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Abstract 12 

Despite the important role of fungi for ecosystems, relatively little is known about the factors 13 

underlying the dynamics of their diversity. Moreover, studies do not typically consider their dark 14 

diversity: the absent species from an otherwise suitable site. Here, we examined the drivers of 15 

local fungal dark diversity in temperate woodland and open habitats using LiDAR and in-situ 16 

field measurements, combined with a systematically collected and geographically comprehensive 17 

(national) macro-fungi and plant data set. For the first time, we also estimated species pools of 18 

fungi by considering both plant and fungi co-occurrences. The most important LiDAR variables 19 

were amplitude and echo ratio, which are both thought to represent vegetation structure. These 20 

results suggest that the local fungal dark diversity is highest in tall dense forests like plantations 21 

and lowest in more open forests and open habitats with little woody vegetation. Plant species 22 

richness was the most important driver and negatively correlated with local fungal dark diversity. 23 

Soil fertility showed a positive relationship with dark diversity in open habitats. This may 24 

indicate that the local dark diversity of macro-fungi is highest in areas with a relatively high 25 

human impact (typically areas with low plant species richness and high soil fertility). Overall, 26 

this study brings novel insights into local macro-fungi dark diversity patterns, suggesting that a 27 
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multitude of drivers related to both soil and vegetation act in concert to determine fungal dark 28 

diversity. Our results suggest that policymakers and conservation managers should consider plant 29 

species richness, soil fertility, and vegetation structure in future management plans for fungal 30 

communities.  31 

Key Words: airborne laser scanning, bog, fens, forests, fungal diversity, grasslands, mycorrhiza, 32 

regional species pool, remote sensing, shrublands, wetlands 33 

Introduction 34 

Understanding the underlying drivers shaping biodiversity patterns is a central goal in 35 

ecology and conservation biology. This is also true for fungi which play a vital role in ecosystem 36 

functioning as decomposers, mutualists, and pathogens. However, fungi and the underlying 37 

environmental factors influencing fungal diversity is less studied than animals and plants, and 38 

quantifying fungal diversity is far from trivial. The most commonly used biodiversity metric is 39 

observed species richness (Mueller 2011). However, this measure is not always suitable for 40 

comparisons across habitats and conveys no information on the part of the diversity that is 41 

potentially missing in a given site (Pärtel et al. 2011). In addition, monitoring fungal diversity is 42 

often severely hampered by detectability issues and the life history of the involved species 43 

(Blackwell and Vega 2018; Yahr et al. 2016). Several alternative approaches have been 44 

developed to more effectively monitor and compare biodiversity across landscapes (Ricotta 45 

2005, 2007; Sarkar and Margules 2002; Solow and Polasky 1994). Although these methods can 46 

provide valuable insights, they do not consider the dark diversity, the absent part of the species 47 

pool which can potentially inhabit an environmentally suitable site (Pärtel et al. 2011). This 48 

often-ignored aspect of diversity provides a novel and ecologically meaningful metric for 49 

estimating how much of the potential species diversity – the site specific species pool – is 50 

lacking (Pärtel et al. 2011). This information is important in both studies of community 51 

assembly, and its underlying mechanisms and dynamics, but also for conservation and 52 

restoration management (Lewis et al. 2017; Mateo et al. 2017). Here, we use fungal data from 53 

130 thoroughly inventoried sites covering all terrestrial habitats, from open to forest, and wet to 54 

arid, to investigate important drivers of fungal dark diversity. 55 

Dark diversity aims to reconcile the role of simultaneous, and potentially confounding, 56 

regional and local processes underlying biodiversity patterns and biological communities (Pärtel 57 
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2014; Pärtel et al. 2011). In any given landscape, the biodiversity potential is ultimately 58 

determined by large-scale biogeographic and evolutionary processes (i.e., species diversification 59 

and historic migration patterns) which create the set of species which can theoretically inhabit a 60 

site, defined as the species pool (Cornell and Harrison 2014; Pärtel et al. 1996; Zobel 2016). This 61 

species pool is further filtered by local processes such as environmental gradients, species 62 

interactions, population dynamics, dispersal, disturbance, and stochastic events (Cornell and 63 

Harrison 2014; Pärtel et al. 2013; Ronk et al. 2015; Zobel 2016). Only a few studies have 64 

focused on the determinants of fungal dark diversity. These studies demonstrate that higher 65 

temperatures increases arbuscular mycorrhizal dark diversity (Pärtel et al. 2017a) and annual 66 

precipitation decreases the dark diversity of ectomycorrhizal fungi at the global scale (Pärtel et 67 

al. 2017b). These results concur with previous research suggesting large scale climatic factors 68 

are strong drivers of fungal richness and community composition, attributed to the direct and 69 

indirect effects which alter soil and floristic conditions (Kivlin et al. 2011; Staddon et al. 2003; 70 

Tedersoo et al. 2014). Local edaphic conditions such as soil moisture, pH, and calcium 71 

concentration are also known to influence fungal diversity (Frøslev et al. 2019; Geml et al. 2014; 72 

Tedersoo et al. 2014; Tonn and Ibáñez 2017), but the effects of these conditions on dark diversity 73 

still remain unknown. 74 

Besides the influence of environmental gradients, other factors particularly important for 75 

fungi are vegetation and habitat structure, such as vegetation height, shrub layer, vegetation 76 

cover, dead wood, and other woody features (Gómez-Hernández and Williams-Linera 2011; 77 

Humphrey et al. 2000; Nordén and Paltto 2001; Nordén et al. 2004; Zuo et al. 2016). As the 78 

dominant primary producer in terrestrial ecosystems, plants also form the living and dead organic 79 

carbon pools and biotic surfaces that are the niche space for not only fungi but other taxonomic 80 

groups as well (Brunbjerg et al. 2017; DeAngelis 2012). The importance of these structural 81 

elements has recently been found to influence the diversity of not only fungi, but plants, animals, 82 

and bacteria as well (Penone et al. 2019). Despite the obvious contribution of these variables, 83 

such factors are rarely covered extensively since they are difficult to measure and require large 84 

amounts of resources to obtain sufficient and high-quality data. However, emerging technologies 85 

such as LiDAR (light detection and ranging) could potentially remedy this situation. 86 
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Airborne LiDAR records a three-dimensional set of points using laser ranging from an 87 

aircraft or a drone (Lefsky et al. 2002). It captures data suitable to represent many of the 88 

vegetation and landscape structural measures important to fungi (Lopatin et al. 2016; Mao et al. 89 

2018; Peura et al. 2016; Thers et al. 2017; Vehmas et al. 2009). As a relatively new 90 

methodology, biodiversity studies that employ LiDAR have been limited in scope, typically 91 

addressing only one taxonomic group or habitat type at the local scale, and strongly biased 92 

towards forest ecosystems. However, studies using LiDAR-based indicators have already been 93 

shown to explain up to 66% and 82% of local plant and fungi richness, respectively (Lopatin et 94 

al. 2016; Peura et al. 2016; Thers et al. 2017). A recent study has demonstrated its potential to 95 

provide spatially accurate and comprehensive measures by predicting the local biodiversity of 96 

different taxonomic groups (plants, fungi, lichens, and bryophytes) across multiple habitat types 97 

and large geographic extent (Moeslund et al. 2019). LiDAR may also be a useful tool in studying 98 

dark diversity by incorporating potentially important spatiotemporal dynamics such as 99 

succession and disturbance (Mokany and Shine 2003; Pärtel et al. 2013; Scott et al. 2011). 100 

Previous studies have hinted at the effect of these processes on dark diversity increase dark 101 

diversity in arbuscular mycorrhizal fungi (Pärtel et al. 2017a), ruderal plants are more likely to 102 

be in dark diversity (Moeslund et al. 2017), and human density and agricultural land use 103 

influence dark diversity of vascular plants (Riibak et al. 2017). However, factors such as 104 

succession have been actively excluded to avoid complications in quantifying dark diversity 105 

where species are not in equilibrium with environmental conditions (Pärtel et al. 2017a).  106 

Alongside these structural and environmental factors, fungal diversity depends on biotic 107 

interactions, with a large proportion of fungi deriving their nutrients and carbon from host plants. 108 

These biotrophic fungi consist mainly of mycorrhizal fungi which form a mutualistic relationship 109 

with living roots of a plant, and pathotrophic fungi that receive nutrients by harming or killing 110 

host plants (Nguyen et al. 2016; Tedersoo et al. 2014).  Recent evidence has hinted on the 111 

influence of these trophic interactions, as plant species dependent on mycorrhiza have been 112 

found to have greater dark diversity than those without these mutualist relationships (Moeslund 113 

et al. 2017). A recent study indicates that ectomycorrhizal fungal diversity increased 114 

exponentially with an increasing proportion of their host plants, suggesting that competitive 115 

interactions among fungi with a high abundance of hosts might also drive their dark diversity 116 

(Pärtel et al. 2017b). Typically, inter-specific interactions are indeed considered in methods for 117 
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estimating dark diversity as these are usually based on species co-occurrence patterns also 118 

assuming that co-occurrence is a proxy for shared abiotic requirements and biogeographical 119 

history (Beals 1984; de Bello et al. 2012; Lewis et al. 2016; McCune 1994; Münzbergová and 120 

Herben 2004). However, this is usually done while considering only species within the species 121 

group being studied. Recognizing the close and interconnected relationship between plants and 122 

fungi allows for stronger and more realistic estimations of the fungal dark diversity. 123 

Incorporating other taxonomic groups when determining species pools and estimating dark 124 

diversity is not a new insight, and the importance of other biotic interactions across trophic 125 

groups has been discussed since the concept of dark diversity was first introduced (Pärtel et al. 126 

2011). However, it is yet to be done, and the exclusion of non-competitive biotic interactions 127 

means that there is a large component missing in describing dark diversity, and may explain why 128 

dark diversity is sometimes over-estimated (Boussarie et al. 2018).  129 

In this study, we examined the environmental factors influencing the local dark diversity 130 

of fungi across habitat types within a regional landscape. We used one of the most 131 

comprehensive biodiversity datasets covering major environmental gradients (Brunbjerg et al. 132 

2019) and combined it with LiDAR-based measurements. We also included fungi-plant-co-133 

occurrence information to estimate local fungal dark diversity and thereby acknowledge the 134 

importance of their biotic interactions. More specifically, we addressed the following questions: 135 

1. To what degree can we explain local fungal dark diversity by abiotic and biotic environmental 136 

factors? 2. Can vegetation or terrain structural factors important to local fungal dark diversity be 137 

derived from LiDAR and if so, 3. how important are they compared to field-measured factors?  138 

Methods 139 

Study area and site selection 140 

The dataset was collected from a national biodiversity inventory in Denmark as part of 141 

the “Biowide” research project (Brunbjerg et al. 2019). A total of 130 study sites (40 × 40 m) 142 

were selected with a minimum distance of 500 m between each to reduce spatial covariance with 143 

30 sites allocated to cultivated habitats and 100 sites to natural habitats (Figure 1). The cultivated 144 

subset was stratified according to the type of land use and the natural subset was selected 145 

amongst uncultivated habitats and stratified according to gradients in soil fertility, soil moisture, 146 
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and successional stage. The “Biowide” project deliberately excluded saline and aquatic habitats 147 

but included temporarily inundated depressions along with mires, bogs, and fens. The final set of 148 

24 habitat strata consisted of three types of fields (rotational, grass leys, set aside) and three types 149 

of plantations (beech, oak, spruce), and the remaining 18 strata were natural or semi-natural 150 

habitats, constituting all possible combinations of positions along three major natural 151 

environmental gradients: soil fertility (rich, poor), soil moisture (dry, moist, wet), and 152 

successional stage (early, mid, late). These 24 strata were replicated in five geographical regions 153 

in Denmark. The “Biowide” dataset also includes a subset of 10 sites (two in each region) of 154 

hotspots for different taxonomic groups in Denmark, which were selected by voting amongst 155 

active naturalists in the Danish conservation and management societies. For further details on the 156 

design and data collection procedures see Brunbjerg et al. (2019). 157 
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158 
Figure 1. The 130 selected study sites from a national biodiversity inventory. Reprinted from159 

Ejrnæs et al. (2018), with permission from Elsevier. 160 

Field-measured variables 161 

We used fungi observational data from the “Biowide” field inventories. Macro-fungal162 

species were surveyed in 2014–2015 by expert field-mycologists during three inventories (up to163 

one hour per site) in the main fruiting season (August - November) by actively searching164 

microhabitats and substrates (soil, herbaceous vegetation and debris, dead wood, litter, and bark165 
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of trees up to 2 m) within the 40 × 40 m sites. Since truffles are difficult to find, we did not 166 

consider these in this study. Vascular plant species observations were also taken from the 167 

“Biowide” database and were originally inventoried by trained botanists during the summer 2014 168 

and spring 2015 to account for variations in phenology. We removed all subspecies, hybrids, 169 

variations, and neophytes (i.e. species that are not considered a natural part of the vegetation 170 

given their history and dispersal ability, see appendix tables 6–8 in Buchwald et al. (2013)). 171 

Species nomenclature follow the species checklist of Denmark (allearter.dk).  172 

Apart from the LiDAR-based measures (detailed below), we also considered field-173 

measured variables representing both abiotic conditions and available biotic resources known to 174 

influence fungal diversity and communities (Table 1). For further details on data collection and 175 

how the environmental field measurements were made see Brunbjerg et al. (2019). 176 
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Table 1. Overview of the explanatory variables for fungal dark diversity models along with our hypothesized relationship with dark 177 

diversity. If the standard deviation of a variable was calculated, in addition to its mean, the variable is denoted with an asterisk. 178 

 Explanatory variables Hypothesis References 

Field-based 

measures 

Plant richness Plant richness increases community stability or 

reflect low human impact. This would result in 

more available hosts and therefore a lower dark 

diversity 

(Kuiters 2013; Pellkofer et al. 

2016; Yang et al. 2018) 

Organic matter as carbon resources  

-litter (open habitats)  

-dead wood (forests) 

Organic matter increases competition between 

fungi and soil bacteria which would increase 

dark diversity. Alternatively, the more substrate 

represented by more organic matter gives more 

resources for fungi and hence a lower dark 

diversity 

(Averill et al. 2014; Leigh et al. 

2011) 

Soil pH Soil pH increases fungal richness and 

colonization, and reduces competition with soil 

microbes, lowering dark diversity 

(Clark 1997; Rousk et al. 2010; 

Rousk et al. 2009) 

Soil fertility index (SFI) Soil fertility increases fungal and host plant 

competitiveness and often reflects a higher 

human impact, which would probably increase 

dark diversity 

(Buckland and Grime 2000; Liu et 

al. 2015; Luo et al. 2017; Nadeau 

and Sullivan 2015) 

Soil moisture index (SMI) Soil moisture increases fungal growth, (Jacobson 1997; Kennedy and 
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colonization rate, and spore production, 

increasing dark diversity. Alternatively, the 

relationship could be unimodal, with high dark 

diversity at intermediate-high moisture levels 

Peay 2007) 

LiDAR-based 

measures 

Vegetation height* Taller vegetation could reflect encroachment by 

shrubs and trees in open habitats and forests 

resulting in more available niches for potential 

fungal species increasing their dark diversity   

(Gómez et al. 2019; Zuo et al. 

2016)  

Succession (Amplitude) Amplitude could reflect successional processes 

with later successional stages allowing fungi to 

become more established, resulting in lower 

dark diversity 

(Fernández-Toirán et al. 2006; Hui 

et al. 2017; Twieg et al. 2007) 

Microtopography  

-Terrain roughness (SigmaZ) 

-Terrain openness* 

Microtopography increases availability of niches 

and increases dark diversity 

(Cantelmo Jr and Ehrenfeld 1999) 

Light/heat 

- Canopy openness (forests)* 

-Heat load index* 

-Solar irradiation* 

-Vegetation cover* 

Light increases fungal colonization which would 

decrease dark diversity 

(Graham et al. 1982; Turner et al. 

2009)  

.
C

C
-B

Y
-N

C
 4.0 International license

available under a
w

as not certified by peer review
) is the author/funder, w

ho has granted bioR
xiv a license to display the preprint in perpetuity. It is m

ade 
T

he copyright holder for this preprint (w
hich

this version posted July 3, 2020. 
; 

https://doi.org/10.1101/2020.07.02.185553
doi: 

bioR
xiv preprint 

https://doi.org/10.1101/2020.07.02.185553
http://creativecommons.org/licenses/by-nc/4.0/


11 
 

Canopy complexity  

-Echo ratio* 

Canopy complexity provides more niches 

increasing potential fungal diversity and dark 

diversity 

(Dove and Keeton 2015; Gómez-

Hernández and Williams-Linera 

2011; Unterseher and Tal 2006) 
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LiDAR-based measures 179 

To enable the calculation of measures representing vegetation and terrain environmental 180 

and structural aspects, we used the latest nationally covering LiDAR-based point cloud for 181 

Denmark from the Danish Ministry of Environment. This dataset is freely available from 182 

www.kortforsyningen.dk and has a point density of 4-5 points/m2. Originally, this dataset was 183 

recorded from fixed-wing airplanes at an altitude of approximately 680 m above ground level 184 

and a speed over ground of approximately 240 km/h. The data was recorded by Riegl LMS-680i 185 

scanners operating in the near-infrared wavelength (1550 nm) in a parallel line scan pattern 186 

during the springs and autumns of 2014 and 2015. For all calculations, we relied on the 187 

classification of points into ground, building and vegetation classes already present in the data 188 

set upon download.  189 

To represent vegetation and terrain environmental and structural aspects, we calculated 190 

observed measures based on the point cloud data set. We calculated all measures at 1.5 m 191 

resolution (except for terrain roughness which was at 0.5 m resolution) and their means and 192 

standard deviations within 30 m radius circles centered in each study site. For all LiDAR 193 

processing and calculation, we used the OPALS tools (Pfeifer et al. 2014) version 2.3.1 in a 194 

Python 2.7 environment. 195 

Vegetation-related measures 196 

To represent succession and to some degree moisture balance in both vegetation and soil, 197 

we used the amplitude of each echo representing a point in the LiDAR point cloud. This 198 

amplitude is high if the reflecting surface is flat (i.e., smooth) and with high reflectivity. It is low 199 

when the light energy is distributed between several returns for example in tree canopies, or 200 

when surfaces have low reflectivity, are complex, or translucent (e.g., leaves). The wavelength 201 

used to record the point cloud data is sensitive to leaf water content (Junttila et al. 2018) and soil 202 

moisture (Zlinszky et al. 2014). Since the amplitude depends on reflectivity, which varies across 203 

months and aircraft types (slightly different flying heights) used for data recording, the amplitude 204 

was corrected to account for these biases. We constructed a Generalized Linear Model (GLM) 205 

with Gaussian link having the raw amplitude as response and flight month as well as aircraft type 206 

as explanatory factors and used only the residuals of this model for input in our statistical 207 

modelling. We also tried using flight year as an explanatory factor, but this did not improve the 208 
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model (ΔAIC < 2). These residuals will be referred to as the corrected amplitude in the 209 

following. Unfortunately, we did not have reference data enabling a full calibration of this 210 

measure (Höfle and Pfeifer 2007).  211 

To represent vegetation height, we estimated this measure by subtracting the terrain 212 

model from the surface model (two raster files, detailed in the following). The terrain model 213 

(DTM) calculation details are given in the section on “Terrain-structure measure”. The surface 214 

model was calculated using the DSM module in OPALS using all vegetation and ground points.  215 

To reflect the penetrability and succession of the vegetation we calculated the echo ratio 216 

(Höfle et al. 2012). Echo ratio is high where the surface is impenetrable and relatively smooth 217 

and lower where the surface is uneven or penetrable. In order to calculate the echo ratio, 218 

estimating normals for each point is required. We did this using the Normals module in OPALS 219 

with a robust plane fit based on the 12 nearest neighboring points. Subsequently, we calculated 220 

the echo ratio for each terrain and vegetation point using a search radius of 1.5 m along with the 221 

slope adaptive method implemented in the EchoRatio module of OPALS.  222 

To estimate light conditions, we calculated the canopy openness for all points categorized 223 

as “ground”, but contrary to terrain openness (see below), we calculated this considering 224 

vegetation points as well. Therefore, canopy openness represents the actual blocking of the sky 225 

view by the canopy around each ground point. Canopy openness is high for ground points inside 226 

canopy gaps and low for ground points beneath a closed canopy.  227 

Lastly, as an estimate of vegetation cover, we calculated the fraction of vegetation points 228 

to all points (excluding unclassified points and those representing buildings and noise). This 229 

measure will be high if the vegetation is dense or the cover of vegetation is relatively high, and 230 

low for areas with no vegetation. 231 

Terrain-structure measures 232 

To enable the calculation of several terrain-related measures, we calculated a digital 233 

terrain model (DTM) for each study site representing the elevation above sea level. To do this we 234 

used the DTM module of OPALS based on only ground points. We set the module to use 8 235 

neighboring points and a search radius of 6 m. To represent key features of the local terrain (e.g., 236 

soil moisture or heat balance (Moeslund et al. 2013)), we calculated terrain slope and terrain 237 
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aspect (used for heat load index calculation, see below). For this task, we used the GridFeature 238 

module of OPALS using the DTM as input, a kernel size of 1 and requesting the terrain slope 239 

and aspect (slope direction) in radians.  240 

To reflect local heat input, we calculated the heat load index based on the terrain aspect 241 

following the heat load index formula in McCune and Keon (2002). This index reaches 242 

maximum values on southwest-facing slopes and zero on northeast-facing slopes. We also 243 

calculated the potential solar irradiation based on terrain slope, aspect, and latitude following 244 

equation 3 in McCune and Keon (2002).  245 

To estimate micro-scale terrain heterogeneity, we calculated the terrain roughness 246 

(SigmaZ) using only ground points as input. This measure represents the standard deviation of 247 

the interpolated grid height. The OPALS DTM module outputs this measure as a by-product 248 

when constructing a DTM. However, unlike the rest of the LiDAR measures in this study, the 249 

terrain roughness was calculated at 0.5 × 0.5 m resolution mirroring micro-scale terrain 250 

variations.  251 

To represent site-scale terrain heterogeneity, we calculated the terrain openness (Doneus 252 

2013). Terrain openness is defined as the opening angle of a cone (having the radius of the 253 

kernel) turned upside down – with its tip restrained to the point of interest – that touches the 254 

terrain surface. To calculate this, we used the PointStats module of OPALS requesting “positive 255 

openness” based on only ground points and a search radius of 5 m. This measure is high in flat 256 

(relative to the scale at which it is calculated) areas and low in heterogeneous terrains.  257 

Finally, to test the importance of variability in the LiDAR measures we calculated the 258 

standard deviation for LiDAR measures for which we believed it made ecological sense (Table 259 

1). 260 

Data analysis 261 

Data preparation 262 

Prior to statistical analysis, we removed the six intensively managed fields from the study 263 

sites, as these are ploughed fields with no nature value. We also removed two study sites because 264 

they were flooded during the LiDAR data recording period. Finally, we removed one site due to 265 
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an extreme outlier in the LiDAR amplitude values (300 vs. a range of values between 10 and 266 

130). Our final dataset therefore comprised a total of 121 study sites. 267 

Our initial visual inspection of the data revealed that many of the LiDAR measures were 268 

relevant only for woodlands and therefore strongly zero-inflated in the open landscapes. The 269 

analyses in this study were therefore separately run for open habitats and woodlands. Open 270 

habitats included grasslands, fens, bogs, and other habitats with only few sporadic occurrences of 271 

trees. The woodlands dataset consisted of forests, thickets and shrubland (e.g. willow).  272 

In the following, we detail the steps we took to prepare the LiDAR and measured 273 

variables for statistical modelling as explanatory factors. Obviously, a number of these variables 274 

were strongly inter-correlated (Appendix 1). For example, echo ratio was strongly related to 275 

canopy and light measures (Appendix 1). Therefore, we selected only those variables that we 276 

hypothesized to affect local fungal dark diversity (See Table 1). Subsequently, to avoid issues 277 

with multi-collinearity we calculated Variance Inflation Factors (VIFs) causing us to remove 278 

vegetation height as an explanatory factor for the open landscapes to ensure VIF values below 10 279 

following Kutner et al. (2005). Subsequently, the maximum VIF value of explanatory factors 280 

used together in the same models was 4.8 and 5.7 for woodlands and open habitats respectively. 281 

We scaled all explanatory variables to a mean of zero and a standard deviation of one. To strive 282 

for normal distribution of explanatory variables we log- or square-root transformed those where 283 

this made obvious distributional improvements based on visual examination of the histograms. 284 

  285 
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Appendix 1. Correlation plot between environmental and LiDAR variables. All significant286 
interactions are colored red for negative relationships and blue for positive relationships, with the287 
size and darkness of the color representing the strength of the relationship. Non-significant288 
correlations are blank. 289 

290 

 291 

Dark diversity 292 

All statistical analyses mentioned in the following were performed in R version 3.5.3 (R293 

Core Team 2019). To determine fungal dark diversity estimates based on co-occurrence with294 

plants (see below), we only used records of fungal species recorded where they had at least one295 
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co-occurrence with a plant genus. This restriction was based on the database from the Danish 296 

Fungi Atlas project (svampeatlas.dk), containing over 150,000 fungal records (available through 297 

gbif.org) and plant co-occurrence data for 2,006 fungal species. We calculated the regional pool 298 

using the Beals’ index (Beals 1984), as recommended by Lewis et al. (2016), using the ‘beals’ 299 

function in the ‘vegan’ package (Oksanen et al. 2017). The Beals’ index represents the 300 

probability that a particular species will occur within a given site based on the assemblage of co-301 

occurring species (Beals 1984; McCune 1994; Münzbergová and Herben 2004). The threshold 302 

used for including a particular species in the regional species pool was the 5th percentile of the 303 

Beals’ index value for each species (Gijbels et al. 2012; Ronk et al. 2015). Preceding the 304 

calculation of each threshold, the lowest Beals’ index value among plots with the occurrence of 305 

the species in question was identified, and all plots having values below the minimum were not 306 

considered. We calculated two measures of the regional pool for each site: (1) using only fungi 307 

co-occurrence and (2) co-occurrences of both observed fungi and vascular plants at each site to 308 

acknowledge the fungal-plant linkages. Dark diversity was calculated by subtracting observed 309 

fungal species richness from the regional pool. Since site-specific species pools differ between 310 

sites, we calculated the relative dark diversity for each site as dark diversity (species predicted 311 

from the regional pool but not observed) divided by the regional pool to enable comparison of 312 

results across habitats. 313 

Statistical analysis 314 

To investigate what characterizes sites with a high fungal dark diversity we constructed 315 

GLMs with a Gaussian link having the estimated relative dark diversity as the response variable. 316 

We constructed models for both open habitats and woodlands, and for both dark diversity 317 

estimates (see the section on dark diversity). Initially, we fitted models using only the LiDAR 318 

measures as explanatory factors, to test the degree to which fungal dark diversity patterns could 319 

be explained using LiDAR data alone. Subsequently, we fitted a similar model with both 320 

measured and LiDAR variables as explanatory factors (Table 1), giving insight into how much 321 

more explanatory power one gains by using measured variables in addition to LiDAR. To allow 322 

for non-linear relationships for variables corresponding to the intermediate disturbance 323 

hypothesis (Connell 1978; Townsend et al. 1997) and intermediate productivity hypothesis 324 

(Fraser et al. 2015), we used Akaike’s Information Criterion (AIC) (Burnham and Anderson 325 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 3, 2020. ; https://doi.org/10.1101/2020.07.02.185553doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.02.185553
http://creativecommons.org/licenses/by-nc/4.0/


18 
 

2002) to evaluate if inclusion of squared terms for the variables SMI, SFI, light, soil pH, and 326 

bare soil (see Table 1) improved the model fit. If so, we kept the squared term of the variable in 327 

question instead of the linear effect. After the initial fit and checking for non-linearity as 328 

described above, we ran a backward model selection procedure for each model based on AIC. 329 

The procedure stopped when AIC did not drop anymore and ΔAIC was above 2 (Burnham and 330 

Anderson 2002). In each iteration, we dropped the variable causing the smallest change in AIC 331 

value. As a final step, we checked model residuals to ensure that these were normally distributed. 332 

Results 333 

In most cases, our models explained between 20-30 % of the variation in fungal dark 334 

diversity and more than 40 % for the woodlands models when including both LiDAR and 335 

measured variables (Table 2). The only LiDAR variable significant in both open habitats and 336 

woodlands was amplitude, which was significant in all models for woodlands and in LiDAR-337 

only models for open habitats (Table 2). This variable had a positive effect on dark diversity in 338 

woodlands (Table 2) but a negative influence in open habitats (Table 2). Echo ratio was the only 339 

other significant LiDAR variable in our analyses and positively influenced dark diversity in open 340 

habitats (Table 2). Plant richness was negatively related to local fungal dark diversity and had the 341 

strongest impact of all the field-measured factors included in our analyses (Table 2). Also, soil 342 

fertility and moisture were positively correlated with fungal dark diversity in open habitats 343 

(Table 2).  In all cases, models considering only the structural environment (LiDAR only) were 344 

outperformed by models considering plant richness and the abiotic environment in addition to 345 

the structural, notably in the open habitats (Table 2). Appendix 1 shows all pair-wise Spearman 346 

correlations between the explanatory variables used. 347 

 348 
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 349 

Table 2. Modelling coefficients for the best models (i.e. after model selection) regressing dark diversity estimates based on only fungi 350 

co-occurrences (Fungi-only dark diversity) or based on both fungi and plant co-occurrences (Fungi-plant dark diversity) against the 351 

selected explanatory variables. Significant variables were from either a LiDAR-only or a full model with both LiDAR-based and field-352 

measured predictors.  353 

   

 
LiDAR variables Field-measured variables 

  R2 Amplitude 
Echo 
ratio 

Plant richness Soil fertility 
Soil 
moisture 

Woodland 
habitats 

Fungi-only 
dark diversity 

Lidar-only model 0.24 0.03 
- - - - 

Full model 0.40 0.04 
- 

-0.05 
- - 

Fungi-plant 
dark diversity 

Lidar-only model 0.23 0.03 
- - - - 

Full model 0.44 0.04 
- 

-0.05 
- - 

Open 
habitats 

Fungi-only 
dark diversity 

Lidar-only model 0.10 -0.05  0.01  
- - - 

Full model 0.30 - 0.01  -0.08 0.06 0.04 

Fungi-plant 
dark diversity 

Lidar-only model 0.07 -0.04  0.01  
- - - 

Full model 0.34 - 0.01  -0.10 0.06 - 
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Discussion 354 

In this study, we demonstrate for the first time that LiDAR derived variables, alone and 355 

in combination with field-measured variables, can explain a significant amount of the variation 356 

in local dark diversity of temperate macro-fungal communities. Our findings indicate that the 357 

dark diversity of fungi, is influenced by habitat characteristics such as the local vegetation 358 

structure, plant associations, and the abiotic environment. This is not surprising since local 359 

observed fungal diversity is also determined by these factors to a large degree (Moeslund et al. 360 

2019; Thers et al. 2017; Yang et al. 2017). We also find that models including field-based 361 

variables explained the dark diversity of fungi far better than models relying solely on LiDAR, 362 

notably in open landscapes. While LiDAR has the advantage that one can record data from huge 363 

areas in very fine detail for relatively low cost, our results indicates that to get the best 364 

explanation of local fungal diversity patterns fieldwork is still needed. Nevertheless, these 365 

findings emphasize the importance of focusing on habitat characteristics in the restoration and 366 

conservation of fungal communities, notably those where specific species are apparently missing 367 

judged from the community composition. 368 

LiDAR-based measures 369 

This study shows that LiDAR captures habitat characteristics important for fungal dark 370 

diversity which are not represented by traditional field-measured variables. Notably, the 371 

relationship between fungal dark diversity and LiDAR-derived vegetation structure in woodlands 372 

was relatively strong. Although LiDAR can successfully quantify biophysical characteristics in 373 

all types of habitats, it is known to be more effective in forested habitats (Su and Bork 2007), 374 

supporting these findings. The most important LiDAR variables in our modelling were amplitude 375 

and echo ratio which gives us important insights into what environmental aspects can be 376 

captured by a LiDAR approach and not typically recorded in the field. 377 

The LiDAR measure of amplitude is sensitive both to surface reflectivity and to the 378 

number of targets hit by the laser pulse (Moeslund et al. 2019). The lower the reflectivity and the 379 

more targets between which the light energy is distributed, the lower the amplitude associated 380 

with a given point. This would result in high amplitudes in flatter surfaces while yielding low 381 

amplitudes in tall and more open complex canopies, or translucent surfaces such as leaves. 382 

Hence, this variable can be a proxy for succession, surface evenness, or vegetation density; since 383 
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both flat and sparsely vegetated as well as densely vegetated canopies preventing light 384 

penetration will yield high amplitude. Supporting this, amplitude was positively correlated with 385 

vegetation height and vegetation cover (denser vegetation resulted in higher amplitude) and 386 

negatively correlated with echo ratio (vegetation complexity, see below) and canopy openness. 387 

In woodlands, the dark diversity of fungi was positively related to amplitude, suggesting that 388 

more species are missing in the relatively tall and dense forests compared to more complex and 389 

open woodlands. The positive association between LiDAR amplitude and dark diversity could 390 

therefore be a consequence of communities  in older well-developed shrubland or old-growth 391 

pristine forests with windthrows or other openings, having allowed fungi more time to become 392 

established with their associated plants (Fernández-Toirán et al. 2006; Twieg et al. 2007). 393 

Indeed, among the top half of woodland plots with regards to amplitude were plantations and 394 

most of them contained rather high relative fungal dark diversity, while the bottom half of the 395 

plots, those having the lowest dark diversity, were mostly old forests or shrublands with a well-396 

developed vegetation structure (e.g., dead or fallen wood or complex sub-canopy layer). 397 

In regard to open habitats, amplitude and echo-ratio were negatively and positively 398 

related to fungal dark diversity, respectively. These results indicate that fewer species are 399 

missing from the more even early-successional grasslands without trees and shrubs. We suggest 400 

this could be the result of encroachment due to the widespread abandonment of ancient grassland 401 

management practices resulting in a loss of small-statured typical grassland species without a 402 

corresponding gain in species associated with scrub and woodland. It could also reflect that 403 

fewer species are missing from calcareous or sandy grasslands since open limestone and white 404 

sand have a relatively high reflectivity.  405 

Plant richness 406 

The most important field-measured variable was plant species richness which was 407 

negatively related to fungal dark diversity in both open habitats and woodlands. Plant richness 408 

and composition are well-known to correlate with fungal richness and composition (Brunbjerg et 409 

al. 2018; Chen et al. 2017; Wang et al. 2018; Yang et al. 2017; Zak et al. 2003), and sites with 410 

lower plant species richness have previously been found to have a relatively higher proportion of 411 

plants in the dark diversity (Fløjgaard et al. 2020). These results may be attributed to greater 412 

plant richness associated with more stable communities and ecosystems (Kuiters 2013; Pellkofer 413 
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et al. 2016; Yang et al. 2018), which could indicate longer continuity and hence time for fungi to 414 

establish.  Alternatively, host specific fungi species could be missing due to absence of their 415 

symbiotic plant species (Dickie 2007). In that case, a higher plant species richness could mean 416 

the presence of more symbiont plant species and therefore more fungi can establish at sites 417 

where suitable symbionts are more plentiful. Another possible explanation is that plant richness 418 

mirrors human impact. Generally plant species richness have declined over several decades and 419 

continue to as a consequence of agricultural intensification and abandonment of extensive land-420 

use (Hülber et al. 2017). Other studies have found human disturbance to be a strong driver of 421 

fungal richness and dark diversity patterns (Epp Schmidt et al. 2017; Pärtel et al. 2017a), and 422 

future studies may help to tease apart these effects.  423 

Abiotic environment 424 

Soil fertility is an important driver of fungal communities (Balser et al. 2005; Kalliokoski 425 

et al. 2010; Sterkenburg et al. 2015) and was found to have a positive relationship with dark 426 

diversity in open habitats. In general, soil fertility influences plant species richness negatively 427 

through asymmetric competition (Buckland and Grime 2000; Dybzinski et al. 2008; Luo et al. 428 

2017; Nadeau and Sullivan 2015). This likely explains the negative relationship between the 429 

local dark diversity of fungi and soil fertility: lower plant species richness possibly resulting in a 430 

lower number of suitable hosts for host-specific fungal species. However, the effect might also 431 

be uncoupled from plants and simply due to changes in the soil decomposition microbiota from 432 

fungal to bacterial dominance along a gradient of soil fertility and pH (Blagodatskaya and 433 

Anderson 1998). Another alternative explanation is that soil fertility affects the density of soil 434 

mycophagous and microarthropod species (Cole et al. 2005) which also affects fungal dark 435 

diversity (Crowther et al. 2013). However, while this explanation might be plausible, the 436 

underlying mechanisms are largely unknown, calling for further research to dissect the 437 

interactions between soil fertility, soil microarthropods and fungal diversity.  438 

We also found soil moisture had a positive relationship with fungal dark diversity in open 439 

habitats. Moisture is an important driver of fungal communities (Frøslev et al. 2019; Gómez-440 

Hernández and Williams-Linera 2011; Gupta et al. 2018) and the availability of water increases 441 

the growth, colonization rate, and spore production of fungi (Jacobson 1997; Kennedy and Peay 442 

2007). The relationship between fungi and plants is also important because moisture plays a key 443 
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role in regulating ecosystem functioning which affects the primary production of the 444 

aboveground plant communities (Bai et al. 2004), and in turn the quality and availability of 445 

resources for below-ground fungal communities (Chen et al. 2017). High soil moisture is a 446 

strong environmental filter excluding most macro-fungi species in the wet habitats (e.g., 29 of 447 

the Danish red-listed fungal species are from wetlands, whereas 441 species are from grasslands 448 

and forests). This filter may also be the main reason for the higher fungal dark diversity found in 449 

the wet habitats. The interdependencies between fungi and plants, and the strong link between 450 

plant communities and soil moisture gradients (Silvertown et al. 2015; Valdez et al. 2019; Xiong 451 

et al. 2003), may explain why moisture was not significant in models of fungal dark diversity 452 

based on both plant and fungal co-occurrences, as this approach perhaps accounts for these 453 

interactions.  454 

Conclusion 455 

This is the first study to investigate the drivers of the local dark diversity of fungi using 456 

both LiDAR derived vegetation and terrain structure as well as field-measured variables. We 457 

showed that local fungal dark diversity is strongly dependent on the environment with vegetation 458 

structure, plant diversity, and abiotic factors playing important roles in determining fungal dark 459 

diversity. Also, to our knowledge, this is the first study determining regional pools with species 460 

co-occurrence across taxon groups. This may be a much more ecologically sound methodology 461 

than using only one taxon group, especially for interdependent taxonomic groups. Future studies 462 

and novel approaches will be required to disentangle the various effects of LiDAR and field-463 

measured variables on dark diversity, especially since LiDAR variables are proxies for what we 464 

wish to measure. Using LiDAR as a tool to determine dark diversity, in conjunction with 465 

ecological field measurements, may be a valuable tool to better guide conservation and 466 

restoration planning by identifying sites having a high dark diversity. 467 
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