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Abstract1

In previous work, we focused on the optimal therapeutic strategy with a pair of drugs2

which are collaterally sensitive to each other, that is, a situation in which evolution of3

resistance to one drug induces sensitivity to the other, and vice versa. [1] Here, we4

have extended this exploration to the optimal strategy with a collaterally sensitive drug5

sequence of an arbitrary length, N(≥ 2). To explore this, we have developed a dynamical6

model of sequential drug therapies with N drugs. In this model, tumor cells are classified7

as one of N subpopulations represented as {Ri|i = 1, 2, ..., N}. Each subpopulation, Ri,8

is resistant to ‘Drug i’ and each subpopulation, Ri−1 (or RN , if i = 1), is sensitive to it, so9

that Ri increases under ‘Drug i’ as it is resistant to it, and after drug-switching, decreases10

under ‘Drug i + 1’ as it is sensitive to that drug(s).11

Similar to our previous work examining optimal therapy with two drugs, we found12

that there is an initial period of time in which the tumor is ‘shaped’ into a specific makeup13

of each subpopulation, at which time all the drugs are equally effective (R∗). After this14

shaping period, all the drugs are quickly switched with duration relative to their efficacy15

in order to maintain each subpopulation, consistent with the ideas underlying adaptive16

therapy. [2]17

Additionally, we have developed methodologies to administer the optimal regimen18

under clinical or experimental situations in which no drug parameters and limited in-19

formation of trackable populations data (all the subpopulations or only total population)20

are known. The therapy simulation based on these methodologies showed consistency21

with the theoretical effect of optimal therapy.22

1 Introduction23

Despite the development of a large pharmacopoeia of novel anti-cancer drugs, curative treat-24

ments remain elusive after systematic, or metastatic, spread of cancer. The evolution of re-25

sistance to initially effective therapies is one of the primary forces behind this phenomenon.26

This evolution is a complex phenomenon influenced by a variety of factors and their in-27

teractions [3, 4, 5], including genetic mutation and changed frequency of gene expression28
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[6, 7, 8], drug efflux pumps on the cell membrane [9, 10], tumor microenvironement [11]29

and so on. Despite the difficulty of elucidating these complicated mechanisms, a multitude30

of (epi)genetic factors may converge to evolve finite phenotypes. Resistance to a particular31

drug can represent each of these phenotypes. Furthermore, such diversity in resistance phe-32

notype can be leveraged to find synergistic combinations in which resistance and sensitivity33

factors of the involved drugs are properly engaged, like multiple cogwheels rolling together.34

Drugs having such relationships are called collaterally sensitive drugs or negatively cross35

resistant drugs. Particularly, there is utility in a drug sequence which completes a cycle of36

such relationships. (e.g., the three drugs connected by the red arrows in Figure 1.) With37

such cycles, one could, in theory, generate infinitely long drug sequences which can be used38

in long term therapy to mitigate the evolution of resistance in a tumor. [12] In light of this,39

we extend our previous work on two-drug cycles [1] to arbitrary length cycles in this paper.40

(a) (b)

Figure 1: A hypothetical collateral sensitivity map (CSM), and associated collateral sensi-
tivity network (CSN) among 5 drugs. (a) A collateral sensitivity map: This map represents
the results of a hypothetical experiment in which tumors are exposed to one drug (column),
and after resistance to this drug develops are tested against another drug (column). The
color is then the change in sensitivity from the wild type to the evolved strain. (b) A collat-
eral sensitivity network showing every drug pair and their collateral sensitivity relationship.
Nodes represent drugs, and directed edges point from drugs, which when resistance devel-
ops, end with sensitivity to another (edge terminus). The four drugs connected by the red
arrows is an example of collaterally sensitive drug cycle.

Tumors consists of diverse cells in terms of cellular traits (heterogeneity in genotypes41

and phenotypes) and/or surrounding environment (affinity to blood vessels, fibroblasts,42

etc.) which has been comprehensively reviewed. [13] This heterogeneity has been captured43

in numerous ways mathematically using a variety of different formalisms [14]. One type of44

simple model germane to the work here represents dimensionless fractions of finite number45

of cell subpopulations, assuming their total population is fixed. Tracking of the frequency46

of subpopulations has been efficiently used to explore the dynamics of tumors and therapy47

in the setting of evolutionary game theory [15, 16, 17, 18]. Other models described the48

population dynamics of also finitely many cell types [19, 20, 21], that can simulate the49

dynamical behavior of both subpopulations and total populations of cancers.50

Some other modeling work has incorporated more detailed heterogeneous framework,51
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by introducing continuously changing cellular biology [22, 23] or stromal microenvironment52

environment [24, 25]. In this paper, we chose to account for the intermediate level of mod-53

eling complexity. Using constrained ODEs, as in EGT, but also considering differential drug54

effect, similar to the concept of fitness landscapes [26]. With that, we defined a drug efficacy55

measure based on cell population, and explored the effects of collaterally sensitive drug56

schedules.57

For parsimony and analytical tractability, we assume that there are possibly three fitness58

levels under each drug: lowest (for most sensitive cells), highest (for most resistant cells)59

and intermediate (for other neutral cells). Mutations in this population structure result only60

in progressively higher fitness values, specifically from sensitive to neutral and neutral to61

resistant types. We make no fine grained biological assumptions for the purposes of this62

work, but assume only that a fitness metric of overall proliferation ability in the process63

of convergent evolution [27, 28, 29, 30]. A subpopulation having a same fitness value is64

assumed to be homogeneous in terms of how it responds to drug exposure. And, while it has65

been shown that fitness can often change as a function of drug dose, so called seascapes [31],66

and that this can be useful for control, we do not consider that possibility here [32].67

In this study we ask the following questions: Given knowledge of the evolutionary pat-68

terns of resistance, what is the optimal method of using a large panel of drugs? What can we69

learn about the evolution of resistance from observing patient outcomes? Can each patient70

be their own control?71

The remainder of this manuscript is structured as follows. The details of our model are72

described in Section 2. Based on the model, we derive the optimal treatment strategy and73

a practical method of its implementation, which are discussed in Section 3 and Section 474

respectively. Our finding of optimal treatment is consistent with the concept of ’minimum75

effective dosage’ in the adaptive therapy paradigm, which optimizes drug effectiveness with76

the least risk of drug resistance development [2]. Section 5 includes a discussion of adaptive77

therapy, as well as overall conclusions and discussions of this work.78

2 Modeling for collaterally sensitive drug cycles79

Based on our previous model of collateral sensitivity cycles in two drugs [1], we have de-80

veloped an extended model for an arbitrary length of N drugs cycles, Drug 1, Drug 2, ...,81

and Drug N. In the model, tumor cells are classified into N subpopulations, R1, R2, ..., and82

RN. Each subpopulation, Ri is resistant under Drug i, sensitive under Drug i′ (see Table83

1 for the definition of i′), and neutral under any of other drugs. Therefore, we can simu-84

late the patterns of collateral sensitivity sequences in terms of the resistant cell populations85

(for example, Ri′) under a particular drug (i.e., Drug i′ in the example) which subsequently86

declines under the next drug in the cycle to which it is sensitive (i.e., Drug i).87

Under each drug (Drug i), we assigned three types of total proliferation rates (“birth88

rate”-“death rate”), for resistant (pi
r > 0), sensitive (pi

s < 0) and neutral (pi
0 ∈ (pi

s, pi
r))89

cells. Assuming evolution of each cellular type occurs toward higher fitness levels (i.e.,90

proliferation rates in our model), we accounted for two kinds of transitions: from sensitive91

to neutral types (gi
s > 0) and neutral to resistant types (gi

0 > 0). The dynamics of R1, R2, ...,92

and RN under any chosen drug, Drug i, are described in Figure 2.93
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

d
dt

Ri = pi
r Ri + gi

0 ∑
j 6∈{i,i′}

Rj

d
dt

Ri′ = pi
s Ri′ − gi

sRi′

d
dt

Rj = pi
0 Rj − gi

0Rj + gi
sRi′ for j 6∈ {i, i′}

(1)

or
dR
dt

= D(i) R

Figure 2: Population dynamics under Drug i therapy, where Ri and Ri−1 (i − 1 = i′ ≥
1) are resistant and sensitive cell populations respectively, with all the other compart-
ments being populations of neutral type. The left panel shows the schematic of transi-
tions/turnovers among Rjs, and the right panel shows the associated system of differential
equations. Here, {pi

r, pi
s, pi

0} are proliferation rate of resistant, sensitive, and neutral cells,
{gi

s(and corresponding gi
s = gi

s/(N − 2)), gi
0} are transition rates from sensitive to neutral

and, from neutral to resistant types.

In our study, system (1) is used to describe the dynamics of cell populations under a94

single drug. To study the dynamics under multiple drugs switched over time, we switch the95

drug index, i, in the system accordingly. The resulting piece-wise continuous differential96

system will describe the effect of this drug switch strategy. An example of population97

histories with 4 collaterally sensitive drugs switched as indicated is shown in Figure 3.98

Rapid drug rotation with chosen intensities of the N drugs (i.e., fi∆t-long with Drug i99

where ∑N
i=1 fi = 1 and ∆t → 0+) is employed in our optimal therapeutic strategy. This will100

be described in detail in the next section. In our modeling framework, the fast switch is101

highly related to the therapy with a drug mixture, since its corresponding cell population102

model is in a similar form as the single drug dynamics (Equation (1)). The only difference103

is the transition matrix which is replaced by the linear combination of the matrices of all the104

drugs (D(k)s) with the relative intensities ( fks), as described below.105

dR
dt

=
N

∑
i=1

fiD(i) R (2)

For the derivation of the Equation (2), see Theorem A.6 in Appendix A.106
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(a) (b)

Figure 3: Example simulation with hypothetical drugs that complete a collateral sensi-
tivity cycle. (a) Demonstration on the fitness levels of the cell populations classified in
terms of sensitivity and resistance under the collaterally sensitive drugs. (b) Simulated ef-
fect of a sequence of the drugs based on the cell classification and fitness levels from (a)
(i.e., {pr, ps, p0} = {0.5,−0.7, 0.0} for all drugs). Other used values are {gs, g0} = {0.1, 0.05}
(transition rates) for all drug and {R0

1, R0
2, R0

3, R0
4} = {0.05, 0.15, 0.2, 0.6} (initial populations).

3 Optimal therapeutic schedule107

3.1 Description of the optimal population dynamics108

Analysis of a system comprised by multiple systems of (1) with different values of i, pis and109

gis, is limited due to the complexity of the system. Instead, we studied it numerically to find110

the optimal therapeutic strategy. To define control, we chose to minimize the area under the111

total population curve over a chosen time interval [0, x] for some time x > 0,112 ∫ x

0
TP(t | drug strategy ) dt, (3)

for varying drug administrations. Our numerical study determined the treatment regimen113

for the best possible effects to minimize (3). It can be achieved when the best drug(s) is114

chosen at every given moment (t = t1). Here, the best drug(s) at t1 (e.g., Drug i) means115

the drug(s) which have the highest effectiveness in decreasing total population (such that116

e fi(t1) ≤ e f j(t1) for any j ∈ {1, 2, ..., N}), where the formulation of the drug effect is defined117

in following way118

e f j(t1) := TPD(t1|P j) = P j · R(t1) j ∈ {1, 2, ..., N} (4)

5
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for Drug j at t1. R under the optimal strategy obeys the following system,119

dR
dt

= D
(

argmin
1≤i≤N

e fi(t)

)
R. (5)

(a) (b)

(c)

Figure 4: Algorithm for practical realization of the optimal therapeutic strategy (System
(5)). (a) Flow chart of the optimal therapy algorithm. (b, c) Dynamical trajectories of the
optimal strategy (solid curves) simulated through (a), compared to the trajectories of an
example strategy relevant to the best possible standard clinical approach (minimum-point
switches; dashed curves). The total populations of time histories is shown at Panel (b), and
the integrations of total populations (3) from t = 0 to varying upper limit (x-axis) is shown in
Panel (c). Parameters/conditions are: {pr, ps, p0} = {0.2, 0.7, 0.0} and {gs, g0} = {0.05, 0.05}
for all drugs, and {R0

1, R0
2, R0

3, R0
4} = {0.05, 0.15, 0.2, 0.6}.

While we are deriving a mathematically optimal therapy schedule, we realize it is imprac-120

tical to instantaneously switch drugs in realistic clinical situations. Therefore, we developed121

a simulation algorithm to choose and accordingly switch to an effective drug at a given122

discrete time step (∆t ' 0), which is described in Figure 4 (a) – where a longer ∆t could be123

considered for specific clinical situations. An example of the optimal administration simu-124

lated with the discrete scheme, compared to a choice of non-optimal administration which125
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changes drugs at minimum time points of total population, is shown in Figure 4 (b, c). The126

panel (b) shows tumor size, which is smaller with the optimal therapy over the time than the127

size with the non-optimal therapy, and the panel (c) shows how much the optimal therapy128

is better, measured by (3), in this example.129

130

3.2 Properties of the optimal therapy131

In this section, we will study several properties about the optimal therapeutic regimen based132

on two examples of “symmetric” drug cycle (Figure 5) and an “asymmetric” drug cycle (Fig-133

ure 6). We define symmetric drug cycle as a set of drugs which have an identical parameter134

value for each type of dynamical event, i.e., {pi
r, pi

s, pi
0, gi

s, gi
0} = {pr, ps, p0, gs, g0} for all i,135

and an asymmetric drug cycle as having different parameter values for at least one type of136

dynamical event, i.e., {pi
r, pi

s, pi
0, gi

s, gi
0} 6= {pj

r, pj
s, pj

0, gj
s, gj

0} for some i 6= j. We will begin137

with the simpler case of symmetric drug cycles first and then generalize our observations to138

asymmetric drug cycles.139

In both cases simulated by the algorithm (Figure 4 (a)), there are up to N “stages” of time140

periods in the optimal administration. (Figure 5, 6 (a)) We define a stage as a time interval in141

which a same drug combination is involved. Starting initially with the most effective drug(s)142

of the first stage, with progression to subsequent stages, one or more additional effective143

drug(s) is chosen to start, and eventually at the last stage all the drugs are activated. (Figure144

5, 6 (b,c)) The choice of the additional drugs and duration of the stages except the last stage145

depend on the initial proportions of subpopulations and model parameters. This qualitative146

change transitioning to the last stage is because by this time, the heterogeneity has been147

effectively shaped by the previous stages of drug administration. The last stage starts with148

a specific subpopulation makeup (R∗) that can be represented by the following expression,149

if {P1,P2, . . . ,PN} is linearly independent. (See by Theorem A.7 in Appendix.)150

R∗ = C
‖C‖1

where C =


(P1)T

(P2)T

...
(PN)T


−1

1, (6)

or simply,151

R∗ = 1
N

1,152

in symmetric drugs (Corollary A.8). There exist possible parameter values which do not153

hold the linear independence property, if they satisfy one of several strict conditions like154

Theorem A.9. However, our analysis will focus on other general cases that the expression155

(6) can be utilized.156

The last stage lasts as long as therapy is necessary, keeping the same cellular makeup157

meanwhile.158

R(t) = TP(t) R∗ = eλ(t−tshape)R(tshape) for t ≥ tshape (7)

7
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(a) (b)

(c) (d)

Figure 5: Optimal therapeutic dynamics with a cycle of four symmetric drugs. (a) Histo-
ries of subpopulations and total population with gray lines/curves indicating the ends of
stages and exponential curves compatible to the last stage. (b) Effects of the drugs (rate
of total population change under the drugs) measured by (4) along the optimal population
dynamics. (c) Stage-wise relative frequencies of the drugs chosen in the optimal histories
simulation by the algorithm (Figure 4 (a)). (d) Shannon entropy change over sequences
of chosen drug indices starting from the beginning of each stage to the time points (x-
axis). Selected drugs at every time points are indicated by the colored dots along the line
of y = 0. Parameters for all panels are {pr, ps, p0} = {0.2, 0.7, 0.1}, {gs, g0} = {0.1, 0.05},
{R0

1, R0
2, R0

3, R0
4} = {0.45, 0.3, 0.05, 0.2}

All the subpopulations and total population of the last stage are presumed to change expo-159

nentially (See the comparison between the population curves and the light-gray guideline160

curves on Figure 5, 6 (a).). For symmetric cases, it has been proved in Theorem A.10, that161

the exponential rate is the average of proliferation rates of all subpopulations,162

λ =
pr + ps + (N − 2)p0

N
. (8)

All stages except the last one choose better drugs and gradually level the effectiveness of163
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(a) (b)

(c) (d)

Figure 6: Optimal therapeutic dynamics with a cycle of four asymmetric drugs. Same
types of plots with Figure 5 with four asymmetric drugs: {p1

r , p1
s , p1

0} = {0.5, 0.7, 0.0},
{g1

s , g1
0} = {0.01, 0.005}, {p2

r , p2
s , p2

0} = {0.1, 0.7, 0.0}, {g2
s , g2

0} = {0.01, 0.01}, {p3
r , p3

s , p3
0} =

{0.2, 0.3, 0.0}, {g3
s , g3

0} = {0.05, 0.05}, {p4
r , p4

s , p4
0} = {0.1, 0.2, 0.0}, {g4

s , g4
0} = {0.001, 0.0005},

{R0
1, R0

2, R0
3, R0

4} = {0.05, 0.15, 0.2, 0.6}

all drugs evenly, so we will call those finite stages the “shaping period”. On the other hand,164

in the last stage, drugs are equally effective for the shaped heterogeneous tumor, with all165

drugs being given to continue this balanced effect (adaptive therapy period). The finding166

of the optimal therapeutic regimen is consistent with our previous work [1] of 2 drugs, in167

that (i) at each time point the best strategy of drug administration requires the drug(s) with168

the highest current effectiveness, and (ii) the optimal administrations consist of a shaping169

period and a period of adaptive therapy.170

In a symmetric drug regimen, after the shaping period, all the subpopulations maintain171

equal density (Stage 4 of Figure 5 (a)) with same intensity of drugs (Stage 4 of Figure 5 (c))172

given in turn. However, in the other stages in the case of symmetric drugs, and all stages173

in the case of asymmetric drugs, subpopulation makeup, relative drug intensities, and the174

duration of the stages are nonuniform and infeasible to derive analytically. We can clarify175

9
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them only through numerical methods given drug parameters by running the System (5) in176

a discrete way as we did for the examples in Figure 5, 6. For reference, in our previous work177

[1], such quantities were able to clarify explicitly, since it only concerned two drugs.178

Additionally, we have measured the Shannon entropy of the drug indices in the sequence179

of drugs chosen along the algorithm in our examples. Despite the aperiodicities we observed180

in the sequences, the entropy along the optimal trajectories are more or less consistent, i.e.,181

flat entropy curves in each stage; Figures 5, 6 (d)) within each stage. This allows us to infer182

that the sequences are almost periodic, and drug prescription does not significantly differ183

within these stages. Inspired by this observation, we plotted the dynamics of instantaneous184

drug cycles (Equation (2)) using the relative drug assignments of each stage found at Figures185

5, 6 (c). The relevant curves are indicated by the dashed curves in Figures 5, 6 (a). Based186

on their consistency to the algorithmic histories on the same panel, we can presume that the187

drug cycle would be periodic, but errors generated by the practical nonzero time step (t ' 0)188

result in minor aperiodicities.189

4 Practical guidelines for optimal drug administration190

Though we have derived the optimal therapeutic regimen for symmetric and asymmetric191

drug cycles in the previous section, there are practical barriers to applying this regimen in192

a clinical setting. It is unlikely that the drug parameters and initial tumor status as defined193

in our algorithm are known for real drugs and a real tumor in a real patient. Therefore, we194

propose a method of treatment to approximate this optimal therapy in two cases: when the195

sub-populations of each cell type are known and when only the total tumor cell population196

is known.197

In each case, we use one or more ’testing periods’ each lasting N∆t where ∆t is the198

smallest possible period of single drug administration, and in reality, response measure-199

ment. In the N successive ∆t-long time windows, all of the N drugs are given in turn, and200

the available population data is measured at the end of each window. After this procedure201

is performed, we will have discrete population data at N + 1 time points202

Popk = Pop(t = k ∆t) for k ∈ {0, 1, ..., N}.203

We base our ’realistic’ strategy around total tumor population because of the recent204

explosion of robust techniques to obtain this information in a clinically relevant setting [21].205

In this particular method plasma cell-free DNA is sampled from a patient with relatively206

high temporal frequency and used to resolve the corresponding evolutionary dynamics.207

We use these techniques as a benchmark for clinically leverage-able tumor population data208

which can be implemented in an algorithm as we describe below.209

4.1 Available data: subpopulations Pop = R210

Implementing the subpopulation data over just one single testing period (explained above),211

we derive several equations which represent the relationships between the data and drug212

parameters, and then, to find the parameter values. We will approach those problems for213

two conditions separately: two drugs N = 2, and three or more drugs N ≥ 3.214

10

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 3, 2020. ; https://doi.org/10.1101/2020.07.02.184952doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.02.184952


In the case of two drugs, there are only two subpopulations R = {R1, R2}, and three215

parameters for each drug i ∈ {1, 2} which are two proliferation rates {pi
r, pi

s} and one216

transition rate from sensitive to resistant types gi. No subpopulation or parameters related217

to neutral cells is included in the system of two drugs. Solving the differential system (1)218

with the initial conditions, we have the following equations for each ∆t-long time window.219 {
S(t) = fs(t; ps − gs; s0)
R(t) = fr(t; pr, gs; r0, S) , (9)

where {S, R} = {Ri′ , Ri}, {pr, ps; g} = {pi
r, pi

s; gi} and {s0, r0} = Ri−1(= Popi−1). Applying220

the data of next time point {s1, r1} = Ri(= Popi) to (9), we can specify the equations with221

drug parameters and known values only.222 {
s1 = fs(∆t; ps − gs; s0)
r1 = fr(∆t; pr, gs; r0, S) (10)

Similarly, in the case of a larger number of drugs N ≥ 3, we can solve (1),223 
S(t) = fs(t; ps − gs; s0)
N(t) = f0(t; p0 − g0, gs; n0, S)
R(t) = fr(t; pr, g0; r0, N)

, (11)

where {S, N, R} = {Ri′ , ∑j/∈{i,i′} Rj, Ri} and {pr, ps, p0; gs, g0} = {pi
r, pi

s, pi
0; gi

s, gi
0}. Also,224

{s0, n0, r0} and {s1, n1, r1} are elements or the summations of elements in Popi−1 and Popi
225

respectively. Applying {s1, n1, r1} to (11) yields,226 
s1 = fs(∆t; ps − gs; s0)
n1 = f0(∆t; p0 − g0, gs; n0, S)
r1 = fr(∆t; pr, g0; r0, N)

. (12)

Both (10) for the two-drug cases with three unknown parameters and (12) for N-drug227

cases with five unknown parameters (N ≥ 3) are underdetermined. One strategy to resolve228

this issue in either case is by assuming a specific ratio between proliferation rates and tran-229

sition rates, i.e., |ps| = αg for 2 drugs and {|ps|, |p0|} = {αsgs, α0g0} for more drugs, with a230

reasonably chosen α, αs, α0 ∈ (0, 1) like α = 0.1. Then, using the conditions and equations231

(10 or 12) along with the data from one testing period, we can infer all the drug parameters.232

The discovered parameters will give the complete information required to run the algorithm233

of optimal administration (Figure 4 (a)).234

4.2 Available data: total population only Pop = TP235

In most cases of cancer, however, detailed information about tumor heterogeneity cannot236

be detected over time. Clinically, total tumor size is the highest resolution data that can237

be reasonably (and even then poorly) measured. For such cases with limited data, rather238

than trying to solve the differential equations as shown in the previous section, we tried to239

approximate drug effects using the levels of changes of the total population data of testing240
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period, and checked which drug(s) are most reasonable to prescribe. The chosen drug or241

drugs is continually prescribed as long as it is effective, and its effects are continuously242

monitored. When the chosen drug loses efficacy, we need to select drugs again. Since we243

will not know sub-populations and drug parameters, the equation (4) is not applicable. In-244

stead, another (N∆t)-long testing period is required to choose the drugs of the next ’round’.245

Therefore, in our algorithm of optimal prescription only with total population monitored,246

we suggest to pair up “testing” period and “therapy” period, and repeat them (See Figure247

7 (b)). Even though the testing period can transiently worsen outcomes compared to stan-248

dard therapies for a finite period of time, it is the only way to ascertain the relative strength249

of each drugs selection pressure. So, we strived to reduce the time taken for each testing250

period. One way we implemented this in our algorithm was to choose and apply multiple251

effective drugs, rather than one single best drug. We chose this strategy because utilizing a252

strict criterion of drug selection would not allow for currently chosen drugs to be effective253

for a long time and would require a change of drug more frequently.254

Now, let us describe our algorithm for optimal therapeutic prescription (Figure 7 (b))255

with only total tumor cell population trackable. We measure the effect of Drug i (i ∈256

{1, 2, ..., N}) by the approximate derivative,257

ẽ f i =
TP(i∆t)− TP((i− 1)∆t)

∆t

(
=

Popi − Popi−1

∆t

)
.258

From the evaluated ẽ f is, we choose the effective drug(s), based on the current status of the259

tumor,260

Ie f f = {i | ẽ f i ∈ B(e f m; ε |e f m|)},261

based on the highest effect,262

e f m = Min {ẽ f i | 1 ≤ i ≤ N},263

and the parameter of effective drug interval (ε). Another important quantity included in the264

algorithm is the threshold of the drug effectiveness necessary to determine if we can keep265

using the current drug(s) or need to re-select drug(s),266

e f ∗ = (1− η) Mean {ẽ f i | i ∈ Ie f f }+ η Min {ẽ f i|i 6∈ Ie f f },267

which is between the average effect of “effective” drugs, and the highest effect of “ineffec-268

tive” drugs. In our study, we simply fixed the threshold parameter, η = 0.5 (See Figure 7 (a)269

for the visualized explanations about the values and parameters in the algorithm.).270

Our algorithm of approximated optimal therapy was compared to the actual optimal271

therapy by measuring the area between population curves, in two ways. Using total popu-272

lation curves, we measured273 ∫ ∣∣TP(t|optimal therapy)− TP(t|approx. optimal therapy)
∣∣ dt,274
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(a)

(b)

Figure 7: Algorithm for the administration of the optimal drug schedules when total pop-
ulation data is available, but not subpopulation nor drug parameters. (a) Diagram of the
classification of “effective” and “ineffective” drugs, and the threshold of drug effectiveness
(e f ∗). The effectiveness levels of the most effective drug (e f m), effective drugs and ineffective
drugs are indicated by blue-filled circle, black-filled circles and empty circles, respectively.
(b) Flow chart of the optimal therapy algorithm based on the “effective” drugs from (a).

and using subpopulations curves,275

∫ N

∑
k=1

∣∣Rk(t|optimal therapy)− Rk(t|approx. optimal therapy)
∣∣ dt.276

Using both methods, we found that both strategies which were too strict or too generous277

do not generate tumor histories close enough to the optimal one (See Figure 8 (b)). A278
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proper level of drug selection window is necessary, like our example case of Figure 8 in279

which the approximation is reasonably close with ε ≈ 0.03 (See Figure 8 (a)). It is an280

expected observation, because a strict drug selection strategy will require unnecessarily281

frequent testing periods, and a generous strategy will include barely effective drugs as well282

in the treatment.283

(a) (b)

Figure 8: Comparison between the realistic approximation of the optimal therapy (by the
algorithm on Figure 7 (b)), and the actual optimal strategy. (a) Optimal therapeutic effect
generated by the practical algorithm assuming that only total population is trackable (solid
curves) with ε = 0.03 and η = 0.5, compared to the effect of the optimal therapy in theory
(dashed curves). Other used parameters and initial tumor status are the same as in the
example in Figure 6. (b) Errors between the approximated and actual optimal histories, over
the range of the parameter of effective drug window.

5 Conclusions and discussion284

The phenomena of collateral sensitivity presents an opportunity to improve effectiveness285

in drug therapy without the need for drug discovery, a process that requires enormous286

amounts of time and money. Taking advantage of CS clinically however, requires a better287

understanding, of the evolutionary dynamics under changing therapy. To address this, we288

developed a mathematical model of ordinary differential equations describing the effect of289

a collaterally sensitive drug cycles, and explored the optimal treatment regimens within the290

confines of this simplified model. Consequently, we found that the optimal therapeutic effect291

can be derived when we switch drug to the best-effect-drug at every moment. While this is292

somewhat intuitive, choosing the timing, and order of switching is a difficult prospect given293

the lack of perfect data in clinical settings, and given the heterogeneity which is hallmark of294

cancer.295

In our ODE model, drug switching is implemented by changing drug-dependent pa-296

rameters (P i) and transitions between cell types. In accordance with the ‘optimal’ drug297

schedule, drugs are switched instantaneously after the first stage of single-drug therapy.298

However, such rapid switching is not feasible clinically. To address this, we developed a299
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Table 1: Definitions of parameters and variables related to System (1)

variables/parameters descriptions
N number of drugs in cycle
i index of a chosen drug, i ∈ {1, 2, ..., N}

i′ index of the drug whose resistant factor is sensitive to Drug i,
i− 1 for i ≥ 2, and N for i = 1

t time variable
[0, tshape] time interval of shaping period

Ri
cell population resistant under Drug i, sensitive under Drug i + 1

(for i < N) or Drug 1 (for i = N) and neutral under all the other drugs
R vector of subpopulations, R = ( R1 · · · RN )T

R∗ population fractions (i.e., ∑N
k=1 R∗k = 1) at which all the drugs

are equally effective, R∗ = ( R∗1 · · · R∗N )T

TP(t) total population, TP(t) = ∑N
k=1 Rk(t)

TPD(t) derivative of total population, TPD(t) = TP′(t)
pi

r proliferation rate of cells resistant to Drug i
pi

s proliferation rate of cells sensitive to Drug i
pi

0 proliferation rate of cells neutral to Drug i

P i ∈ RN

vector of proliferation rates under Drug i,

P i :=
(

pi
j

)
with pi

j =


pi

r if j = i
pi

s if j = i′

pi
0 otherwise

gi
s

(
gi

s

) transition rate from sensitive to all neutral types (each neutral type)
under Drug i, gi

s := gi
s/(N − 2)

gi
0 transition rate from neutral to resistant types under Drug i

{λi
r, λi

s, λi
0}

per capita turnover rates for the three types of cells under Drug i,
λi

r := pi
r, λi

s := pi
s − gi

s, λi
0 := pi

0 − gi
0

D(i) ∈ RN×N

matrix of rate parameters in population dynamics under Drug i,

D(i) :=
(

di
j,k

)
with di

j,k =



λi
r if j = k = i

λi
s if j = k = i′

λi
0 if j = k 6∈ {i, i′}

gi
0 if j = i and k 6∈ {i, i′}

gi
s if k = i′ and j 6∈ {i, i′}

0 otherwise
e fi effect of Drug i
ẽ f i approximated effect of Drug i

time-series algorithm mimicking the ODE system and the nearly instantaneous switches300

(Figure 4 (a)). As expected, the algorithm-based simulation is smooth with a small time step301

(Figure 4 (b)) and shows a good consistency with the ODE system (Figure 5, 6 (a)).302

The order of the drug sequence in each stage of our example simulations is not exactly303

periodic, even though the pattern of periodicity is (at least vaguely) observed (Figure 5, 6304
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(d)). Also, in the last stages where all the drugs are involved, Drug i is not always followed305

by Drug i′. However, the drug combinations of a complete drug cycle is needed to control306

tumors. Specifically, if there is a flaw in suppressing one type of cell population, even if its307

population was very small at the beginning, it can exponentially increase at the end (Figure308

9) - much like the concept of evolutionary escape.309

Figure 9: Comparison between the effects of a complete collaterally sensitive drug cycle
and an incomplete cycle. The complete cycle is comprised by all the four drugs (relevant to
the solid curves), and the incomplete cycle is by only Drug 2, Drug 3 and Drug 4 with Drug 1
being dropped (relevant to the dashed curves). Used values: {pr, ps, p0} = {1.0, 2.5, 0.0},
{gs, g0} = {0.25, 0.25} for all drugs, {R0

1, R0
2, R0

3, R0
4} = {0.4, 0.3, 0.3, 0.0}

In our research, the measure of drug effect at a specific time point is defined by the310

instantaneous rate of change in total tumor size under the drug (Equation 4). It is therefore311

dependent on the heterogeneity in the tumor comprising the tumor at a given moment and312

how effective the drug is to each cell type. Hence, if the cell composition and/or drug313

parameters are unknown, we cannot measure the drug effect and therefore the optimal314

drug switch timing cannot be captured. For such cases, which is the majority of cancers,315

we developed an algorithm within which drugs are selected based on only total population316

(Figure 7(b)). Cell population dynamics with this algorithm show a good consistency with317

the fully informed optimal therapeutic strategy (Figure 8 (a)). The traditional time gaps318

required to obtain updated diagnostics and prescription is several weeks or months, [21]319

which would be too long to expect a result close to an optimal solution as we aim for here.320

Based on the results of our algorithm simulation (Figure 8 (a)), it is evident that performance321

of the algorithm degrades with increasing time between updates – suggesting an avenue of322

study to formally optimize the costs and benefits of this time, though that is beyond the323

scope of this work.324

There are many collateral sensitivity relationships found among antibiotics [26, 33] and325

anticancer [12] drugs. A collaterally sensitive drug cycle is a chain of such relationships with326

various lengths (> 2) [12] or more. It is possible that the increased sensitivity shown after327

another drug could be a temporal phenomenon happening in a specific status, which is too328

complicated to recapitulate within this structure. Also, even if a part of the cell population329

follows the dynamics of a rotating resistance and sensitivity pattern, there could be many330

more types of cells not involved in any cell types within this structure, which will result331
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in treatment failure, as we discussed in Figure 9. A detailed study with antibiotics [26]332

applied empirical fitness measurements to assign cellular classifications with genes and333

drug-induced transitions among the genotypes. Finding best-case therapy ordering in multi-334

drug scenarios was also studied by Maltas et al. without reliance on the underlying fitness335

landscape, somwhat akin to our “imperfect” clinical information, and found that therapy336

could be improved. [34]337

Each of these previous studies assume that the dynamics measured at the beginning of338

the study do not change through time. Given the importance of (epi-)mutation, and not339

just changing frequencies, it is uncertain on what timescales this is a fair assumption. [8]340

Another simplification we have made is to assume that there is no interaction between cell-341

types, something which has been shown in at least breast [35], lung [16] and pancreatic342

cancers [36]. However, we believe our cell classification structure is meaningful in that it343

reflects collateral sensitivity phenomena reasonably and the simplicity of the corresponding344

linear ODE system enables analytic study.345

In addition, our system and corresponding a analysis lend well to the theoretical and346

clinical framework of adaptive therapy [2]. In adaptive therapy, drug administration is347

alternated with drug holidays to minimize tumor growth and resistant cell population. The348

central issues of optimal time for drug switching to maintain an optimal sub-population349

structure is apropos to the issues explored in this and our own previous work. Adaptive350

therapy has demonstrated clinical utility in markedly improving tumor response for a subset351

of cancers in theory, [37] in pre-clinical models [38] and clinically [39]. While this purely352

theoretical study should not be used to inform clinical care at this time, [40] we submit353

that further application of the techniques herein present a way forward for precise timing354

of drug switching to further optimize single drug adaptive therapy and higher order drug355

sequences alike.356
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Appendix A Differential system of instantaneous drug switch471

Definition In addition to the definitions from Table 1, we defines further notations to facil-472

itate the descriptions on proofs.473

Di := D(i) ∈ RN×N,Mi(t) :=
(

mi
j,k(t)

)
∈ RN×N, Li,ε :=Mi( fi ε)474
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with mi
j,k(t) =



eλi
r t if j = k = i

eλi
s t if j = k = i′

eλi
0 t if j = k 6∈ {i, i′}

gi
0 gi

s eλi
0t
(

eλi
r t−1

)(
1−e−(λi

0−λi
s)t
)

λi
r(λi

0−λi
s)

if j = i and k = i′

gi
0 eλi

0t
(

eλi
r t−1

)
λi

r
if j = i and k 6∈ {i, i′}

gi
0

(
eλi

0t−eλi
st
)

λi
0−λi

s
if k = i′ and j 6∈ {i, i′}

0 otherwise

.475

476

477

Proposition A.1. Under the therapy with Drug i:478

R′(t) = Di R(t), R(t0 + ∆t) =Mi(∆t) R(t0).479

Proposition A.2. Li,ε
∣∣
ε=0 = IN for all 1 ≤ i ≤ N.480

Proposition A.3.
d
dε
Li,ε

∣∣∣∣
ε=0

= fi Di, for all 1 ≤ i ≤ N481

Lemma A.4.
d
dε

(
1

∏
k=i
Lk,ε

)
=

i

∑
k=1

fk Dk for all 1 ≤ i ≤ N482

Proof.

d
dε

(
1

∏
k=i
Lk,ε

)
=

i

∑
k=1

k−1

∏
j=i
Lj,ε

( d
dε
Lk,ε

) 1

∏
j=k+1

Lj,ε


=

i

∑
k=1

k−1

∏
j=i

IN

( fk Dk
) 1

∏
j=k+1

IN

 (by Propositions A.2 - A.3)

=
i

∑
k=1

fk Dk

483

Lemma A.5. For any positive integer, n, and an any integer, i, in [1, N]

lim
ε→0

Li,ηε

(
1

∏
k=i−1

Lk,ε

)(
1

∏
k=N
Lk,ε

)n

− IN

(n + ∑i−1
k=1 fk + η fi)ε

=
1

n + ∑i−1
k=1 fk + η fi

(
n

N

∑
k=1

fk Dk +
i−1

∑
k=1

fk Dk + η fi Di

)
,
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where η is some number in [0, 1) and 0 ≤ fk ≤ 1 with ∑N
k=1 fk = 1.484

Proof.

lim
ε→0

Li,ηε

(
1

∏
k=i−1

Lk,ε

)(
1

∏
k=N
Lk,ε

)n

− IN

(n + ∑i−1
k=1 fk + η fi)ε

= lim
ε→0

d
dε

Li,ηε

(
1

∏
k=i−1

Lk,ε

)(
1

∏
k=N
Lk,ε

)n

− IN


d
dε (n + ∑i−1

k=1 fk + η fi)ε
(by L'Hospital's Rule)

= lim
ε→0

Li,ηε

(
1

∏
k=i−1

Lk,ε

)
d
dε

(
1

∏
k=N
Lk,ε

)n

+ Li,ηε
d
dε

(
1

∏
k=i−1

Lk,ε

)(
1

∏
k=N
Lk,ε

)n

+ · · ·

n + ∑i−1
k=1 fk + η fi

· · ·+ d
dε

(
Li,ηε

) 1

∏
k=i−1

Lk,ε

( 1

∏
k=N
Lk,ε

)n

= lim
ε→0

n ∑N
k=1 fk Dk + ∑i−1

k=1 fk Dk + η fi Di+1

n + ∑i−1
k=1 fk + η fi

(by Proposition A.2-A.3 and Lemma A.4)

=
1

n + ∑i−1
k=1 fk + η fi

(
n

N

∑
k=1

fk Dk +
i−1

∑
k=1

fk Dk + η fi Di

)
485

Theorem A.6. If Drug1, Drug2, ..., DrugN, are prescribed in a cycle, and are switched instan-486

taneously with relative duration of 0 ≤ f1, f2, ..., fN ≤ 1 (where ∑N
k=1 fk = 1), respectively, R487

obeys488

dR
dt

=
N

∑
k=1

fk DkR489

Proof. For any time point t0, let us defineRε(t) as a vector-valued function of R1(t), R2(t),...,490

and RN(t) describing the cell population dynamics under a periodic therapy starting at t0491

with Drug i assigned for t0 +
(

m + ∑i−1
k=1 fi

)
ε ≤ t < t0 +

(
m + ∑i

k=1 fi

)
ε where m is any492

non-negative integer and i is any integer in [1, N].493

494

For any ∆t > 0, there uniquely exist n ∈ {0, 1, 2, ...} and η ∈ [0, 1) such that ∆t =(
n + ∑i−1

k=1 fk + η fi

)
ε. Then, by Proposition A.1 and the definitions of Lis,

Rε(t) = Rε

t0 +

(
n +

i−1

∑
k=1

fk + η fi

)
ε

 = η fiLi

 1

∏
k=i−1

fkLk,ε

( 1

∏
k=N

fkLk,ε

)n

R(t0) · · · (∗1)
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where R(t0) =
(

R1(t0) R2(t0) · · · RN(t0)
)T

. And, R0(t) represents instantaneous
drug switching.

d
dt
R0

∣∣∣∣
t=t0

= lim
∆t→0

R0 (t0 + ∆t)−R(t0)

∆t

= lim
∆t→0

lim
ε→0

Rε

(
t0 +

(
n(∆t, ε) + ∑i−1

k=1 fk + η(∆t, ε) fi

)
ε

)
−R(t0)(

n(∆t, ε) + ∑i−1
k=1 fk + η(∆t, ε) fi

)
ε

= lim
∆t→0

lim
ε→0

η(∆t, ε)Li,ε

(
1

∏
k=i−1

Lk,ε

)(
1

∏
k=N
Lk,ε

)n(∆t,ε)

− IN(
n(∆t, ε) + ∑i−1

k=1 fk + η(∆t, ε) fi

)
ε

R(t0)

= lim
∆t→0

lim
ε→0

1
n + ∑i−1

k=1 fk + η fi

(
n

N

∑
k=1

fk Dk +
i−1

∑
k=1

fk Dk + η fi Di

)
R(t0)

(by Lemma A.5)

= lim
∆t→0

lim
n→∞

1
n + ∑i−1

k=1 fk + η fi

(
n

N

∑
k=1

fk Dk +
i−1

∑
k=1

fk Dk + η fi Di

)
R(t0)

=
N

∑
k=1

fk DkR(t0).

Therefore,495

d
dt
R0

∣∣∣∣
t=t0

=
N

∑
k=1

fk DkR(t0) and
dR
dt

=
N

∑
k=1

fk DkR.496

497

Theorem A.7. The population makeup at which all the drugs are equally effective is498

R∗ = C
‖C‖1

where C =


(P1)T

(P2)T

...
(PN)T


−1

1,499

where {P1,P2, . . . ,PN} is linearly independent.500

Proof. By the definition (4), the effect of Drug i is501

e fk = P i · R = (P i)TR.502

Then, at a specific population makeup with balanced drug effects, denoted by R∗,503
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(P1)TR∗ = (P2)TR∗ = · · · = (PN)TR∗ := k⇐⇒


(P1)T

(P2)T

...
(PN)T

R∗ = k

 1
...
1

504

where k is a constant representing the level of balanced drug effect. Since {P1,P2, . . . ,PN}505

is linearly independent, we can isolate R∗ with an inverse matrix.506

R∗ = k


(P1)T

(P2)T

...
(PN)T


−1

1,507

Also,‖R∗‖1 = 1, therefore508

k =
1
‖C‖1

where C =


(P1)T

(P2)T

...
(PN)T


−1

1509

and510

R∗ = C
‖C‖1

511

512

Corollary A.8. When the drugs are symmetric, the population makeup at which all the drugs are513

equally effective is514

R∗ = 1
N

1,515

where {P1,P2, . . . ,PN} is linearly independent.516

Proof. Similar to the proof of Theorem A.7, there exists unique solution of R∗ and k satisfy-517

ing518 
(P1)T

(P2)T

...
(PN)T

R∗ = k 1 and ‖R∗‖1 = 1.519
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If we plug in R∗ = 1
N

1 to the equation,
(P1)T

(P2)T

...
(PN)T

R∗ = 1
N


(P1)T

(P2)T

...
(PN)T

 1 =
1
N

 pr + ps + (N − 2)p0
...

pr + ps + (N − 2)p0


=

pr + ps + (N − 2)p0

N
1 = k 1 with k =

pr + ps + (N − 2)p0

N
.

Therefore, proved.520

Theorem A.9. {P1,P2, . . . ,PN} is linearly dependent, if the drugs are symmetric (i.e., {pi
r, pi

s, pi
0} =521

{pr, ps, p0} for all i) and pr + ps + (N − 2)p0 = 0522

Proof. It suffices to show that there exists a linear combination of P is that equals to a zero523

vector. Let the general form of a linear combination be ∑N
i=1 aiP i, where ais are constants. If524

ai = 1 for all i, ∑N
i=1 P i = (pr + ps + (N − 2)p0)1 = 0 · 1 = 0. Therefore, {P1,P2, . . . ,PN} is525

linearly dependent.526

Theorem A.10. Under instantaneously switching of symmetric drug cycle, total population with527

equal drug duration ( f1 = f2 = ... = fN = 1/N), TP, is changing exponentially with the528

growth/decay rate,529

λ =
pr + ps + (N − 2)p0

N
.530

Proof. The derivative of total population, TPD, is the summation of the vector, dR
dt .

TPD =sum
(

dR
dt

)
= sum

(
1
N

N

∑
k=1
DkR

)
(by Theorem A.6)

=
1
N

N

∑
k=1

(
sum (DkR)

)
=

1
N

N

∑
k=1

(
P k · R

)
=

1
N

(
N

∑
k=1
P k

)
· R

=
1
N

 pr + ps + (N − 2)p0
...

pr + ps + (N − 2)p0

 · R =
pr + ps + (N − 2)p0

N
(1 · R)

=
pr + ps + (N − 2)p0

N

N

∑
k=1

Rk = λ TP

531
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