortions using scan
pairs with opposite phase encoding directions (R/L,

L/R) [21]. Further pre-processing steps include co-
registration of the corrected images to the T1w structural
MR images, brain extraction, normalization of whole
brain intensity, high-pass filtering (> 2000s FWHM; to
correct for scanner drifts), and removing additional noise
using the ICA-FIX process [21, 79]. The pre-processed
time series were then parcellated into 400 areas as de-
scribed above. The parcellated time series were used to
construct functional connectivity matrices as a Pearson
correlation coefficient between pairs of regional time se-
ries for each of the four scans of each participant. A
group-average functional connectivity matrix was con-
structed as the mean functional connectivity across all
individuals and scans.

Diffusion weighted imaging (DWI)

DWI data was pre-processed using the MRtrix3 pack-
age [91] (https://www.mrtrix.org/). More specifically,
fiber orientation distributions were generated using the
multi-shell multi-tissue constrained spherical deconvolu-
tion algorithm from MRtrix [24, 52]. White matter edges
were then reconstructed using probabilistic streamline
tractography based on the generated fiber orientation
distributions [90]. The tract weights were then opti-
mized by estimating an appropriate cross-section mul-
tiplier for each streamline following the procedure pro-
posed by Smith and colleagues [86] and a connectivity
matrix was built for each participant using the same par-
cellation as described above. Finally, we used a consen-
sus approach to construct a binary group-level structural
connectivity matrix, preserving the edge length distribu-
tion in individual participants [10, 67, 68, 83].

Replication dataset: Midnight Scan Club (MSC)

We used resting state fMRI data of n = 10 healthy
young adults, each with 10 scan sessions of about 30
minutes long, from Midnight Scan Club (MSC [41])
dataset as an independent replication dataset. De-
tails about the participants, MRI acquisition, and data
pre-processing are provided by Gordon and colleagues
elsewhere [41]. We obtained the surface-based, pre-
processed resting state fMRI time courses in CIFTI format
through OpenNeuro (https://openneuro.org/datasets/
ds000224/versions/1.0.0). The pre-processing steps in-
clude motion correction and global signal regression
[41]. Following the pre-processing methods suggested
by Gordon and colleagues [41], we smoothed the
surface-level time series data with geodesic 2D Gaussian
kernels (σ = 2.55mm) using the Connectome Workbench
[62]. Finally, we censored the motion-contaminated
frames of time series for each participant separately, us-
ing the temporal masks provided with the dataset. The
pre-processed data were parcellated into 400 cortical re-
gions using Schaefer parcellation [80]. One participant
(MSC08) was excluded from subsequent analysis due to
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low data reliability and self-reported sleep as described
in [41]. The parcellated time series were then subjected
to the same analyses that were performed on the HCP
Discovery and Validation datasets.

Microarray expression data: Allen Human Brain Atlas
(AHBA)

Regional microarray expression data were obtained
from six post-mortem brains provided by the Allen
Human Brain Atlas (AHBA; http://human.brain-map.
org/) [45]. We used the abagen (https://github.com/
netneurolab/abagen) toolbox to process and map the
data to 400 parcellated brain regions from Schaefer par-
cellation [80].

Briefly, genetic probes were reannotated using infor-
mation provided by [5] instead of the default probe
information from the AHBA dataset. Using reanno-
tated information discards probes that cannot be reliably
matched to genes. The reannotated probes were filtered
based on their intensity relative to background noise lev-
els [76]; probes with intensity less than background in
≥50% of samples were discarded. A single probe with
the highest differential stability, ∆S(p), was selected to
represent each gene [44], where differential stability was
calculated as:

∆S(p) =
1(
N
2

) N−1∑
i=1

N∑
j=i+1

ρ[Bi(p), Bj(p)] (1)

Here, ρ is Spearman’s rank correlation of the expression
of a single probe p across regions in two donor brains, Bi

and Bj , and N is the total number of donor brains. This
procedure retained 15,656 probes, each representing a
unique gene.

Next, tissue samples were mirrored across left and
right hemispheres [78] and then assigned to brain re-
gions using their corrected MNI coordinates (https://
github.com/chrisfilo/alleninf) by finding the nearest re-
gion, up to 2mm away. To reduce the potential for mis-
assignment, sample-to-region matching was constrained
by hemisphere and cortical/subcortical divisions [5]. If
a brain region was not assigned any sample based on
the above procedure, the sample closest to the centroid
of that region was selected in order to ensure that all
brain regions were assigned a value. Samples assigned
to the same brain region were averaged separately for
each donor. Gene expression values were then normal-
ized separately for each donor across regions using a ro-
bust sigmoid function and rescaled to the unit interval
[28]. Scaled expression profiles were finally averaged
across donors, resulting in a single matrix with rows cor-
responding to brain regions and columns corresponding
to the retained 15,656 genes. The expression values of
1,906 brain-specific genes were used for further analysis
[12].

Massive temporal feature extraction using hctsa

We used the highly comparative time series analysis
toolbox, hctsa [29, 30], to perform a massive feature ex-
traction of the time series of each brain area for each
participant. The hctsa package extracted over 7,000 lo-
cal temporal properties using a wide range of operations
based on time series analysis [29, 30]. The extracted
features include, but are not limited to, distributional
properties, entropy and variability, autocorrelation, time-
delay embeddings, and nonlinear properties of a given
time series.

The hctsa feature extraction analysis was performed
on the parcellated fMRI time series of each run and
each participant separately (Fig. 1). Following the fea-
ture extraction procedure, the outputs of the operations
that produced errors were removed and the remaining
features (above 6,000 features) were normalized across
nodes using an outlier-robust sigmoidal transform. We
used Pearson correlation coefficients to measure the pair-
wise similarity between the temporal features of all pos-
sible combinations of brain areas. As a result, a tempo-
ral profile similarity network was constructed for each
individual and each run, representing the strength of the
similarity of the local temporal fingerprints of brain areas
(Fig. 1). The resulting similarity matrices were then com-
pared to the underlying functional and structural brain
networks.

Neurosynth

Functional activation probability maps were obtained
for multiple psychological terms using Neurosynth [105]
(https://github.com/neurosynth/neurosynth). Probabil-
ity maps were restricted to those for terms present in
both Neurosynth and the Cognitive Atlas [74], yield-
ing a total of 123 maps (Table S1). We used the
volumetric “association test” (i.e. reverse inference)
maps, which were projected to the FreeSurfer fsaver-
age5 mid-grey surface with nearest neighbor interpo-
lation using Freesurfer’s mri_vol2surf function (v6.0.0;
http://surfer.nmr.mgh.harvard.edu/). The resulting sur-
face maps were then parcellated to 400 cortical regions
using the Schaefer parcellation [80].

Null model

A consistent question in the present work is the topo-
graphic correlation between temporal features and other
features of interest. To make inferences about these
links, we implement a null model that systematically dis-
rupts the relationship between two topographic maps
but preserves their spatial autocorrelation [2] (see also
[12, 13] for an alternative approach). We first created
a surface-based representation of the Cammoun atlas on
the FreeSurfer fsaverage surface using the Connectome
Mapper toolkit (https://github.com/LTS5/cmp; [19]).
We used the spherical projection of the fsaverage surface

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 4, 2020. ; https://doi.org/10.1101/2020.07.03.186916doi: bioRxiv preprint 

http://human.brain-map.org/
http://human.brain-map.org/
https://github.com/netneurolab/abagen
https://github.com/netneurolab/abagen
https://github.com/chrisfilo/alleninf
https://github.com/chrisfilo/alleninf
https://github.com/neurosynth/neurosynth
http://surfer.nmr.mgh.harvard.edu/
https://github.com/LTS5/cmp
https://doi.org/10.1101/2020.07.03.186916
http://creativecommons.org/licenses/by/4.0/


12

to define spatial coordinates for each parcel by selecting
the vertex closest to the center-of-mass of each parcel
[83, 94, 95]. The resulting spatial coordinates were used
to generate null models by applying randomly-sampled
rotations and reassigning node values based on the clos-
est resulting parcel (10,000 repetitions). The rotation
was applied to one hemisphere and then mirrored to the
other hemisphere.
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TABLE S1. List of terms used in Neurosynth analyses | The overlapping terms between Neurosynth [105] and Cognitive Atlas
[74] corpuses used in the reported analyses are listed below.

action eating insight naming semantic memory
adaptation efficiency integration navigation sentence comprehension
addiction effort intelligence object recognition skill
anticipation emotion intention pain sleep
anxiety emotion regulation interference perception social cognition
arousal empathy judgment planning spatial attention
association encoding knowledge priming speech perception
attention episodic memory language psychosis speech production
autobiographical memory expectancy language comprehension reading strategy
balance expertise learning reasoning strength
belief extinction listening recall stress
categorization face recognition localization recognition sustained attention
cognitive control facial expression loss rehearsal task difficulty
communication familiarity maintenance reinforcement learning thought
competition fear manipulation response inhibition uncertainty
concept fixation meaning response selection updating
consciousness focus memory retention utility
consolidation gaze memory retrieval retrieval valence
context goal mental imagery reward anticipation verbal fluency
coordination hyperactivity monitoring rhythm visual attention
decision imagery mood risk visual perception
decision making impulsivity morphology rule word recognition
detection induction motor control salience working memory
discrimination inference movement search
distraction inhibition multisensory selective attention
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Figure S1. Intrinsic dynamics across intrinsic networks, cytoarchitectonic classes and laminar differentiation levels | Mean
PC1 and PC2 scores were computed for the constituent classes in three commonly used anatomical and functional partitions of
the brain: (a) intrinsic fMRI networks [106], (b) cytoarchitectonic classes [96–98], laminar differentiation levels [66]. Intrinsic
networks: VIS = visual, SM = somatomotor, DA = dorsal attention, VA = ventral attention, LIM = limbic, FP = fronto-parietal,
DMN = default mode. Cytoarchitectonic classes: PM = primary motor cortex, AC1 = association cortex, AC2 = association cortex,
PSS = primary/secondary sensory, PS = primary sensory cortex, LB = limbic regions, IC = insular cortex.
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