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16

17 II. Abstract 

18 The tumor immune microenvironment (TIME) of breast cancer is a known source of tumor 

19 heterogeneity and it has been increasingly recognized as having a role in the course of disease. 

20 In the present study, we used a computational approach to dissect the landscape of TIME states 

21 among TCGA breast cancer patients. Our central hypothesis is that the pre-existing TIME states 

22 represent a dimension which is informative about the prognosis and the response to 

23 immunotherapy. In order to test this hypothesis, we first classified breast cancer patients 

24 according to their primary TIME status. Next, we describe a TIME-based classification with 

25 prognostic value for overall survival among the TCGA patients. We further demonstrated that 

26 absolute quantification of mast cells, M0 macrophages, CD8 T cells and neutrophils were 

27 predictive of overall survival. In order to identify the TIME states which, predict response to 

28 immune checkpoint blockade, we performed a similar analysis of 11 different mouse models of 

29 primary invasive breast carcinoma that were subsequently treated with immune checkpoint 

30 inhibitor (ICI) therapy. These analyses revealed that the TIME content of M1 macrophages, 

31 monocytes and resting dendritic cells were predictive of sensitivity to ICI therapy. Taken together, 

32 these results indicate that (1) the landscape of human primary TIME states is diverse and can 

33 identify patients with more or less aggressive disease and (2) that pre-existing TIME states may 

34 be able to identify patients, of all molecular subtypes of breast cancer, who are good candidates 

35 for ICI therapy.

36

37
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38 III. Introduction

39 Breast invasive adenocarcinoma is the most frequently diagnosed malignancy among 

40 women in the United States, in 2020 it is expected to account for 15.3% of all new cancer 

41 diagnoses and 42,170 of all cancer deaths.[1] Due largely to the development of aggressive and 

42 improved treatment strategies as well as several targeted therapeutic agents, over the past two 

43 decades the death rate of breast cancer has declined from about 31% in 1992 to 20% in 2017 

44 with a 5 year survival rate of 90% between 2010-2016.[1] Despite these recent advances, 

45 resistance to all known therapeutics still occurs in some women, especially those with basal 

46 subtype tumors defined as HER2, PR and ER negative (or triple negative breast cancer), and 

47 these patients inexorably progress in their disease.[2]

48 Notably, however, immunotherapies such as immune checkpoint inhibition (ICI) in 

49 particular, have shown enormous potential in treating otherwise incurable carcinomas including 

50 metastatic melanoma and lung cancer.[3,4] Recently, ICI treatments have proven to extend 

51 survival among TNBC patients with metastatic disease. The IMpassion130 trial[5], demonstrated 

52 that the anti-PDL1 therapy, atezolizumab in combination with nab-paclitaxel extended overall 

53 survival compared to nab-paclitaxel alone among patients with tumors that express PDL-1. 

54 However, the response rate among even patients with expression of PDL-1 was variable and 

55 expression of PDL-1 alone is unlikely to fully account for the full spectrum of responses to 

56 atezolizumab. Moreover, the IMpassion130 trial demonstrated that patients with metastatic 

57 disease limited to lymph nodes received a far greater benefit from the atezolizumab, nab-

58 paclitaxel combination compared to those with distant metastases indicating a potential role for 

59 ICI therapy at earlier stages in the disease. Taken together, these observations suggest that 

60 breast cancer patient selection for ICI intervention is of critical importance and should be studied 

61 in detail. 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 3, 2020. ; https://doi.org/10.1101/2020.07.03.186221doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.03.186221
http://creativecommons.org/licenses/by/4.0/


62 ICI therapies block the inactivation of the anti-tumor immune response by the tumor itself, 

63 thus promoting immune-mediated cell killing of the tumor. Therefore, the primary tumor immune 

64 microenvironment (TIME) may have a role in determining the effect of ICI therapies in breast 

65 cancer by establishing a permissive or suppressive microenvironment for the immune system 

66 thereby adding to or detracting from the effect of ICI therapy, respectively. 

67 Recent efforts to identify biomarkers for and mechanisms of resistance to ICI therapy have 

68 focused primarily on genetic or tumor intrinsic modes including the mutational burdon of the 

69 tumor[6] and the expression of ICI target molecules and immune modulating genes including PDL-

70 1 itself [7–9]. Relatively little, however, is known about the exact cellular composition of the 

71 primary TIME of breast cancer in general and which TIME states specifically are predictive of ICI 

72 response. Early work in identifying the TIME determinants of response to ICI therapy has 

73 demonstrated the importance of the tumor lymphocyte (TIL) and macrophage abundance [10–12] 

74 However, with recent the development of single cell high-throughput sequencing, studies have 

75 begun to dissect the breast cancer TIME at the cell type compositional level [13,14]. Despite this 

76 technological advancement, high cost and computational constraints remain and it is largely 

77 infeasible to perform these experiments at the scale required to achieve the statistical power to 

78 characterize the complete landscape of TIME statuses present among large, heterogenous 

79 cohorts of breast cancer patients and associate trends in this landscape with clinical outcomes.

80 In the present study, we apply CIBERSORT [15], a computational approach to infer the 

81 abundance of specific cell types from bulk RNA-seq data, to 922 individual samples of human 

82 primary breast cancer from TCGA [16]. Using this approach, we were able to interrogate the 

83 trends in the TIME statuses of these patients that are associated with prognosis of the disease. 

84 In addition, we were able to apply a similar approach to mouse models of metastatic breast cancer 

85 to identify TIME states that are predictive of objective response to ICI therapy in these models.

86

87  

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 3, 2020. ; https://doi.org/10.1101/2020.07.03.186221doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.03.186221
http://creativecommons.org/licenses/by/4.0/


88 IV. Materials and Methods

89

90 Human Primary Tumor RNA-seq Data

91 Raw RNA-seq data and associated clinical metadata for 1,035 female patients with primary 

92 breast invasive carcinoma in the TCGA database was downloaded using the GDC Data Portal. 

93 Molecular subtype (Her2, Basal, or Luminal) was determined for each case using estrogen 

94 receptor, progesterone receptor and HER2 status. Cases with equivocal or absent histological 

95 measurements were excluded from further analysis (n = 113). Gene level summarized RNA-seq 

96 read counts were normalized and statistical analyses performed using the R package DESeq2 

97 [17].

98  

99 Mouse Primary Tumor RNA-seq Data

100 Pre-treatment RNA-seq data from 47 individual animals comprising 11 different mouse models 

101 of triple negative breast cancer was obtained from GEO (GSE124821). Briefly, and as detailed 

102 by Hollern et al. in the original work [18], these animals were subsequently treated with anti-

103 CTLA4 and anti-PDL1 antibodies (bi-weekly, intraperitoneal injection) and objective response to 

104 this combination therapy was recorded.

105

106 Inference of Tumor Microenvironment Content from Bulk RNA-seq

107 Scaled and normalized RNA-seq reads were imported into CIBERSORT [15] and TIME cell 

108 content was inferred for all populations in the LM22 gene signature database. Immune cell 

109 quantitation was performed with default parameters across 500 permutations run in relative and 

110 absolute modes. Absolute quantification files were imported into R for downstream statistical 

111 analysis and plotting.

112

113
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114 Statistical Analysis

115 Survival analysis was performed in R using the survival package and Kaplan-Meier plots were 

116 generated using the survminer package. All statistical tests were computed using base R v4.0.1.

117

118

119 V. Results

120

121 TIME Landscape of Human Primary Invasive Breast Carcinoma

122 In depth analysis and characterization of the TIME landscape of 1,035 primary samples 

123 of human breast invasive carcinoma revealed profound variability in the constituent immune cell 

124 types among patients (Figure 1a). Notably, high levels of all broadly detectable immune cell types 

125 (macrophages, monocytes, resting mast cells, CD4 and CD8 T cells, B cells) were detected in 

126 approximately 25% of all primary tumors - a feature indicative of immunologically hot tumors, 

127 while 12% had low to undetectable levels (> 2 s.d. below the population mean) - indicative of 

128 immunologically cold tumors. M2 macrophages and CD4 T resting memory cells were the most 

129 frequently detected immune cell component of the breast cancer immune microenvironment, 

130 detected in 98% and 92% of primary tumors, respectively. As expected, rare immunological cell 

131 types such as neutrophils, eosinophils, activated mast cells, naive CD4 T cells, memory B cells 

132 and γδ T cells were only detected above background in 0-3% of primary tumors. Taken together, 

133 these results indicate that CIBERSORT deconvolution of the TIME of human invasive breast 

134 carcinoma recapitulates the expected variation among individuals and distribution of specific cell 

135 types.

136

137 Figure 1. Primary TIME States Segregate Human Invasive Breast Carcinoma into TIME 

138 Classes with Functionally and Prognostically Distinct Features. A. Heatmap of the primary 

139 TIME landscape of human metastatic breast carcinoma. All 22 identifiable cell types are displayed 
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140 on the vertical axis and individual patients are clustered along the horizontal axis. Column colors 

141 indicated the molecular subtype and the annotated front-line treatment type for each patient. B. 

142 Kaplan-Meyer plots for individual TIME cell types most predictive of overall survival. C. 

143 Distributions of the absolute qualification of the key populations of TIME cells across the three 

144 TIME classes.  D. Kaplan-Meyer plot comparing the overall survival among patients in the three 

145 TIME classes. E. Cox-PH regression model testing the prognostic value of TIME classification 

146 and molecular subtype. TIME-classification was predictive of overall survival independently of 

147 molecular subtype. F. Gene set enrichment analysis comparing the transcriptional profiles of 

148 aggressive TIME-classes 2 and 3 to class 1. 

149

150 TIME Features are Predictive of Prognosis in Primary Human Breast Tumors

151 Given that the presence and/or absence of immune cells in the TIME have been shown to 

152 influence the course of disease including invasiveness, metastasis and prognosis [19,20], we next 

153 determined the relationship between overall survival and the TIME content of each individual cell 

154 type within the LM22 signature set. The presence of high levels (> 25th percentile) of specific 

155 lymphocyte types, Naive B cells (p=0.0033) and CD8 T cells (p=0.0013), conferred a significantly 

156 better prognosis compared to patients with lower TIME content of these cells (Figure 1b). 

157 Interestingly, patients with any detectable TIME content of neutrophils (p=0.0056) and eosinophils 

158 (p=0.0056) had significantly worse prognosis compared to those without.

159 Based on the predictive capacity of lymphocytes and granulocytes in the primary breast 

160 TIME, we designed a stronger classifier by aggregating the individual cell content information for 

161 each of these individual cell types - which function as weak classifiers in our model. Patients with 

162 naïve B cell content and CD8 T cell content higher than the 25th percentile for all patients and 

163 undetectable neutrophil or eosinophil content were assigned to class 1 (n = 131). Patients with 

164 the inverse TIME profiles were assigned to class 3 (n = 144), and patients that failed to fit into 

165 either of these two groups were assigned to an intermediate class 2 (n = 647). 
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166 As expected, average CD8 T Cell and naïve B cell content were significantly higher in 

167 class 1 patients compared to class 3 (p < 2.2e-16, Figure 1c). Class 2 patients tended to have 

168 greater numbers of CD8 T cells and naïve B cells compared to those in class 3 (p < 2.2e-16), but 

169 significantly lower than those in class 1 (p < 2.2e-16). Neutrophil and Eosinophil content was low 

170 in both class 1 and class 2 patients but only significantly higher in class 3 compared to both 

171 classes 1 and 2 (p =  8.08e-10 and p = 0.0011, respectively). 

172 Consistent with the hypothesis that primary TIME status of primary tumors is predictive of 

173 outcomes, our primary TIME classification strategy was able to identify patients significantly 

174 different overall survival (p < 0.0001, Figure 1d). Moreover, this predictive capacity of the primary 

175 TIME status remained statistically significant after controlling for molecular subtype (Figure 1e). 

176 Patients with class 1 primary tumors had the best prognosis with a median overall survival of 11 

177 years and greater than 90% survival rate beyond 9.6 years. Patients with class 2 tumors had an 

178 intermediate prognosis with a median survival of 9.51 years and patients with class 3 tumors had 

179 the worst prognosis with a median overall survival of only 5.83 years and fewer than 15% 

180 achieving long-term survival beyond 8 years. After controlling for molecular subtype, patients with 

181 class 2 tumors had hazard ratio of 3.5 (95% CI: 1.3 - 9.7, p = 0.015), compared to those with class 

182 1 tumors, and patients with class 3 tumors had a hazard ratio of 11.2 (95% CI: 3.8 - 33.0, p < 

183 0.001).  

184

185 Primary TIME Status is Predictive of Response to ICI Therapy

186 Given the capacity of the human primary TIME to predict prognosis in the context of 

187 conventional therapeutic strategies, we next sought to test whether the primary TIME was 

188 informative for the response to immune checkpoint inhibition (ICI) therapy (Figure 2a). 

189 CIBERSORT analysis was performed on publicly available RNA-seq data obtained from a panel 

190 of 11 different mouse models of triple negative breast cancer, which were subsequently treated 

191 with a combination of anti-PDL1 and anti-CTLA4 ICI and an objective response was measured. 
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192 This analysis revealed a heterogeneous primary TIME, qualitatively similar to that of the human 

193 breast cancer tumors obtained from TCGA (Figure 2b). 

194

195 Figure 2. Primary TIME Status Predicts Response to Immune Checkpoint Inhibition 

196 Therapy in Mouse Models of Breast Cancer. A. Schematic of the experimental approach used 

197 by Hollern et al. to generate the database of murine models of breast cancer response to ICI 

198 treatment. B. Primary TIME landscape of the mouse models of invasive breast cancer; cell types 

199 are displayed on the vertical axis and individual mice are clustered along the horizontal axis. 

200 Column colors indicated the response to ICI treatment type for each animal. C. Percent of total 

201 mice with primary TIME class (class 1, 2 or 3) separated by response to ICI therapy. D. 

202 Distribution of the absolute quantification of the TIME cells most predictive of response among 

203 ICI sensitive and resistant mice. E. Distribution of the ICI Response Scores of individual mice 

204 separated by ICI response. F. ICI Response score for all 922 primary human tumor samples 

205 included in the TCGA analysis separated by TIME class (class 1, 2 and 3).

206

207 Notable similarities to the human data include; high TIME content of M0 macrophages 

208 was identified among approximately 65% of mouse tumors, M2 macrophage content was 

209 consistently high in all tumors, high TIME content of plasma cells were identified in a minority of 

210 tumors (<10%), and tumors were largely devoid of rare immune cell populations such as 

211 neutrophils.

212 We next determined the TIME class of the mouse models according to our method 

213 described above. The distribution of TIME classifications of these mouse models closely 

214 resembled the distribution of time classifications among the human tumors, with class 1 tumors 

215 comprising 14.9%, class 2 comprising 59.5% and class 3 comprising 25.5% of mouse tumors. As 

216 expected, the TIME class of the ICI-sensitive mice was lower on average compared to those that 

217 were resistant to ICI therapy (figure 2c).
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218 Consistent with other reports, our analysis revealed that TIME content of lymphocytes was 

219 predictive of the objective response to ICI treatment (supplemental figure 1). Specifically, plasma 

220 cell, CD8 T cell and CD4 memory T cell contents were significantly associated with response.  

221

222 TIME Based ICI Response Score

223 In order to more quantitatively and sensitively identify TIME statuses which could be 

224 predictive of ICI therapy response, we next compared the predictive capacity of each individual 

225 TIME components and developed an ICI Response Score (RS) on the basis of the top individual 

226 predictors - M1 macrophages, monocytes and resting dendritic cells (figure 2d). 

227 Briefly, the CIBERSORT absolute quantifications for each sample i, were used to 

228 compute the quantity

229

230 ,RSi: =  max{|DCR
i | , ( |M0

i | +  |Mci| )}

231

232 where DCR is the resting dendritic cell content, M0 is the M0 macrophage content and Mc is the 

233 monocyte content. 

234 The ICI Response Score of the primary TIME was significantly higher among animals that 

235 objectively responded (mean RS of 25, +/- 13 s.d.) compared to those that did not respond (mean 

236 RS = 75, +/- 20 s.d., p = 2.1x10-6), indicating that this response score may be useful to identify 

237 breast cancer patients who could benefit from ICI therapy.

238 Next, to determine whether RS was associated with a particular TIME class in human 

239 patients, we computed the RS for each patient in our TCGA data set (figure 2f). This analysis 

240 revealed that patients with class 3 primary TIME status had significantly lower RS, compared to 

241 those in class 1 (p < 0.001). However, we were able to identify patients of all primary TIME classes 

242 and molecular subtypes with high RS’s indicating that this subset of breast cancer patients might 

243 respond well to ICI therapy.
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244

245 VI. Discussion

246 The role of the tumor immune microenvironment in the course of disease of breast cancer 

247 including prognosis and response to cancer immunotherapies remains poorly understood. In this 

248 study we used an unbiased computational approach to infer the cellular composition of the 

249 primary TIME of 922 patients from bulk RNA-seq data. From this rich dataset we were able to 

250 identify primary TIME states that are informative for prognosis indecently of molecular subtype in 

251 human breast cancer. In addition, we identified pre-existing TIME states that are related to 

252 response to immune checkpoint inhibition in a panel of mouse models of invasive breast 

253 carcinoma, indicating the utility of this approach to dissecting the primary TIME for predicting 

254 response to ICI therapy. 

255 Previous studies aimed at elucidating the primary breast cancer TIME have generally 

256 either examined a small subset of TIME components among a large cohort of patients or taken a 

257 less biased approach such as single cell RNA-seq to carefully dissect the TIME status of smaller 

258 numbers patients [21]. Here, using computational methods to infer the absolute quantifications of 

259 22 different immune cell populations from the bulk RNA-sequencing data we were able to perform 

260 a less biased study of a large cohort of patients. This approach allowed us to identify a highly 

261 variable landscape of primary TIME states among the TCGA breast cancer patients. Suggesting 

262 that there is a high degree of inter-tumoral variability in the TIME content, which has been 

263 postulated to underly differential responses to both traditional and immunotherapies [22].

264 Specifically, the relationship between tumor lymphocyte content and overall survival are 

265 supported by our data, however we additionally identify that high neutrophil and eosinophil content 

266 confers a worse overall prognosis. Our novel primary TIME-based classification strategy 

267 incorporates these findings and demonstrates that the TIME state of the primary tumor indeed 

268 has prognostic value, independently of the molecular subtype of the tumor.
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269 Furthermore, in order to use the primary TIME status to identify those patients who could 

270 benefit from immune checkpoint inhibition therapy, we developed an ICI Response Scored based 

271 on primary TIME status. A subset of patients of all molecular subtypes and primary TIME classes 

272 were identified with high ICI Response Scores, suggesting that future ICI therapy preclinical and 

273 clinical trials would benefit from stratification methods which consider the primary TIME prior to 

274 enrolment.

275 Taken together, these findings demonstrate that pre-existing TIME states are relevant to 

276 both the prognosis of breast cancer patients and to the choice of therapy. Future studies should 

277 further dissect these TIME states by flow cytometric and/or single cell RNA-sequencing 

278 approaches in prospective studies.
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