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ABSTRACT 14 

Metabarcoding has become the de facto method for characterizing the structure of 15 

microbial communities in complex environmental samples. To determine how 16 

sequencing platform may influence microbial community characterization, we 17 

present a large-scale comparison of two sequencing platforms; Illumina MiSeq and a 18 

new platform DNBSEQ-G400 developed by MGI Tech. The accuracy of DNBSEQ-19 

G400 on bacterial and fungal mock samples and compared sequencing consistency 20 

and precision between DNBSEQ-G400 and MiSeq platforms by sequencing the 21 

fungal ITS2 region from 1144 soil samples with 3 technical replicates. The DNBSEQ-22 

G400 showed a high accuracy in reproducing mock communities containing different 23 

proportions of bacteria and fungi, respectively. The taxonomic profiles of the 1144 24 

soil samples generated by the two DNBSEQ-G400 modes closely resembled each 25 

other and were highly correlated with those generated by the MiSeq platform. 26 

Analyses of technical replicates demonstrated a run bias against certain taxa on the 27 

MiSeq but not DNBSEQ-G400 platform. Based on lower cost, greater capacity, and 28 

less bias, we conclude that DNBSEQ-G400 is an optimal platform for short-term 29 

metabarcoding of microbial communities.  30 

 31 

IMPORTANCE  32 

Experimental steps that generate sequencing bias during amplicon sequencing have 33 

been intensively evaluated, including the choice of primer pair, polymerase, PCR 34 

cycle and technical replication. However, few studies have assessed the accuracy 35 

and precision of different sequencing platforms. Here, we compared the performance 36 

of newly released DNBSEQ-G400 sequencer with that of the commonly used 37 

Illumina MiSeq platform by leveraging amplicon sequencing of a large number of soil 38 
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samples. Significant sequencing bias among major fungal genera was found in 39 

parallel MiSeq runs, which can be easily neglected without the use of sequencing 40 

controls. We emphasize the importance of technical controls in large-scale 41 

sequencing efforts and provide DNBSEQ-G400 as an alternative with increased 42 

sequencing capacity and more stable reproducibility for amplicon sequencing.  43 

 44 

INTRODUCTION 45 

Culture independent studies have greatly expanded our knowledge of microbial 46 

diversity in recent decades (1–3). Studies focused on characterizing microbial 47 

community composition often amplify the 16S or ITS regions of rRNA (4, 5), which 48 

are the barcoding regions for bacteria and fungi, respectively. High throughput 49 

amplicon sequencing (HTS) allows for the parallel analysis of large numbers of 50 

samples from all kinds of natural environments, especially those with low microbial 51 

biomass, such as air (6), glacier (7), and deep-sea (8).  52 

Factors contributing to ecological biases in HTS-based datasets have been 53 

reported in many studies, based on factors occurring both before (due to choice of 54 

polymerase, PCR primers and PCR cycles in library preparation (9, 10)) and after 55 

sequencing (due to choice of data analyzing methods (11–13)). In addition, using 56 

mock communities, run-to-run variation in taxon presence and abundance have also 57 

observed among 16S HTS using Illumina HiSeq (14). Similarly, bias among 58 

sequencing runs in detecting fungal taxa in soil samples has also reported (15), 59 

indicating the necessity of using positive controls in each sequencing event.  60 

Compared to the intensive focus on biases in pre- and post-HTS processes, 61 

relatively few studies have focused on the potential bias introduced by sequencing 62 

platform. Currently, the dominant platforms used to generate HTS data of soil 63 
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microbial communities is from Illumina (16, 17). Other sequencers, although wildly 64 

used in other areas, has not been recognized by researchers study microbial 65 

communities.  In 2015, DNBSEQTM platform was released by BGI using 66 

combinatorial Probe-Anchor Synthesis (cPAS) and DNA Nanoball (DNB) techniques 67 

(18). Since then DNBSEQTM platform has been applied in various areas of genomics 68 

(18–20) and metagenomics (21, 22), with highly comparable quality to other 69 

platforms (23, 24). In 2017, an ultra-HTS sequencer DNBSEQ-G400, supporting 70 

multi-sequencing modes, including 2 × 200 paired-end (PE200) and 400 bases 71 

single end (SE400), and with a maximum throughput of 720 Gbp, was launched by 72 

MGI Tech. In comparison, Illumina’s MiSeq and NovaSeq generate 2 × 300 and 2 × 73 

250 paired-end data, and with 15 Gbp and 400 Gbp maximum throughput 74 

respectively (Supplementary Table 1). With the comparable (and growing) read 75 

length and larger throughput, DNBSEQ-G400 appears to be a competitive candidate 76 

for microbial HTS analyses (Supplementary Table 1). 77 

In this study, we examined the accuracy of DNBSEQ-G400 on bacterial and 78 

fungal mock samples and compared sequencing consistency and precision between 79 

DNBSEQ-G400 and MiSeq platforms by sequencing the fungal ITS2 region from 80 

1144 soil samples with 3 technical replicates, respectively. The 1144 soil samples 81 

were sequenced in three DNBSEQ-G400 runs for both SE400 and PE200 modes, as 82 

well as eight runs using MiSeq. The 3 technical replicates, which were further 83 

assigned with 3 PCR replicates, i.e. 9 replicates, were sequenced in each run of the 84 

both platforms separately. Moreover, to assess performance consistency by a single 85 

sequencing mode within one platform, the 1144 samples were also repetitively 86 

sequenced two more times by SE400 mode only.  87 

 88 
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RESULTS 89 

The accuracy amplicon sequencing on DNBSEQ platform 90 

The performance of the DNBSEQ platform for HTS was initially examined by 16S V4 91 

amplicons of the broadly used ZymoBIOMICS Microbial Community Standard and 92 

lab created combinations of multiple fungal species. The proportions of each taxon in 93 

the Zymo mock community were well reproduced (Fig. 1a), with no significant 94 

difference with the theoretical mock community relative abundance detected by 95 

pooled G-test of goodness-of-fit (p_value = 1). Four paired combinations of fungal 96 

taxa from ITS1 amplicons in three gradient proportions were also compared. Since 97 

genomic DNA usually contains an undefined number of rRNA copies, in order to 98 

quantify the accuracy between the amount of input and the results obtained by 99 

sequencing, we compared mixtures with the same proportions, using both raw 100 

genomic DNA and DNA following PCR amplification. Generally, DNA from PCR 101 

product mixtures reproduced the original proportions better than that from raw 102 

genomic DNA (Fig. 1b). Although no exact original proportion could be faithfully 103 

reproduced, taxon abundances showed similar gradients as those based on initial 104 

DNA ratios (Fig. 1b).  105 

 106 

Consistency between DNBSEQ-G400 and MiSeq 107 

Comparing ITS2 amplicons from 1144 soil samples between the DNBSEQ-G400 and 108 

MiSeq platforms revealed overall similarities regarding fungal community 109 

composition at the class level (Fig. 2, Supplementary Table 2). In total, 41 fungal 110 

classes were detected by MiSeq at the ALS forest plot, 38 and 37 had been 111 

identified by PE200 and SE400 modes of DNBSEQ-G400. At the LJ forest plot, 46, 112 

42 and 43 fungal classes had been detected by MiSeq, PE200, and SE400, in which 113 

39 were shared by the three modes. Finally, at the NBH forest plot, 37 overlapped 114 
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classes were found among all the modes, and 37, 43 and 45 fungal genera had been 115 

identified by MiSeq, PE200 and SE400, respectively. Comparing to MiSeq PE300 116 

and DNBSEQ-G400 SE400 modes, slightly fewer fungal genera were detected by 117 

DNBSEQ-G400 PE200 in all soil samples. Thirty-two fungal classes were identical 118 

across all platforms. Notably, the fungal classes that differed the most across 119 

platforms (11 out of 12 at ALS plot, 7 out of 8 at LJ, all 9 at NBH) had very low 120 

abundance (class abundance < 0.5%), with one only exception (class 121 

Archaeorhizomycetes, which was highly detected by PE200 at DNBSEQ platform). 122 

Similar to considerable overlap at the class taxonomic level, overall fungal 123 

community composition (based at the operational taxonomic unit (OTU) level) across 124 

the three different geographic locations were observed were not significant (p_value 125 

= 0.2223), examined by mixed linear model (Fig. 2b, supplementary Fig. 3). The 126 

frequency of occurrences of classes remained similar across the sequencing 127 

platforms showing by heatmap, especially for the top 20 most abundant classes (Fig. 128 

2b). More variable classes, such as the Kickxellomycetes, Paraglomeromycetes, 129 

Archaeorhizomycetes and Arthoniomycetes, were again found at low abundant 130 

classes (Fig. 2b). 131 

Sample-to-sample comparisons allowed us to further quantify the proportion 132 

difference of detected OTUs by the two sequencing platforms in a global scale. By 133 

using Procrustes analysis (25), we estimated the similarity of beta-diversity between 134 

two collections of samples, in our case, 1144 microbial community profiles from 135 

MiSeq and DNBSEQ-G400 (Fig. 3). The comparison of MiSeq to PE200 and SE400 136 

both resulted in similar Procrustes profiles for all three plots, suggesting a closer 137 

correlation in the microbial taxa between PE200 and SE400. Indeed, higher 138 

correlation coefficient by permutation test was found within the two DNBSEQ-G400 139 
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sequencing modes (ALS=0.948, LJ=0.911, NBH=0.867) (Fig. 3). This high 140 

correlation was due to the high similarity of fungal communities between most PE200 141 

and SE400 samples, with only a few samples showing high variance by Procrustes 142 

analysis. Moreover, the similarity between MiSeq and DNBSEQ-G400 differed 143 

associated with forest plots, which was higher for samples in LJ and NBH but lower 144 

for ALS (Fig. 3). We initially suspected that the performance difference might be 145 

related with species richness among the plots. However, ALS and LJ showed similar 146 

fungal diversities, as indicated by the median Shannon indexes of all soil samples 147 

(ALS = 2.85±0.44, LJ = 2.85±0.46), while NBH displayed the highest species 148 

diversity (NBH = 3.31±0.81). This indicates that species diversity was not the cause 149 

of the higher sequencing differences in ALS.  150 

To further examine the sequencing consistency of DNBSEQ-G400, the same 151 

library of all 1144 soil samples had been further repetitively sequenced two more 152 

times by SE400 modes (SE400_1, SE400_2, SE400_3) with another DNBSEQ-153 

G400 machine. A consistent performance of DNBSEQ-G400 was observed 154 

(Supplementary Fig. 4). The average correlation coefficients of fungal composition 155 

from the three sequencing repeats were 0.96, 0.99 and 0.99 for ALS, LJ and NBH, 156 

respectively. Further, the three repeats of all soil samples were clustered tightly by 157 

nonmetric Multidimensional Scaling (NMDS) analysis (Supplementary Fig. 4).  158 

 159 

Precision difference between DNBSEQ-G400 and MiSeq 160 

To evaluate the differences in precision between DNBSEQ-G400 and MiSeq 161 

platforms, we performed NMDS ordination on the technical replicates, ALS268, 162 

LJ105 and NBH217 across all runs. On the MiSeq platform, technical PCR replicates 163 

were tightly clustered (Figure 4) but there was significant run-to-run variation, 164 
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especially run4 and run6, indicating a bigger effect on precision caused by 165 

sequencing runs rather than PCR. These observations were supported by higher R2 166 

value of samples organized by run (ALS268=0.85, LJ105=0.84, NBH217=0.75) 167 

compared to samples organized by PCR (ALS268=0.03, LJ105=0.03, NBH217=0.06) 168 

in nonparametric MANOVA analysis (Fig. 4a). In DNBSEQ-G400, run technical 169 

replicates from the same DNA sample were tightly clustered together (Fig. 4a), 170 

showing a consistent composition detection among DNBSEQ-G400 sequencing runs. 171 

Thus, the sequencing run exhibited a more extensive print on final fungal 172 

composition than that by PCR in MiSeq, while both PCR and run showed no 173 

significant effect in DNBSEQ-G400. 174 

The identities of major fungal genera of each technical replicate were very similar 175 

across all sequencing platforms but varied in proportion between DNBSEQ-G400 176 

and MiSeq platforms (Fig. 4b). Nearly all major OTUs at Fig. 4b, except for the 177 

unidentified genus of Ascomycota from NBH and Letendraea and Trichoderma from 178 

ALS, exhibited significant differences in abundance (FDR < 0.001 at all three plots 179 

by Kruskal-Wallis test). Despite the differences among sequencers, within 8 MiSeq 180 

runs, run4 and run6 displayed different OTU abundance than other runs (Fig. 4b). 181 

Analysis of similarities (ANOSIM) showed significant differences within MiSeq 8 runs 182 

(p_value = 0.001 for technical replicates from all three plots). Spearman correlation 183 

coefficients between run4 or run6 and each other MiSeq runs were smaller than the 184 

correlation of pair-to-pair comparisons within other MiSeq runs. The relative weak 185 

correlation among run4 and run6 with other MiSeq runs was also reflected by larger 186 

p_value (0.01 < p_value < 0.05) than the pair comparisons among other runs 187 

(p_value < 0.01).  188 

 189 
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OTUs with variable abundances detection 190 

For those samples used as technical replicates, some OTUs exhibited strong 191 

variation among runs (Fig. 4b), indicating an important effect of sequencing run. 192 

OTUs with variable abundances were more frequently detected in the runs on the 193 

MiSeq platform (Fig. 5). An OTU showed significant abundance difference and low 194 

false discovery rate (FDR < 0.05) in at least one run compared with others was 195 

defined as a variable OTU (vOTUs). There were, accordingly, 50, 50 and 46 vOTUs 196 

in ALS268, LJ105 and NBH217, respectively. The vOTUs were always the highly 197 

abundant OTUs, as the vOTUs accounted for average 82% of the total fungal 198 

abundance in sample ALS268, 79% of total in LJ105, and 66% in NBH217 199 

(Supplementary Table 3). vOTUs were enriched in Class Sordariomycetes, 200 

Dothideomycetes, Eurotiomycetes, Tremellomycetes, Agaricomycetes and 201 

Mortierellomycetes, which were also the principal fungal classes in the three forests 202 

(Fig. 5).  203 

The outcomes showed that run4 and run6 were the main sources of vOTUs, and 204 

certain taxa seemed to be associated with the two MiSeq runs (Supplementary Table 205 

3). For instance, the abundance of Trichoderma barbatum in all 3 technical replicates 206 

was particularly low in runs 4 and 6 but were highly abundant within the other runs. 207 

On the contrary, the abundance of Dactylonectria macrodidyma in all 3 technical 208 

replicates was significantly higher (FDR = 2.1E-05 in ALS, FDR = 4.7E-06 in LJ, 209 

FDR = 1.4E-06 in NBH) in runs 4 and 6 than that of the other runs. There were also 210 

some taxa with unique distributions across the runs. For example, the abundance of 211 

Sordariales sp. in ALS268 and Humicola sp. in LJ105 were extremely low in run 5 212 

and 8 respectively. In DNBSEQ-G400, only two species from LJ plot sequenced by 213 

SE400 mode were characterized as vOTUs, which were also extremely low 214 
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abundant OTUs, Penicillium jamesonlandense (average abundant = 0.33% in all 215 

runs of SE400, FDR = 0.005) and Trichoderma oblongisporum (average abundant = 216 

0.12% in all runs of SE400, FDR = 0.017) (Supplementary Table 3).  217 

As some of the vOTUs are functional important for soil, this sequencing bias 218 

might affect further ecological conclusions drawn from scientific studies. Overall, 219 

based on the vOTU results, we found HTS results from the DNBSEQ-G400 platform 220 

was more stable than those from the MiSeq platform.  221 

 222 

DISCUSSION 223 

Here, we assessed the amplicon sequencing results of positive controls mock 224 

communities and a large number of soil samples DNBSEQ-G400 sequencing 225 

platform. Importantly, the cost per sample of DNBSEQTM is comparable or even 226 

lower than that of current platforms (Supplementary Table 1). Since we obtained a  227 

high level of reading depth for our testing purposes (~600K reads per sample), the 228 

cost for an empirical study, without such high demands in depth, could be further 229 

reduced. The DNBSEQ-G400 platform exhibited a high stable performance in our 230 

study. As expected, DNBSEQ-G400 could reproduce the relative abundance of 231 

designed Zymo mock community, with a similar range of variation as observed for 232 

MiSeq based on a previous study (26). These results indicate that the accuracy of 233 

the two sequencing platforms are equivalent.  234 

Comprehensive comparisons of ITS2 amplicons from >1000 soil samples 235 

revealed highly comparable performance between PE200 and SE400 modes of the 236 

DNBSEQ-G400 platform. Specifically, the major fungal classes detected by 237 

DNBSEQ-G400 in the PE200 and SE400 modes were similar to that by MiSeq, with 238 

differences confined to classes with very low abundance (Fig. 2). However, some 239 
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important differences between platforms in class abundances were detected. For 240 

example, the class Archaeorhizomycetes was highly detected by DNBSEQ PE200 241 

but not by MiSeq. The choice of primers may be the reason for its detection 242 

difference, as Archaeorhizomycetes were strongly discriminated against by the 243 

ITS4ngsUni primer (27). Further, Archaeorhizomycetes often have highly divergent 244 

sequences (27), so the missed detection in the SE400 mode might also suggest the 245 

importance of 3’ sequences for certain taxa assignment. Again, the primer 246 

differences between the platforms could be the reason for the differences of an 247 

unidentified genus of Ascomycota and genus Mortierella (Fig. 4b), as the yield of 248 

Ascomycota and Mortierellomycota has been reported to be significantly affected by 249 

primer pair (10, 28). We initially suspected that variation in sequence read length 250 

might also influence the compositional comparisons across platforms. Theoretically, 251 

longer reads might improve taxonomic accuracy for fungi with longer ITS2 regions. 252 

However, the species that were exclusively detected at MiSeq (PE300) were not the 253 

ones with longer ITS2 regions (Supplementary Table 2). Therefore, this possibility is 254 

not likely driving the patterns we observed. Moreover, the least similar genera 255 

between DNBSEQ-G400 and MiSeq in technical replicates were extremely low in 256 

abundance (Fig. 2a), and low abundance genera should be carefully interpreted due 257 

to the false positive risk (29). 258 

The evaluation of PCR and run effects on sequencing of technical replicates 259 

suggested that DNBSEQ-G400 was more stable than MiSeq. Good consistency 260 

among PCR replicates matched with previously reported results, mainly due to the 261 

substantial improvements in the processivity and fidelity of DNA polymerase (30). As 262 

such, PCR replicates seem to be unnecessary in future projects with possible budget 263 

constraints. Instead, we found that sequencing runs have larger effect on the 264 
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composition of technical replicates than that of PCR, in terms of both MiSeq and 265 

DNBSEQ-G400 results (Fig. 4a). However, we only found that there was significant 266 

run bias based on fungal composition (Fig. 4a) and/or abundance (Fig. 4b) in the 267 

results by MiSeq. Specifically, abundance differences (as determined by vOTUs) 268 

were detected in three abundant phyla: Ascomycota, Basidiomycota and 269 

Mortierellomycota (Fig. 5).  At class level, the shifted proportion of Sordariomycetes 270 

and Dothideomycetes in our study were consistent with the previous report on MiSeq 271 

run bias against certain fungal taxa (15), suggesting that the biases seems to be 272 

group specific. A certain archaeal taxon that was shown to be differentially detected 273 

by a Illumina HiSeq run in another run-to-run comparison study further supported this 274 

group specific hypothesis (14). Since such bias was observed for several taxa in 275 

technical replicates samples, it might also exist in other non-replicated samples 276 

throughout the run. While the exact source of run bias remains unclear, cumulative 277 

replication errors during signal amplification before sequencing is probably a leading 278 

candidate.  279 

The vastly developed sequencing technologies allows deeper discovery of the 280 

unknown microorganism in natural complex samples, including shotgun 281 

metagenomics and long-read DNA sequencing methods (31–33). However, to reflect 282 

the true taxonomic composition of a soil sample still remains a difficult task for 283 

scientists, due to the largely undiscovered microorganisms which are lack of 284 

references and the complexity of their genomes (34). Compared to metagenomics, 285 

metabarcoding could provide more taxonomic information with affordable price, 286 

which makes it possible for researchers to expand their surveys on microbial 287 

communities to both large spatial and long temporal scales. We presented an 288 

alternative platform, which exhibited similar outcomes, but with larger throughput and 289 
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lower cost, to the currently dominating ones, i.e. Illumina MiSeq. To summarize, the 290 

DNBSEQ-G400 platform, which is cheaper on a per base-pair basis and does not 291 

exhibit run-to-run bias is recommended for future studies with large sample sizes 292 

that requiring high quality control. 293 

 294 

Methods 295 

Sampling and sequencing experimental design 296 

ZymoBIOMICS Microbial Community DNA Standard (D6305) was bought from 297 

ZymoBIOMICSTM. Fungus L. edodes, F. velutipes, P. eryngii and S. cerevisiae were 298 

bought from supermarket as positive controls. Gradient gDNA mixtures were mixed 299 

based on DNA content, and then followed the PCR amplification. Meanwhile, each 300 

fungus was amplified separately, then mixed according to the content of PCR 301 

products to form PCR mixtures. 302 

A total of 1144 topsoil samples collected from forest plots in southwest China 303 

were sequenced by both Illumina MiSeq and MGI Tech. DNBSEQ-G400 in this study: 304 

340 soil samples form 20 ha AiLaoShan (ALS) subtropical evergreen broad leaf 305 

forest plot, 477 soil samples from 25 ha LiJiang (LJ) subalpine spruce forest plot, 306 

and 327 soil samples from 20 ha Nanbanhe (NBH) tropical rainforest plot. The 307 

summary information of the 3 plots can be found in Supplementary Table 4. The 308 

internal transcriptional spacer 2 (ITS2) amplified individually from each sample were 309 

sequenced by both DNBSEQ and MiSeq (Supplementary Fig. 1). All 1144 samples 310 

randomly and equally distributed into 3 DNBSEQ runs for both 2×200 paired-end 311 

and 400 bases single-end sequencing. The left libraries of total 1144 samples were 312 

repetitively sequenced two more times by 400 single end sequencing mode using 313 

different DNBSEQ-G400 machine. Similar sequencing experimental design was 314 
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carried out at Illumina MiSeq platform. Due to the run capacity of MiSeq, 1144 forest 315 

soil samples were randomly sequenced by 8 parallel sequencing runs on MiSeq 316 

platform. Three randomly chosen soil samples from each forest plot (ALS268, LJ105 317 

and NBH217) were all amplified 3 times separately as PCR replicates. The 318 

corresponding 9 sequencing libraries were sequenced repetitively by 3 DNBSEQ 319 

runs and 8 MiSeq runs as run replicates (Supplementary Fig. 1). 320 

 321 

DNA extraction 322 

DNA extraction was performed using the PowerSoil®DNA Isolation Kit (Mobio) 323 

according to manufacturer’s instructions. DNA concentration was measured by Qubit 324 

(Invitrogen).  325 

 326 

Library preparation and sequencing in DNBSEQ-G400 327 

The library preparation for DNBSEQ-G400 was carried out in BGI-Shenzhen. Two-328 

barcode system for metabarcoding on DNBSEQ-G400 platform was designed to 329 

allow large input in one sequencing event (Supplementary Fig.2). 15 unique 330 

barcodes consisting of 6bp artificial DNA oligos connected with short spacers (0-3 331 

bases random nuclear acid) was linked to 5’ end of ITS1 amplification primers 332 

(Supplementary Table 5). Short spacers were used to shift sequences in template 333 

DNA to avoid synchronal signals caused by conserved DNA regions in amplicons 334 

while sequencing. The first barcode was added to soil DNA through one-step PCR 335 

amplification (Supplementary Fig.2). The primers, reaction recipes and conditions for 336 

PCR were shown at Supplementary Table 5. 337 

Qualified samples with different barcodes were mixed for DNA nanoball (DNB) 338 

based library construction. In this step, second barcodes and sequencing adaptor 339 
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were added to the mixtures from the first step PCR by ligases. PCRs that labeled by 340 

two barcodes were further cyclized, and 20uL of the cyclization fragments were 341 

taken to make DNA nanoballs (DNBs). DNBs were sequenced by DNBSEQ-G400 342 

sequencer in BGI-Shenzhen.  343 

 344 

Library preparation and sequencing in MiSeq 345 

Library preparation for Illumina MiSeq was carried out at University of Minnesota 346 

Genomic Center according to the following steps. The sequencing libraries were 347 

constructed using dual-index (DI) amplification approach (35, 36). The internal 348 

transcribed spacer 2 (ITS2) of rDNA was amplified by using two-step polymerase 349 

chain reaction (PCR). The primers, reaction recipes and conditions for the two 350 

amplifications were shown at Supplementary Table 5. The first PCR products were 351 

diluted 100-fold as template DNA for the second amplification. The amplicons were 352 

normalized and pooled in equal molar ratios. To ensure the consistency of relative 353 

depth, nine PCR reactions of three replicated samples were initially mixed together 354 

by equal weight according to the concentration. An equal amount of mixtures was 355 

taken out and mixed with the PCR products of other samples when building library 356 

for each single run. For each run, all mixtures were purified using Agencourt AMPure 357 

XP (Beckman Coulter). The pooled samples were size selected at 427 bp ± 20%, 358 

denatured with NaOH, diluted to 8 pM, and then spiked with 15% PhiX. Sequencing 359 

was carried out using the entire lane of the Illumina MiSeq platform with a MiSeq 600 360 

cycle v3 kit in the University of Minnesota Genomic Center. 361 

 362 

Processing of ITS2 sequencing data 363 
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On average 688.9 million high-quality reads per lane on the DNBSEQ platform were 364 

produced using 2×200 paired-end mode, with 88.2% of bases scoring Q30 for read1 365 

and 86.6% bases scoring Q30 for read2. After barcode splitting, an average 558K 366 

reads per sample were obtained. For 400 single-end mode in DNBSEQ, an average 367 

of 452.5 million high-quality reads per lane were produced, with 79.4% of bases 368 

scoring Q30. An average 736K reads per sample were obtained after barcode 369 

splitting. 370 

All offline sequencing data was processed using a Python-written Snakemake 371 

pipeline. For both paired-end sequencing data (PE200 generated from DNBSEQ-372 

G400 and PE300 from Illumina MiSeq), the forward and reverse reads were initially 373 

merged, adaptor and the primer area were removed by cutadapt(37) in the same 374 

time. In order to align with UNITE database(38), the 42 bp tails from 3’ end of all 375 

sequences were trimmed based on our own test using ITSx(39). Next, low quality 376 

reads with maximum Expected Error rate > 1 and minimum length less than 100bp 377 

were discarded by Vsearch. Sequences passing these quality filtering steps were 378 

separately clustered to OTUs using BURST (https://github.com/knights-lab/BURST) 379 

with a similarity of 0.97. We assigned the origin of each read based on its best 380 

BURST hit using a ‘winner-takes-all’ strategy which only considers the best match of 381 

each sequencing read. Profiles of all samples was therefore concatenated into one 382 

OTU table by BIOM (40). 383 

The bioinformatic analysis was slightly modified for single-end sequencing data 384 

(SE400) from DNBSEQ-G400. Since SE400 is non-directional sequencing, the 385 

direction of sequencing reads was recongnized in the beginning of our analysis. Low 386 

quality reads were then removed, and the qualified reads were aligned to database 387 

by the same methods used for paired-end sequencing. The assignments of best 388 
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BURST hits were further produced by ‘winner-takes-all’ strategy, and all profiles 389 

were concatenated by BIOM into an OTU table. 390 

All sequencing data from both MiSeq and DNBSEQ-G400 was normalized to 5k 391 

sequences per sample by rarefaction, a total of 1000 times. Finally, the samples with 392 

less than 5k reads were filtered out, and remaining samples were used in all further 393 

analysis.  394 

 395 

Evaluation of the sequencing performance from MiSeq and DNBSEQ-G400 396 

platforms 397 

The similarity of the frequency of occurrences of classes across the sequencing 398 

platforms was examined by lme4 package in R (41). Pooled G-test of goodness-of-fit 399 

was performed using RVAideMemoire package in R (42). Analysis of similarities 400 

(ANOSIM) was performed using Bray distance by vegan package in R (43). 401 

Spearman correlation coefficient and the statistics were calculated by vegan and 402 

Hmisc functions in R (44). Procrustes analysis was performed by the Procrustes and 403 

protest functions from the vegan package in R. The non-metric multidimensional 404 

scaling analysis was performed by the metaMDS function from the vegan package in 405 

R (43). Nonparametric MANOVA analysis was performed on the abundance of OTUs 406 

using Bray-Curtis distance by adonis function from the vegan package in R. 407 

Significant differences of the abundance among major OTUs cross sequencing 408 

platforms were examined by Kruskal-Wallis test in R. All data was represented by 409 

ggplot2 in R (45). 410 

 411 

Identification of vOTUs with significant variation across runs 412 
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One-way ANOVA was used to detect fungal species that have significant abundance 413 

variation (vOTUs) among runs for all run replicates. To control for a possibly inflated 414 

type I error as a result of multiple comparisons, we applied false discovery rate (FDR) 415 

testing. Thus, the p value was converted to q value to measure the proportion of 416 

FDR using qvalue package in R (46). An OTU with FDR < 0.05 were considered as 417 

vOTU. 418 

 419 
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 645 

Fig. 1. (A) Histogram of bacterial composition of ZymoBIOMICS Microbial Community Standards 646 

detected by DNBSEQ PE200 mode. (B) Histogram of log10 ratios of the proportions of mixtures of 647 

fungi sequenced by DNBSEQ SE400 mode. The numbers on the side of adjacent bars indicated the 648 

detected ratio of adjacent comparisons. The expected log ratios were shown with dotted lines. Error 649 

bars indicate 1 standard deviation.  650 

 651 
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 653 

Fig. 2. a) Venn diagrams show the overlap of identified fungal classes by MiSeq and DNBSEQ-G400 654 

PE200 and SE400 modes. b) All classes from the three forest plots detected by MiSeq and DNBSEQ-655 

G400 are represented as log10 (frequency) by heatmap. ALS=AiLaoShan, LJ=LiJiang, 656 

NBH=NaBanHe. 657 
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 658 

Fig. 3. Procrustes analysis among Illumina MiSeq and DNBSEQ-G400 PE200 and SE400 659 

sequencing platforms by sample-to-sample comparisons. Each sample contained a taxonomic set at 660 

species level. The round hollow circles showed the positions of multidimensional scaling conduced 661 

taxonomic profiles generated from one sequencing platform, and the blue arrows point to their 662 

positions generated by another sequencing platform. The correlation coefficients of platform 663 

comparisons are shown on the upper right corner of each figure. ALS=AiLaoShan, LJ=LiJiang, 664 

NBH=NaBanHe.  665 
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 666 

Fig. 4. a) Non-metric multidimensional scaling (NMDS) analysis and ADONIS function illustrate the 667 

impact of sequencing run and PCR on the composition of fungal communities in three forest plots 668 

generated by DNBSEQ-G400 and MiSeq sequencing platforms. Samples indicate by labels with the 669 

same shape in NMDS are PCR replicates. b) bar chart shows the percentage of major OTUs in three 670 

forest plots at genus level in DNBSEQ-G400 and MiSeq sequencing platforms. ALS=AiLaoShan, 671 

LJ=LiJiang, NBH=NaBanHe. 672 
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 674 

Fig. 5. The percentage of variable OTUs (the blue bars) versus non-variable OTUs (the green bars) in 675 

different fungal classes for the three technical replicates in all MiSeq runs. ALS=AiLaoShan, 676 

LJ=LiJiang, NBH=NaBanHe. 677 
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